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Making use of the T-duality symmetry of superstring theory and of the double geometry from double
field theory, we argue that cosmological singularities of a homogeneous and isotropic universe disappear.
In fact, an apparent big bang singularity in Einstein gravity corresponds to a universe expanding to infinite
size in the dual dimensions.

DOI: 10.1103/PhysRevD.98.063521

I. INTRODUCTION

The singularities which arise at the beginning of time in
both standard and inflationary cosmology indicate that the
theories which are being used in cosmology break down as
the singularity is approached. If space-time is described by
Einstein gravity and matter obeys energy conditions which
are natural from the point of view of point particle theories,
then singularities in homogeneous and isotropic cosmology
are unavoidable [1]. These theorems in fact extend to
inflationary cosmology [2–4].
But we know that Einstein gravity coupled to point

particle matter cannot be the correct description of nature.
The quantum structure of matter is not consistent with a
classical description of space-time. The early Universe
needs to be described by a theory which can unify space-
time and matter at a quantum level. Superstring theory (see
e.g., [5,6] for a detailed overview) is a promising candidate
for a quantum theory of all four forces of nature. At least at
the string perturbative level, the building blocks of string
theory are fundamental strings. Strings have degrees of
freedom and new symmetries which point particle theories
do not have, and these features may lead to a radically
different picture of the very early Universe, as discussed
many years ago in [7] (see also [8]).
As discussed in [7], string thermodynamic considera-

tions indicate that the cosmological evolution in the context
of string theory should be nonsingular. A key realization is

that the temperature of a gas of closed strings in thermal
equilibrium cannot exceed a limiting value, the Hagedorn
temperature [9]. In fact, as reviewed in the following
section, the temperature of a gas of closed strings in a
box of radius R decreases as R becomes much smaller than
the string length. If the entropy of the string gas is large,
then the range of values of R for which the temperature is
close to the Hagedorn temperature TH is large. This is
called the “Hagedorn phase” of string cosmology. The exit
from the Hagedorn phase is smooth and is a consequence of
the decay of string winding modes into string loops.1 The
transition leads directly to the radiation phase of standard
big bang cosmology (see [11] for reviews of the string gas
cosmology scenario).
If strings in the Hagedorn phase are in thermal equilib-

rium, then the thermal fluctuations of the energy-
momentum tensor can be computed using the methods of
[12]. In particular, it can be shown that in a compact space
with stable winding modes the specific heat capacity has
holographic scaling as a function of the radius of the volume
being considered. As a consequence [13,14], thermal
fluctuations of strings in the Hagedorn phase lead to a
scale-invariant spectrum of cosmological perturbations at
late times, with a slight red tilt like what is predicted [15] in
inflationary cosmology. If the string scale is comparable to
the scale of particle physics grand unification, the predicted
amplitude of the fluctuations matches the observations well
(see [16] for recent observational results). Hence, string gas
cosmology provides an alternative to cosmological inflation
as a theory for the origin of structure in the Universe. The
predicted spectrum of gravitational waves [17] is also scale
invariant, but a slight blue tilt is predicted, in contrast to the
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1This mechanism suggests that exactly three spatial dimen-
sions can become large [7], the others being confined to the string
length by the interaction of the string winding and momentum
modes [10].
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prediction in standard inflationary cosmology. This is a
prediction by means of which the scenario can be distin-
guished from standard inflation (meaning inflation in
Einstein gravity driven by a matter field obeying the usual
energy conditions). A simple modeling of the transition
between theHagedorn phase and the radiation phase leads to
a running of the spectrumwhich is parametrically larger than
what is obtained in simple inflationary models [18].
In this paper, we will study the cosmological background

dynamics which follow from string theory if the target
space has stable winding modes. An example where this is
the case is a spatial torus. We will argue that from the point
of view of string theory the dynamics is nonsingular.

II. DUAL SPACE FROM T-DUALITY

For simplicity let us assume that space is toroidal with
d ¼ 9 spatial dimensions, all of radius R. Closed strings
then have momentum modes whose energies are quantized
in units of 1=R,

En ¼
n
R
; ð1Þ

where n is an integer. They also have winding modes whose
energies are quantized in units of R, i.e.,

Em ¼ mR; ð2Þ
wherem is an integer and we are working in units where the
string length is 1. Strings also have a tower of oscillatory
modes whose energies are independent of R. The number
of oscillatory modes increases exponentially with energy.
It follows from (1) and (2) that the spectrum of string

states is invariant under the T-duality transformation

R →
1

R
ð3Þ

if the momentum and winding numbers are interchanged.
The transformation (3) is also a symmetry of the string
interactions and is assumed to be a symmetry of string
theory beyond perturbation theory (see, e.g., [6]).2

As is well known, the position eigenstates jxi are dual to
momentum eigenstates jpi. In a compact space, the
momenta are discrete, labeled by integers n, and hence

jxi ¼
X
n

einxjni; ð4Þ

where jni is the momentum eigenstate with momentum
quantum number n. As already discussed in [7], in our
string theory setting, windings are T-dual to momenta, and
we can define a T-dual position operator

jx̃i ¼
X
m

eimx̃jmi; ð5Þ

where jmi are the eigenstates of winding, labeled by an
integer m.
As again argued in [7], experimentalists will measure

physical length in terms of the position operators which are
the lightest. Thus, for R > 1 (in string units), it is the
regular position operators jxi which determine physical
length, whereas for R < 1 it is the dual variables jx̃i.
Hence, the physical length lpðRÞ is given by

lðRÞ ¼ R for R ≫ 1;

lðRÞ ¼ 1

R
for R ≪ 1: ð6Þ

As was argued in [7], in string gas cosmology the
temperature singularity of the big bang is automatically
resolved. If we imagine the radius RðtÞ decreasing from
some initially very large value (large compared to the string
length), and matter is taken to be a gas of superstrings, then
the temperature T will initially increase, since for large
values of R most of the energy of the system is in the light
modes, which are the momentum modes, and the energy of
these modes increases as R decreases. Before T reaches the
maximal temperature TH, the increase in T levels off since
the energy can now go into producing oscillatory modes.
For R < 1 (in string units) the energy will flow into the
winding modes which are now the light modes. Hence,

TðRÞ ¼ T

�
1

R

�
: ð7Þ

A sketch of the temperature evolution as a function of R is
shown in Fig. 1. As a function of lnR, the curve is
symmetric as a reflection of the symmetry (7). The region
of R when the temperature is close to TH and the curve in

FIG. 1. T versus logR for type II superstrings. Different curves
are obtained for different entropy values, which are fixed. The
larger the entropy is, the larger the plateau, given by the Hagedorn
temperature. For R ¼ 1 we have the self-dual point.

2See also [19] for an extended discussion of T-duality when
branes are added.
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Fig. 1 is approximately horizontal is called the Hagedorn
phase. Its extent is determined by the total entropy of the
system [7].

III. COSMOLOGICAL DYNAMICS AND
DUAL SPACE-TIME

In the following we will couple a gas of strings to a
background appropriate to string theory. Since the massless
modes of string theory include, in addition to the graviton,
the dilaton and an antisymmetric tensor field, a cosmo-
logical background will contain the metric, the dilaton, and
the antisymmetric tensor field. For a homogeneous and
isotropic cosmology, the metric can be written as

ds2 ¼ −dt2 þ aðtÞ2dx2; ð8Þ

where t is physical time, aðtÞ is the cosmological scale
factor, and x are comoving spatial coordinates. We have
assumed vanishing spatial curvature for simplicity. We
denote the dilaton by ϕðtÞ.
The T-duality symmetry of string theory leads to an

important symmetry of the massless background fields, the
scale factor duality [20]. In the absence of an antisymmetric
tensor field, these take the form

aðtÞ → 1

a
ϕ̄ðtÞ → ϕ̄ðtÞ; ð9Þ

where the T-duality invariant combination of the scale
factor and the dilaton is

ϕ̄≡ ϕ − d ln a; ð10Þ

where d ¼ D − 1 is the number of spatial dimensions and
D the number of space-time dimensions.
The background equations of motion are those of dilaton

gravity (we will neglect the antisymmetric tensor field). In
the absence of matter, these equations were studied in detail
in the context of pre-big-bang cosmology [20]. In the
presence of string matter, they have been analyzed in [21].
The equations in the presence of a gas of matter described
by energy density ρ and pressure p are

ð _ϕ − dHÞ2 − dH2 ¼ eϕρ ð11Þ

_H −Hð _ϕ − dHÞ ¼ 1

2
eϕp ð12Þ

2ðϕ̈ − d _HÞ − ð _ϕ − dHÞ2 − dH2 ¼ 0; ð13Þ

where H ≡ _a=a. These are the equations in the string
frame. In particular, we can combine these equations to
write a continuity equation,

_ρþ ðD − 1ÞHðρþ pÞ ¼ 0: ð14Þ

We consider matter to be a gas of strings. For R ≫ 1
most of the energy is in the momentum modes, which act as
radiation and hence have an equation of state parameter
w≡ p=ρ given by w ¼ 1=d. For R ≪ 1, however, most of
the energy density is in the winding modes, whose equation
of state parameter is w ¼ −1=d. Finally, for R ¼ 1 the
equation of state is w ¼ 0. An interpolating form of the
matter equation of state is

wðaÞ ¼ 2

πd
arctan

�
β ln

�
a
a0

��
; ð15Þ

where a0 is the value of the scale factor when R ¼ 1, and β
is a constant which depends on the total entropy of the gas.
The larger the entropy is, the wider the Hagedorn phase as a
function of a, and hence the smaller the value of β. For this
equation of state, the continuity equation for string gas
matter can be integrated and yields

ln
ρ

ρ0
¼ −d ln

a
a0

−
2

π

�
ln

�
a
a0

�
arctan

�
β ln

�
a
a0

���

−
2

π

�
1

2β
ln

�
1þ β2

�
ln

a
a0

�
2
��

; ð16Þ

where ρ0 is the energy density at the string length. This
result reproduces what is expected for large and small radii,

ρða largeÞ → ρ0ða=a0Þ−ðdþ1Þ ð17Þ

ρða smallÞ → ρ0ða=a0Þ−ðd−1Þ; ð18Þ

for pure momentum or pure winding modes, respectively.
At this point we have a system of background and matter

in which both components have the same symmetries. We
now turn to an exploration of solutions. Following closely
[20], we make the ansatz

aðtÞ ∼
�
t
t0

�
α

ϕ̄ðtÞ ∼ −β ln
�
t
t0

�
; ð19Þ

where α and β are constants, and t0 is a reference time.
Inserting into the dilaton gravity equations gives the
following constraints on the constants:

ðD − 1Þwαþ β ¼ 2

β2 þ ðD − 1Þα2 ¼ 2β: ð20Þ
Deep in the Hagedorn phase when w ¼ 0, we get

ðα; βÞ ¼ ð0; 2Þ: ð21Þ
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This corresponds to a static scale factor in the string frame.
Converting to the Einstein frame in which the scale factor
ãðtÞ is given by

ãðtÞ ¼ aðtÞe−ϕ=ðd−1Þ; ð22Þ
we find

ãðtÞ ∼
�
t
t0

�
2=ðd−1Þ

: ð23Þ

In the large a phase when w ¼ 1=d, we get

ðα; βÞ ¼
�
2

D
;
2

D
ðD − 1Þ

�
: ð24Þ

In this case, the dilaton is constant and hence the string
frame and Einstein frame scale factors are the same. As
expected, the scale factor evolves as in a standard radiation
dominated universe. There is a second solution of (20), but
that solution is consistent only for p ¼ 0.
When w ¼ −1=d, we have

ðα; βÞ ¼
�
−
2

D
;
2

D
ðD − 1Þ

�
: ð25Þ

The string frame scale factor is expanding as we go back-
wards in time. Translating to the Einstein frame, we get

ãðtÞ ∼
�
t
t0

�
2=ðd−1Þ

: ð26Þ

In the Einstein frame, the scale factor vanishes at t ¼ 0,
while in the string frame it blows up in this limit.
Let us track the dynamics backwards in time, beginning

with a large torus (R ≫ 1). The energy will hence be in the
momentum modes and the equation of state is that of
radiation. As we go back in time, the scale factor decreases
(it is the same in the two frames), the energy density
increases, and eventually the temperature approaches the
Hagedorn value at which point oscillatory and winding
modes of the string gas get excited, leading to a transition to
an equation of state with p ¼ 0. We enter a Hagedorn phase
during which the string frame scale factor is constant, while
the Einstein frame scale factor is decreasing. This means
that the radius of the torus R is decreasing, and it soon
becomes energetically preferable for the energy of the
string gas to drift to the winding modes, leading to an
equation of state w ¼ −1=d. In the winding phase, the
Einstein frame scale factor is still decreasing, which is a
self-consistency check on the assumption that the energy of
the string gas is mostly in the winding modes.3

We see that in the string frame, there is no curvature
singularity. As the coordinate time t runs from t ¼ 0 to
t ¼ ∞, the scale factor is initially contracting, bounces in
the Hagedorn phase, and expands afterwards in the radi-
ation phase, as shown schematically in Fig. 2.
Following [22], we argue that in the phase dominated by

winding modes we should measure time in terms of the
dual time variable

td ≡ −
t2c
t
; ð27Þ

where tc corresponds to the coordinate time at the center of
the Hagedorn phase. In terms of td, the solution looks like a
contracting universe.
From the point of view of the Einstein frame, the scale

factor vanishes at t ¼ 0. But from the point of view of a
detector made up of winding modes, the measured scale
factor is proportional to aðtÞ−1. Hence, the time interval
0 < t < tc corresponds to a contracting universe in terms of
the dual position basis.
Heuristically, there are two simple reasons for introduc-

ing a dual time coordinate. Let us consider for simplicity a

FIG. 2. The schematic solution for the scale factor in the string
and Einstein frames for D ¼ 4. Note that the transition between
the winding and momenta equation of state has been smoothed
out, as is expected if (15) is considered.

3If we do not allow momentum and winding modes to decay,
then, as studied in [21], we obtain solutions where the string
frame scale factor oscillates about a0.
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fixed dilaton, so that we have a radiation solution. It is clear
that there is an asymmetry between a large and small scale
factor, since the proper time for the scale factor to go to
infinity diverges, while it is finite when the scale factor
decreases to zero from some finite value. However, from
the point of view of T-duality we should not be able to
distinguish between a large and a small universe. This is the
first hint towards a more general definition of the physical
clock, tp.
Another qualitative argument follows from special

relativity considerations brought together with T-duality.
For a large radius, rods are made out of momentum modes,
and time measurements for a given physical length, Δx, are
given by

jΔtj ¼ jΔxj; ð28Þ

where the speed of light has been set to unit. If the universe
is composed of closed strings, in principle we could have
considered measuring physical length in terms of winding
modes as well, and the natural rods built out of these modes
are related to the physical length by

Δx̃ →
α02

Δx
; ð29Þ

where α0 is the string tension. Thus, we can rewrite (28) as

jΔx̃j →
���� α

02

Δt

����: ð30Þ

Now, if we cannot distinguish large from small, we could
have started the argument using winding modes instead, so
that we would write the following relation4:

jΔx̃j ¼ jΔt̃j: ð31Þ

Thus, it is also natural to propose a winding clock that is
dual to the momentum clock by combining the above
formulas,

jΔt̃j →
���� α

02

Δt

����: ð32Þ

Evidently, physically speaking there is only a single
clock. When only winding or momentum modes are light,
the existence of a unique time coordinate is already clear.
Around the self-dual point, when both modes are ener-
getically favorable, that should also be the case. Therefore,
we need a prescription to reduce both time coordinates to a
single physical time. We call this prescription the “physical
clock constraint” and it is given by the identification (27).

These ideas likely have a very natural interpretation in
terms of double field theory [23] (see also [24] for some
early work). Double field theory is a generalization of
supergravity which lives in 2d spatial dimensions, with the
first d dimensions corresponding to the usual x variables,
and the second d dimensions to the dual spatial variables x̃.
In double field theory there is a generalized metric which,
for homogeneous and isotropic cosmology and in the
absence of an antisymmetric tensor field, is given by

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj þ a−2ðtÞδijdx̃idx̃j: ð33Þ

The determinant of the generalized metric is 1. As space
shrinks in the x directions, it opens up in the x̃ directions.
This is sketched in Fig. 3. In a work in progress [25], we are
exploring this connection in more detail, in particular using
the OðD;DÞ formalism to formalize the introduction of a
dual time and discussing how the physical clock constraint
can be seen analogously to the imposition of the section
condition in DFT for the dual coordinates [26].5

IV. DISCUSSION

Wehave studied the equations ofmotion of a cosmological
background containing the scale factoraðtÞ and the dilaton in
the presence of string gas matter sources. Both the back-
ground action and the matter action are consistent with the
T-duality symmetry of string theory. While we do not expect
our description to be adequate in the high density phasewhen
truly stringy effects must be considered, our analysis is an
improvement over the usual effective field theory of string
cosmology where the underlying background geometry is
not covariant with the T-duality symmetry.
We find that the solutions are nonsingular, at least when

interpreted in the context of double space-time. We con-
jecture that an improved description could be obtained
using the tools of double field theory.6

FIG. 3. The scale factor goes to zero only at tp → −∞.
Similarly its inverse goes to zero when tp → ∞.

4By T-duality one can argue that the dual speed of light is also
equal to unit.

5See [27] for a study of cosmological vacuum solutions of
double field theory including a dilaton potential.

6For a recent paper exploring the required formalism, see [28].
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