
 

Topological pseudodefects of a supersymmetric SO(10)
model and cosmology

Ila Garg* and Urjit A. Yajnik†

Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India

(Received 15 February 2018; published 20 September 2018)

Obtaining realistic supersymmetry preserving vacua in the minimal renormalizable supersymmetric
Spinð10Þ GUT model introduces considerations of the nontrivial topology of the vacuum manifold.
The D-parity of low energy unification schemes gets lifted to a one-parameter subgroup Uð1ÞD of
Spinð10Þ. Yet, the choice of the fields signaling spontaneous symmetry breaking leads to disconnected
subsets in the vacuum manifold related by the D-parity. The resulting domain walls, existing due to
topological reasons but not stable, are identified as topological pseudodefects. We obtain a class of one-
parameter paths connecting D-parity flipped vacua and compute the energy barrier height along the same.
We consider the various patterns of symmetry breaking which can result in either intermediate scale gauge
groups or a supersymmetric extension of the standard model. If the onset of inflation is subsequent to grand
unified theory (GUT) breaking, as could happen also if inflation is naturally explained by the same GUT,
the existence of such pseudo-defects can leave signatures in the CMB. Specifically, this could have an
impact on the scale invariance of the CMB fluctuations and Large Scale Structure data at the largest scale.
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I. INTRODUCTION

There are several indications for physics beyond the
standard model (SM) which demands the need to connect
with the high energy scales unlikely to be accessible to
accelerators. One of them is the minuscule masses of
neutrinos [1,2] which through see-saw mechanism [3–6]
suggest the existence of a high mass scale. Further the
precarious hierarchy of the Higgs mass with respect to the
Planck scale is conceptually unnatural and can be easily
ameliorated by new physics beyond the SM. Finally,
unification of couplings remains ever a desirable feature
and can be accomplished by grand unification in super-
symmetic or non supersymmetric SOð10Þ, or larger gauge
groups. The scale of such models is beyond the reach of
accelerators but the early cosmology and its imprints on the
CMB data and Large Scale Structure data can be important
checks on this model. Other than the CMB, consistent big
bang nucleosynthesis and successful inflation remain
important requirements on any model with new physics
at high energies. Indeed for the class of models that unifies,
the high scale physics natural to them is constrained

by inflation, by the need to generate baryon asymmetry,
and by exotic relics such as cosmic strings and domain
walls (DW) that survive the homogenizing effects of the
high temperature.
An early study [7] considered the consequence of

unstable domain wall formation in Spinð10Þ, which can
decay due to the formation of cosmic strings as punctures
or boundaries. Several other works have considered these
issues, notably [8–12] for the context of topological defects
and others [13–19] which have utilized the group theoretic
constraints arising from such considerations for unification
proposals. The present investigation is concerned with
studying the interplay of symmetry breaking patterns with
cosmology in the context of supersymmetric Spinð10Þ.
There are two broad directions that have been pursued
along these ones. One, that is motivated by superstring
unification, as in [20–23], and the other class of models
relies on the minimal representations of the Higgs and has
been explored in [24–29]. It has been advanced as a
renormalizable minimal supersymmetric SOð10Þ grand
unified theory (MSGUT). In the present work we shall
restrict to the latter class of models due to their rich
topological structure. The model utilizes Higgs super-
multiplets 10, 210, 126 (126) required to break the
symmetry and provide fermion masses. Among these the
210 and 126 (126) are responsible for breaking of SOð10Þ
symmetry down to MSSM, and 10 and 126 give masses to
the fermions. The 16-dim Spinor representation contains
one generation of SM fermions and a right handed neutrino.
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The GUT model considered has many phenomenological
as well as cosmological virtues. It can provide inflaton
candidates [30,31], mechanism for baryogenesis through
leptogenesis and the lightest supersymmetric particle (LSP)
of the model can serve as weakly interacting cold dark
matter candidate.
A hallmark of this class of models is the occurrence of

D-parity, a discrete symmetry that can exchange the chiral
matter fields with their charge conjugates and also appro-
priately the corresponding Higgs bosons which gives them
masses. While this is a discrete symmetry of the partial
unification model, viz., the left-right symmetric model,
when lifted to SOð10Þ it gets embedded in a one parameter
Uð1ÞD subgroup of the covering group Spinð10Þ. Since the
parent group is simply connected there are no stable
domain walls. However we argue here that the topology
of the vacuum manifold can be nontrivial, and can give rise
to defects that are best dubbed topological pseudodefects
(TPD). In this paper we want to study the implications to
cosmology of TPD’s arising in a SUSY SOð10Þ GUT
model. In [26–29] the implicit assumption is that there is a
one step breaking from SUSY SOð10Þ to MSSM. However
the physics of big bang implies the existence of many
causally disconnected regions in space and the nontrivial
vacuum structure would give rise to domain walls [7].
Generically, the presence of domain walls (DW) in a

model has important interplay with inflation. One of the
successes of inflationary proposal is the removal unpleasant
relics of GUTs such as monopoles. The same applies to
cosmic strings, whose density can be easily diluted by
cosmological inflation. The same is however not true of
DW, as these may form a mutually locked structure which
may not be blown apart by inflation easily. This is a relevant
possibility if inflation has a preceding hot period allowing
DW forming phase transition. The walls if stable would
conflict with standard cosmology due to the inhomogene-
ities they would introduce in the CMB. On the other hand,
for a network of walls which is unstable, the question shifts
to the time scale of the decay and disappearance of the
walls. The unified model in this case can be constrained by
requiring that the inhomogeneities generated by their early
presence should not affect the successful outcomes of
inflation, specifically the nearly scale invariant CMB
spectrum and the observed Gaussian nature of the density
perturbations.
The plan of the paper is as follows. In Sec. II we review

the topological role ofD-parity as first considered in [7]. In
Sec. III, we treat a warm up example of the energy barrier of
DW in the minimal supersymmetric left-right where D
parity occurs as a discrete symmetry, avoiding the subtleties
of the large group SOð10Þ. In Sec. IV, we give a brief
introduction to the GUT model of [28] and calculate the
energy barrier associated with the D-parity breaking. The
height of such a barrier estimates the energy per unit area of
the TPD walls that may form. In Sec. V we discuss the

implications to cosmological inflation which in turn may
imply constraints on the scales the possible symmetry
breaking schemes. The conclusions are in Sec. VI.

II. METASTABLE DOMAIN WALLS

Here we briefly review the topological issues relevant to
the domain walls, paraphrased from [7]. Spinð10Þ can be
broken to its subgroup H0 ¼ Spinð6Þ ⊗ Spinð4Þ, where
the first factor contains the color SUð3Þc and the second
factor contains the SM SUð2ÞL and a potential SUð2ÞR.
This breaking can be achieved by using the 54 dimensional
scalar χ which takes on a vacuum expectation value (VEV)

hχi ¼ χ0diagð2; 2; 2; 2; 2; 2;−3;−3;−3;−3Þ: ð1Þ

However, the stability group of this VEV contains a
discrete set of additional elements. Consider the one-
parameter curve in Spinð10Þ of the form UJ67ðθÞ ¼
expðiθJ67Þ. The 6–7 submatrix of the VEVof χ transforms
under this as

UJ67ðθÞ
�
2 0

0 −3

�
U−1

J67
ðθÞ

¼
�− 1

2
þ 5

2
cos 2θ − 5

2
sin 2θ

− 5
2
sin 2θ − 1

2
− 5

2
cos 2θ

�
: ð2Þ

Thus hχi is left invariant by UJ67ðθ ¼ nπÞ with n ∈ Z. It
can be seen that all such choices derived from mixed a and
α indices, with a ∈ 1; 2;…6 and α ∈ 7; 8; 9; 10, have the
same property, and are indeed equivalent to each other
under a suitable transformation by an element from H0.
Thus the full stability group of hχi is H0 ⊕ H0

0 consisting
of two disconnected continuous subsets, where H0

0 are all
the elements of the form hðiJ67Þ with h ∈ H0. It may be
noted that iJ67 also enters the D-parity defined as
D≡ ðiJ67ÞðiJ23Þ, the effective charge conjugation operator
due to the charges of the fermions assigned to 16.
In the model of [7] the sequence of breaking is

Spinð10Þ→MX

54
Spinð6Þ⊗Spinð4Þ→MR

126
SUð3Þ⊗SUð2Þ⊗Uð1Þ

→
MW

10
SUð2Þ⊗Uð1Þ: ð3Þ

Stable cosmic strings arise at the first phase transition, due
to Π0ðH0 ⊕ H0

0Þ ¼ Z2. At the next stage of breaking when
the 126 acquires a VEV, domain walls appear due to the
breaking of this Z2. But the Z2 comes embedded in a
continuous loop Uð1ÞD the one-parameter subgroup gen-
erated by the D-parity generator. Such loops continuously
connect a VEV to its D-parity conjugate. Specifically such
walls separate vacua with h126i ¼ ð1̄0; 1; 3Þ (written in its
components with Pati-Salam quantum numbers) from its
charge conjugate VEV (10,3,1). Thus the walls are not
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stable, and decay due to tension of the string boundaries
which are liable to shrink. The walls can also disintegrate
due to creation of holes formed in them due to quantum
tunneling assisted by thermal fluctuations. If the second
phase transition is first order, there is a phase of wall
domination and the possibility of wall decay only through
large black hole formation. This is certainly ruled out by the
CMB inputs into primordial fluctuations. On the other
hand, a second order phase transition at second stage of
breaking creates a short period of wall persistence though
the walls do not come to dominate over radiation.
These considerations are a warm up for the study of

topology of the vaccum manifold arising in [26–29] which
study the breaking of SUSY SOð10Þ to MSSM. We argue
that D-parity TPD walls are a necessary consequence in
such a breaking and expect that an epoch similar to the
second order phase transition at second stage as reviewed in
this section may unfold. A short period of substantial wall
presence can have definite consequences to CMB data. We
shall discuss this in Secs. IV and V.

III. D-PARITY SYMMETRIC VACUA IN
LEFT-RIGHT SYMMETRIC MODEL

Before proceeding to the SUSY SOð10Þ case, to illus-
trate the procedure we start with a warm up exercise for a
related system, the minimal supersymmetric left-right sym-
metric model (MSLRM) considered in [32], based on
the group GLR ¼ SUð3ÞC × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L.
While unlikely to have implications for inflation, the model
is interesting in its own right as an intermediate scale group.
The walls were studied from the point of view of cosmol-
ogy and leptogenesis earlier in [33,34].
The Higgs superfields proposed for breaking the GLR

symmetry to SM are

Δ ¼ ð1; 3; 1; 2Þ; Δ̄ ¼ ð1; 3; 1;−2Þ;
Δc ¼ ð1; 1; 3;−2Þ; Δ̄c ¼ ð1; 1; 3; 2Þ;
Ω ¼ ð1; 3; 1; 0Þ; Ωc ¼ ð1; 1; 3; 0Þ: ð4Þ

These fields transform under D-parity as

Δ → Δ�
c; Δ̄ → Δ̄�

c; Ω → Ω�
c: ð5Þ

The renormalizable superpotential corresponding to these
Higgs superfields is given as,

WLR ¼ mΔðTrΔΔ̄þ TrΔcΔ̄cÞ þmΩðTrΩ2 þ TrΩ2
cÞ

þ aðTrΔΩΔ̄þ TrΔcΩcΔ̄cÞ: ð6Þ

The vacua are sought assuming the supersymmetry to be
unbroken and remaining so till the electroweak scale
[∼OðTeVÞ]. These can be obtained by imposing F-flatness
and D-flatness conditions given in [32]. The set of vacuum

expectation values (VEV’s) for the Higgs fields required to
obtain the MSSM is,

hΩci¼
�
wc 0

0 −wc

�
; hΔci¼

�
0 0

dc 0

�
; hΔ̄ci¼

�
0 d̄c
0 0

�
;

hΩi¼0; hΔi¼0; hΔ̄i¼0: ð7Þ

The required minimum is obtained at w ¼ −mΔ
a and d ¼

ð2mΔmΩ
a2 Þ12 [32]. Here, w and d set two mass scales in the

problem. At first step, Ωc acquires VEV at scale MR and
SUð2ÞR is broken to Uð1ÞR, and then the VEV’s of the Δc,
Δ̄c break Uð1ÞR × Uð1ÞB−L to Uð1ÞY at a lower scale
MB−L. Thus, at this scale we get the minimal supersym-
metric standard model (MSSM). However the D and
F-flatness conditions [32] also give another set of pos-
sibility of vacuum which is degenerate to the one given by
Eq. (7) which preserves the SUð2ÞR ×Uð1ÞL ×Uð1ÞB−L
symmetry. The alternative set of VEV’s is given by

hΩi ¼
�
w 0

0 −w

�
; hΔi ¼

�
0 0

d 0

�
; hΔ̄i ¼

�
0 d̄

0 0

�
;

hΩci ¼ 0; hΔci ¼ 0; hΔ̄ci ¼ 0: ð8Þ

Due to the left-right symmetry, numerically d ¼ d̄, dc ¼ d̄c
andw ¼ wc. It is the breaking of this symmetry that leads to
the formations of domain walls. Now we have two
degenerate vacua separated by a domain wall. Since in
this case the D-parity is a discrete symmetry, the walls are
topologically stable. Here we consider an ansatz for a
trajectory in the group space which connects the two vacua.
We parametrize the VEV’s as follows with a parameter θ,

hΩci ¼ cos
θ

2

�
wc 0

0 −wc

�
; hΔci ¼ cos

θ

2

�
0 0

dc 0

�
;

hΔ̄ci ¼ cos
θ

2

�
0 d̄c
0 0

�
; hΩi ¼ sin

θ

2

�
w 0

0 −w

�
;

hΔi ¼ sin
θ

2

�
0 0

d 0

�
; hΔ̄i ¼ sin

θ

2

�
0 d̄

0 0

�
: ð9Þ

When θ ¼ 0, we have left like vacuum and for θ ¼ π, right
like. On substituting these parametrized VEV’s in the
superpotential we obtain,

WL ¼ mΔcos2
θ

2
d2c þ 2mΩcos2

θ

2
w2
c þ acos3

θ

2
d2cwc

WR ¼ mΔsin2
θ

2
d2 þ 2mΩsin2

θ

2
w2 þ asin3

θ

2
d2w: ð10Þ

We can then compute θ derivative of the scalar potential as

∂V
∂θ ¼ 2Re

X
i

δW
δϕi

∂
∂θ

�
δW
δϕi

�
: ð11Þ
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This gives, using the numerical equality of the VEV’s noted below Eq. (8),

δV total

δθ
¼ − sin θ

�
cos2

θ

2

��
mΔdc þ a cos

θ

2
dcwc

��
mΔdc þ

3a
2
cos

θ

2
dcwc

�

þ
�
2mΩwc þ a cos

θ

2
d2c

��
2mΩwc þ

3a
2
cos

θ

2
d2c

��

− sin2
θ

2

��
mΔdc þ a sin

θ

2
dcwc

��
mΔdc þ

3a
2
sin

θ

2
dcwc

�

þ
�
2mΩwc þ a sin

θ

2
d2c

��
2mΩwc þ

3a
2
sin

θ

2
d2c

���
: ð12Þ

It is easy to see that the two expressions with the braces
mutually cancel at the symmetric point θ ¼ π

2
. The value of

the energy at this point is given by,

VDW ¼ ð2 −
ffiffiffi
2

p
Þ2mΔmΩ

a2
ðm2

Δ þm2
ΩÞ: ð13Þ

The two set of vacua considered above, Eqs. (7) and (8)
are degenerate and related by D-parity, which is a discrete
symmetry of the group GLR. The domain walls are there-
fore topologically stable. The solitonic domain walls thus
arising were obtained as solutions of this theory in [35].
The motivation here is different. The considerations of this
section illustrate how one rotates from one vacuum to
another, not necessarily along energetically optimal path,
but in order to estimate the height of the barrier. The same
strategy will be utilized even for the more general case
when the parent group is simply connected. The main point
is that degeneracies that might occur in single field
minimization are lifted due to the presence of several
mutually coupled fields providing a general quartic poly-
nomial. The two minima of Eqs. (7) and (8) are two of the
solutions of the extremization condition. Such extrema are
necessarily isolated points, being the zeros of a generic
polynomial. Further, supersymmetry ensures that the super-
symmetry preserving minima are absolute minima. Thus the
third extremum, the intermediate point, is a local maximum
determined along the parametrized curve. While this is not
guaranteed to be the lowest energy peak separating the two
minima, it provides an upper bound on the height of the
saddle point lying on the barrier.

IV. DOMAIN WALLS IN MINIMAL
SUPERSYMMETRIC SO(10) GUT

We now turn to the main problem of the minimal SUSY
GUT model (MSGUT) [24–26,28]. The wall ansatz for
MSGUT turns out to be complicated due to the presence of
several Higgs fields in different representations. At first we
proceed to establish the presence of a variety of walls that
may appear in this MSGUT model, which may also involve
intermediate phases of smaller gauge groups, if we allow
some variation in the parameters. In each case we focus on

D-parity walls which are unstable yet have non-trivial
consequences.
The MSGUT can be broken down to MSSM directly or

through intermediate symmetries depending upon the
choice of Higgs multiplet getting VEV [27]. During these
symmetry breakings, the D-parity is also broken and leads
to the formation of TPD domain walls. The Higgs content
of this model is 210 (Φijlk, four index totally antisym-
metric), 126ð126Þ (Σijklm (Σijklm), five index totally anti-
symmetric self-dual (antiself-dual) representation) and the
vector representation 10 (Hi). Here i; j; k; l; m ¼ 1; 2.::10
run over the vector representation of SOð10Þ. The 126ð126Þ
and 210 break the SO(10) gauge symmetry to MSSM; the
10 breaks the electroweak symmetry, while the 10 and 126
give masses to the fermions.
The renormalizable superpotential for the above men-

tioned Higgs superfields is given by,

W ¼ mΦ

4!
Φ2 þ λ

4!
Φ3 þmΣ

5!
ΣΣ̄þ η

4!
ΦΣΣ̄þmHH2

þ 1

4!
ΦHðγΣþ γ̄ Σ̄Þ: ð14Þ

To recognize the SM singlets, the decomposition of Higgs
supermultiplets required for SO(10) symmetry breaking to
MSSM in terms of Pati-Salam gauge group (SUð4ÞC ×
SUð2ÞL × SUð2ÞR) is given as [27],

210 ¼ ð15; 1; 1Þ þ ð1; 1; 1Þ þ ð15; 1; 3Þ þ ð15; 3; 1Þ
þ ð6; 2; 2Þ þ ð10; 2; 2Þ þ ð1̄0; 2; 2Þ

126 ¼ ð1̄0; 1; 3Þ þ ð10; 3; 1Þ þ ð6; 1; 1Þ þ ð15; 2; 2Þ
126 ¼ ð1̄0; 3; 1Þ þ ð10; 1; 3Þ þ ð6; 1; 1Þ þ ð15; 2; 2Þ

So, we call the SM singlet fields as Pð1; 1; 0Þ, A (irreduc-
ible singlet of (15,1,1)) and Ω0

R (ð1130Þ of (15,1,3)) from
210. Similarly we identify Σ−

R (ð1̄13−Þ of ð1̄0; 1; 3Þ) from
126 and Σþ

R (ð1̄13þÞ of (10,1,3)) from 126. The details of
how these fields are defined in terms of components having
SO(10) indices breaking them in SOð6Þ ⊗ SOð4Þ indices is
elaborated in the Appendix. The VEVofH is not relevant to
our considerations. The D-parity is defined as
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D ¼ expðiπJ23Þ expðiπJ67Þ ð15Þ
Under the action of D-parity these fields transform as

P → −P; A → A; W0
R → W0

L

Σ−
R → −Σþ

L ; Σ̄þ
R → −Σ̄−

L ð16Þ
as further explained in the Appendix. Specific components
of these fields are assigned the following VEV’s.

hΦ78910i ¼ p

hΦ1234i ¼ hΦ1256i ¼ hΦ3456i ¼ a

hΦ1278i ¼ hΦ3478i ¼ hΦ5678i
¼ hΦ12910i ¼ hΦ34910i ¼ hΦ56910i ¼ w

hΣaþ1;bþ3;cþ5;dþ7;eþ9i ¼
1

25=2
ðiÞaþbþc−d−eσ

hΣ̄aþ1;bþ3;cþ5;dþ7;eþ9i ¼
1

25=2
ð−iÞaþbþc−d−eσ ð17Þ

so that, hΩ0
Li ¼ hΣ̄−

Li ¼ hΣþ
L i ¼ 0. Here a, b, c, d, e take

values 0 or 1.
The superpotential in terms of these VEVs is given by

W ¼ mΦðp2 þ a2 þ w2Þ þ 2λða3 þ 3pw2 þ 6aw2Þ
þmΣσσ þ ησσðpþ 3aþ 6wÞ: ð18Þ

The SUSY preserving minima using the F-term and
D-terms vanishing conditions are given by [26],

a ¼ mΦ

λ

x2 þ 2x − 1

1 − x
; p ¼ mΦ

λ

xð5x2 − 1Þ
ð1 − xÞ2 ;

σσ ¼ 2m2
Φ

ηλ

xð1 − 3xÞð1þ x2Þ
ηð1 − xÞ2 ; w ¼ −

mΦ

λ
x: ð19Þ

where x is the solution of following cubic equation

8x3 − 15x2 þ 14x − 3 ¼ −
λmΣ

ηmΦ
ð1 − xÞ2: ð20Þ

However we have a list of possible intermediate sym-
metries depending on the value of x [27].
(1) For x ¼ 1=2 and if λmΣ=ηmΦ ¼ −5, it gives SU(5)

minimum.
(2) For x ¼ 0 and if λmΣ=ηmΦ ¼ 3, this results in

SUð3ÞC × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L minimum.
(3) For x ¼ �i and if λmΣ=ηmΦ ¼ −3 (1� 2i), it gives

SUð3ÞC × SUð2ÞL ×Uð1ÞR × Uð1ÞB−L symmetry.
(4) For x ¼ 1=3 and if λmΣ=ηmΦ ¼ −2=3, it results in

the flipped SUð5Þ ×Uð1Þ minimum.
(5) For x ¼ 1=4 and if λmΣ=ηmΦ ¼ 5=9, it results in

MSSM minimum.
Now, consider an arbitrary D-rotation

UðθÞD ¼ expfiθðJ23 þ J67Þg: ð21Þ

Individual components of the fields transform differently
under this generalized UD-rotation, as follows, (with sθ, cθ
standing for sin θ and cos θ respectively)

Φ̂78910 ¼ cθΦ78910 þ sθΦ68910

Φ̂1234 ¼ Φ1234

Φ̂1256 ¼ c2θΦ1256 − cθsθðΦ1356 þΦ1257Þ þ s2θΦ1357

Φ̂3456 ¼ c2θΦ3456 þ cθsθðΦ2456 −Φ3457Þ − s2θΦ2457

Φ̂1278 ¼ c2θΦ1278 þ cθsθðΦ1378 −Φ1268Þ − s2θΦ1368

Φ̂3478 ¼ c2θΦ3478 þ cθsθðΦ2478 þΦ3468Þ þ s2θΦ2468

Φ̂5678 ¼ W5678

Φ̂12910 ¼ cθΦ12910 − sθΦ13910

Φ̂34910 ¼ cθΦ34910 þ sθΦ24910

Φ̂56910 ¼ cθΦ56910 − sθΦ57910

Σ̂13579 ¼ c2θΣ13579 þ cθsθðΣ12579 þ Σ13569Þ þ s2θΣ12569

ð22Þ

Similarly one can write out for the other field components
of Σ−

R and Σþ
R given in (A1).

Now we calculate the θ dependent potential from the
corresponding superpotential as,

V ¼
X74
i¼1

				 ∂W∂ϕi

				
2

: ð23Þ

Here i runs over number of field components given in
Eq. (A1). The form of potential for different values of x
assuming jηj ¼ jλj is

VDW
x¼0 ¼

jmΦj4
jλj2 ð8ðcos 2θ þ sin 2θ − 1Þ2

þ ð−2 cos 2θ þ sin 4θ þ 2Þ2Þ

VDW
x¼1=3 ¼

16jmΦj4ð26sin4θ þ 12sin2θÞ
81jλj2

VDW
x¼�i ¼

jmΦj4
jλj2 ð272sin4θ þ 160sin2θ

þ 48sin2θð4 sin 2θ þ 11 cos 2θ þ 25ÞÞ

VDW
x¼1=2 ¼

jmΦj4sin2θ
8jλj2 ð−159 cos 2θ

− 5ð14 cos 4θ þ cos 6θ − 218ÞÞ

VDW
x¼1=4 ¼

jmΦj4sin2θ
93312jλj2 ð−490680 sin 2θ þ 111780 sin 4θ

− 324597 cos 2θ þ 41142 cos 4θ þ 17613 cos 6θ

þ 1127498Þ ð24Þ
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The variation of the potential (in units of jmΦj4
jλj2 ) as a function

of the Uð1ÞD-rotation angle θ is shown in Fig. 1. One can
see from Fig. 1 that at θ ¼ 0 and π, the potential energy is
zero and the VEVs satisfy the relations in Eq. (19) which
are x dependent. For intermediate values of θ the potential
is not symmetric under θ → π − θ and its overall magnitude
is also strongly x dependent.
Our main motivation in performing this detailed calcu-

lation is to establish that TPD domain walls indeed form
even if the group contains no discrete symmetry. In the last
para of Sec. III, it was pointed out that our strategy at least
yields an upper bound on the energy barrier separating
vacua which are two distinct points. Unlike in that example,
the group is simply connected here. However, it may be
observed that there is an inadvertent (not accidental)
discrete symmetry of the D and F flatness conditions.
The flatness conditions cannot single out a unique vacuum
but signal two for a given set of parameters, related by the
D-parity. We now need to argue that this vacuum pair

related by the flip symmetry are necessarily separated by an
energy barrier. It is sufficient to focus on the 210 whose
three independent sets of MSSM singlet components are
assigned different VEV’s p, a and w. The parameters in the
superpotential are tuned according to Eqs. (19), (20) and
the five possibilities listed below them. Then the value x ¼
1=4 is one zero of a cubic polynomial, which is necessarily
isolated. Further, any values of the component fields P, A
and Ω accessed by small variations of p, a and w are
necessarily of higher energy. Thus the preferred vacua with
unbroken MSSM are also isolated points at best connected
by discrete transformations. This ends the existence proof
of isolated vacua. While it is convenient to build low energy
phenomenology based on the preferred vacuum, the con-
ditions in the early universe allow domains of both types to
form. Eventually the unstable TPD walls must disintegrate
or have unfavorable consequences as discussed in II, based
on [7]. In the next section we turn to cosmological
consequences for MSGUT.

V. TOPOLOGICAL PSEUDODEFECT
WALLS AND INFLATION

It is interesting to inquire what kind of signatures the
walls can leave. A high scale theory will necessarily have
to contend with inflation scale physics. Broadly, we may
consider three possibilities, (A)MGUT <Minf, (B)MGUT >
Minf, (C) MGUT ≃Minf, where MGUT is the SOð10Þ
symmetry breaking scale and Minf is the scale of inflation.
Case A is generic to chaotic inflation[36] where inflation

originates close to the Planck scale. In this case after
reheating, the temperature could be less than or more than
MGUT . In the former case the thermal state should be
directly in the required MSSM phase. In the latter case
however, after the symmetry breaking phase transition,
TPD walls would emerge. Due to their unstable nature they
eventually disintegrate. The resulting epoch of wall domi-
nation would end with entropy dumping with return to
pure radiation dominated universe. It has been pointed out
[37–39] that there are models of inflation in which the
duration of the reheating phase and the effective equation of
state during that phase can be correlated with other inflation
observables and is being pursued in [40]. For such cases
the presence of TPD walls during reheating could have
important consequences.
In Case B, the TPD walls would be copiously present

when inflation commences. This would produce signatures
similar in nature to but more pronounced than in the case C
to be discussed below. The epoch over which the power law
inflation caused by the walls would compete with the scale
invariant inflation would be determined by the ratio
MGUT=Minf. In late time observables, this would reflect
in deviations from scale invariance at the largest scales.
Since there are no strong indications to this effect we do not
analyse this further, however the framework would be
similar to that we pursue for the case C.
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FIG. 1. The two subfigures (a) and (b) show scalar potential in
arbitrary units as a function of θ which generates a one parameter
subgroup. The curves correspond to different patters of symmetry
breaking labeled by x, as listed below Eq. (20). The one step
breaking to MSSM corresponds to x ¼ 1=4.
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Case C could be accidental, but more interestingly, also
occurs if inflationary physics emerges from the same grand
unified theory. In this case the formation of TPD walls
could occur before the inflaton potential energy dominates,
giving rise to the signatures in the primordial fluctuations as
encoded in the CMB data [41,42]. Recently this question
has been addressed in [43] and it is shown that the presence
of frustrated domain walls can alleviate the quadrupole
anomaly of the CMB fit occurring in the Lambda-CDM
model.
Consider the presence of domain walls which are

conformally stretched, [7] and the wall complex as a whole
obeys the coarse grained equation of state [44], and
corresponding dependence on the Friedmann scale factor,

p ¼ −
2

3
ρ; ρDWðtÞ ¼

ρ1a1
aðtÞ : ð25Þ

where ρ1 ≡M4
GUT , and in the latter equation the numerator

sets the initial conditions on its value. The inflaton
has a comparable energy density, V0 ≡M4

inf so that H2
0 ¼

ð8π=3ÞGV0 would be the Hubble parameter if only the
inflaton were present. The combined Friedmann equation,

�
_a
a

�
2

¼ 8π

3
G

�
V0 þ

ρ1a1
aðtÞ

�
; ð26Þ

has the solution

aðtÞ ¼ ρ1a1
2V0

½cosh fH0ðt − t1Þ þ u1g − 1�; ð27Þ

with

coshu1 ¼ 1þ 2V0

ρ1
: ð28Þ

In the regime where ρ1 > V0, and for H0ðt − t1Þ < 1 one
gets the behaviour

að1ÞðtÞ ≈ 4π

3
Gρ1a1

�
1þ 2V0

ρ1

�
ðt − t1Þ2; ð29Þ

characteristic of the p ¼ −2ρ=3 equation of state. At late
times of course the vacuum energy dominates. But a brief
period of wall domination would still have the behavior
similar to inflation, in which physical scales like those of
the scalar field perturbations would be growing faster than
the Hubble horizon. The amplitude of the perturbations
would be imprinted on the earliest of the scales to leave the
horizon. The ϵ parameter of inflation calculated in the
present case gives,

ϵ ¼ −
_H
H2

¼ 1

2
sech2

�
1

2
fH0ðt − t1Þ þ u1g

�
: ð30Þ

At t ¼ t1 this gives ϵ ¼ 1=2 as expected for a pure power
law expansion with domain walls. But it soon turns over to

ϵ ≈
1

2
e−H0ðt−t1Þ; ð31Þ

approaching the value 0 of the vacuum energy dominated
phase. Thus the early modes to leave the horizon would be
far from scale invariant, whereas within a few e-foldings of
the time scale H−1

0 the slow roll condition is satisfied [40].
The departure from approximate scale invariance could
therefore be detected. Further, the presence of domain walls
would introduce non-Gaussianities. Since these would
affect inflation only in its earliest stages of slow roll, they
may not have entered our horizon yet. But in principle these
could be detected. While cosmic strings have been studied
for their effect on CMB data extensively [45–48], the
presence of such primordial domain walls is also warranted,
as a countercheck on models of unification as well as
inflation.

VI. CONCLUSIONS

We have studied the example of a unification group
wherein domain walls can form although the group is
simply connected, with no discrete symmetries that break
spontaneously. But inadvertent symmetries of the minimi-
zation conditions imply the possibility of a discrete set of
vacua. Such vacua turn out to be related by discrete
symmetries in the parent group. The case in point is the
well known D-parity of Spinð10Þ and its descendants. We
have explicitly computed value of the energy along one-
parameter paths connecting two possible subgroups to
which the symmetry breaking of Spinð10Þ could have
occurred. We thus show that the vacua are indeed separated
by an energy barrier. Then the causal structure of the early
Universe creates the interesting possibility of topological
pseudodefects, dubbed TPD walls, separating regions of
such vacua. Even though manifestly unstable, the walls
may live long enough to leave imprints on the observables.
Such signatures in the CMB signals create the exciting
possibility of accessing grand unification in current
observations.
We have shown that in the context of inflation with a

preceding epoch of radiation domination, (cases B and C),
the formation of domain walls would leave scale dependent
imprints on the very long wavelengths which leave the
horizon at the onset of inflation. At current state of
knowledge we do not know if these are indeed the scales
being seen in the lowest multipoles. Likewise it is impor-
tant to study non-Gaussianities resulting from such objects
in the phase at the onset of inflation.

APPENDIX: D-PARITY PROPERTIES OF PATI-
SALAM IRREDUCIBLE REPRESENTATION

OF SOð10Þ ACQUIRING VACUUM
EXPECTATION VALUES

The MSSM singlets components from 210 are (15,1,1),
(1,1,1), (15,1,3), each of which is assigned a different VEV.
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Further, we have ð1̄0; 1; 3Þ from 126 and (10,3,1) from 126,
all of which acquire VEVs to break SOð10Þ down to
SM. These can be written in terms of SOð10Þ vector
indices. We follow the procedure given in [27] but our
conventions are different. We choose a; b ¼ 1; 2;…6 for
SOð6Þ and α, β ¼ 7, 8, 9, 10 for SOð4Þ. Now the PS group

SUð4ÞC × SUð2ÞL × SUð2ÞR is isomorphic to SOð6Þ×
SOð4Þ ⊂ SOð10Þ. In [27], the full table of Higgs repre-
sentations in terms of SOð10Þ indices is given. Below are
the fields given in terms of SOð10Þ indices in our
conventions which are important to us in terms of breaking
of SOð10Þ gauge group.

P ¼ ½7; 8; 9; 10�
A ¼ ½1; 2; 3; 4� þ ½1; 2; 5; 6� þ ½3; 4; 5; 6�

Ω0
R ¼ ½1; 2; 7; 8� þ ½3; 4; 7; 8� þ ½5; 6; 7; 8� þ ½1; 2; 9; 10� þ ½3; 4; 9; 10� þ ½5; 6; 9; 10�

Σ−
R ¼ −ið½1; 3; 5; 7; 9� − ½2; 4; 5; 7; 9� − ½2; 3; 6; 7; 9� − ½1; 4; 6; 7; 9� − i½2; 3; 5; 7; 9� − i½1; 4; 5; 7; 9� − i½1; 3; 6; 7; 9�

þ i½2; 4; 6; 7; 9�Þ − ð7; 9 → 8; 10Þ þ if7; 9 → 7; 10g þ if7; 9 → 8; 9g
Σþ
R ¼ ið½1; 3; 5; 7; 9� − ½2; 4; 5; 7; 9� − ½2; 3; 6; 7; 9� − ½1; 4; 6; 7; 9� þ i½2; 3; 5; 7; 9� þ i½1; 4; 5; 7; 9� þ i½1; 3; 6; 7; 9�

− i½2; 4; 6; 7; 9�Þ − ð7; 9 → 8; 10Þ − if7; 9 → 7; 10g − if7; 9 → 8; 9g ðA1Þ

The sign þð−Þ in the superscript represents the T3R value. The D-parity is defined as

D ¼ expðiπJ23Þ expðiπJ67Þ ðA2Þ

Using the definition of MSSM singlet fields in Eq. (A1), we find that under the action of D-parity these fields transform as

P → −P; A → A; W0
R → W0

L

Σ−
R → −Σþ

L ; Σ̄þ
R → −Σ̄−

L ðA3Þ

where,

Ω0
L ¼ ½7; 8; 1; 2� þ ½7; 8; 3; 4� þ ½7; 8; 5; 6� − ½9; 10; 1; 2� − ½9; 10; 3; 4� − ½9; 10; 5; 6�

Σ̄−
L ¼ −ið½7; 9; 1; 3; 5� − ½7; 9; 2; 4; 5� − ½7; 9; 2; 3; 6� − ½7; 9; 1; 4; 6� − i½7; 9; 2; 3; 5� − i½7; 9; 1; 4; 5� − i½7; 9; 1; 3; 6�

þ i½7; 9; 2; 4; 6�Þ þ ð7; 9 → 8; 10Þ − if7; 9 → 7; 10g þ if7; 9 → 8; 9g
Σþ
L ¼ ið½7; 9; 1; 3; 5� − ½7; 9; 2; 4; 5� − ½7; 9; 2; 3; 6� − ½7; 9; 1; 4; 6� þ i½7; 9; 2; 3; 5� þ i½7; 9; 1; 4; 5� þ i½7; 9; 1; 3; 6�

− i½7; 9; 2; 4; 6�Þ þ ð7; 9 → 8; 10Þ þ if7; 9 → 7; 10g − if7; 9 → 8; 9g ðA4Þ

The sign þð−Þ in the superscript represents the T3L value. These are used to choose the VEV’s used in Eq. (17)
Next, the choice of the directions of the VEV’s for the D-rotated field components used in calculating the potential in

Eq. (23) is made as follows,

hΦ78910i ¼ hΦ68910i ¼ p

hΦ1234i ¼ hΦ1256i ¼ hΦ3456i ¼ hΦ1356i ¼ hΦ1257i ¼ hΦ1357i ¼ hΦ2456i ¼ hΦ3457i ¼ hΦ2457i ¼ a

hΦ1278i ¼ hΦ3478i ¼ hΦ5678i ¼ hΦ12910i ¼ hΦ34910i ¼ hΦ56910i ¼ hΦ1378i ¼ hΦ2478i ¼ hΦ13910i ¼ hΦ24910i ¼ hΦ57910i
¼ hΦ1268i ¼ hΦ1368i ¼ hΦ3468i ¼ hΦ2468i ¼ w

hΣ13579i ¼ hΣ12579i ¼ hΣ13569i ¼ hΣ13569i ¼ hΣ12569i ¼ σ ðA5Þ

Similarly we can write for all the field components which will appear after D-rotation of Σ−
R and Σþ

R (taking care of the i for
each component of Σ−

R and Σþ
R appearing in Eq. (17).
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