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Measuring the duration of inflation with the curvaton
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Simple models of single-field inflation in the very early universe can generate the observed amplitude
and scale dependence of the primordial density perturbation, but models with multiple fields can provide an
equally good fit to current data. We show how future observations will be able to distinguish between
currently favored models. If a curvaton field generates the primordial perturbations after inflation, we show

how the total duration of inflation can be measured.
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I. INTRODUCTION

In the standard cosmological model, all structures in our
Universe originate from quantum vacuum fluctuations [ 1-6]
during an early phase of accelerated expansion [7—12]. With
the advent of high-precision measurements [13,14] of the
temperature and polarization anisotropies of the cosmic
microwave background (CMB), we can place tight con-
straints on this primordial epoch called inflation. At a given
physical length scale, the statistical properties of cosmologi-
cal fluctuations are mostly determined by the details of the
classical inflationary dynamics around the time when this
scale crosses the Hubble radius during inflation. The range of
scales probed in the CMB then translates into a time interval
during inflation of length AN ~ 7, measured by the number
of e-folds, N, — Ny = In(a,/ay), where a is the scale factor
of the Universe. If one includes measurements of the large-
scale structure (LSS) of our Universe, this window is
extended, but cannot exceed the last ~60 e-folds of inflation.
Besides this lower bound (whose precise value depends on
the reheating expansion history [15-21]), the overall duration
of inflation is not known.

One way to circumvent this cosmic amnesia and to learn
about larger scales, hence earlier times, is through spectator
fields [22,23], whose field displacements are sensitive to a
much longer phase of the inflationary epoch and which can
be observationally accessible [24].
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Since current CMB measurements are compatible with
single-field models of inflation (if the potential is of the
plateau type) [25-27], such extra fields are not required by
the data. However, from a model building perspective, they
are ubiquitous in many high-energy embeddings of infla-
tion, e.g., in the context of string theory [28-33]. It is,
of course, always possible to fit the data with complex
multifield inflationary models, but the amount of fine
tuning required in these models may be large, which is
why models should be compared in a Bayesian framework
that correctly accounts for the waste of parameter space.

The question we ask in this Letter is therefore twofold.
Are there multiple-field models of inflation that are as
favored by the data as single-field plateau inflation from a
Bayesian perspective? What insight can be gained on the
inflationary history in these models?

We investigate these questions in one of the simplest
extensions to single-field inflation where [34-39] a light
(with respect to the Hubble scale) energetically subdomi-
nant quadratic spectator scalar field o, called the “curva-
ton,” sources primordial density perturbations together with
the inflaton field ¢. Denoting the effective mass of the
curvaton by m,, the potential is of the form'

2

V(g.o) = U(@) + 770> (1)

After inflation, the inflaton field decays into radiation and
the energy density contained in the curvaton field, p,, may

'For the sake of simplicity, we neglect self-interactions in the
spectator potential; in a more general setting those terms could
only be neglected for sufficiently massive spectators.
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grow relative to the background energy density, until it also
decays into radiation. Assuming that no isocurvature
perturbations persist [40-42], the total adiabatic power
spectrum is given by the sum of the power spectra of the
perturbations originating from each field,

Pl = Pl 4 Pe, (2)

where in the case of observational interest, o, << Mp; (since
o, ~ Mp is disfavored by the data, see footnote 4,

1 H 2 H, \?
b * d c _ .2 *
Pé’ 26* <2JZMP1> an Pé: Tdec <3ﬂd*> ' (3)

Here, a star denotes the time when the pivot scale k, =
0.05 Mpc‘1 crosses the Hubble radius, H = a/a is the
Hubble scale where a dot denotes derivation with respect to
cosmic time, € = —H /H? is the first slow-roll parameter,
M, is the reduced Planck mass, and ry. is a parameter that
quantifies the relative energy density of the curvaton at its
decay. In the sudden-decay approximation [43,44],

3p, )
Fdee =\ : 4
dec <3 P + 4pradiati0n dec ( )

This quantity can vary from zero to unity in the case that ¢
dominates the background energy density at the time it
decays.

Observations are often discussed in terms of the spectral
index ng=1+dIn P‘C"ta' /dInk and the tensor-to-scalar
ratio r =P,/ 732"“‘1 (where P, is the tensor power spec-
trum) given by [45]

ng — 1= /1(_26* + 2'70‘*) + (1 - ’1)(_65* + 2’145*)’
r=16¢,(1 - 2). (5)

Here, Ny = V¢¢/(3H2) and Ne = VVO‘O‘/(3H2)’ V,x (V,xx)
denotes the first (second) derivative of V with respect to x,
and A denotes the fraction of the total perturbations
originating from o,

1=t
- otal *
Pt

(6)

When the primordial density perturbation is entirely due to
the spectator field fluctuations then the original curvaton
model [36-38] is realized. Hence, in this work, we term
situations where 4 > 0.9 as the “curvaton scenario”.

At the pivot scale, the latest 2015 BICEP2/Keck Array
and Planck [14,46] combined observations give 77‘4‘"3] ~
2.2 x 1077, ng = 0.9667 4- 0.008 (95% C.L.) and r < 0.07
(95% C.L.). If the inflaton potential is of the large-field type
U(¢) x ¢?, in the curvaton limit A ~ 1, Eq. (5) implies that
ng~1— p/120, and the observed value of the spectral

index means that the inflaton field potential must be close
to quartic, p = 4. The “simplest” curvaton scenario with a
quadratic inflaton is now disfavored by the data [47-50].

The observational constraints on ng; and r imply that
when any inflaton potential is included in the analysis, only
two classes of models with an additional spectator field are
found to be favored [49]: plateau inflation, which cannot fit
the data in the curvaton scenario (thereby requiring 1 < 1),
and quartic inflation, which can only fit the data in the
curvaton scenario (4 ~ 1). An advantage of a quartic potential
is that the inflaton field energy decreases like radiation when
it oscillates, making the model more predictive by removing
the dependence of postinflationary dynamics on the inflaton
decay rate into radiation.

Another way to detect the curvaton is through primordial
nonlinearity of the density perturbations, of which the key
observable is the local non-Gaussianity of the bispectrum,
parametrized by fyr. In the sudden-decay approximation

[51,52],
5 Srdec
_— = , 7
4rdec 3 6 > ( )

where the observational non-Gaussianity constraint of
SaL =0.84+5.0 (68% C.L.) [53] implies that either we
predominantly observe inflaton perturbations, 4 ~ 0, or the
spectator must have a non-negligible energy density at its
decay, rge. = 0.1.

The contribution from the curvaton to the primordial
power spectrum crucially depends on its field value, o,,
when observable modes exit the Hubble radius. Combining
Egs. (3) and (6), the curvaton dominates the perturbations,
A>1/2,if 6,/Mp < \/€,T4e.. Therefore o, must be sub-
Planckian (if it is super-Planckian, it may drive a second
phase of inflation and the above formulas do not apply, but
we show in foonote 4 that this case is excluded). The value
of o, is determined by the details of the inflaton’s potential
U(¢) over the entire inflating domain, as recently shown in
Ref. [22]. This makes the model more predictive since the
typical value of o, is not a free parameter anymore. This
will play an important role in the Bayesian analysis below.
In particular, the value of ¢, depends on the total duration
of inflation, which will allow us to constrain it.2

I1. PRIORS

Most previous analyses of curvaton models assumed no
knowledge a priori about spectator field values. Instead, we
adopt a physical prior for the typical field displacement
(62)1/2 of the curvaton [22], calculated in the framework
of stochastic inflation [56], which describes how, during
inflation, the vacuum expectation value (vev) of spectators

*For a related approach in the context of light vector fields,
see [54,55].
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fields on super-Hubble scales are sourced by quantum
fluctuations. This prior depends on the inflaton potential
U(¢) and the total duration of inflation.

In the presence of a plateau inflationary potential (here
we choose Higgs inflation [57], whose potential matches
the Starobinsky model [7], to be the representative member
of this class), if inflation lasts more than N = H?/m2
e-folds [56,58], the vev of ¢ reaches a Gaussian equilibrium
distribution with vanishing mean, and variance

3H
2y T 8
() = g (8)
In the presence of a quartic large-field inflationary potential
(U(¢) x ¢*), we find a zero-mean Gaussian with variance

2 2 HE s 9

(07) = (o) 2 Vv )

with a strong dependence upon initial conditions, as was

shown to be the case for a large field inflationary back-

ground with monomial power > 2 in Ref. [22]. Above, N

is the total number of e-folds elapsed during quartic

inflation and (c7,) denotes the variance of the curvaton

vev distribution at the onset of inflation. The distributions (8)

and (9) define the prior on o, for plateau and quartic inflation,
respectively.

The expansion history of reheating depends on the mass
of the curvaton and the decay rates, I', of the inflaton and
the curvaton.’ Through noninformative priors (see
Appendix), we impose that the onset of the radiation-
dominated period occurs after the end of inflation and
before the electro-weak symmetry breaking. We also
assume that the inflaton and the curvaton decay at least
as fast as they would through their minimal coupling to the
gravitational sector, I' > m3 /M3, [59]. As noted earlier, if
the inflaton has a quartic potential, its coherent oscillations
around the minimum of its potential give rise to a radiation-
like era of expansion immediately after inflation [60]. In
this case, reheating can be described by two parameters
only, the mass and decay rate of the curvaton.

III. RESULTS

The Bayesian analysis is performed on the January 2015
BICEP2/Keck-Array/Planck data combination [61], using
the machine-learned effective inflationary likelihood
described in Ref. [62], which has been marginalized over
late-time background cosmology, reionization, and astro-
physical foregrounds. The predictions of the models are
computed with the curvaton extension of the ASPIC library
[63], making use of the method presented in Refs. [21,49].

Here, [y (or I';) denotes the value of H below which the
energy density contained in ¢ (or o, respectively), or its decay
products, redshiftlike radiation.
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FIG. 1. Bayesian evidence Z of the single-field (inflaton) and
two-field (inflaton plus spectator) models (inside and below the
shaded region, respectively) considered in this work. The plateau
model (taken as the reference here) is robust with respect to the
introduction of an additional field. Quartic inflation with a
spectator field (where the total number of e-folds is written in
parenthesis) has a higher evidence than its single-field version,
but lower than the plateau model.

The Bayesian evidence is integrated using MultiNest
[64,65]; further technical details on the numerical integra-
tion can be found in the Appendix. The Bayesian evidence
is displayed in Fig. 1 and the corresponding posterior
distributions in Fig. 2.

A. Single-field versus spectator model

One can check in Fig. 1 that for single-field models,
plateau potentials are favored while a quartic potential is
strongly disfavored (and even ruled out at the level of
its maximum likelihood). When a light spectator field is
included, the evidence of plateau potentials remains stable,
and the two-field model cannot be distinguished from its
single-field counterpart in terms of its Bayesian evidence
[66]. This is because, in spite of the significant enlargement
in prior parameter space caused by the introduction of the
spectator field, most of the prior mass in the distribution (8)
reproduces single-field phenomenology, which gives a very
good fit to the data irrespective of the value of the reheating
parameters. This result is consistent with Refs. [21,49].

For the quartic potential, the evidence obtained once a
spectator field is included depends on the total duration
of inflation, N, and the variance of the curvaton vev
distribution at the onset of inflation, (62 ), through the prior
distribution (9) for the curvaton vev. We give the Bayesian
evidence for a few values of N, in Fig. 1, taking (62 ) = 0,
and N, ~ 6 x 10* as an upper bound, since for larger values
the inflaton would initially be in the ‘“‘self-reproducing”
regime [67,68] where stochastic corrections to its dynamics
become important and the calculation of Ref. [22] does not
apply; however, we are protected from this limit by the fact
that it is disfavored observationally, since it would locate
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FIG. 2. Marginal posterior distributions over the key observables from inflation for plateaulike inflation (blue, darker) and quartic
inflation (orange, clearer) with a spectator field. In the quartic case, the posterior fraction below the lower (upper) dotted line has more
than 90% (50%) of primordial density perturbations generated by the curvaton field. Post-2020 CMB experiments would likely
distinguish between or rule out both scenarios in terms of ng and r. In combination with LSS data, the typical value of fy; = —5/4

associated with the curvaton scenario could also be detected.

most of the prior mass in spectator vevs so large that they
drive a second phase of quadratic inflation.*

In all cases, quartic models with a spectator field are
favored with respect to their single-field counterpart, but
are still moderately or strongly disfavored with respect to
the plateau potential.

In terms of the observables shown in Fig. 2, plateau
inflation (the Higgs inflation or Starobinsky model in the
present case) with a spectator field presents similar phe-
nomenology to its single-field counterpart, namely a small
tensor-to-scalar ratio and a slow-roll suppressed value for
fni, that is currently (and in the foreseeable future)
undetectable. For quartic inflation, independently of the
duration of inflation, the tensor-to-scalar ratio and the

“If the light spectator field is displaced by 2 > 2M2, during
inflation, then it may drive a second period of inflation, which
lasts for N, =~ 62 /(4M?%) e-folds. The amplitude of the curvaton
perturbations generated during the first period of inflation is [69]

H, \2
=N .
774 : (2”MP1>

Independently of the inflaton potential, the tensor-to-scalar ratio
is given by

(10)

P Py .8
r=—h gt 11
Pr+PL PL N, an

where P;, = 8[H, /(2zMp,)]*. The observational bound on r then

imposes
1 /N,
A<=
~2 <60)

Since we require N, < 60, because otherwise the first period of
inflation would end before the observable modes exit the
horizon, this implies that a quadratic spectator field that
then inflates the Universe cannot generate the majority of the
observed perturbations.

(12)

spectral index are correlated, with bluer spectra correspond-
ing to reduced gravitational waves, and non-Gaussianity
has the typical amplitude fy; ~ —5/4, which, from Eq. (7),
corresponds to a preference for values 4~ rg,. ~ 1, i.e., to
situations where the curvaton dominates the energy budget
of the Universe when it decays and provides the dominant
contribution to primordial density perturbations.

Post-2020 CMB experiments [70—72] will shrink the
1-sigma constraints on the inflationary observables to
Ang~2x 1073 and Ar~107* while cross-correlation
with future LSS experiments should drive the constraint
on local non-Gaussianity down to Afy; ~ 0.4 [73]. This
would be enough to distinguish between plateau inflation
(with or without a spectator field) and quartic inflation with
a curvaton, or even to rule out both models.

B. Measuring the maximum duration of inflation

For quartic potentials with a spectator field, the data
shows strong preference for curvatonic phenomenology,
which corresponds to sub-Planckian spectator field values
of a few 1072Mp,. This yields an “optimal” value for the
variance of the prior distribution (9), such that it maximizes
the parameter volume that falls within this range of values.

A smaller variance limits the spectator field vev so that
single-field quartic inflation is recovered, which is ruled out
observationally. A larger variance locates most of the prior
mass in spectator vevs so large that they drive a second
phase of quadratic inflation, which is also ruled out (see
footnote 4).

Let us assume (o7) = 0 in Eq. (9). In that case, using
Bayes theorem, the posterior on the total duration of
inflation can be computed according to

P(Nt|D) & P(D|N o) (Nior) (13)
where P(D|N,) = Z(Nyy) is the evidence of the quartic
plus spectator field model with prior (9) on 6, corresponding

063525-4



MEASURING THE DURATION OF INFLATION WITH THE ...

PHYS. REV. D 98, 063525 (2018)

{NH "

P (Niot| D)

f .‘."'-.-.,........---.--.
[ ]
'

T T T T T T
0 10000 20000 30000 40000 50000 60000
N, tot

FIG. 3. Marginal posterior over the total number of e-folds of
inflation N, with a uniform prior, for quartic inflation with a
spectator field, assuming negligible initial spectator field values
(otherwise, this plot represents an upper bound on N,). The
upper limit corresponds approximately to the “self-reproducing”
regime, Ny, ~ 6 x 10*. The dotted line and the grey band are
respectively the mean and 1-sigma confidence-level limit of a
logarithmic Gaussian process interpolation with maximum-
a-posteriori noise level, scale and correlation length [74]. The
black dots and bars are the evidence and their errors computed
with MultiNest.

to Ny, and z(Nyy) is the prior we set on the duration of
inflation.

We reconstruct this posterior in Fig. 3, where one

can see that inflation is constrained to last less than a
few tens of thousands of e-folds. In particular, cases where
inflation starts close to the “self-reproducing” regime
(Nt ~ 6 x 10%), are strongly disfavored [75]. This is
because in such cases, Eq. (9) yields (62)'/? > Mp, (which
is true in any large-field inflationary potential [22]) and
the spectator field drives a second phase of inflation.
If the initial variance (6?) does not vanish then the
constraint that we have obtained becomes an upper bound
on the duration of inflation, and the conclusion that
inflation should not start in the self-reproducing regime
becomes even stronger.

IV. CONCLUSION

If inflation is realized in the presence of light spectator
fields, which appear in many high-energy embeddings of
inflation, then those fields may source part or all of the
primordial density perturbations. Recent CMB measure-
ments have now reached a level of accuracy such that there
is no inflationary potential for which the single-field limit,
where all perturbations come from the inflaton field, and
the curvaton limit, where all perturbations come from a
spectator field, are both allowed by the data. This is why,
for the first time, we are in a position where a Bayesian
model comparison of inflationary models with spectator
fields yields nontrivial results.

For instance, we have found that if the potential is of the
plateau type, the single-field limit is the preferred one (the

predictions of the model are robust under the introduction
of a spectator field), while quartic potentials are favored
only in the curvaton limit. Both combinations are equally
favored by current data, but we have shown that future
CMB and LSS measurements will allow us to distinguish
between them.

The contribution from spectator fields to cosmological
perturbations strongly depends on their field values at the
end of inflation [22]. The accumulation of long-wavelength
quantum fluctuations during the entire inflationary period
gives rise to a distribution for the local field displacement
that depends on the total duration of inflation N, plus a
possible contribution at the onset of inflation (6%). As a
consequence, a combination of both parameters can be
constrained by the data.

In the curvaton limit, the inflationary potential is con-
strained to be close to the quartic type. In that case,
spectator field values that are too small would fail to
source cosmological perturbations, and too large values
would drive a second phase of inflation, which is obser-
vationally disfavored.

Assuming (62) = 0, we compute the posterior distribu-
tion on N, (see Fig. 3) and find that inflation could not last
more than a few tens of thousands of e-folds. In particular,
it is very unlikely that one starts quartic inflation in the so-
called “self-reproducing” regime. Letting (62 ) > 0 makes
that upper bound even stronger.

For the first time, we have thus quantified how much
cosmological data can constrain the pre-inflationary his-
tory, much beyond the N 2 60 epoch probed by potential
large scale CMB anomalies. One should note that the
mechanism we presented is not only sensitive to the
duration of inflation but also on the shape of the infla-
tionary potential over its entire inflating domain, and on the
spectator field displacement prior to inflation. This opens
up a new observational window that extends the conven-
tional scales by orders of magnitude and allows us to
explore the physics of the very early Universe beyond our
currently observable horizon.
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APPENDIX: DETAILS ON THE PRIORS AND
THE COMPUTATION OF THE EVIDENCE

The non-informative prior described in the paper on the
reheating parameters, the mass of the curvaton and the
decay rates I' of the inflaton and the curvaton, is

3

F” ~ logu [max <HEW5 m_;> s min (Hend’ mo’):| ’
MPI

H3
I, ~logl [max (HEWa ML§“> : Hend:| ;
Pl

Mg ~ logu[HEWﬁHend]’ (Al)

where H.,, is the Hubble scale at the end of inflation,
Hgw = (150 GeV)?/Mp, is the Hubble scale at electro-
weak symmetry breaking, and x ~ logU[a, b] means that
log x is uniformly distributed between log a and log b.

In the quartic inflaton case, the radiationlike reheating
of the inflaton, described as I'j, = Hyq, is imposed via a
half log-normal ~log;o(Ts) ~ N\ 2 [10g10(Hena). (1/2)2):
This needs to be done for numerical purposes, since
H.,q is a derived quantity that depends of the full parameter
combination and can only be computed a posteriori.

In the models presented in this paper, the total power
of the primordial density perturbations constitutes an

additional free parameter, which we have omitted because
it affects both models equally. For numerical purposes, we
use a log-uniform prior which comfortably contains the
posterior observed by Planck for this parameter. Thus, the
total parameter space sampled is (I, I, 71, 6epa. As), and
our posteriors and evidence are conditioned to the model
producing close to the right amount of power.

We ensure the correct normalization of the evidence by
dividing the marginal likelihood by the total prior mass
in the same parameter domain, obtained with a quick
MultiNest integration of a mock unit likelihood. All
results are obtained with 1000 live points and a very
low sampling efficiency of 0.01 (i.e., inverse of ellipsoid
enlargement factor). A significant enlargement of the
ellipsoids is needed to properly account for the hard edges
of the prior and the fact that in the quartic case the mode of
the spectator field value is located at the edge of the prior
(otherwise, if a mode at the edge of the prior is partially or
totally missed by the initial sample of live points, the final
evidence will be undervalued). This low efficiency produ-
ces a lot of rejected points that spoil the computation of the
weights used by the Importance Nested Sampling estimator
[76], what makes it numerically unstable, most often
severely undervalued. Thus, we use the standard nested
sampled estimator in this paper.
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