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Enhanced density fluctuations on small scales would lead to the formation of numerous dark matter
minihalos, so limits on the minihalo abundance can place upper bounds on the small-scale primordial
power spectrum. In particular, the ultracompact minihalo (UCMH), a dark matter structure hypothesized to
possess a ρ ∝ r−9=4 density profile due to its formation at z ≥ 1000, has been used to establish an upper
bound on the primordial power spectrum at scales smaller than 2 Mpc. The extreme slope of this density
profile amplifies the observational signals of UCMHs. However, we recently showed via N-body
simulations that the ρ ∝ r−9=4 density profile does not develop in realistic formation scenarios, throwing
UCMH-derived power spectrum constraints into question. Instead, minihalos develop shallower inner
profiles with power-law indices between −3=2 and −1. In this paper, we expand on that result and discuss
its implications. Using a model that is calibrated to simulation results and predicts halo structures in spiked
power spectra based on their formation times, we calculate new upper bounds on the primordial power
spectrum based on limits on the dark matter annihilation rate within the Galaxy. We find that despite
assuming shallower profiles, this minihalo model actually yields stronger constraints than the previous
UCMH picture owing to its inclusion of all minihalos instead of only the earliest-forming ones.
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I. INTRODUCTION

Ultracompact dark matter minihalos have emerged as a
powerful probe of early-Universe physics. Overdense
regions with δ≡ δρ=ρ≳ 10−3 at horizon entry seed the
formation of dark matter minihalos near the time of
recombination (z ≃ 1000) [1], and such early formation
yields highly compact structures potentially visible through
dark matter annihilation [2–18] or by their gravitational
signatures [1,19–21]. The nondetection of these structures
thus constrains the amplitude of primordial density fluc-
tuations, making it a probe of the primordial power
spectrum [7–11,21–24] and hence of inflationary models
[25] and the thermal history of the Universe [26].
These ultracompact minihalos (UCMHs) provide access

to perturbations on scales too small to be directly observed.
Cosmic microwave background (CMB) observations indi-
cate that the primordial power spectrum of curvature
fluctuations PζðkÞ is consistent with a slightly red-tilted
but otherwise featureless power law [27] with amplitude
As ¼ ð2.142� 0.049Þ × 10−9 [28], and the Lyman-α forest

tells a similar story [29]. However, these observations are
only able to probe wavelengths longer than 2 Mpc, and
numerous inflationary models predict an enhancement in
small-scale power [30–55]. Certain nonstandard thermal
histories, such as an early matter-dominated era [56–59] or
an era dominated by a fast-rolling scalar field [60], also
enhance small-scale fluctuations. Thus, probing the small-
scale power spectrum is key to understanding early-Universe
physics.
Unfortunately, at sub-Mpc scales, we only have upper

bounds on density fluctuations, which are obtained through
the absence of secondary effects. Density contrasts of order
0.3 at horizon entry would form primordial black holes, so
constraints on their abundance constrain PζðkÞ ≲ 3 × 10−2

over a wide range of scales [61]. An excess of integrated
power would imprint distortions onto the CMB blackbody
spectrum, so their nonobservation constrains PζðkÞ ≲ 2 ×
10−5 for k≲ 104 Mpc−1 [62]. However, UCMHs supply
the strongest constraints. The nondetection of gamma rays
from dark matter annihilation in UCMHs constrainsPζðkÞ≲
3 × 10−7 for k≲ 107 Mpc−1 [9].
However, with one recent exception [7], all constraints

derived from UCMHs have been calculated assuming they
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develop the ρ ∝ r−9=4 density profile, which is drawn from
analytic radial infall theory [63,64] and taken to apply to
halos forming at z≳ 1000 due to the small velocity
dispersion at those times [1]. This profile has a much
steeper inner form than is typically observed in simulations
(e.g., [65]), a property that enhances the observational
signatures of UCMHs. The applicability of this profile was
first called into question in Ref. [66], and in Ref. [67],
hereafter Paper I, we showed by means of N-body
simulations that halos forming in a Gaussian field—even
UCMHs forming as early as z ¼ 1000 from fluctuations as
extreme as 6.8σ—do not develop the ρ ∝ r−9=4 density
profile. Instead, they develop shallower inner density pro-
files: ρ ∝ r−γ with 1 ≤ γ ≤ 3=2. In this paper, we present our
results in greater detail and discuss the implications of this
discovery. In addition to the ρ ∝ r−9=4 assumption, previous
UCMH-derived power spectrum constraints employed only
the minihalos that form at z ≥ 1000. Since we have shown
that all minihalos develop shallower density profiles, there
is no need tomake this restriction.We show that the resulting
new bounds on the power spectrum are stronger than the
previous UCMH constraints.
The ρ ∝ r−9=4 density profile has been taken to be a

consequence of nearly radial mass infall onto a halo that
formed at z≳ 1000 [1], so we replicate this scenario as
closely as possible in our simulations by finding extremely
rare 6.8σ density peaks that collapse near z ¼ 1000. The
UCMH formation scenario is tested in two power spectra at
the opposite extremes that are motivated by inflationary
phenomenology. First, we use a spiked power spectrum
with fluctuations enhanced over a narrow range of scales.
Second, we use a stepped power spectrum with fluctuations
enhanced over all scales accessible to the simulation. In the
narrowly enhanced power spectrum, halos develop in
relative isolation, a situation that might be expected to
reproduce the radial infall solution. However, we find
that all halos, even the UCMHs forming at z ≃ 1000,
develop ρ ∝ r−3=2 inner density profiles. In fact, this profile
also appears in another context: it is the density profile
seen in the smallest halos forming above a free-streaming
cutoff [68–73]. Meanwhile, the broadly enhanced power
spectrum builds halos hierarchically from smaller halos and
yields density profiles of the Navarro-Frenk-White (NFW)
form [74–76],

ρðrÞ ¼ ρs
ðr=rsÞð1þ r=rsÞ2

; ð1Þ

with a ρ ∝ r−1 inner profile. This is the same form that
appears in simulations of galaxy-scale structure. Evidently,
UCMHs, which we define as halos forming at z ≥ 1000,
develop the same density profiles as halos that form at
much later times.
We also introduce a new model for predicting the density

profiles of minihalos that form from spiked power spectra
based on their formation times. Spectral spikes can arise

from steps in the inflaton potential [31–34] or from particle
production during inflation [35–37]. Near the free-stream-
ing cutoff, the power spectrum imprinted by an early
matter-dominated era is also similar to a spike [56–59].
Moreover, spiked power spectra are less well constrained
than flatter power spectra by CMB spectral distortions,
which limit the power integrated over a broad range in
k-space [62]. In this paper, we begin an investigation of
halos forming from spiked power spectra that we will
expand upon in the next paper of this series [77], hereafter
Paper III (in preparation).
Finally, we discuss the impact of our result on the

capacity for minihalos to constrain the primordial power
spectrum. We use our model to calculate an upper bound on
the amplitude of spiked power spectra that incorporates the
new shallower minihalo density profiles. This upper bound
is based on limits from Fermi-LAT [78] on gamma rays
from dark matter annihilation. Despite the reduced anni-
hilation rate implied by the shallower profile, this constraint
is stronger than an equivalent UCMH constraint derived
using the ρ ∝ r−9=4 density profile. Our model provides a
stronger constraint because it accounts for all halos,
whereas the old UCMH model only counted halos forming
at z≳ 1000. Our calculation demonstrates the continued
viability of minihalos as probes of the small-scale power
spectrum, and we discuss future avenues for improvement.
This paper is organized as follows. In Sec. II, we select

power spectra and detail the setup of our simulations.
Section III presents the simulation results. The UCMH
density profile is the main result, but we also make remarks
on UCMH growth and the effects of mergers. In Sec. III D,
we sample later-forming minihalos to develop a general
model for minihalo density profiles, and Sec. IV employs
this model to calculate new constraints on the primordial
power spectrum. In Sec. IV D, we discuss how the new
minihalo picture differs from the old UCMH picture.
Section V concludes and outlines the ways in which our
calculation can be improved in future work. Appendices A
and B contain additional information about our simulations,
including numerical convergence tests. Appendices C–E
contain further details about our calculation of the power
spectrum constraint.

II. SIMULATION PREPARATION

We carry out simulations of halos forming at z ≃ 1000
from extreme peaks in the density field. This picture is
intended to match the UCMH formation scenario [1], and
we aim to show conclusively that the ρ ∝ r−9=4 single-
power-law density profile does not arise in halos forming
due to an enhancement of the primordial power spectrum.

A. Power spectrum

In order to perform numerical experiments on such early-
forming minihalos, we must start with an enhanced power
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spectrum. Inflationary models supply a rich phenomenol-
ogy in this respect. Steps, kinks, or second-derivative jumps
in the inflaton potential would imprint spikes, steps, or
bends, respectively, on the primordial power spectrum
[30–34]. Particle production during inflation can produce
a spike in the power spectrum [35–37], while multifield
inflation can imprint steps [38–40] or oscillations [41,42].
Inflation aside, an early matter-dominated era enhances
perturbations that enter the horizon prior to the onset of
radiation domination [56–59], and an era dominated by a
fast-rolling scalar field generates a similar enhancement [60].
For our simulations, we consider two examples from

these possible power spectrum enhancements. First, we
consider a narrow spike in the power spectrum. This shape
has possible inflationary origins, as discussed above, and is
also qualitatively similar to the enhancement generated by
an early matter-dominated era at scales close to the free-
streaming cutoff. Next, we consider a step in the power
spectrum, intended to represent the opposite extreme where
fluctuations are enhanced over a broad range of scales.
The two power spectra are plotted in Fig. 1. We superpose
these modifications on a conventional power spectrum
with amplitudeAs ¼ 2.142 × 10−9 and spectral index ns ¼
0.9667 [28]. The spike contains 90% of its added power
inside 1 e-fold in k, while the step amplifies fluctuations
over the full range of scales accessible to the simulation.
We will focus on the spiked power spectrum for most of
Sec. III and return to the step in Sec. III E.
Halos forming from more extreme density contrasts are

both more spherically symmetric [79] and less affected by
nearby structure. To best simulate the UCMH formation
scenario, we tune our power spectra so that halos forming
by z ¼ 1000 are exceedingly rare. In particular, the spiked
power spectrum is tuned so that a 6.8σ fluctuation is
necessary to seed such early collapse, and we generate a
large number of random fields in order to obtain a handful
of boxes to use as initial conditions for our simulations.
This procedure may be contrasted with that of Ref. [66],
who simulated a typical box whose most extreme peak was
4.3σ. UCMHs forming from peaks as extreme as 6σ are

employed to derive observational constraints [9], so we
wish to exceed this amplitude to conclusively rule out the
ρ ∝ r−9=4 profile.

B. Simulation setup

A matter power spectrum is calculated at z ¼ 1000 from
the primordial power spectrum using the Boltzmann code
CAMB SOURCES [80,81]. To match simulation behavior,
this power spectrum is evolved back to an earlier time using
the Mészáros equation [82]

d2δ
dy2

þ 2þ 3y
2yðyþ 1Þ

dδ
dy

−
3

2yðyþ 1Þ δ ¼ 0; ð2Þ

which describes the subhorizon (Newtonian) evolution of
dark matter density perturbations when baryons and radi-
ation fluctuations are neglected. Here y≡ a=aeq, where aeq
is the scale factor at matter-radiation equality. The physical
solution to this equation is obtained by matching its general
solution to the asymptotic behavior δ ∝ lnð0.44a=aHÞ
during radiation domination, where aH is the scale factor
when the perturbation mode enters the horizon. This
physical solution is [83]

δ ∝
�
ln

�
k

0.12h Mpc−1

�
− ln

� ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
− 1

���
yþ 2

3

�

þ 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
; ð3Þ

which provides a convenient prescription for calculating
the evolution of a density contrast δ at linear order during
mixed matter-radiation domination.
We choose to study fluctuations of order 0.2 kpc, so the

spectral spike of Fig. 1 is centered at wave number
ks ¼ 6.8 kpc−1. The starting redshift is chosen to be z ¼
8 × 106 so that a density contrast that collapses at z ≃ 1000
is initially of order 0.1. We do not expect our results to
depend significantly on either of these choices. We fix a
comoving box size of 7.4 kpc and search periodic Gaussian
random fields generated at the initial redshift for candidate
peaks to collapse near z ¼ 1000. Our search proceeds by
first generating a Gaussian random field on a grid at the
initial redshift using our spiked power spectrum. We then
linearly evolve that field to z ¼ 1000 and check whether the
evolved density field has a peak1 with δ > 1.686, the linear
threshold for collapse. If so, we use that grid, and if not, we
generate a newone.Oncewe have a suitable density field,we
use the Zel’dovich approximation to perturb a particle grid
into a corresponding initial particle distribution. Since our
simulations beginwhile theUniverse is radiation-dominated,

FIG. 1. The dimensionless primordial power spectrum of
curvature fluctuations used in our UCMH simulations. The solid
line shows the spike modification, while the dotted line shows the
step. The vertical dashed line indicates the smallest k (largest
scale) accessible in the simulations.

1For simplicity, we require δ > 1.686 in one grid-cell in our
5123-cell density field, which corresponds to a smoothing scale
of 1.4 × 10−2 kpc. Because the power is concentrated in the
spike, the precise choice of smoothing scale is unimportant.
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initial velocities are computed by differentiating Eq. (3); see
Appendix A for details.
For the spiked power spectrum shown in Fig. 1, we

generate 2.3 million random density fields. Nine of them
meet the collapse criterion, so we use these as the initial
density fields and simulate them to z ¼ 50. We also pick
out one such density field, which we label the primary, to
simulate at higher resolution and perform convergence
tests; a slice of its initial density field is shown in Fig. 2.
Notice how extreme the most overdense region is compared
to its surroundings: this is indeed a rare event.
We also resimulate each of these density fields with

increased simulation-particle density by resampling the
initial field at higher resolution and including only a sphere
of radius 0.93 kpc (with vacuum boundary conditions)
around the most overdense point. This cut-out region is
drawn in Fig. 2. This procedure allows us to probe smaller
scales, and in Appendix B, we demonstrate that it does not
change the density profile of the UCMH in the primary
density field at z ¼ 100. This convergence does not hold
for the UCMHs in all nine fields: some of them begin to be
influenced by structure outside the sphere as early as
z ∼ 200. Consequently, we only carry out these cut-out
simulations up to z ¼ 400 for the other eight density fields.

C. N-body code

We use the cosmological simulation code GADGET-2

[84,85] for our numerical experiments. GADGET-2 is a
hybrid N-body code that computes short-range forces
using a tree method and long-range forces using Fourier
techniques on a mesh. A discussion on our choices of
simulation parameters can be found in Appendix B, along
with convergence studies. We also model all matter as
collisionless dark matter with Ωm ¼ 0.3089 [28]: at the
scales we study, dark matter halos cannot capture signifi-
cant baryon content.

In order to accurately simulate a halo collapse at
z ≃ 1000, our experiments must begin during radiation
domination, so our N-body code must account for radia-
tion. However, fluctuations in the radiation density field
decay rapidly after horizon entry (see e.g., [86]), so it is
only necessary to model the effect of a smooth radiation
component on the expansion rate. We modified the publicly
available release of GADGET-2 to include such a radiation
component. Tests of the accuracy of this code can be found
in Appendix A.

III. SIMULATION RESULTS

A visual inspection of the primary simulation box yields
some key insights. First, we note that our criterion for early
collapse, that the linear density contrast be δ > 1.686 by
z ¼ 1000, has worked as expected. Figure 3 shows a slice
of the density field evolving from z ¼ 1255 to z ¼ 941 at
the location of the extreme density peak where we expect
the UCMH to form, and we see that the density at the
central point grows astronomically around z ¼ 1000, an
indication of collapse. To emphasize the rarity of this event,
we also show the density field at z ¼ 715: the UCMH is
still the only halo to have collapsed by this redshift.

FIG. 2. A slice of the 7.4 kpc density field used as initial
conditions for the primary simulation run. Lighter regions are
denser. The circle indicates the spherical region for a high-
particle-density simulation.

FIG. 3. The density field for the primary run at different
redshifts. Top: A ð0.24 kpcÞ2 × 0.06 kpc slice showing the
collapse of the UCMH near z ¼ 1000. The color scale is
logarithmic in units of the background matter density. Bottom:
The full ð7.4 kpcÞ3 projected density field at z ¼ 715. There is
still only one halo, a testament to its rarity.
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Next, we look at the density field at a much later redshift.
Figure 4 shows the density field at z ¼ 100 projected along
one axis. The imprint of the spike in the power spectrum
is evident, for we see an almost uniform distribution of
halos with no large-scale structure. This is quite unlike a
hierarchical growth picture (cf. Fig. 10). There is also
minimal small-scale structure: these halos appear generally
isolated and are only linked by filaments. These points are
emphasized in the enhanced pictures of the main halo,
where we see more clearly the lack of small-scale structure.
We also see the beginning of fragmentation of the filaments
into halos, but this fragmentation is a numerical artifact;
see Appendix B.
According to the ROCKSTAR halo finder [87], there are

530 halos with masses above 1.5 M⊙ at z ¼ 100, and these
halos contain 24% of the total mass of the simulation box
within their virial radii. Such an abundance of halos is
clearly expected in any picture that can produce a halo that
collapses by z ≃ 1000, but later halos have been neglected
in prior UCMH treatments because they are expected to be

less compact. We will explore in Sec. III D whether
younger halos have the same structure as the oldest ones.

A. Density profiles

We now study the spherically averaged density profiles
of the UCMHs. We simulated the UCMH in the primary
simulation box at the highest particle density (see
Appendix B for details), so we first focus our study on
that halo. This halo has mass M ¼ 31 M⊙ at z ¼ 100, and
Fig. 5 shows its density profile at z ¼ 50, z ¼ 100,
z ¼ 200, and z ¼ 400 plotted in physical (not comoving)
coordinates. We first note that this halo clearly does not
follow a ρ ∝ r−9=4 or similar single-power-law form,
contradicting the assumption made in prior UCMH treat-
ments. We have conducted extensive convergence testing
to confirm the validity of this result, as described in
Appendix B. The actual density profile is shallower, which
will substantially reduce the observational signals of these
halos, as we discuss in Sec. IV. However, the inner profile is
still steeper than the ρ ∝ r−1 behavior of the NFW profile
given by Eq. (1). In fact, the inner density profile approaches
ρ ∝ r−3=2, and the full density profile is fitwell by the double-
power-law form

ρðrÞ ¼ ρs
ðr=rsÞ3=2ð1þ r=rsÞ3=2

ð4Þ

which scales as ρ ∝ r−3=2 at small r and ρ ∝ r−3 at large r.
We will call Eq. (4) the Moore profile due to its similarity to
the form in Ref. [88].
Inner profiles ρ ∝ r−γ with index γ ranging from 1.3 to

1.5 have previously been observed in the smallest halos
forming above a cutoff in the power spectrum [68–72],
and Ref. [73] found that the emergence of ρ ∝ r−3=2 is
connected to the presence of a uniform-density core in the
precursor density peak. In this light, it is not surprising that
ρ ∝ r−3=2 arises in our spiked power spectrum, since like a
cutoff power spectrum, it lacks power below the scale of the
spike and produces cored peaks in the primordial density
field. The physical origin of the ρ ∝ r−3=2 profile is not well
understood, but it is known to be markedly less rotationally
supported than the NFW profile [73].
We next remark that the inner density profile does not

appear to change in time: observe the remarkable concord-
ance between the inner density profiles at different red-
shifts. This behavior was noticed in the radial infall solution
[63,64], and it is explained in that context by the steepness
of the potential well: newly accreted matter passes through
the central regions too quickly to significantly affect the
density there. This effect is only enhanced in a three-
dimensional picture, where newly accreted matter is likely
to possess too much angular momentum to pass through the
central parts of the halo at all. The stability of the density
profile in time is important to us for two reasons. First, it
allows us to use the measurement of the inner density

FIG. 4. The projected density field of the primary simulation
box at z ¼ 100. Top: The full 7.4 kpc field. Bottom: Expanded
pictures of the UCMH. The left (right) panel shows the projected
density field for the surrounding 1.5 kpc (0.3 kpc) cube. Note that
the expanded pictures do not fully match the white boxes because
they are projected over smaller depths.
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profile at an early redshift as a proxy for the inner density
profile at a later redshift, when the expansion of the
comoving coordinates has brought the inner profile beyond
our resolution limits (due to force softening; see
Appendix B). In other words, we view the innermost
points in Fig. 5, present only at high z, as also representing
the density profile at later z, e.g., z ¼ 50. This argument
allows us to claim that we have probed radii down to
10−3.5rvir at z ¼ 50, where rvir is the UCMH virial radius.
(If one does not accept this argument, we have still probed
radii down to 10−2.5rvir at z ¼ 100.) Second, this stability
means we can study the density profile at redshifts of order
z ∼ 100 and assume that—in the absence of disruptive
events—the profile is the same today. Observational signals
can therefore be calculated using this profile (see Sec. IV).
Finally, we remark on the fitting parameters ρs and rs of

the Moore profile [Eq. (4)] for the UCMH shown in Fig. 5.
The scale radius rs that separates the ρ ∝ r−3=2 behavior
from the ρ ∝ r−3 behavior appears to be set by the physical
scale associated with the spike in the power spectrum at
z ¼ 1000, obeying rs ≃ 0.7½ð1þ zÞks�−1. Similarly, the
scale density ρs is close to the background physical density
at z ¼ 1000, obeying ρs ≃ 30ð1þ zÞ3ρ̄0, where ρ̄0 is the
background matter density today. These correlations sug-
gest that the ρ ∝ r−3=2 inner profile is set during the earliest
stages of the halo’s growth while the ρ ∝ r−3 outer profile

grows during late accretion. We will develop these ideas in
more detail in Sec. III D.
All of these results come from the UCMH in the primary

simulation run. We also simulated eight other UCMHs,
and we show the density profiles of all nine of them in
Fig. 6. All of these halos collapsed near z ¼ 1000, and there
is clearly little deviation in the structure of these halos.
In particular, all of them exhibit the same ρ ∝ r−3=2

inner density profile, providing further evidence that the

FIG. 5. The spherically averaged density profile of the UCMH in the primary density field at z ¼ 400, z ¼ 200, z ¼ 100, and z ¼ 50.
The vertical axis is scaled by r3=2 to reduce the vertical range and better exhibit asymptotic behaviors; this practice will be adopted
without remark in later figures. The density profile approaches ρ ∝ r−3=2 at small r and ρ ∝ r−3 at large r and is fit well by Eq. (4) (solid
curve). The solid vertical line shows the physical scale of the power spectrum spike at z ¼ 1000, while the vertical dashed lines show the
halo virial radius at different redshifts. Inset: The same plot without y-axis scaling. A ρ ∝ r−9=4 curve is shown for comparison. We plot
physical, not comoving, quantities. We show results from the vacuum-bounded sphere inside rvir for z ≤ 100, and results from the full
box otherwise. The smallest radius at each redshift is set by r > 2.8ϵ, where ϵ is the force-softening length parameter (see Appendix B),
and contains N > 3000 particles.

FIG. 6. Radial density profiles at z ¼ 400, z ¼ 200, z ¼ 100,
and z ¼ 50 of all nine UCMHs. These density profiles are cut off
above the virial radius at each redshift. Evidently, all of our
UCMHs possess similar density profiles to the one depicted in
Fig. 5 (which is also plotted here).
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ρ ∝ r−9=4 pure power law density profile does not arise in a
realistic formation scenario.

B. Mass accretion

We briefly remark on the mass accretion history of the
UCMHs. UCMHs have been previously assumed to grow
as M ∝ a [1], but this is a result from radial infall theory
[64]. This theory describes an overdense region in an
unperturbed background, which is very different from the
Gaussian random field from which a realistic halo would
form.
Figure 7 shows the growth of our UCMHs in virial mass

Mvir. For z≲ 400 (a≳ 2.5 × 10−3), the mass of these halos
appears to be logarithmic in a. We do not claim that this
logarithmic behavior necessarily continues to later times:
halos that form from flatter power spectra have been
observed to grow with redshift z as M ∝ e−αz for some
α [89], which becomes slower than logarithmic, and halos
in a spiked power spectrum could exhibit similar growth.
However, we have confirmed that these halos grow much
more slowly than prior UCMH treatments have assumed.

C. Mergers

We noted earlier that halo density profiles are expected to
remain stable over time in the absence of disrupting events.
Halo mergers, however, are disruptive events and may be
expected to alter the inner density profile. In fact, this topic
has been already explored in the context of the steeper inner
profiles (ρ ∝ r−γ with γ > 1) that arise in the smallest halos
above a cutoff in the power spectrum [90]. Consecutive
mergers cause these halos to relax toward shallower ρ ∝
r−1 inner density profiles. However, these simulations used
halos with concentration parameter c ¼ rvir=rs ≃ 2, where
rvir is the halo virial radius and rs is the scale radius. Halos
forming in a spiked power spectrum are sufficiently
isolated that they may be expected to have concentration
parameters of order 10 or higher by the time a merger takes
place. A systematic study of the effect of halo mergers on
highly concentrated halos is beyond the scope of this paper,

but we will briefly discuss in this section the effect of a
merger on one of our UCMHs.
Three of our nine UCMHs underwent mergers between

z ¼ 100 and z ¼ 50, with another two impending. One
such event occurring at z ≃ 86 is depicted in the upper
panel of Fig. 8. The UCMH had concentration c ¼ 12 at
this time. The lower panel shows the density profile of this
halo at z ¼ 100 and z ¼ 50 before and after the merger
takes place, and we see that this event has been energetic
enough to disperse mass out of the center of the halo and
make the inner profile shallower. Unfortunately, we do not
have the resolution at these redshifts to determine the slope
of the inner profile after the merger, but the fact that the
density profile at r < rs is altered indicates that the stability
we observed in Sec. III A does not hold after mergers.

D. Other minihalos

So far, we have studied only the exceptionally rare halos
that form at z ≃ 1000. In this section, we explore a sample
of other halos in the simulation box shown in Fig. 4. We
pick 10 halos, including the UCMH, with masses evenly
distributed between 3 M⊙ and 32 M⊙ at z ¼ 100. Figure 9
shows the density profiles of these halos. As we discussed
in Sec. III A, we expect that each halo will obey

rs ∝ ack−1s ð5Þ

ρs ∝ a−3c ρ̄0; ð6Þ
where ac is the scale factor at the halo’s formation. To test
this hypothesis, we must determine ac for each halo. We do

FIG. 7. The virial mass Mvir plotted against the scale factor a
for all nine UCMHs. For a≳ 2.5 × 10−3 (z≲ 400), the growth
appears logarithmic, presenting as a straight line on this plot.
AMvir ∝ a reference curve is shown as a dashed line: these halos
are growing more slowly than Mvir ∝ a.

FIG. 8. A merger event and its result. Top: A ð1.5 kpcÞ2 ×
0.7 kpc (projected) region showing the first merger event
experienced by the larger halo, which formed at z ≃ 1000.
Bottom: The change in the density profile of this UCMH as a
result of the merger. Mass is dispersed from the inner region.
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so using linear theory in the following way. We find the
earliest time at which ROCKSTAR identifies the halo and
map the location of the halo at this time onto the initial
density grid. Then we walk from this grid-cell to a local
maximum in the density field by successively moving to
the densest neighboring cell. This local maximum is taken
to be the amplitude δpk of the protohalo peak. Finally, we
evolve the grid using linear theory, Eq. (3), and find the
time at which δpk ¼ 1.686, the linear threshold for collapse.
The scale factor at this time is taken to be ac.
With a formation time ac now associated with each halo,

we test Eqs. (5) and (6) by plotting in Fig. 9 the same
density profiles with ρ scaled to a−3c ρ̄0 and r scaled to ack−1s
for each halo. We find that the scatter in the density profiles
is greatly reduced, with the bulk of the halos obeying

ρsr
3=2
s ≃ 17ρ̄0k

−3=2
s a−3=2c ð7Þ

(ρsr
3=2
s is the r ≪ rs asymptote of ρr3=2 for a Moore

profile). The two halos lying farthest below this line have
formed only slightly before the time z ¼ 100 at which we
are seeing them, so it is plausible that their inner profiles are
still growing.
We do not attempt to study the scaling of ρs and rs

separately because this requires fitting functional forms to
the density profiles, which is unreliable with the resolution
to which we are limited here. However, ρsr

3=2
s alone is a

useful combination because it determines most of the
annihilation signal of the halo (see Sec. IV). Our ultimate
goal is to predict halo density profiles from the power

spectrum in order to place constraints thereon, and we find
the spread in ρsr

3=2
s to be well within a factor of 2 of Eq. (7),

which is promising. However, our halo sample is small and
we are biased by resolution toward larger halos. We are also
limited to a single power spectrum. We will carry out in
Paper III a more systematic study of the density profiles of
halos forming from spiked power spectra.

E. Power spectrum with step

We finally step away from the spiked power spectrum to
verify that a picture with power evenly distributed across
scales still produces NFW halos even in the UCMH
scenario involving the early collapse of rare extreme
overdensities. We used the step power spectrum shown
in Fig. 1 and prepared a set of initial conditions in a
ð7.4 kpcÞ3 periodic box using the procedure described in
Sec. II. Boxes were repeatedly generated until the z ¼ 1000
collapse criterion was met, which occurred after about 2300
boxes. We began the simulation run at z ¼ 8 × 106 and
ended it at z ¼ 100; the resulting UCMH at z ¼ 100 is
shown in Fig. 10. It is evident from the density field that
this is a very different picture from what we have seen with
our spiked power spectrum. The large-scale power has
caused much of the mass within the box to collapse into the
UCMH, while at the same time, the small-scale power has
given this halo abundant substructure.
Figure 10 also shows the radial density profile of this

halo. It follows the NFW form well, and does not fit the
Moore form at all. Moreover, we resolve an inner density

FIG. 9. The density profiles of a sample of 10 halos in the same
simulation box at z ¼ 100. Top: The density profiles in physical
coordinates. Bottom: The density profiles scaled to each halo’s
formation time using Eqs. (5) and (6).

FIG. 10. A halo at z ¼ 100 that collapsed at z ≃ 1000 from the
step power spectrum shown in Fig. 1. Top: The projected full
ð7.4 kpcÞ3 density field and an expanded picture of the 1.5 kpc
cube surrounding the UCMH. Bottom: The density profile of this
halo. It is fit well by the NFW profile.
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profile that is at least as shallow as ρ ∝ r−1. Even halos that
collapse near z ≃ 1000 still possess the shallow inner
profiles characteristic of hierarchical clustering.
A natural question to ask is how the density profiles

behave in the transition between a spiked and a scale-
invariant power spectrum. A careful treatment is beyond the
scope of this paper, but we will see in Paper III that the
answer is ultimately related to mergers. As we discussed in
Sec. III C, mergers induce shallowing of the inner density
profile toward ρ ∝ r−1. Meanwhile, mergers occur more
frequently when the power spectrum spike is wider,
culminating in the hierarchical clustering characteristic
of conventional power spectra. These concepts explain, at
least qualitatively, the shift from ρ ∝ r−3=2 to ρ ∝ r−1 inner
profiles when the spike in the power spectrum is replaced by
a step.
As a final remark, we have found between the spiked and

step power spectra that UCMHs develop the same density
profiles as halos that form at much later times. The spike
produces UCMHs with similar density profiles to those of
the smallest halos forming above a free-streaming cutoff,
while the step produces UCMHs with density profiles
resembling those of the galactic halos created by hierar-
chical clustering. In retrospect, this is not surprising.
Reference [1] conceived of UCMHs as the late stage of
rare non-Gaussian density fluctuations, so they assumed a
conventional (unenhanced) power spectrum when calculat-
ing the velocity dispersion at z ≃ 1000. The small velocity
dispersion that resulted was the basis for the argument that
radial infall theory would apply, but this velocity dispersion
would be increased by any power spectrum enhancement.
There is no difference, aside from the emerging dominance
of a radiation or dark energy component, between halos
forming from a boosted power spectrum at early times and
halos forming from a conventional power spectrum at late
times. However, the velocity dispersion is not the only
obstacle to the ρ ∝ r−9=4 profile. As we noted in Paper I,
this profile results specifically from the collapse of an
overdense region in an unperturbed background, which is
not an instance of a peak that forms in a Gaussian random
field. We will revisit this topic in Paper III when we explore
the relationship between a collapsed halo and its precursor
density peak.

IV. CONSTRAINING THE POWER SPECTRUM

UCMHs have been employed to constrain the primordial
power spectrum through nonobservation of their predicted
signals in a variety of contexts. For thermal-relic dark matter
models, such as the weakly interacting massive particle
(WIMP) model [91–93], the dark matter annihilation rate is
greatly increased by the compactness of the assumed ρ ∝
r−9=4 density profile. The strongest constraints therefore
come from nonobservation of the strong gamma-ray [7–9]
or neutrino [10,11] signals that are expected from WIMP
annihilation within such dense clumps. These annihilation

signals would also lead to other observable effects, such as
heating of the intergalactic medium [13,14] and galactic gas
[15] and interactions with the CMB or other background
photons [16–18]. The primordial power spectrum can also be
constrained by searching for UCMHs using astrometric
microlensing [21] or macrolens distortions [19] or by
constraining the UCMH abundance using pulsar timing
arrays [20,24].
However, with the exception of Ref. [7], all of theseworks

used onlyminihalos that form at z≳ 1000 and assumed these
halos possessed the ρ ∝ r−9=4 density profile. We showed in
Sec. III that minihalos forming in an enhanced power
spectrum, even UCMHs forming at z≳ 1000, develop
significantly shallower profiles. We also found that younger
minihalos possess the same density profiles as the oldest
ones. In this section, we explore the impact of this discovery.
The observational signatures of UCMHs forming at z≳
1000 are weakened by the shallower density profile, but
our analysis is now able to include minihalos forming at
z < 1000. As we saw in Fig. 4, these younger minihalos are
far more abundant than the rare UCMHs.
Broadening to the entire population of minihalos brings

new challenges. Minihalo-minihalo mergers will reduce the
minihalo count and alter their density profiles [90], and
tidal interactions within galactic structures will have more
impact on the shallower density profiles [94]. These
considerations are beyond the scope of this paper, but to
motivate further study, we calculate in this section how the
new minihalo picture directly alters previous constraints on
the power spectrum derived from UCMHs. To this end, we
focus on the upper bound derived by Bringmann, Scott, and
Akrami [9] (hereafter BSA) based on the gamma-ray signal
from WIMP annihilation within UCMHs. In our calcula-
tion, we adopt our new minihalo model from Sec. III D but
otherwise replicate BSA’s calculation as closely as pos-
sible. In particular, we employ the same Fermi-LAT data
and, like BSA, when deriving bounds from diffuse emission,
we consider only a Galactic contribution and neglect the
possibility of improving constraints by including extraga-
lactic sources (e.g., Refs. [4,7]).
The derivation of a constraint on the power spectrumusing

WIMP annihilation in minihalos proceeds in three steps:
(1) The annihilation signal of a minihalo is calculated.
(2) A constraint on the number density of minihalos is

calculated from the nonobservation of such an anni-
hilation signal.

(3) The number density constraint is converted into a
constraint on the primordial power spectrum using
the statistics of Gaussian random fields.

In past studies, such as BSA, UCMHs are assumed to
collapse at z ≃ 1000, so the UCMH luminosity is solely a
function of its size. We now have the machinery to study
minihalos collapsing at any redshift, so we calculate the
minihalo luminosity L as a function of both its formation
time and the scale of the density fluctuation that sourced it.
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A. Halo luminosity

We assume that the density profile of a minihalo follows
the Moore fitting form given by Eq. (4). In addition, we
found in Sec. III that the Moore fitting parameters rs and
ρs can be predicted from the halo formation time as

rs ¼ f1k−1s ac

ρs ¼ f2ρ̄0a−3c ; ð8Þ

where ρ̄0 ¼ Ωcρcrit is the background dark matter density
today, ks is the (comoving) wave number associated with
the spike in the power spectrum, and ac is the halo
formation time in a spherical collapse model. The coef-
ficients f1 and f2 are determined from simulations; they
possess some scatter between halos, but we will neglect that
scatter for the purpose of this calculation. The annihilation
signal of the Moore profile depends dominantly on the
combination f22f

3
1 and only logarithmically on f2 alone, so

we will use f2f
3=2
1 ¼ 17 from Eq. (7), which was derived

from a sample of halos forming at different times, along
with the more approximate value f2 ≃ 30 derived from the
UCMHs alone.
The gamma-ray signal L of a halo with density profile

ρðrÞ may be calculated as

L ¼ 4πg
Z

R

0

r2ρ2ðrÞdr; ð9Þ

whereR is the radius of the halo and g is a factor related to the
annihilation mechanism. For threshold photon energy Eth,

g ¼
X
k

Z
mχ

Eth

E
dNk

dE
dE

hσkvi
2m2

χ
; ð10Þ

where dNk=dE is the differential photon yield of the
kth annihilation channel and hσkvi is its cross section.
Equation (10) describes the energy flux; for the photon flux,
the factor of E is removed from the integrand.
For now, we keep our calculations model-independent

and return to Eq. (9). Equation (9) diverges for a ρ ∝ r−3=2

profile, but this implies that annihilations would have
smoothed out the central cusp within some small radius.
We use the standard estimate [95]

ρmax ¼
mχ

hσviðt − tiÞ
ð11Þ

for the maximum density at time t in a structure that
formed at ti, where mχ is the mass of the WIMP and hσvi
is its thermally averaged velocity-weighted cross section
(in the zero-velocity limit). Note that t − ti ≃ t today if
halo formation occurs at z≳ 10, and we will see in
Sec. IV D that this is true for the minihalos relevant to
power spectrum constraints. Thus, we take t − ti to be

the age of the universe today, making ρmax the same
for all minihalos. For a canonical WIMP with hσvi ¼
3 × 10−26 cm3 s−1 and mχ ¼ 1 TeV, ρmax ∼ 1016ρ̄0.
We now evaluate Eq. (9) for a Moore profile as given

by Eq. (4) modified to have maximum density ρmax. The
choice of radius R has negligible impact as long as R > rs,
so taking R → ∞, we obtain

L ¼ 4πgρ2sr3s

�
1

3
þ lnð1þDÞ − 3þ 2D−1

2ð1þD−1Þ2
�
; ð12Þ

where D≡ ðρmax=ρsÞ2=3 ¼ ðf−12 ρmax=ρ̄0Þ2=3a2c. For halos
collapsing at z≲ 1000, we find that D≳ 104 ≫ 1 for a
canonical WIMP, so Eq. (12) simplifies to

L ≃ Bk−3s a−3c lnðβacÞ ð13Þ

with

B≡ 8πgf22f
3
1ρ̄

2
0; β≡ e−7=12

�
ρmax

f2ρ̄0

�
1=3

: ð14Þ

B and β are independent of the scale ks of the spike in the
power spectrum, and since we are neglecting scatter in f1
and f2, they are the same for all halos. We remark that since
β ∼ 105, the logarithmic dependence on ac is weak for
ac ≳ 10−3. If halos relax to a ρ ∝ r−1 inner profile due to
mergers or other disruptive dynamics, a similar calculation
with the NFW profile yields L ≃ Bk−3s a−3c =6, which is
smaller by a factor of ∼30 for formation time z ∼ 100. In
this case, Eq. (9) converges, so the effect of ρmax is negligible.

B. Halo abundance

We use observational detection limits to constrain the
minihalo number density based on the luminosity we
computed above. Following BSA, we employ two
approaches that utilize different observations and yield
different constraints. First, we treat the minihalos as point
sources and use their nonobservation to constrain their
number density. Next, we consider the diffuse background
flux from minihalos within the Milky Way and use the
observed background gamma-ray flux to constrain the
minihalo number density.

1. Point sources

The gamma-ray flux F from a point source is related to
its luminosity L and distance d by F ¼ L=ð4πd2Þ. If our
detecting instrument has flux sensitivity Fmin to point
sources, then this imposes a maximum observable distance
dobs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=ð4πFminÞ

p
corresponding to the observable

volume

DELOS, ERICKCEK, BAILEY, and ALVAREZ PHYS. REV. D 98, 063527 (2018)

063527-10



Vobs ¼
1

3
ffiffiffiffiffiffi
4π

p L3=2

F3=2
min

: ð15Þ

If Vobs were the same for all halos, then the expected
number of observable objects would be λ ¼ nVobs, where n
is the halo number density, and we could use Poisson
statistics to constrain n from our knowledge of Vobs.
However, in our model, L, and hence Vobs, is a function
of the formation time ac of the minihalo. Instead of the total
number density n, we must consider the differential number
density dn=dac of minihalos forming at a ¼ ac. The
expected number of observable minihalos is now

λ ¼
Z

1

0

dac

�
dn
dac

�
obs

VobsðacÞ; ð16Þ

where we write ðdn=dacÞobs to clarify that we are referring
to the number density of minihalos within Vobs, which in
general differs from the cosmological mean dn=dac.
From Poisson statistics, the probability that there is at

least one observable object is PðNobs > 0Þ ¼ 1 − e−λ. If the
confidence level associated with the flux threshold Fmin
is x, then the probability of observing at least one object
is Pobs ¼ xð1 − e−λÞ. If we observe no objects, an upper
bound on λ with confidence level y is obtained by setting
Pobs ≤ y, implying λ ≤ − lnð1 − y=xÞ. Combining this
result with Eqs. (15) and (16), we findZ

1

0

dac

�
dn
dac

�
obs

L3=2ðacÞ ≤ −3
ffiffiffiffiffiffi
4π

p
lnð1 − y=xÞF3=2

min;

ð17Þ
which gives us the prescription for constraining the local
number density of minihalos based on the nonobservation
of point sources. Due to the dependence of a minihalo’s
luminosity on its formation time, we constrain a formation
time-weighted density instead of a total UCMH density.
To complete the calculation, we need to relate ðdn=dacÞobs

to the cosmological mean dn=dac that is predicted by the
power spectrum. To do this, we assume that the spatial
distribution ofminihalos is proportional to that of darkmatter
at large2; that is, nðxÞ ∝ ρðxÞ. We define μðdÞ≡ 3MðdÞ=
ð4πd3ρ̄0Þ as the ratio of the darkmattermassMðdÞ contained
within distance d from Earth to the cosmological mean
darkmattermass containedwithin an equal volume.Then the
mean minihalo number density within dobs is related to the
cosmological mean by the factor μðdobsÞ, implying

�
dn
dac

�
obs

¼ μ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðacÞ
4πFmin

s !
dn
dac

: ð18Þ

We evaluate μðdÞ in Appendix C and plot it in Fig. 11
assuming anNFWprofile for theMilkyWaywith parameters
fromRef. [96]. For dobs ≲ 8 kpc, the distance to the Galactic
center, μðdobsÞ ≃ 2 × 105 is approximately constant.

2. Diffuse flux

The calculation is simpler for the case of a diffuse
gamma-ray flux. If dF=dΩ is the upper bound on the
observed differential gamma-ray flux that can be attributed
to minihalos, then we can relate this to the differential flux
summed over all minihalos along the line of sight,

dF
dΩ

≥
Z

∞

0

s2ds
Z

1

0

dac
dn
dac

ρðsÞ
ρ̄0

LðacÞ
4πs2

; ð19Þ

where s is the line-of-sight distance. Here we have inserted
the factor ρðsÞ=ρ̄0 to account for the Milky Way density
field at distance s from Earth. Following BSA, we are only
interested in the Galactic contribution to the diffuse flux, so
we truncate the density field beyond the Milky Way, elimi-
nating the need to redshift distant sources. The minihalo
abundance constraint from the diffuse flux at angle θ to the
Galactic center now becomesZ

1

0

dac
dn
dac

LðacÞ ≤
4π

KðθÞ
dF
dΩ

; ð20Þ

where

KðθÞ≡
Z

∞

0

ds
ρMWð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ r20 − 2sr0 cos θ

p
Þ

ρ̄0
; ð21Þ

ρMWðrÞ is the Milky Way density profile, and r0 is the solar
orbital radius.

C. The power spectrum

Finally, we must find the relationship between dn=dac
and the power spectrum PðkÞ. The standard way to relate a

FIG. 11. The ratio μðdÞ ¼ 3MðdÞ=ð4πd3ρ̄0Þ of the dark matter
mass MðdÞ within distance d of Earth to the cosmological mean
dark matter mass in an equal volume. An NFW profile is assumed
for the Milky Way with parameters from Ref. [96]. Minihalos are
assumed to follow this spatial distribution.

2Galactic tides and other disruptive processes would realisti-
cally alter the spatial distribution of minihalos, but we neglect
them here.
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halo population to a power spectrum is Press-Schechter
theory [97]. For any power spectrum with a small-scale
cutoff, including a spiked power spectrum, it is necessary
to employ a sharp k-space smoothing filter to avoid over-
predicting structure below the cutoff scale [98–100].
However, there are additional challenges in adapting
Press-Schechter theory to our purposes. Halo formation
times can be obtained from the conditional mass function
[101], but these yield the average formation time of progen-
itor halos. It is necessary to construct merger trees to study
the first progenitor. Also, Press-Schechter theory always
destroys a halo when two halos merge. For unequal-mass
mergers, a remnant of the smaller halo is generally expected
to survive as a subhalo with its central structure intact [94].
For our calculation, we employ a more direct approach.

Bardeen, Bond, Kaiser, and Szalay [79], hereafter BBKS,
formulated a description of the statistics of peaks in a
Gaussian random field. In this approach, each peak in the
primordial density field is to be identified with a halo at
late times. Spiked power spectra are very natural arenas for
peak theory because they possess finite integrated power
and generate peaks around a particular scale, so it is not
necessary to use any smoothing filter. To represent a spike
centered at wave number ks, we consider a delta-function
matter power spectrum of the form PðkÞ ∝ DðaÞ2ksδ
ðk − ksÞ, where DðaÞ is the linear growth function. We
will see in Sec. IV D that the minihalos contributing to our
power spectrum constraint form in matter domination, so
DðaÞ ¼ a, and we may write

PðkÞ ¼ Aa2ksδðk − ksÞ; ð22Þ

where A parametrizes the integrated area of the spike. We
use the BBKS formalism to calculate the number density of
peaks with δ > δc, where δc ¼ 1.686 is the linear collapse
threshold. The identification of these peaks with halos leads
to a number density n that increases in time solely due to
halo formation, implying we can differentiate it with
respect to scale factor a to obtain the distribution of halos
by formation time. A disadvantage to this procedure is that
minihalo-minihalo mergers are not automatically accounted
for and must be handled separately, a task that is beyond the
scope of this paper.3

As detailed in Appendix D, we obtain

dn
dac

¼ k3s
ac

h

�
δc

A1=2ac

�
; ð23Þ

where hðνÞ is the distribution of peak heights given by
Eq. (D3) (see Fig. 22). With the minihalo signal given by

Eq. (13), the abundance constraints given in Eqs. (17)
and (20), and this relation between dn=da and the power
spectrum, we can place an upper bound on the amplitudeA
of the spike in the matter power spectrum. The final step is
to convert this bound into a bound on the primordial
curvature power spectrum. We adopt a similar delta-func-
tional form for the primordial power spectrum,

PζðkÞ ¼ A0ksδðk − ksÞ; ð24Þ

with amplitudeA0. The transfer function given by Eq. (D9)
converts the bound on A into a bound on A0.
To carry out the calculation, we assume a canonical

WIMP with cross section hσvi ¼ 3 × 10−26 cm3 s−1 and
mass mχ ¼ 1 TeV that annihilates into bb̄ pairs. We take
the Fermi-LAT point-source sensitivity for energies above
100 MeV to be Fmax ¼ 4 × 10−9 cm−2 s−1 for a 5σ
detection, and we set y ¼ 0.95 in Eq. (17) for a 95% con-
fidence limit. For the diffuse flux, we use dF=dΩ ¼ 1.2 ×
10−5 GeV cm−2 s−1 sr−1 as the 2σ limit (with systematic
error alone) in the energy flux from the Galactic poles as
measured by Fermi-LAT [102]. Finally, we take the
MilkyWay to have an NFW density profile with parameters
determined in Ref. [96]. All of these choices are picked
solely for parity with BSA, and further detail can be found
there.
Figure 12 shows the resulting upper bound on the

integrated area A0 of a spike in the primordial curvature
power spectrum if the spike is located at wave number ks.
We show the constraints from point sources and diffuse flux
separately, and the shaded regions are forbidden. We wish
to compare this constraint to the upper bound derived
in BSA under the UCMH picture, but BSA assumed a
locally scale-invariant power spectrum for their analysis.
Therefore, we employ the UCMH abundance constraints in
BSA to derive a constraint on the spiked power spectrum of
Eq. (22). This calculation is detailed in Appendix E, and the
results are plotted on Fig. 12 as dashed lines. Evidently,
new minihalo constraints can be stronger than old UCMH
constraints despite employing shallower density profiles.
For comparison, we also show as dotted lines the upper
bounds that employ the shallower density profiles while
restricting to UCMHs forming by z ≥ 1000. These bounds
are calculated by altering the upper limit of the integrals in
Eqs. (17) and (20). We noted in Paper I that the shallower
density profiles reduce the signal from each halo by a factor
of 200, and we see now that this reduction weakens the
upper bound on the power spectrum by roughly a factor of
two.4 The inclusion of all minihalos, instead of only the rare

3However, as we will see in Paper III, mergers become rare as
the power spectrum spike is narrowed. With a delta-function
spike in the primordial power spectrum, we suspect that they are
negligible.

4In the next section, we discuss why power spectrum con-
straints derived from UCMHs are so insensitive to reductions in
the UCMH signal. This feature is a consequence of the restriction
to halos forming at z ≥ 1000 and is no longer applicable once all
minihalos are included.
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UCMHs that form by z ¼ 1000, more than compensates for
this loss.

D. Discussion

To develop a better understanding of the power spectrum
constraints in this new minihalo picture, we specialize to
the diffuse flux and to point sources in the small-object
limit where dobs is sufficiently short that μðdobsÞ≡ μ is
constant.5 In these cases, it is possible to derive the analytic
constraints (see Appendix D)

A
�
ln

βδc
A1=2

�
2=9
��

ln
βδc
A1=2

�
I3=2 − J3=2

�
4=9

≤
�
−3

ffiffiffiffiffiffi
4π

p
lnð1 − y=xÞ
μ

�4=9�δ3cksFmin

B

�
2=3

ð25Þ

for point sources in a uniform field with μ times the
background density and

A
��

ln
βδc
A1=2

�
I1 − J1

�
2=3

≤
�

4πδ3c
KðθÞB

dF
dΩ

�
2=3

ð26Þ

for diffuse sources. Here, I3=2 ¼ 0.228, J3=2 ¼ 0.370,
I1 ¼ 0.0477, and J1 ¼ 0.0478 are different moments of
the peak height distribution hðνÞ.
We first note that if we neglect logarithms,6 the constraint

on A is proportional to B−2=3 and hence to the −2=3 power
of the WIMP annihilation rate within minihalos [see
Eq. (13)]. This relationship implies that the upper bound
on A is highly sensitive to the WIMP model. For example,
if the annihilation cross section hσvi were increased by a
factor of 8, the upper bound on A would be reduced by a
factor of 4. This behavior is a stark contrast to that of
constraints in the old UCMH picture, which exhibit a very
weak dependence on WIMP model (see BSA Fig. 5).
The same distinction arises when considering the obser-

vational flux constraint Fmin or dF=dΩ. The upper bound
on A is more sensitive to these observational constraints in
the new minihalo picture than in the old UCMH picture.
Therefore, improved observational limits are far more
valuable in the new picture. This property is also respon-
sible for how, as depicted in Fig. 12, the point-source
constraint in the new picture exhibits markedly stronger
ks-dependence: larger objects are more visible, and this
heightened visibility now significantly strengthens the
upper bound on the power spectrum on the corresponding
scales. Likewise, we saw in the last section that reducing
the UCMH gamma-ray signal by a factor of 200 only
weakens the UCMH-derived power spectrum bounds by a
factor of two. A similar change to the luminosity of all
minihalos would weaken the bounds in the new picture by a
factor of 34.
These differences in sensitivity can be understood in the

following way. Upper bounds on minihalo abundance (f in
BSA; n or dn=dac here) are always highly sensitive to
minihalo signals and observational flux constraints, whether
we restrict to UCMHs or not; compare Eqs. (17) and (20) to
BSA Eqs. (26) and (29). However, the sensitivity of a power
spectrum bound to these abundance constraints depends on
the types of minihalos that contribute. In the old UCMH
picture, constraints were dominated by halos forming from
initial overdensities that correspond to 5σ − 6σ fluctuations.
These peaks are so far out in the Gaussian tail of the density
distribution that altering their abundance only marginally
changes the distribution’s spread.7 In the new minihalo
picture, constraints are influenced by the bulk of the peaks,
so an alteration to the abundance of these peaks now changes
the spread of the distribution more drastically. We also

FIG. 12. The upper bound on the integrated area A0 of a spike
in the primordial curvature power spectrum centered at scale
wave number ks. Black curves use point sources, while red curves
employ the diffuse flux. The shaded regions are ruled out in the
new minihalo picture with shallower density profiles. The dashed
lines show the corresponding constraints in the old UCMHmodel
calculated using the abundance constraints in BSA. As another
comparison, the dotted lines show the constraints using shallower
density profiles while still restricting to UCMHs forming at
z ≥ 1000. While the new density profiles slightly weaken the
upper bound, the inclusion of all minihalos ends up leading to
stronger constraints.

5The small-object limit produces the power-law branch of the
point-source constraint in Fig. 13, implying that this limit
corresponds to ks ≳ 20 Mpc−1.

6Using Fig. 13, β ∼ 105 ≫ A1=2, so the logarithmic depend-
ence of Eqs. (25) and (26) on A is weak.

7The (differential) abundance of a density excess δ is propor-
tional to exp ð− 1

2
δ2=σ2Þ if δ is distributed with spread σ. If δ=σ is

large, then a large change in the abundance—the quantity
constrained by observations—corresponds to a small change in
σ, which sets the power spectrum normalization. (This is just an
illustration: to be precise, we should use the cumulative distri-
bution function.)
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remark on another consequence of this difference in statis-
tics: the constraints will no longer be as sensitive to possible
small deviations from Gaussianity that would significantly
affect the tails of the distribution [103].
The influence of the peak population on the power

spectrum constraint is encoded in the moments I3=2, J3=2,
I1, and J1 of the peak distribution. These are integrals over
peak height ν ¼ δ=σ, and their integrands exhibit most of
their support between ν ¼ 2 and ν ¼ 4 (see Appendix D).
Consequently, the integrals in Eqs. (17) and (20) that
determine the upper bounds on the power spectrum are
dominated by peaks with amplitudes between 2σ and 4σ,
which confirms the difference in statistics from the old
UCMH picture. We can also use this information to find the
formation times of the corresponding halos. The upper
bound on A, which parametrizes the matter power spec-
trum, is shown in Fig. 13 and lies between 3 × 102 and
6 × 104. The root-mean-squared density variance of the
spiked power spectrum is aA1=2 at scale factor a, implying
that the collapse time ac of a peak with amplitude ν is
ac ¼ δc=ðνA1=2Þ. It follows that peaks contributing sig-
nificantly to the power spectrum constraint would have
formed between z ¼ 20 and z ¼ 600, confirming that
matter domination was a valid approximation.
Finally,we remark on a similar constraint thatwas recently

published by Nakama, Suyama, Kohri, and Hiroshima in
Ref. [7] (hereafter NSKH). Unlike previous UCMH works,
this work did not employ the ρ ∝ r−9=4 density profile.
Instead, NSKH assumed that minihalos developed NFW
density profiles, and like us, they constrained a delta-spiked
power spectrum. Thus, a comparison is warranted: despite
assuming shallower density profiles, NSKH were able to
derive comparable or stronger constraints on the integrated
area A0 (A2 in their paper) of the power spectrum spike.
To model the NFW fitting parameters for their minihalos,

NSKH assumed that halo concentrations c ¼ rvir=rs grow
at the rate c ∝ a1.575. However, as we discussed in Sec. III,
the inner profiles of dark matter halos tend to remain stable
in time in the absence of disruptive events. Under the same
conditions, the virial radius rvir in physical coordinates
grows approximately as a. If the concentration is growing
much faster than a, then this implies that the physical scale

radius is shrinking in time and the halo center is becoming
denser. Our simulations suggest that this is not the case:
the concentrations of our minihalos grow as c ∝ a. The rate
c ∝ a1.575 was drawn from a previous work [104] that
simulated structure growth from scale-free power spectra.
With these power spectra, halo mergers are common, and
these can cause halo physical virial radii rvir to grow
significantly faster than a. This fact may explain the large
concentration growth rate: it reflects rapid growth in virial
radius rvir rather than shrinkage in scale radius rs. Since
halos that form from a spiked power spectrum do not
experience these mergers, their concentrations grow more
slowly.
Their assumption of a faster concentration growth rate

likely explains why the constraints in NSKH are so strong.
The annihilation rates within such concentrated minihalos
would be greatly enhanced. However, NSKH also employed
the diffuse gamma-ray flux from extragalactic sources,
whereas we, for parity with BSA, assumed only Galactic
sources. This could contribute to the strength of their
constraints: as we discuss above, the upper bound on the
power spectrum is now highly sensitive to observational
limits on the gamma-ray flux.

V. CONCLUSION

Expanding on the results of Paper I, we have shown that
the minihalos that form due to a power spectrum enhance-
ment do not develop the single-power-law ρ ∝ r−9=4

density profile even when they form by z ¼ 1000 from
extremely rare (6.8σ) peaks. Instead, they develop density
profiles with inner power-law indices between −3=2 and
−1, depending on the range of scales that are enhanced.
This finding contradicts the assumption made by previous
UCMH work [8–11,21–26], throwing into question power
spectrum constraints that have been derived from this
theory. However, we have also offered hope. We con-
structed a new model based on our simulation results for
minihalos that form from a spiked power spectrum, and we
calculated a new power spectrum constraint in this model
using Fermi-LAT constraints on gamma rays from WIMP
annihilation. The resulting upper bound on the primordial
power spectrum is stronger than an equivalent constraint
derived in the old UCMH picture. It turns out that the drop
in signal from each early-forming halo is more than
compensated by the vast increase in the number of halos
that contribute to the expected gamma-ray signal.
Our constraint is specialized to a power spectrum

enhanced over a narrow range of scales. Such spiked
power spectra have motivations in inflationary phenom-
enology [31–37] and in nonstandard thermal histories of
the Universe [56–59], but halos forming from these spectra
have not been numerically studied prior to this work and
Refs. [66,67]. Our model for halos forming from spiked
power spectra predicts halo density profiles based on their
formation time: the characteristic density is set by the

FIG. 13. The constraint on the integrated area A of the spiked
matter power spectrum Eq. (22). Note that this is not the
primordial power spectrum; see Fig. 12 for that constraint.
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background density at formation, while the characteristic
scale is set by the spike scale at formation. However, we
developed this model based a single power spectrum. We
also neglected any scatter in the density profiles of halos
forming at the same time. In Paper III, we will extend this
model by quantifying its scatter and its applicability to
different power spectra.
Inflationary phenomenology also includes less scale-

localized power spectrum boosts such as steps or bends
[30–34,38–40]. We have found that the halos forming from
a stepped power spectrum develop the same density profiles
as later-forming galaxy-scale halos. Consequently, there is
already a vast body of literature on modeling the density
profiles of these halos (e.g., [75,76,104–128]), and we
expect that these results may be adapted toward con-
straining steps or bends in the power spectrum.
Our constraint also employed only gamma rays from

WIMP annihilation in Galactic or near-Galactic sources. We
made this restriction in order to facilitate a direct comparison
between an upper bound on the power spectrum derived
in the shallower minihalo picture and an equivalent bound
derived using the results of Ref. [9], which made the same
restriction, used UCMHs forming at z ≥ 1000, and assumed
the ρ ∝ r−9=4 profile. As a result, we have left open the
possibility of immediately improving the power spectrum
constraints by considering the diffuse annihilation signal
from extragalactic minihalos as Refs. [4,7] do. We have also
not explored the impact of the shallower density profiles on
gravitational probes such as astrometric microlensing [21]
and pulsar timing arrays [20,24].
Most pressingly, we neglected the influence of disruptive

events on the minihalo abundance and their density profiles.
Minihalo-minihalo mergers are one such disruptive event.
They can be counted by means of Press-Schechter theory
[101]8 with a sharp k-space filter [98–100], but their physical
impact, especially on minihalos with ρ ∝ r−3=2 inner pro-
files, is not yet well understood. Reference [90] simulated
controlled halo mergers and observed that successive merg-
ers cause the inner density profiles of these halos to relax
toward shallower forms, an effect that we confirmed.
However, they also found that the merger product can have
a higher central density than its progenitor halos. Moreover,
for highly unequal-mass mergers, a remnant of the smaller
halo is expected to survive within the larger one [94].
Figure 14 illustrates the possible impact of mergers on

the minihalo-derived constraints on the primordial power
spectrum. If we naively assume that minihalos develop
NFW profiles with the same scale parameters rs and ρs,
then the shallower inner profiles weaken the power
spectrum bound by roughly a factor of 10. If mergers
additionally halve the minihalo count, the constraint is

weakened by another factor of 1.6. We suspect that this
latter constraint, depicted as the red curve in Fig. 14,
represents a pessimistic estimate of how mergers may
weaken the upper bound on the power spectrum. First, we
neglected the increased central densities that can result
from mergers. Second, we assumed that all halo profiles
fully relax to NFW form, while Ref. [90] showed that such
relaxation is a gradual process occurring over multiple
mergers. Finally, mergers are relatively rare in spiked
power spectra, and even if more than half of the minihalo
population is ultimately destroyed by mergers (not even
becoming subhalos), smaller halos, which contribute less
to observational signals, are preferentially destroyed.
Hence, we expect that a careful accounting of mergers
will produce a result between the black and red curves of
Fig. 14.
Disruption of minihalos can also occur by the tidal

influence of larger galactic potentials or by high-speed
encounters with objects, such as other substructure or
stars, within these galactic potentials. This topic has been
studied in a number of previous works, such as
Refs. [131–137], and a recent overview of such disruptive
processes can be found in Ref. [138]. It is also possible to
bypass the issue of galactic disruption by only considering
minihalos that have not accreted onto galactic halos, as
Ref. [7] does.
Our goal in this paper was to show that despite them not

possessing the ρ ∝ r−9=4 density profiles that were pre-
viously assumed, minihalos are still able to yield com-
petitive constraints on the primordial power spectrum. The
plethora of minihalos that now contribute to observational
signals counteracts the loss of signal from the rarest of
these halos. This finding motivates their further study, and
we have discussed avenues for future work. With a better
understanding of disruptive processes, minihalos can
become strong and robust cosmological probes.

FIG. 14. Possible upper bounds on the integrated area A0 of a
spike in the primordial curvature power spectrum centered at
scale wave number ks when mergers are taken into account. The
black curve shows the bound with mergers neglected, which is
the same constraint shown in Fig. 12. The blue curve shows the
bound if minihalos develop NFW profiles with the same scale
parameters rs and ρs, while the red curve additionally halves the
number of halos.

8However, the self-consistency of Press-Schechter merger
rates is questioned in Ref. [129]; see also Ref. [130] for a
counterpoint.

DENSITY PROFILES OF ULTRACOMPACT MINIHALOS: … PHYS. REV. D 98, 063527 (2018)

063527-15



ACKNOWLEDGMENTS

The simulations for this work were carried out on the
KillDevil and Dogwood computing clusters at the
University of North Carolina at Chapel Hill. The authors
would like to thank Erin Conn, Lucas deHart, Josh
Horowitz, and Dayton Ellwanger for their valuable assis-
tance in getting this project started on KillDevil. The
authors would also like to thank Peter Behroozi for
supplying a beta version of ROCKSTAR. M. S. D. and
A. L. E. were partially supported by NSF Grant
No. PHY-1417446. M. S. D. was also supported by the
Bahnson Fund at the University of North Carolina at
Chapel Hill. A. P. B. contributed to this project while
participating in the Computational Astronomy and
Physics (CAP) Research Experiences for Undergraduates
(REU) program funded by NSF Grant No. OAC-1156614
(PI S. Kannappan).

APPENDIX A: SIMULATIONS PRIOR TO
THE MATTER-DOMINATED ERA

For our numerical experiments, we employ a modified
version of GADGET-2 that includes a smooth radiation
component, and we begin the simulations long before
matter-radiation equality. The simulation starting redshift
of z ¼ 8 × 106 is necessary so that our enhanced fluctua-
tions are still in the linear regime with amplitude δ≲ 0.1.
However, the assignment of initial particle velocities is
more complicated in this picture than during matter
domination, and we use the Zel’dovich approximation to
compute them in the following way.
We begin with the density contrast field δðqÞ as a

function of the comoving grid coordinate q. We wish to
convert this description into a comoving position field xðqÞ
and velocity field _xðqÞ treating q as a Lagrangian coor-
dinate assigned to each particle. The position calculation
proceeds by writing

xðqÞ ¼ qþ sðqÞ; ðA1Þ
where the displacement vector s is related to δ at linear order
by ∇ · s ¼ −δ. If we assume s is irrotational, then s ∝ ∇δ,
and the Fourier-transformed quantities are related by

sðkÞ ¼ ik
k2

δðkÞ: ðA2Þ

Equations (A1) and (A2) determine the initial positions and
are valid regardless of the composition of the universe.
We next turn to the velocity field _xðqÞ or its Fourier

transform _xðkÞ ¼ _sðkÞ. Let t0 be the time at which we are
generating initial conditions, and write s as a function of
time, using a new function Dðk; tÞ to encode its time
dependence:

sðk; tÞ ¼ Dðk; tÞsðkÞ: ðA3Þ

We define sðkÞ≡ sðk; t0Þ so that Dðk; t0Þ≡ 1. During
matter domination,Dðk; tÞ ¼ aðtÞ=aðt0Þ independent of k,
but radiation complicates the picture. However, it is evident
from Eq. (A2) that s and δ evolve identically in time,
implying Dðk; tÞ ¼ δðk; tÞ=δðk; t0Þ. The initial velocity
becomes

_xðk; t0Þ ¼
_δðk; t0Þ
δðk; t0Þ

sðkÞ ¼ d ln δðk; tÞ
dt

����
t¼t0

sðkÞ; ðA4Þ

which is evaluated using Eq. (3) with d=dt≡ aHðaÞd=da.
To test the modified simulation code and initial con-

ditions, we compare simulation results to linear theory. We
produce a matter power spectrum at z ¼ 8 × 106 using the
procedure described in Sec. II B, but we leave it unen-
hanced so that density contrasts near matter-radiation
equality are well in the linear regime. We draw initial
conditions from this power spectrum in a ð7.4 kpcÞ3
periodic box and then evolve this box to z ¼ 996 using
our modified version of GADGET-2.9 All simulation param-
eters are the same as those of the reference simulation
described in Appendix B. Figure 15 shows the growth of
the power spectrum during this simulation. It matches the
linear-theory prediction of Eq. (3), including the scale-
dependent growth. Note that without the radiation compo-
nent, the power spectrum would have instead grown by a
factor of about 6 × 107.
As another demonstration, we also evolve the initial

density field to z ¼ 996 using linear theory by applying the
evolution specified by Eq. (3) to the Fourier-transformed
density field; we may then compare the resulting density
field to the one evolved using GADGET-2. In Fig. 16, we plot
a slice of the density field at z ¼ 996 evolved using both
methods. Our modified version of GADGET-2 with initial

FIG. 15. The power spectrum growth from z ¼ 8 × 106 to
z ¼ 996: a comparison betweenGADGET-2 with an added radiation
component and linear theory. In matter domination, the power
spectrum would have instead grown by a factor of about 6 × 107.

9The fluctuations drawn from an unenhanced power spectrum
have amplitude δ ∼ 10−3 at z ¼ 8 × 106, which results in
extremely small particle accelerations. To evade errors resulting
from floating-point precision, we also set GADGET-2 to use
double-precision arithmetic. All simulations in this paper employ
this setting.
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conditions described above successfully reproduces the
results of linear theory.

APPENDIX B: CONVERGENCE TESTING
AND SIMULATION PARAMETERS

1. Simulation parameters

We carry out a reference simulation run and five
convergence-testing runs: one with improved force accu-
racy, one with improved integration accuracy, two with
respectively increased and reduced softening scales, and
one with higher particle count. Our parameter choices for
these runs are summarized in Table I and described below.
We refer the reader to Ref. [84] for further detail on these
parameters.
(a) Particle countN In our reference run, we useN ¼ 5123

particles arranged in a 3-dimensional grid. In the high-
particle-count run, we increase this to N ¼ 10243.
At the final redshift, the UCMH in the reference run
has 2.7 × 105 particles within its virial radius rvir while
the UCMH in the high-particle-count run has 2.2 × 106

particles.
(b) Psarticle mesh size Nmesh This parameter describes the

size of the particle mesh used for the long-range force
calculation. In our reference run, we set Nmesh ¼ N. In
the force-accuracy run, we setNmesh ¼ 23N to increase
the accuracy of the long-range force calculation.

(c) Short/long-range split rs GADGET-2 computes the
long-range force using a particle mesh and the
short-range force using an octree. The parameter rs
determines the splitting scale in units of mesh cells. In
our reference run, we set rs ¼ 1.25 mesh cells. In the
force-accuracy run, we increase this to rs ¼ 2.5 mesh
cells, which effectively leaves the splitting scale
unchanged since we also double the mesh frequency.

(d) Short-range cutoff rcut The short-range force calcu-
lation (using an octree) is cut off beyond rcut mesh
cells. In our reference run, we set rcut ¼ 4.5 mesh
cells. In the force-accuracy run, we increase this to
rcut ¼ 9.0mesh cells, which similarly leaves the cutoff
scale unchanged since we also double the mesh
frequency.

(e) Tree-force error parameter α GADGET-2’s short-range
(octree) force calculation only opens a tree node if the
estimated force error from truncating it is less than α
times the estimated total force. In our reference run,
we set α ¼ 0.005. In the force-accuracy run, we set
α ¼ 0.002 to increase the accuracy of the short-range
force.

(f) Adaptive time step parameter η GADGET-2 uses indi-
vidual adaptive time stepswith an accuracy parameter η.
Roughly, the time step is set so that the maximum
displacement due to a particle’s acceleration over one
time step is smaller than η times the force-softening
scale. In the reference run, we set η ¼ 0.025, while in
the integration-accuracy run, we set η ¼ 0.01 to reduce
the particle time steps.

(g) Maximum time step dtmax In order to avoid large
integration errors at early redshifts when accelerations
are small, GADGET-2 imposes a maximum particle time
step dtmax, which is expressed in units of the Hubble
time (so it is actually d ln a). In the reference run, we
set dtmax ¼ 0.03, while in the integration-accuracy
run, we set dtmax ¼ 0.01 to improve the integration
accuracy at early times.

(h) Force softening scale ϵ GADGET-2 softens the gravi-
tational force based on the length parameter ϵ, which
we set to be a fraction ϵ=Δr of the initial interparticle
spacing Δr≡ box size=N1=3. Note that the force
becomes fully Newtonian at 2.8ϵ; ϵ itself is defined
to be the minimum radius that can appear in the
point-particle potential. In the reference run, we set
ϵ=Δr ¼ 0.03. Larger softening lengths can minimize
discreteness artifacts, but they also systematically bias
the forces and prevent smaller scales from being
resolved. We perform two runs with altered softening:
one with a larger softening scale ϵ=Δr ¼ 0.06 and one
with a smaller softening scale ϵ=Δr ¼ 0.01.

2. Procedure, results, and discussion

We conduct convergence testing on the primary simu-
lation run of Sec. III. The density field is generated with

TABLE I. Simulation parameters for convergence runs. See the
text for descriptions of the symbols.

Label N Nmesh
N rs rcut α η dtmax

ϵ
Δr

Reference 5123 1 1.25 4.5 0.005 0.025 0.03 0.03
Force accuracy 5123 23 2.5 9.0 0.002 0.025 0.03 0.03
Integration 5123 1 1.25 4.5 0.005 0.01 0.01 0.03
Softening ×2 5123 1 1.25 4.5 0.005 0.025 0.03 0.06
Softening × 1

3 5123 1 1.25 4.5 0.005 0.025 0.03 0.01
N ×8 10243 1 1.25 4.5 0.005 0.025 0.03 0.03

FIG. 16. Fractional overdensity fields evolved to z ¼ 996

from the same initial box at z ¼ 8 × 106. The figure depicts a
ð7.4 kpcÞ2 × 1.5 kpc slice. The left and right panels show the
results of linear theory and modified GADGET-2 respectively.
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10243 cells but reduced to 5123 cells for all but the high-
particle-count run by averaging 8 neighboring cells. Each
convergence run is carried out as in Sec. III with only the
simulation accuracy parameters changed. We study here the
spherically averaged density profile ρðrÞ of the UCMH
at z ¼ 100.
We find that the density profile at each radius rapidly

fluctuates between closely-spaced snapshots, and that these
fluctuations differ between simulation runs with different
parameters. Moreover, we will see later that these fluctua-
tions are a discreteness artifact (although they are not
merely the Poisson noise in each radial bin, which is much
smaller), so we wish to ignore them. To do so, we obtain
density profiles in 16 snapshots between z ¼ 100 and
z ¼ 99 and average them. We also compute the root-
mean-squared variance between the snapshots as an esti-
mate of the magnitude of this time variation. Such a small
time range was chosen so that we only smooth over rapid
fluctuations and not over significant global evolution (such
as growth). Nevertheless, this time is short enough that it
fails to average over fluctuations at large radii where the
particle motion is much slower. We may estimate the upper
limit of the range over which rapid fluctuations are
smoothed as the radius rlim where

σrðrlimÞΔt ¼ rlim; ðB1Þ

where σrðrlimÞ is the radial velocity dispersion at radius rlim
and Δt is the time difference between z ¼ 100 and z ¼ 99.
rlim is thus the radius at which particles are moving fast
enough that their radial distance traveled over the averaging
period is of the same order as their radial position. For
r < rlim, there can be no significant correlation between the
positions of a particle at the beginning and at the end of the
averaging period, so we expect to have averaged over these
discreteness artifacts.
There is also an obvious lower limit to the range of radii

over which we expect our results to be representative, and
that is where the radius is equal to 2.8ϵ, where ϵ is the
gravitational softening length. Below this radius, all forces
are non-Newtonian, and the density profile will unphysi-
cally flatten out.
Our main results are shown in Fig. 17. The dotted lines

indicate the density profile of the reference simulation run,
with the gray shading representing the root-mean-squared
variance in snapshots between z ¼ 100 and z ¼ 99. The
solid lines with colored shading depict alternate runs.

a. Force accuracy

In the force-accuracy run, we reduce the tree-force error
parameter α to increase the accuracy of the short-range
force and simultaneously double the resolution of the
particle mesh in order to increase the accuracy of the
long-range force. We change the short/long range splitting
parameters rs and rcut only to keep the short/long range

split the same, since those parameters are expressed in
mesh cells. The result is shown in Fig. 17. We see that for
r < rlim, the density profile of the force-accuracy run
matches well that of the reference run, suggesting that
the reference force-accuracy parameters were sufficient.

b. Integration accuracy

In the integration-accuracy run, we reduce the integration
time step in order to reduce error from the numerical
integration of particle trajectories. Specifically, we reduce
the adaptive time step parameter η as well as the maximum
time step dtmax. The first change should improve integra-
tion accuracy at late times when particles are experiencing
large accelerations, and the second should improve inte-
gration accuracy at early times when accelerations are
small. The result is shown in Fig. 17. We see that for
2.8ϵ < r < rlim, the density profile of the integration-
accuracy run matches that of the reference run, indicating
that the reference integration-accuracy parameters were
sufficient.

c. Force softening

The gravitational force softening length ϵ is a more
difficult parameter to tune [139–144]. Forces are softened
at short range to account for the way the numerical
simulation uses discrete particles to represent a continuous
mass distribution. Thus, a larger ϵ reduces the influence of
discreteness artifacts such as two-body collisions. On the
other hand, a larger ϵ also introduces a bias due to the forces
being weaker than Newtonian, and a smaller ϵ can allow
smaller scales to be probed. Unlike the other parameters we
consider, there is no clear direction of greater accuracy in ϵ.
Reference [141] suggests a minimum softening length
ϵacc ≡ rvir=

ffiffiffiffiffiffiffiffi
Nvir

p
(Nvir is the number of particles in the

halo virial radius), which follows from the criterion that
the maximum two-body acceleration caused by a close
approach be smaller than the minimum mean-field accel-
eration within the system. We adopt the choice ϵ ¼ 0.03Δr,
whereΔr is the initial interparticle spacing, in our reference
run, which results in ϵ ≃ 2.3ϵacc at z ¼ 100. We also
execute two other simulation runs with ϵ at respectively
a third and twice the reference value.
The results are shown in the bottom right of Fig. 17. The

vertical solid line represents 2.8ϵ for the reference run,
while the two vertical dotted lines represent 2.8ϵ for the
runs with altered softening. As one would expect, the
density profile for each run flattens out for r < 2.8ϵ.
We hope to find convergence for 2.8ϵ < r < rlim (recalling
that each run has a different ϵ), but while the density
profiles in these ranges are close, there is a systematic
flattening as ϵ becomes larger. What has happened here
may be elucidated by performing a Moore fit [Eq. (4)] to
each run and rescaling ρ and r to the fitting parameters ρs
and rs. The rescaled plot is shown in Fig. 18. Evidently,
each run can still be fit by the same form in the range
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2.8ϵ < r < rlim but has a different Moore concentration
parameter c≡ rvir=rs: the reference run has c ¼ 9.6, the
reduced softening run has c ¼ 10.2, and the increased
softening run has c ¼ 9.2. This discrepancy is likely the
result of a force bias: the softening is causing a slight
enlargement of the system. Fortunately, the effect is small.
If we assume that either rs or c is a linear function of ϵ, then

with a purely Newtonian force, we would have c ≃ 10.4,
corresponding to an 8% reduction in rs relative to the
reference simulation. Moreover, the softening length does
not affect the major conclusion regarding the shape of the
density profile: all runs fit theMoore form well for r > 2.8ϵ.

d. Particle count

We use 5123 ¼ 1.3 × 108 particles in the reference run,
which places 2.7 × 105 particles within the virial radius of
the UCMH at z ¼ 100. To avoid strong discreteness effects,
we must use enough particles that two-body collisions have
negligible impact. To estimate this,we consider the two-body
relaxation timescale trelax, the timescale overwhich two-body
encounters significantly alter a particle’s energy. For a region
of radius r about the halo center containing N simulation
particles with total mass M, trelax ¼ N=ð8 lnNÞtcross (e.g.,
[145]) with tcross ≃ r=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=r

p
. The relaxation timescale

should be much longer than the dynamical age of the halo,
which is essentially the age of the universe at z ¼ 100. We
calculate trelax for the UCMH in the reference simulation
and find that even at the smallest relevant radius, r ¼ 2.8ϵ,
trelax is 100 times the age of the universe at z ¼ 100. This
calculation suggests that the reference simulation contains
enough particles that collisional artifacts are unimportant.

FIG. 17. Radial density profiles averaged between z ¼ 100 and z ¼ 99; the shading indicates the root-mean-squared variance over this
interval. Clockwise from top left: force-accuracy, integration-accuracy, softening-length, and particle-resolution convergence
comparisons. The vertical solid (dotted) lines indicate 2.8ϵ for the reference run (alternate runs), the range beyond which forces
are exactly Newtonian. The dot-dashed line indicates rlim, the radius beyond which fluctuations are likely not averaged (see text for
details). (ρ̄ is the background matter density.)

FIG. 18. The softening-length convergence test with ρ and r
rescaled for each run to its Moore fitting parameters. The thick
dashed line shows the fit, which is the same for all runs by
construction. (Shading and vertical lines have the same meaning
as in Fig. 17).
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Nevertheless, Fig. 17 shows a comparison between the
density profiles in the reference run and in a simulation run
with 8 times as many particles. As expected, the two
density profiles match well in the range 2.8ϵ < r < rlim,
implying that the simulation is converged with respect to
particle count in these regions. Moreover, the time-fluctu-
ations in the density profile, measured as the root-mean-
squared variance across snapshots between z ¼ 100 and
z ¼ 99, are smaller in the high-particle-count simulation
than in the reference simulation, a fact that we confirm in
Fig. 19. This observation confirms our claim that the
fluctuations are a discreteness artifact.
These fluctuations may be related to the artificial frag-

mentation of filaments that occurs in simulations with a
small-scale cutoff in the power spectrum [146,147]. We
observe artificial fragmentation in our simulations using the
spiked power spectrum, as evidenced inFig. 20,which shows
one of the filaments connected to the UCMH for different
simulation parameters. Like the density fluctuations, the
frequency and size of these fragments is correlated with the
simulation particle resolution, while their positions vary with
force-accuracy parameters. The fluctuations in the density

profile could be caused by the accretion of artificial
fragments.

3. The smallest resolved radius

We have shown that the density profile of the UCMH in
the reference version of the primary simulation run is
converged with respect to simulation parameters at z ¼ 100
for radii r between 2.8ϵ ¼ 0.012rvir and rlim ¼ 0.11rvir.
This halo has rvir ¼ 1.0 × 10−3 kpc (in physical coordi-
nates) at z ¼ 100, so the converged radius range is
1.2 × 10−5 kpc < r < 1.1 × 10−4 kpc. Moreover, we can
regard the density profile above rlim ¼ 1.1 × 10−4 kpc as
converged in its long-range behavior, with only the small-
scale fluctuations being not converged. Unfortunately, the
lower limit of 1.2 × 10−5 kpc imposed by the force soft-
ening is not sufficient to capture the asymptotic behavior in
ρðrÞ at small r (see Fig. 5).
We can double the resolution by employing the high-

particle-count simulation run, but we would like to go still
deeper into the halo. While it is computationally challeng-
ing to simulate the full box with more than 10243 particles,
it is also unnecessary. A common practice in N-body
simulations is to resample the halo progenitor at higher
particle resolution and embed this high-resolution region
into the same periodic box. Because the halos we consider
are much more isolated than halos in a hierarchical growth
picture, we need not even go this far: we can simply isolate
a sphere around the halo progenitor and use vacuum
boundary conditions. Figure 21 shows the comparison
between the periodic box with 10243 particles and an
otherwise identical simulation of a vacuum-bounded sphere
of radius 0.92 kpc around the UCMH. The spherical region
is depicted in Fig. 2. The sphere requires only 1=122 as
many particles for an identical result. We therefore exploit
this method to simulate the UCMH in the primary simu-
lation at 64× particle density and the other UCMHs at
8× particle density relative to the reference simulation with
5123 particles.

FIG. 19. Root-mean-squared variance in the density profile
across 16 snapshots between z ¼ 100 and z ¼ 99. The reference
and high-particle-count runs are compared. (Vertical lines have
the same meaning as in Fig. 17.)

FIG. 20. The filament to the left of the UCMH (see Fig. 4) for
different simulation parameters. This figure demonstrates the
presence of artificial fragmentation: the filament fragments
differently for different parameters.

FIG. 21. A comparison between the UCMH simulated in a
ð7.4 kpcÞ3 periodic box with a halo from the same initial
overdense region simulated in a sphere of radius 0.92 kpc with
vacuum boundary conditions. (Vertical lines have the same
meaning as in Fig. 17).
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However, this concordance does not hold at z ¼ 50, nor
is it guaranteed to hold at z ¼ 100 in other boxes. The
longer the simulation run, the more likely the UCMH is
to be influenced by structure that originated outside of
the sphere. Therefore, we restrict our use of the vacuum-
bounded sphere to the primary simulation box (which we
tested here) up to z ¼ 100 and to other initial boxes up to
z ¼ 400. For the UCMH in the primary simulation box, this
brings the smallest resolved radius down to 3.0 × 10−6 kpc
(physical coordinates) at z ¼ 100, which is sufficient to
resolve the beginning of the ρ ∝ r−3=2 asymptote. This
radius contains 3 × 104 particles at z ¼ 100.
Due to the stability of the density profile in time, we can

probe still smaller radii by viewing the density profile at
earlier times, as discussed in Section III. By this method,
we probe radii as small as 9.0 × 10−7 kpc in Fig. 5 using
the density profile at z ¼ 400. This radius contains 4000
particles at z ¼ 400 and is sufficient to demonstrate that the
density profile shows no sign of leveling off toward a
shallower power-law index than 3=2.

4. Summary of simulation choices

We now summarize the simulation parameters we use to
study the UCMHs in Sec. III. Aside from the particle count
N, all simulation runs use the reference parameters of
Table I. We employ two classes of simulation region: a
comoving cube with periodic boundary conditions or an
isolated comoving sphere with vacuum boundary condi-
tions. Table II shows the particle counts and simulation
region sizes for all simulation runs. The mass m of the
simulation particle is also shown for clarity.
The primary simulation box is the same 7.4 kpc box we

used for convergence testing. The full box is simulated at
8 times the reference particle density (10243 particles) and a
sphere around the main halo at 64 times the reference
particle density up to z ¼ 100, and a third run simulates
the full box at reference particle density up to z ¼ 50.

The density profile of the UCMH shown in Fig. 5 comes
from the isolated sphere at 64× reference particle density
up to z ¼ 100 and from the full box at reference density at
z ¼ 50. Secondary simulations (Fig. 6) are executed at
reference particle density up to z ¼ 50 and at 8× reference
density in an isolated sphere up to z ¼ 400. TheNvir figures
for the secondary simulations in Table II are average values
and vary by up to 25% between simulations of different
UCMHs. The density profiles of younger halos (Sec. III D)
come from the full primary box at 8× reference density at
z ¼ 100. Finally, for the stepped power spectrum, we
simulated a full box with reference parameters to z ¼ 100.
All density profiles are averaged over 16 snapshots

within 1=100 of a Hubble time to suppress fluctuations.
Density profiles are binned logarithmically in intervals
separated by a factor of 1.1 (corresponding to an interval of
0.041 in log10 r), but we have checked that the results
depend negligibly on this choice.

APPENDIX C: CONSTRAINING POINT-SOURCE
ABUNDANCE IN THE MILKY WAY

In Sec. IV, we defined μðdÞ ¼ 3MðdÞ=ð4πd3ρ̄0Þ, where
MðdÞ is the dark matter mass contained within distance d of
Earth. If we are at distance r0 from the Milky Way center,
then we may write

μðdÞ¼ 3

2d3ρ̄0

Z
d

0

s2ds

×
Z

1

−1
dxmax

n
ρMW

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þr20−2xsr0

q 	
; ρ̄0
o
; ðC1Þ

with ρMWðrÞ being the density profile of the Milky Way.
This expression approximates the extragalactic density
field as a uniform background. Taking the Milky Way to
have an NFW profile with scale radius rS and scale density
ρS and the sun to be at distance r0 from the center, the
integral in Eq. (C1) evaluates to

TABLE II. The particle count N, particle mass m, simulation region size (side length or diameter), and ending redshift for each
simulation used to produce the results in Sec. III. The π=6 factor in the particle count comes from isolating a spherical region. The
number of particles Nvir within the UCMH is also shown at each redshift from which results are presented. For the secondary
simulations, an average figure is given.

Description N m (M⊙) Size (kpc) Region End z Nvirjz¼400 Nvirjz¼200 Nvirjz¼100 Nvirjz¼50

Primary 10243 1.5 × 10−5 7.4 Periodic 100 5.5 × 105 1.3 × 106 2.2 × 106 …
Primary, z ¼ 50 5123 1.2 × 10−4 7.4 Periodic 50 … … … 4.3 × 105

Primary, vacuum b.c. π=6 × 5123 1.8 × 10−6 1.85 Sphere 100 4.6 × 106 1.1 × 107 1.9 × 107 …
Secondary 5123 1.2 × 10−4 7.4 Periodic 50 7.1 × 104 1.7 × 105 2.8 × 105 4.2 × 105

Secondary, vacuum b.c. π=6 × 2563 1.5 × 10−5 1.85 Sphere 400 5.8 × 105 … … …
Step 5123 1.2 × 10−4 7.4 Periodic 100 … … 1.2 × 107 …
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μðdÞ ≃ 3r3SρS
2r0ρ̄0d3

8>>>>>><
>>>>>>:

ðr0 þ rsÞ ln
�
r0þrSþd
r0þrS−d

	
− 2d d < r0

2rSarctanh
�

r0
dþrS

	
þ r0 ln

�ðdþrSÞ2−r20
e2r2S

	
r0 < d < rmax

2r0

�
−rmax
rmaxþrS

þ ln
�
1þ rmax

rS

	
þ ρ̄0

3r3SρS
ðd3 − r3maxÞ

�
d > rmax

ðC2Þ

where rmax is defined such that ρMWðrmaxÞ ¼ ρ̄0. The first
two cases in Eq. (C2) come from an exact evaluation of the
integral in Eq. (C1) for the Milky Way without a back-
ground, while the third case approximates r0 ≃ 0 to
evaluate the extragalactic contribution. Figure 11 shows
a plot of μðdÞ.

APPENDIX D: CONSTRAINING THE POWER
SPECTRUM USING THE STATISTICS

OF PEAKS

In Sec. IV, we used the statistics of peaks as formulated
in Ref. [79] (BBKS) to relate the differential halo number
density by formation time, dn=dac, to the power spectrum
PðkÞ. We describe that calculation in more detail here. The
differential number density of peaks according to their
height ν ¼ δ=σ and steepness parameter x is given in BBKS
Eq. (A14), where σ is the root-mean-squared density
variance10 and δ is the peak density contrast. For the
spiked power spectrum given by Eq. (22), σ ¼ A1=2a.
Moreover, the spectral parameter γ [BBKS Eq. (4.6)] has
value γ ¼ 1, causing the x-exponential in BBKS Eq. (A14)
to become a delta-function. We obtain the halo abundance
by integrating this differential number density over x and ν
subject to the collapse requirement νσ > δc, with result

n ¼ k3s
ð2πÞ233=2

Z
∞

δc=ðA1=2aÞ
e−ν

2=2fðνÞdν ðD1Þ

where the function fðνÞ is defined by BBKS Eq. (A15).
We seek dn=da, which is obtained by differentiation as

dn
da

¼ k3s
a
h

�
δc

A1=2a

�
ðD2Þ

with

hðνÞ≡ ν

ð2πÞ233=2 e
−ν2=2fðνÞ: ðD3Þ

As we noted in Sec. IV C, the number density n increases
monotonically due to halo formation alone. Thus, Eq. (D2)
gives us precisely dn=dac, which we can combine with
Eq. (17) or (20) to constrain the integrated area A of the
power spectrum.

For the general case of point sources with nonconstant
μðdÞ, we have little choice but to numerically invert the
integral in Eq. (17) to obtain an upper bound on A as a
function of ks. However, in a limiting case where μ is
constant, or to derive a bound from the diffuse flux, we can
fully extract the A-dependence from the integral. In these
cases, we have an integral of the formZ

1

0

dac
dn
dac

LpðacÞ

¼ k3s

Z
∞

0

dν
ν
hðνÞLp

�
δc

νA1=2

�

¼ ApA3p=2

δ3pc k3p−3s

Z
∞

0

hðνÞν3p−1
�
ln

Bδc
νA1=2

�
p
dν

¼ ApA3p=2

δ3pc k3p−3s

��
ln

Bδc
A1=2

�
p
Ip −

�
ln

Bδc
A1=2

�
p−1

Jp

�
; ðD4Þ

with p ¼ 3=2 or p ¼ 1 for point sources or the diffuse flux
respectively, and where Ip and Jp are defined as

Ip ≡
Z

∞

0

hðνÞν3p−1dν; Jp ≡ p
Z

∞

0

hðνÞν3p−1 ln νdν:

ðD5Þ
In the first line, we use Eq. (D2) with ν ¼ δc=ðA1=2aÞ. We
saw in Sec. IV D that the integral in Eq. (D4) is dominated
by minihalos forming at z≳ 20, so we exploit the negli-
gible contribution to this integral of minihalos forming at
a > 1 to extend the lower limit of the integral on the right-
hand side to ν ¼ 0. In the second line, we specialize to
the Moore density profile using Eq. (13). In the last line,
we take advantage of the limited support of hðνÞ to claim
that ln ν ≪ ln ðBδc=A1=2Þ so that we can use a binomial
expansion (and this is exact for p ¼ 1). Note that the
integrands in Eq. (D5) tell us the range of peaks that are
relevant to constraints: as we see in Fig. 22, most of their
support lies in peaks between roughly 2σ and 4σ.
For point sources with μ ≃ const, we now have

A
�
ln

Bδc
A1=2

�
2=9
��

ln
Bδc
A1=2

�
I3=2 − J3=2

�
4=9

≤
�
−3

ffiffiffiffiffiffi
4π

p
lnð1 − y=xÞ
μ

�4=9�δ3cksFmin

A

�
2=3

; ð25Þ

while for diffuse sources, we have

10There is no smoothing filter, so σ is the pointwise variance,
σ2 ¼ R dk

k PðkÞ.
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A
��

ln
Bδc
A1=2

�
I1 − J1

�
2=3

≤
�

4πδ3c
KðθÞA

dF
dΩ

�
2=3

: ð26Þ

These expressions follow from Eqs. (17), (20), and (D4).
The numbers I3=2, J3=2, I1, and J1 have approximate values

I3=2 ¼ 0.228; J3=2 ¼ 0.370

I1 ¼ 0.0477; J1 ¼ 0.0478 ðD6Þ

Equations (25) and (26) are now algebraic equations for the
upper bounds on A.
The constraint on A is not our final goal, but it is close.

Aa2 is the power associated with the spike in the (linear)
matter power spectrum during matter domination. We seek
instead the power A0 associated with the spike in the
primordial curvature power spectrum. These quantities are
related by a transfer function such as [148]

δðk; aÞ ¼ 2

5

k2

ΩmH2
0

ζðkÞT
� ffiffiffiffiffiffi

Ωr
p

k
H0Ωm

�
a; ðD7Þ

which relates the matter density contrast δ during matter
domination to the primordial curvature fluctuation ζ. Here

T ðxÞ ¼ 45

2x2

�
−
7

2
þ γE þ ln

�
4xffiffiffi
3

p
��

ðD8Þ

is a dimensionless transfer function that is valid at x ≫ 1 or
k ≫ 10−2 Mpc−1 (γE ≃ 0.577 is the Euler-Mascheroni
constant). Hence, by squaring Eq. (D7),

A0 ¼
ðΩr=ΩmÞ2A

81
h
− 7

2
þ γE þ ln

�
4
ffiffiffiffi
Ωr

p
ksffiffi

3
p

H0Ωm

	i
2

ðD9Þ

yields the desired constraint on the primordial power
spectrum.

APPENDIX E: THE UCMH CONSTRAINT
ON A SPIKED POWER SPECTRUM

Bringmann, Scott, and Akrami [9] (BSA) calculated an
upper bound on the number density of UCMHs (as a
function of scale wave number k) using the ρ ∝ r−9=4

density profile from Ref. [1]. They then converted this
constraint into an upper bound on the primordial power
spectrum under the assumption of local scale invariance.
We followed the calculation in BSA as closely as possible
in Sec. IV so as to facilitate a direct comparison in
constraining strength between our new minihalo model
and the old UCMH model. However, because a spiked
power spectrum does not exhibit local scale invariance, we
must return to the UCMH abundance constraint in BSA and
convert it into a constraint on the delta-spiked power
spectrum given by Eq. (22). We show that calculation here.
BSA Fig. 1 shows their constraint on the fraction f of

matter contained in UCMHs. This fraction is readily
converted into a number density n ¼ fρm=MUCMH, where
BSA took

MUCMH ¼ 4 × 1013
�

k
Mpc−1

�
−3

M⊙: ðE1Þ

Here we have employed R ¼ 1=k, where R is the comoving
radius of the precursor overdense region; this is the same
relation BSA used. The UCMHs are taken to follow the
dark matter distribution, so n and ρm are the comoving
background UCMH number density and matter density
respectively.
This procedure has given us a constraint n on the

comoving number density of halos of scale wavenumber
k forming at z≳ 1000. In the delta-spiked power spectrum
given by Eq. (22), all halos form from fluctuations with
wavenumber ks, the wavenumber of the spike, so we will
take k ¼ ks in Eq. (E1). We can then use Eq. (D1) with
a ¼ 10−3 to convert this upper bound on the abundance
of halos that form at z ≥ 1000 into a constraint on the
primordial power spectrum, which is shown in Fig. 12.

FIG. 22. Plots of the function h defined in Eq. (D3) along with
the integrands in Eq. (D5). Each function is scaled to its
maximum value to emphasize the support of these functions.
The black curves are relevant to point-source constraints, while
the red curves determine diffuse constraints. This figure shows
that constraints are set primarily by peaks between 2σ and 4σ.
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