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In the framework of the theory of general relativity, models of stars with an unusual equation of state
ρc2 < 0, P > 0, where ρ is the mass density and P is the pressure, are constructed. These objects create
outside themselves the forces of gravitational repulsion. The equilibrium of such stars is ensured by a
nonstandard balance of forces. Negative mass density, acting gravitationally on itself, creates an
acceleration of the negative mass, directed from the center. Therefore, in the absence of pressure, such
an object tends to expand. At the same time, the positive pressure, which falls just like in ordinary stars
from the center to the surface, creates a force directed from the center. This force acts on the negative mass
density, which causes acceleration directed opposite of the acting force, that is, to the center of the star. This
acceleration balances the gravitational repulsion produced by the negative mass. Thus, in our models,
gravity and pressure change roles: the negative mass tends to create a gravitational repulsion, while the
gradient of the pressure acting on the negative mass tends to compress the star. In this paper, we construct
several models of such a star with various equations of state.
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I. INTRODUCTION

In the last century, many amazing and unusual objects
and phenomena were discovered, quite unlike those that
were known before: white dwarfs, neutron stars, black
holes, dark matter, and dark energy. These discoveries were
preceded by exotic theoretical predictions. In many cases,
the scientific community was very skeptical about such
predictions. A striking example of this is the discovery of
black holes and the accelerated expansion of the Universe
due to dark energy. Sometimes predictions of this kind are
not justified for a long time, but there are hopes of finding
such objects in the future. An example of this kind is the
hypothesis of wormholes [1–3].
In this article, we consider models of objects consisting

of a substance with an unusual equation of state. In
particular, the negative energy density is under consider-
ation. The appeal of this possibility is connected, of course,
to the discovery of gravitational repulsion forces that make
the Universe expand faster than it was during inflation and

in the modern era. The source of gravitational repulsion
in cosmology is the negative pressure P. However, in our
case, antigravity is due to negative energy density, rather
than negative pressure:

P > 0; ρc2 < 0: ð1Þ

The possibility of such a condition has been considered in
theory for a long time. This consideration is relevant to the
cosmological constant Λ, which can be positive or negative
and is interpreted as the components of the stress-energy
tensor of the vacuum [4–8]. The negative value of Λ
corresponds to inequality (1).
Another example of exotic matter with an equation of

state that corresponds to this inequality is the scalar field
with negative energy density [9,10]. Such an equation of
state is widely used in the theory of wormholes [11].
Models of stars with an unusual equation of state were

repeatedly considered earlier [12–14]. As indicated above,
we refer here to the equation of state satisfying (1),
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specifically in connection with the consideration of the
problem of antigravity in the Universe [15]. We emphasize
that a ball of finite radius filled with matter with the
equation of state corresponding to dark energy in today’s
Universe (P ≈ −ρc2 < 0) creates ordinary gravity outside
itself in the vacuum, not antigravitation. The question
arises: can an object exist that creates antigravity in the
space beyond its border? A positive answer to this question
has long been known: such objects are the entrances to
wormholes in many models [16,17]. Our article is devoted
to the study of the question of whether there can be an
object with the usual spherical topology, which creates a
gravitational repulsion outside itself.
We will consider models with ρ < 0 and P > 0. The

motive for considering such models is a very simple
example of the mechanical interaction of two bodies with
positive and negative masses. In this example, the ball
of mass m1 > 0 moves with the speed v⃗1 in the direction
of the resting ball with the mass m2 < 0 [18]. If jm2j >
m1, then after the collision both balls will move in the
direction opposite to v⃗1. If we denote the velocities of
two balls after the collision as v01; v

0
2, then we always have

jv01j > jv02j. A similar example was also considered in [19]
for the relativistic linear motion of two particles with
masses of opposite signs and a small difference between
their absolute values.
In case of a star with ρ < 0 and P > 0, the negative

matter density creates a gravitational force directed toward
the center. This force, acting on a negative mass, creates an
acceleration directed from the center of the star. Positive
pressure falling down from the center towards the surface
creates a force directed from the center. This force, acting
on the negative mass, creates an acceleration directed
against the acting force (as in the example with the balls)
that is to the center. Thus, gravity and pressure act in
opposite directions, balancing each other. Note that they act
in directions opposite to those in which they act in an
ordinary star with a positive matter density.
The paper is organized as follows. Section II gives the

equation of equilibrium of a star, which we transform using
dimensionless quantities. In Sec. III we consider the models
of a star with a given equation of state and models with
a given density profile. Finally in Sec. IV we make our
conclusive remarks.

II. THE EQUILIBRIUM OF THE STAR

The equation of equilibrium for the spherical star in
general relativity can be written in the following form [7]:

dP
dr

¼ −G
ðρc2 þ PÞðMrc2 þ 4πPr3Þ

r2c4 − 2GMrrc2
; ð2Þ

whereG is the gravitational constant, c is the speed of light,
r is the radial coordinate (r2 ¼ A=4π, where A is the total
area of the 2-sphere), P is the pressure, ρ is the density, and
Mr is

Mr ¼ 4π

Z
r

0

ρðτÞτ2dτ: ð3Þ

The boundary of the star (its surface) is the coordinate
r ¼ rs at which the pressure vanishes: PðrsÞ ¼ 0. The
pressure must be a continuous function everywhere includ-
ing r ¼ rs. This is always true for our models with finite rs
and, therefore, the interior star solution matches with the
exterior vacuum solution, where the pressure is zero.
For further consideration, we denote the absolute value
of the density at the center of the star as ρc and use the
dimensionless quantities θ, w, x:

ρ ¼ ρcθ; P ¼ ρcc2w; r ¼ Rx; R2 ¼ c2

4πGρc
:

ð4Þ

In our models we always have θ < 0 and w > 0, so that the
equation of state satisfies (1).
Equation (2) in dimensionless units (4) looks like this:

dw
dx

¼ −
ðθ þ wÞðIx þ x3wÞ

x2 − 2xIx
; ð5Þ

and

Ix ¼
Z

x

0

θðτÞτ2dτ < 0 ð6Þ

is the dimensionless mass, which corresponds to the
expression (3).

III. MODELS OF A STAR CREATING
ANTIGRAVITATION

In this section we consider two types of models of a star
with negative mass density: models with a given equation
of state and models with a given density profile. In our
paper, when specifying the equation of state, we confine
ourselves to two models: the linear and quadratic depend-
ence of pressure on density. As for models with a given
density profile, we consider here the model of a star filled
with matter of constant density and a model with a
parabolic dependence of the density on the coordinate.

A. The models with the given equation of state

1. The model with the equation of state w = − εθ, ε > 0

The motive for applying this equation of state is the fact
that the linear relation between pressure and density has
been considered in classical works devoted to the study of
the star equilibrium for a positive mass density.
Equation (5) for the object with the negative matter

density and under condition w ¼ −εθ, where ε is the
positive constant, takes the following form:
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θ0 ¼ θ ·
1 − ε

ε
·
Ix − εx3θ
x2 − 2xIx

; θ0 ¼ dθ
dx

: ð7Þ

We should mention, first, that this equation has a simple
analytical solution (a similar analytical solution was found in
[20,21] for a positive mass density and positive pressure):

θ ¼ −
2ε

ðε − 3Þ2 − 8
·
1

x2
; for ε < 3 − 2

ffiffiffi
2

p
≈ 0.17: ð8Þ

Such a solution corresponds to infinite density in the
center of the star. In order to satisfy the finite density in the
center, we should integrate Eq. (7) with the boundary
condition θð0Þ ¼ −1, θ0ð0Þ ¼ 0. The solution in the vicin-
ity of the center can be found analytically by representing θ
in the form of a Taylor series with even terms only:

θ ¼ −1þ d2x2 þ d4x4 þ � � � ; dn ¼
1

n!
dnθ
dxn

����
0

: ð9Þ

We use here even terms to make sure that there is no weird
feature in the density or pressure profile around the center
of the star. Thus, θ and w are continuous functions, all their
derivatives have no discontinuities and our solution is
spherically symmetrical. Substituting expression (9) into
Eq. (7), we have expressions for dn:

d2 ¼
ð1 − εÞ
2ϵ

�
1

3
− ε

�
;

d4 ¼
�
1 − ε

2ϵ

�
ε −

4

15

�
−
1

3

�
d2: ð10Þ

In order to make sure that density is changing mono-
tonically from −1 to 0 in the direction from the center, the

equation of state should satisfy the condition ε < 1=3. The
asymptotic solution for large x can either be the expression
(8) if ε < 3 − 2

ffiffiffi
2

p
or, if ε > 3 − 2

ffiffiffi
2

p
, then θ ∼ xγ , γ > −2.

Finally we have the following asymptotics:

θ ≈ −1þ d2x2 þ d4x4; x ≪
1ffiffiffiffiffi
d2

p ; ε <
1

3
;

θ ≈ −
2ε

ðε − 3Þ2 − 8
·
1

x2
; x ≫

1ffiffiffiffiffi
d2

p ; ε < 3 − 2
ffiffiffi
2

p
;

θ ≈ Cxγ; γ ¼ ð3ε − 1Þð1 − εÞ
εð1þ εÞ ; x ≫

1ffiffiffiffiffi
d2

p ;

3 − 2
ffiffiffi
2

p
< ε <

1

3
; ð11Þ

where C < 0 is some negative constant. Results of our
numerical integration of Eq. (7) for different values of ε are
shown in Fig. 1.
It should be mentioned that for the equation of state

under consideration, when the pressure is proportional to
the density, the mass of the star turns out to be infinite, since
the integral I∞ ¼ R∞

0 τ2θdτ does not converge. Similar
models for the case of positive matter density were
considered in [20,21]. It is better to call them “models”,
not “stars”, since they have infinite size. In order to avoid
mass infinity, below we consider a model of a star with a
different equation of state, which gives us the finite size of
the star and hence its finite mass.

2. The model with the equation of state
w = εθ2; ε > 0; θ < 0

In the case of the equation of state w ¼ εθ2, the
expression (5) becomes

FIG. 1. The density profile as a function of the coordinate x for the model with the equation of state w ¼ −εθ. Left panel:
The density profile for ε ¼ 0.1 (solid line), together with two asymptotics: the dashed line for x ≪ 1ffiffiffiffi

d2
p and the dotted line for x ≫ 1ffiffiffiffi

d2
p .

Right panel: The density profile for different values of ε.

STARS CREATING A GRAVITATIONAL REPULSION PHYS. REV. D 98, 063528 (2018)

063528-3



dθ
dx

¼ −
1þ εθ

2ε
·
Ix þ εx3θ2

x2 − 2xIx
: ð12Þ

As can easily be seen, if θ ¼ 0, then the density derivative
with respect to the coordinate when θ ¼ 0 is a finite
positive constant. This means that the model of the star
with finite size and mass can be constructed:

dθ
dx

����
x¼a

¼ −
1

2ε

Ia
a2 − 2aIa

; θðaÞ ¼ 0; Ia < 0:

ð13Þ
Here and below bya, we denote the size of the star.We define
a as a coordinate at which the pressure becomes zero:
wðaÞ ¼ 0. In this particular case since w ¼ εθ2, both
pressure and its derivative at a are zero:wðaÞ ¼ dw

dx jx¼a ¼ 0.
Analogously to the previous case, one can find the

asymptotic solution of (12) for small x:

θ ≈ −1þ ð1 − εÞ
4ε

�
1

3
− ε

�
· x2: ð14Þ

The numerical solution of (12) is shown in Fig. 2. θðxÞ
is growing monotonically starting from the negative value
θð0Þ ¼ −1 and, unlike the previous case, eventually
becomes zero at some point x ¼ a, θðaÞ ¼ 0, where a is
the size of the star. In Fig. 2 we also show the dependence
of the size of the star on ε. As we can see, this size grows as
ε increases and becomes infinite for ε ¼ 1=3 because in this
case Eq. (12) has the constant solution θ ¼ −1.

B. The models with a given density profile

Our motivation to consider models with a given density
profile is the fact that the equationof state canvary depending
on the distance from the center of the star. In this subsection,
we consider the models with a given monotonic function θ,

−1 < θ < 0, at the range 0 < x < ∞. In this case, the
pressure w satisfies the equilibrium equation (5) and even-
tually becomes zero at x ¼ a, where a is the size of the star.

1. The constant density model

We start our analysis with the model of the star with
constant density as a special case of the models with a given
density profile. In such a model the density θ ¼ −1 and the
equation of equilibrium (5) takes a particularly simple form:

dw
dx

¼ −x ·
ðw − 1Þðw − 1

3
Þ

1þ 2
3
x2

: ð15Þ

This equation can be easily integrated and has the following
analytical solution:

w ¼
ð3wc − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

3
x2

q
− ðwc − 1Þ

ð3wc − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

3
x2

q
− 3ðwc − 1Þ

;

a2 ¼ −
3wcð4wc − 2Þ
ð3wc − 1Þ2 ;

ε <
1

3
; ð16Þ

where wc is the central pressure and it is easy to see that w
becomes zero at x ¼ a. In this model the ratio w=θ is
changing monotonically:

−
1

3
<

w
θ
¼ −w < 0; as 0 < x < a; 0 < a < ∞:

ð17Þ
The equilibrium equation (5) for the constant density in

the case of positive mass density was integrated and the
solution was analyzed in [22,23]. For this case, there is a
restriction:

FIG. 2. The model with the equation of state w ¼ εθ2. Left panel: Density as a function of the coordinate x for different values
of ε. Right panel: Size of the star as a function of ε.

NOVIKOV, BISNOVATYI-KOGAN, and NOVIKOV PHYS. REV. D 98, 063528 (2018)

063528-4



Ia <
4

9
a: ð18Þ

It is important to note that there is no such a restriction for
the negative mass density.

2. Models with the parabolic density profile

Here we consider a more general but still extremely
simple case of the density profile, namely, the parabolic
shape for θ:

θ ¼ −1þ
�
x
x0

�
2

: ð19Þ

Note that in case of x0 → ∞ this model reduces to a
constant density model (see above).
In order to find the solution, we should substitute (19)

into (5) and define the boundary condition at x ¼ 0 as
wð0Þ ¼ wc and dw

dx jx¼0 ¼ 0. After the substitution, we get
the differential equation:

dw
dx

¼ −x ·
½w − 1þ ð xx0Þ2�½w − 1

3
þ 1

5
ð xx0Þ2�

1þ 2
3
x2 − 2

5
x20ð xx0Þ4

: ð20Þ

Analogously to Sec. III A, we represent the pressure in
the vicinity of the star center in the form of the Taylor series
with even terms:

w ¼ wc þ p2x2 þ p4x4 þ � � � ; pn ¼
1

n!
dnw
dxn

����
0

ð21Þ

and for coefficients pn we have

p2 ¼ −
1

2
ðwc − 1Þ

�
wc −

1

3

�
;

p4 ¼ −
1

4

�
ðwc − 1Þ

�
p2 þ

1

5x20

�

þ
�
wc −

1

3

��
p2 þ

1

x20

�
þ 4

3
p2

�
: ð22Þ

FIG. 3. Pressure as a function of the coordinate for a given
density profile. The solid line denotes density and shaded lines
denote pressure for different values of the central pressure wc ¼
wð0Þ. For wc ¼ 0.3, the parameter x0 ¼ 17.9 gives the example in
which the pressure and density simultaneously turn to zero.

FIG. 4. The model with the given density profile. Left panel: Dependence of the size of the star on the parameter x0 for different values
of the central pressure. The dashed line shows the values of x0 at which the density and pressure simultaneously turn to zero
[wðx0Þ ¼ θðx0Þ ¼ 0]. For x0 → ∞, the size of the star asymptotically tends to a size determined by the model with constant density.
Right panel: The size of a star as a function of the central pressure. The lower curve determines the size of the star for the constant density
model. The upper curve corresponds to a solution in which the density and pressure become zero at the same coordinate x0. The shaded
zone corresponds to the range of admissible values of the star size.
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Therefore, expressions (21) and (22) give us the analytical
solution of Eq. (20) for x ≪ 1ffiffiffiffi

p2
p . Results of our numerical

integration of this equation are given in Fig. 3. If x0 ≫ 1ffiffiffiffi
p2

p ,

then the solution becomes the same as for the model with
constant density profile; see Eq. (15). In this case the size of
the star (the coordinate x ¼ a, at which the pressure
becomes zero) is determined by the central pressure only
and this size is much less then x0. The size of the star
increases with increasing central pressure and, for any
given x0, there exists a maximum central pressure wc at
which the density and pressure go to zero for the same
x ¼ x0: wðx0Þ ¼ θðx0Þ ¼ 0.
In Fig. 4 we demonstrate the dependence of the star size

a on x0 and on the central pressure wc. For a fixed value of
wc, there are two asymptotics for the star size as a function
of x0. For large x0, the size of the star is determined by
Eq. (15). As x0 decreases, the size of the star increases and
eventually reaches the maximum possible value when
wðaÞ ¼ θðaÞ ¼ 0, a ¼ x0.

IV. CONCLUSIVE REMARKS

As stated in the Introduction, antigravity in cosmology,
which causes the accelerated expansion of the Universe, has
been widely discussed during the last quarter century.
However, the source of antigravitation in the cosmological
models was negative pressure [15]. The energy density was
assumed to be positive and such an energy was named
in cosmology as dark energy. As stressed in [15,17], an
isolated body consisting of dark energy creates outside an
attraction and not antigravity. At the same time, a model of

the body was indicated in [17], which creates outside itself
the gravitational repulsion. Such a body is one of the
entrances to a wormhole with a massless scalar field with
negative energy density analyzed in [17]. In this paper, we
constructed several models of isolated objects of the star
type, creating an antigravity. Any test bodies with positive or
negative mass outside such an object will be accelerated
away from it.
We did not consider here the issues of the stability of the

solutions obtained and did not touch upon the problem of
whether such objects can have anything to do with the real
Universe. Other physical limitations were not considered as
well. We would like to mention only that the standard
conditions for the homological stability of a star with a
power equation of state P ¼ εργ and negative mass density
ρ < 0 will be inverse to those that exist for an ordinary star.
Namely, it looks as γ < 4=3. It is necessary to mention also
that in the case ρ < 0 there is no gravitational radius in the
spherical solution.
We also emphasize that the general problem of the

positivity of the energy and the positive nature of its
radiation is analyzed in [[23], pp. 285–295].
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