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Many cosmological models have only a finite number of parameters of interest, but a very expensive
data-generating process and an intractable likelihood function. We address the problem of performing
likelihood-free Bayesian inference from such black-box simulation-based models, under the constraint of a
very limited simulation budget (typically a few thousand). To do so, we adopt an approach based on the
likelihood of an alternative parametric model. Conventional approaches to approximate Bayesian
computation such as likelihood-free rejection sampling are impractical for the considered problem, due
to the lack of knowledge about how the parameters affect the discrepancy between observed and simulated
data. As a response, we make use of a strategy previously developed in the machine learning literature
(Bayesian optimization for likelihood-free inference, BOLFI), which combines Gaussian process regression
of the discrepancy to build a surrogate surface with Bayesian optimization to actively acquire training data.
We extend the method by deriving an acquisition function tailored for the purpose of minimizing the
expected uncertainty in the approximate posterior density, in the parametric approach. The resulting
algorithm is applied to the problems of summarizing Gaussian signals and inferring cosmological
parameters from the joint lightcurve analysis supernovae data. We show that the number of required
simulations is reduced by several orders of magnitude, and that the proposed acquisition function produces
more accurate posterior approximations, as compared to common strategies.
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I. INTRODUCTION

We consider the problem of Bayesian inference from
cosmological data, in the common scenario where we can
generate synthetic data through forward simulations, but
where the exact likelihood function is intractable. The
generative process can be extremely general: it may be a
noisy nonlinear dynamical system involving an unrestricted
number of latent variables. Likelihood-free inference
methods, also known as approximate Bayesian computa-
tion (ABC) (see [1,2] for reviews), replace likelihood
calculations with data model evaluations. In recent years,
they have emerged as a viable alternative to likelihood-
based techniques, when the simulator is sufficiently cheap.
Applications in cosmology include measuring cosmo-
logical parameters from type Ia supernovae [3] and weak
lensing peak counts [4], analyzing the galaxy halo con-
nection [5], inferring the photometric and size evolution of
galaxies [6], measuring cosmological redshift distributions
[7], estimating the ionizing background from the Lyman-α
and Lyman-β forests [8].
In its simplest form, ABC takes the form of likelihood-

free rejection sampling and involves forward simulating

data from parameters drawn from the prior, then accepting
parameters when the discrepancy (by some measure)
between simulated data and observed data is smaller than
a user-specified threshold ε. Such an approach tends to be
extremely expensive since many simulated data sets get
rejected, due to the lack of knowledge about the relation
between the model parameters and the corresponding
discrepancy. Variants of likelihood-free rejection sampling
such as population (or sequential) Monte Carlo ABC
[(PMC-ABC) or (SMC-ABC)] (see [9–11] for implemen-
tations aimed at astrophysical applications) improve upon
this scheme by making the proposal adaptive; however,
they do not use a probabilistic model for the relation
between parameters and discrepancies (also known as a
surrogate surface), so that their practical use usually
necessitates Oð104 − 106Þ evaluations of the simulator.
In this paper, we address the challenging problem where

the number of simulations is extremely limited, e.g., to a
few thousand, rendering the use of sampling-based ABC
methods impossible. To this end, we use Bayesian opti-
mization for likelihood-free inference (BOLFI) [12], an
algorithm which combines probabilistic modeling of the
discrepancy with optimization to facilitate likelihood-
free inference. Since it was introduced, BOLFI has been
applied to various statistical problems in science, including
inference of the Ricker model [12], the Lotka-Volterra
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predator-prey model and population genetic models [13],
pathogen spread models [2], atomistic structure models in
materials [14], and cognitive models in human-computer
interaction [15]. This work aims at introducing BOLFI in
cosmological data analysis and at presenting its first
cosmological application. We focus on computable para-
metric approximations to the true likelihood (also known
as synthetic likelihoods), rendering the approach com-
pletely ε-free. Recently, Järvenpää et al. [16] introduced
an acquisition function for Bayesian optimization (the
expected integrated variance), specifically tailored to per-
form efficient and accurate ABC. We extend their work by
deriving the expression of the expected integrated variance
in the parametric approach. This acquisition function
measures the expected uncertainty in the estimate of the
BOLFI posterior density, which is due to the limited number
of simulations, over the future evaluation of the simulation
model. The next simulation location is proposed so that this
expected uncertainty is minimized. As a result, high-
fidelity posterior inferences can be obtained with orders
of magnitude fewer simulations than with likelihood-free
rejection sampling. As examples, we demonstrate the use of
BOLFI on the problems of summarizing Gaussian signals
and inferring cosmological parameters from the joint
lightcurve analysis (JLA) supernovae data set [17].
The structure of this paper is as follows. In Sec. II,

we provide a review of the formalism for the inference
of simulator-based statistical models. In Sec. III, we
describe BOLFI and discuss the regression and optimization
strategies. In particular, we provide the optimal acquisition
rule for ABC in the parametric approach to likeli-
hood approximation. Applications are given in Sec. IV.
The developed method is discussed in Sec. V in the context
of cosmological data analysis. Section VI concludes the
paper. Mathematical details and descriptions of the case
studies are presented in the Appendices.

II. INFERENCE OF SIMULATOR-BASED
STATISTICAL MODELS

A. Simulator-based statistical models

Simulator-based statistical models (also known as gen-
erative models) can be written in a hierarchical form
(Fig. 1), where θ are the parameters of interest, and d
the simulated data. PðθÞ is the prior probability distribution
of θ and PðdjθÞ is the sampling distribution of d given θ.
The simplest case (Fig. 1, left) is when the simulator is a

deterministic function of its input and does not use any
random variable, i.e.,

PðdjθÞ ¼ δDðd − d̂ðθÞÞ; ð1Þ

where δD is a Dirac delta distribution and d̂ a deterministic
function of θ.

In a more generic scenario (Fig. 1, right), the simulator is
stochastic, in the sense that the data are drawn from an
overall (but often unknown analytically) probability dis-
tribution function (pdf) PðdjθÞ. Equation (1) does not hold
in this case. The scatter between different realizations of d
given the same θ can have various origins. In the simplest
case, it only reflects the intrinsic uncertainty, which is of
interest. More generically, additional nuisance parameters
can be at play to produce the data d and will contribute to
the uncertainty. This “latent space” can often be hundred-
to-multi-million dimensional. Simulator-based cosmologi-
cal models are typically of this kind: although the physical
and observational processes simulated are repeatable fea-
tures about which inferences can be made, the particular
realization of Fourier phases of the data is entirely noise
driven. Ideally, phase-dependent quantities should not
contribute to any measure of match or mismatch between
model and data.

B. The exact Bayesian problem

The inference problem is to evaluate the probability of θ
given d,

PðθjdÞ ¼ PðdjθÞPðθÞ
PðdÞ ; ð2Þ

for the observed data dO, i.e.,

PðθjdÞjd¼dO ¼ LðθÞPðθÞ
Zd

; ð3Þ

where the exact likelihood for the problem is defined as

LðθÞ≡ PðdjθÞjd¼dO : ð4Þ

It is generally of unknown analytical form. The normali-
zation constant is Zd ≡ PðdÞjd¼dO , where PðdÞ is the
marginal distribution of d.

FIG. 1. Hierarchical representation of the exact Bayesian
problem for simulator-based statistical models of different
complexities: a deterministic simulator (left), and a stochastic
simulator (right).
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C. Approximate Bayesian computation

Inference of simulator-based statistical models is usually
based on a finite set of simulated data dθ, generated with
parameter value θ, and on a measurement of the discrep-
ancy between simulated data and observed data dO. This
discrepancy is used to define an approximation to the exact
likelihood LðθÞ. The approximation happens on multiple
levels.
On a physical and statistical level, the approximation

consists of compressing the full data dO to a set of summary
statistics ΦO before performing inference. Similarly, simu-
lated data dθ are compressed to simulated summary
statistics Φθ. This can be seen as adding a layer to the
Bayesian hierarchical model (Fig. 2). The purpose of this
operation is to filter out the information in d that is not
deemed relevant to the inference of θ, so as to reduce the
dimensionality of the problem. Ideally, Φ should be
sufficient for parameters θ, i.e., formally PðθjΦÞ ¼
PðθjΦ;dÞ or equivalently PðdjΦ; θÞ ¼ PðdjΦÞ, which
happens when the compression is lossless. However,
sufficient summary statistics are generally unknown or
even impossible to design; therefore the compression from
d to Φ will usually be lossy. The approximate inference

problem to be solved is now PðθjΦÞ ¼ PðΦjθÞ PðθÞ
PðΦÞ for the

observed summary statistics ΦO, i.e.,

PðθjΦÞjΦ¼ΦO
¼ LðθÞPðθÞ

ZΦ
: ð5Þ

In other words, LðθÞ is replaced by

LðθÞ≡ PðΦjθÞjΦ¼ΦO
; ð6Þ

and Zd by ZΦ ≡ PðΦÞjΦ¼ΦO
. Inference of model 2 gives

Pðθ;djΦÞ ∝ PðΦjdÞPðdjθÞPðθÞ; ð7Þ

with, after marginalization over d,

PðθjΦÞ ¼
Z

Pðθ;djΦÞdd: ð8Þ

Therefore, the approximate likelihood LðθÞ must satisfy

LðθÞ ∝
Z

PðΦjdÞjΦ¼ΦO
PðdjθÞdd: ð9Þ

In many cases, the compression from d to Φ is determin-
istic, i.e.,

PðΦjdÞ ¼ δDðΦ − Φ̂ðdÞÞ; ð10Þ

which simplifies the integral over d in Eqs. (8) and (9).
On a practical level, LðθÞ is still of unknown analytical

form [which is a property of PðΦjθÞ inherited from PðdjθÞ
in model 2]. Therefore, it has to be approximated using
the simulator. We denote by L̂NðθÞ an estimate of LðθÞ
computed using N realizations of the simulator. The
limiting approximation, in the case where infinite computer
resources were available, is denoted by L̃ðθÞ, such that

L̂NðθÞ →
N→∞

L̃ðθÞ: ð11Þ

Note that L̃ðθÞ can be different from LðθÞ, depending on
the assumptions made to construct L̂NðθÞ. These are
discussed in Sec. II D.

D. Computable approximations of the likelihood

1. Deterministic simulators

The simplest possible case is when the simulator does not
use any random variable, i.e.,Φθ is an entirely deterministic
function of θ (see Fig. 1, left). Equivalently, all the condi-
tional probabilities appearing in Eq. (7) reduce toDirac delta
distributions given by Eqs. (1) and (10). In this case, one can
directly use the approximate likelihood given by Eq. (6),
complemented by an assumption on the functional shape
of PðΦjθÞ.

2. Parametric approximations
and the synthetic likelihood

When the simulator is not deterministic, the pdf PðΦjθÞ
is unknown analytically. Nonetheless, in some situations,
it may be reasonably assumed to follow specific para-
metric forms.
For example, if Φθ is obtained through averaging a

sufficient number of independent and identically distrib-
uted variables contained in d, the central limit theorem
suggests that a Gaussian distribution is appropriate, i.e.,
L̃ðθÞ ¼ exp ½l̃ðθÞ� with

FIG. 2. Hierarchical representation of the approximate Baye-
sian inference problem for simulator-based statistical models,
with a compression of the raw data to a set of summary statistics.

BAYESIAN OPTIMIZATION FOR LIKELIHOOD-FREE … PHYS. REV. D 98, 063511 (2018)

063511-3



−2l̃ðθÞ≡ log j2πΣθj þ ðΦO − μθÞ⊤Σ−1
θ ðΦO − μθÞ; ð12Þ

where the mean and covariance matrix,

μθ ≡ E½Φθ� and Σθ ≡ E½ðΦθ − μθÞðΦθ − μθÞ⊤�; ð13Þ
can depend on θ. This is an approximation of LðθÞ, unless
the summary statistics Φθ are indeed Gaussian distributed.
μθ and Σθ are generally unknown, but can be estimated

using the simulator: given a set of N simulations fΦðiÞ
θ g,

drawn independently from PðΦjθÞ, one can define

μ̂θ≡EN ½Φθ� and Σ̂θ≡EN ½ðΦθ− μ̂θÞðΦθ− μ̂θÞ⊤�; ð14Þ

where EN stands for the empirical average over the set of
simulations. A computable approximation of the likelihood
is therefore L̂NðθÞ ¼ exp½l̂NðθÞ�, where
−2l̂NðθÞ≡ log j2π Σ̂θjþ ðΦO− μ̂θÞ⊤Σ̂−1

θ ðΦO− μ̂θÞ: ð15Þ
Due to the approximation of the expectation E with an
empirical average EN , both μ̂θ and Σ̂θ become random
objects. The approximation of the likelihood L̂NðθÞ is
therefore a random function with some intrinsic uncertainty
itself, and its computation is a stochastic process. This is
further discussed using a simple example in Sec. IVA.
The approximation given in Eq. (15), known as the

synthetic likelihood [18,19], has already been applied
successfully to perform approximate inference in several
scientific fields. However, as pointed out by Sellentin and
Heavens [20], for inference from Gaussian-distributed
summaries Φθ with an estimated covariance matrix Σ̂θ, a
different parametric form, namely a multivariate t-
distribution, should rather be used. The investigation of
a synthetic t-likelihood is left to future investigations.
In Sec. IVA and Appendix B, we extend previous work

on the Gaussian synthetic likelihood and introduce a
Gamma synthetic likelihood for case where the Φθ are
(or can be assumed to be) Gamma distributed.

3. Nonparametric approximations
and likelihood-free rejection sampling

An alternative to assuming a parametric form for LðθÞ is
to replace it by a kernel density estimate of the distribution
of a discrepancy between simulated and observed summary
statistics, i.e.,

L̃ðθÞ≡ E½κðΔθÞ�; ð16Þ

where Δθ is a non-negative function ofΦO andΦθ (usually
of ΦO −Φθ) which can also possibly depend on θ and any
variable used internally by the simulator, and the kernel κ is
a non-negative, univariate function independent of θ
(usually with a maximum at zero). A computable approxi-
mation of the likelihood is then given by

L̂NðθÞ≡ EN ½κðΔθÞ�: ð17Þ

For likelihood-free inference, κ is often chosen as the
uniform kernel on the interval ½0; εÞ, i.e., κðuÞ ∝ χ½0;εÞðuÞ,
where ε is called the threshold and the indicator function
χ½0;εÞ equals one if u ∈ ½0; εÞ and zero otherwise. This yields

L̃ðθÞ ∝ PðΔθ ≤ εÞ and L̂NðθÞ ∝ PNðΔθ ≤ εÞ; ð18Þ

where PNðΔθ ≤ εÞ is the empirical probability that the
discrepancy is below the threshold. L̂NðθÞ can be straight-
forwardly evaluated by running simulations, computing Δθ
and using Δθ ≤ ε as a criterion for acceptance or rejection
of proposed samples. Such an approach is often simply
(or mistakenly) referred to as approximate Bayesian com-
putation (ABC) in the astrophysics literature, although the
more appropriate and explicit denomination is likelihood-
free rejection sampling (see e.g., [1]).
It is interesting to note that the parametric approxi-

mate likelihood approach of Sec. II D 2 can be embedded
into the nonparametric approach. Indeed,Δθ can be defined
as

ΔCθ
θ ≡ log j2πCθj þ ðΦO −ΦθÞ⊤C−1

θ ðΦO −ΦθÞ ð19Þ

for some positive semidefinite matrix Cθ. The second term
is the square of the Mahalanobis distance, which includes
the Euclidean distance as a special case, when Cθ is
the identity matrix. Using an exponential kernel

κðuÞ ¼ expð−u=2Þ and Cθ ¼ Σ̂θ gives L̃ðθÞ ¼ E½κðΔΣ̂θ
θ Þ�

and L̂NðθÞ ¼ EN ½κðΔΣ̂θ
θ Þ� with

−2 log ½κðΔΣ̂θ
θ Þ� ¼ log j2πΣ̂θjþðΦO −ΦθÞ⊤Σ̂−1

θ ðΦO −ΦθÞ;
ð20Þ

the form of which is similar to Eq. (15). In fact, Gutmann
and Corander [12] (proposition 1) show that the synthetic
likelihood satisfies

−2l̃ðθÞ ¼ JðθÞ þ constant; and ð21Þ

−2l̂NðθÞ ¼ ĴNðθÞ þ constant; ð22Þ

where

JðθÞ≡ E½ΔCθ
θ � ð23Þ

and

ĴNðθÞ≡ EN ½ΔCθ
θ � ð24Þ

are respectively the expectation and the empirical average
of the discrepancy ΔCθ

θ , for Cθ ¼ Σ̂θ.
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III. REGRESSION AND OPTIMIZATION
FOR LIKELIHOOD-FREE INFERENCE

A. Computational difficulties
with likelihood-free rejection sampling

We have seen in Sec. II D that computable approxima-
tions L̂NðθÞ of the likelihood LðθÞ are stochastic processes,
due to the use of simulations to approximate intractable
expectations. In the most popular ABC approach, i.e.,
likelihood-free rejection sampling (see Sec. II D 3), the
expectations are approximated by empirical probabilities
that the discrepancy is below the threshold ε. While this
approach allows inference of simulator-based statistical
models with minimal assumptions, it suffers from several
limitations that can make its use impossible in practice.
(1) It rejectsmost of the proposed sampleswhen ε is small,

leading to a computationally inefficient algorithm.
(2) It does not make assumptions about the shape or

smoothness of the target function LðθÞ, hence
accepted samples cannot “share” information in
parameter space.

(3) It uses a fixed proposal distribution [typically the
prior PðθÞ] and does not make use of already
accepted samples to update the proposal of new
points.

(4) It aims at equal accuracy for all regions in parameter
space, regardless of the values of the likelihood.

To overcome these issues, the proposed approach follows
closely Gutmann and Corander [12], who combine regres-
sion of the discrepancy (addressing issues 1 and 2) with
Bayesian optimization (addressing issues 3 and 4) in order to
improve the computational efficiency of inference of sim-
ulator-based models. In this work, we focus on parametric
approximations of the likelihood; we refer to Gutmann and
Corander [12] for a treatment of the nonparametric approach.

B. Regression of the discrepancy

The standard approach to obtain a computable approxi-
mate likelihood relies on empirical averages [Eqs. (14) and
(24)]. However, such sample averages are not the only way
to approximate intractable expectations. Equations (21) and
(23) show that, up to constants and the sign, l̃ðθÞ can be
interpreted as a regression function with the model param-
eters θ (the “predictors”) as the independent input variables
and the discrepancy Δθ as the response variable. Therefore,
in the present approach, we consider an approximation of
the intractable expectation defining JðθÞ in Eq. (23) based
on a regression analysis of Δθ, instead of sample averages.
Explicitly, we consider

ĴðtÞðθÞ≡ EðtÞ½ΔCθ
θ �; ð25Þ

where the superscript (t) stands for “training” and the
expectation EðtÞ is taken under the probabilistic model
defined in the following.

Inferring JðθÞ via regression requires a training data set

fðθðiÞ;ΔðiÞ
θ Þg where the discrepancies are computed from

the simulated summary statistics ΦðiÞ
θ . Building this train-

ing set requires to run simulations, but does not involve an
accept/reject criterion as does likelihood-free rejection
sampling (thus addressing issue 1, see Sec. III A).
A regression-based approach also allows incorporating a
smoothness assumption about JðθÞ. In this way, samples of
the training set can share the information of the computed
Δθ in the neighborhood of θ (thus addressing issue 2). This
suggests that fewer simulated data are needed to reach a
certain level of accuracy when learning the target func-
tion JðθÞ.
In this work, we rely on Gaussian process (GP) regres-

sion in order to construct a prediction for JðθÞ. There are
several reasons why this choice is advantageous for
likelihood-free inference. First, GPs are a general-purpose
regressor, able to deal with a large variety of functional
shapes for JðθÞ, including potentially complex nonlinear, or
multimodal features. Second, GPs provide not only a
prediction (the mean of the regressed function), but also
the uncertainty of the regression. This is useful for actively
constructing the training data via Bayesian optimization, as
we show in Sec. III E. Finally, GPs allow extrapolating the
prediction into regions of the parameter space where no
training points are available. These three properties are
shown in Fig. 3 for a multimodal test function subject to
observation noise.
We now briefly review Gaussian process regression.

Suppose that we have a set of t training points,

FIG. 3. Illustration of Gaussian process regression in one di-
mension, for the target test function f∶θ ↦ 2 − exp ½−ðθ − 2Þ2�−
exp ½−ðθ − 6Þ2=10� − 1=ðθ2 þ 1Þ (dashed line). Training data are
acquired (red dots); they are subject to a Gaussian observation noise
with standard deviation σn ¼ 0.03. The blue line shows the mean
prediction μðθÞ of the Gaussian process regression, and the shaded
region the corresponding 2σðθÞ uncertainty. Gaussian processes
allow interpolating and extrapolating predictions in regions of
parameter space where training data are absent.
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ðΘ; fÞ≡ fðθðiÞ; fðiÞ ¼ fðθðiÞÞg, of the function f that we
want to regress. We assume that f is a Gaussian process
with prior mean function mðθÞ and covariance function
κðθ; θ0Þ also known as the kernel (see [21]). The joint
probability distribution of the training set is therefore
PðfjΘÞ ∝ exp ½lðfjΘÞ�, where the exponent lðfjΘÞ is

−
1

2

Xt

i;j¼1

½fðiÞ−mðθðiÞÞ�⊤κðθðiÞ;θðjÞÞ−1½fðjÞ−mðθðjÞÞ�: ð26Þ

The mean function mðθÞ and the kernel κðθ; θ0Þ define the
functional shape and smoothness allowed for the predic-
tion. Standard choices are respectively a constant and a
squared exponential (the radial basis function), subject to
additive Gaussian observation noise with variance σ2n.
Explicitly, mðθÞ≡ C and

κðθ;θ0Þ≡σ2f exp

�
−
1

2

X
p

�
θp−θ0p
λp

�
2
�
þσ2nδKðθ;θ0Þ: ð27Þ

The θp and θ0p are the components of θ and θ0, respectively.
In the last term, δKðθ; θ0Þ is one if and only if θ ¼ θ0 and
zero otherwise. The hyperparameters are C, the λp (the
length scales controlling the amount of correlation between
points, and hence the allowed wiggliness of f), σ2f (the
signal variance, i.e., the marginal variance of f at a point θ
if the observation noise was zero), and σ2n (the observation
noise). For the results of this paper, GP hyperparameters
were learned from the training set using L-BFGS [22], a
popular optimizer for machine learning, and updated every
time the training set was augmented with ten samples.
The predicted value f⋆ at a new point θ⋆ can be obtained

from the fact that ðfΘ; θ⋆g; ff; f⋆gÞ form jointly a random
realization of the Gaussian process f. Thus, the target pdf
Pðf⋆jf;Θ; θ⋆Þ can be obtained from conditioning the joint
pdf Pðf; f⋆jΘ; θ⋆Þ to the values of the training set f. The
result is (see [21], Sec. II.7)

Pðf⋆jf;Θ; θ⋆Þ ∝ exp

�
−
1

2

�
f⋆ − μðθ⋆Þ

σðθ⋆Þ
�

2
�
; ð28Þ

μðθ⋆Þ≡mðθ⋆Þ þK⊺⋆K−1ðf −mÞ; ð29Þ

σ2ðθ⋆Þ≡ K⋆⋆ −K⊺⋆K−1K⋆; ð30Þ

where we use the definitions

K⋆⋆ ≡ κðθ⋆; θ⋆Þ; ð31Þ
m≡ ðmðθðiÞÞÞ⊺ for θðiÞ ∈ Θ; ð32Þ

K⋆ ≡ ðκðθ⋆; θðiÞÞÞ⊺ for θðiÞ ∈ Θ; ð33Þ

ðKÞij ≡ κðθðiÞ; θðjÞÞ for fθðiÞ; θðjÞg ∈ Θ2: ð34Þ

C. Bayesian optimization

The second major ingredient of the proposed approach is
Bayesian optimization, which allows the inference of the
regression function JðθÞ while avoiding unnecessary com-
putations. It allows active construction of the training data

set fðθðiÞ;ΔðiÞ
θ Þg, updating the proposal of new points using

the regressed ĴðtÞðθÞ (thus addressing issue 3 with like-
lihood-free rejection sampling, see Sec. III A). Further,
since we are mostly interested in the regions of the
parameter space where the variance of the approximate
posterior is large (due to its stochasticity), the acquisition
rules can prioritize these regions, so as to obtain a better
approximation of JðθÞ there (thus addressing issue 4).
Bayesian optimization is a decision-making framework

under uncertainty, for the automatic learning of unknown
functions. It aims at gathering training data in such a manner
as to evaluate the regressionmodel the least number of times
while revealing as much information as possible about the
target function and, in particular, the location of the optimum
or optima. The method proceeds by iteratively picking
predictors to be probed (i.e., simulations to be run) in a
manner that trades off exploration (parameters for which the
outcome is most uncertain) and exploitation (parameters
which are expected to have a good outcome for the targeted
application). In many contexts, Bayesian optimization has
been shown to obtain better results with fewer simulations
than grid search or random search, due to its ability to reason
about the interest of simulations before they are run (see [23]
for a review). Figure 4 illustrates Bayesian optimization in
combination with Gaussian process regression, applied to
finding the minimum of the test function of Fig. 3.
In the following, we give a brief overview of the elements

of Bayesian optimization used in this paper. In order to add a
new point to the training data set ðΘ; fÞ≡ fðθðiÞ; fðiÞ ¼
fðθðiÞÞg, Bayesian optimization uses an acquisition function
AðθÞ that estimates how useful the evaluation of the
simulator at θ will be in order to learn the target function.
The acquisition function is constructed from the posterior
predictive distribution of f given the training set ðΘ; fÞ, i.e.,
from the mean prediction μðθÞ and the uncertainty σðθÞ of
the regression analysis [Eqs. (29) and (30)]. The optimum of
the acquisition function in parameter space determines the
next point θ⋆ ≡ argoptθAðθÞ to be evaluated by the simu-
lator (argopt ¼ argmax or argmin depending on how the
acquisition function is defined), so that the training set can
be augmentedwith ðθ⋆; fðθ⋆ÞÞ. The acquisition function is a
scalar function whose evaluation should be reasonably
expensive, so that its optimum can be found by simple
search methods such as gradient descent.
The algorithm needs to be initialized with an initial

training set. In numerical experiments, we found that
building this initial set by drawing from the prior (as would
typically be done in likelihood-free rejection sampling) can
result in difficulties with the first iterations of Gaussian
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process regression. Uniformly distributed points within the
boundaries of the GP are also a poor choice, as they will
result in an uneven initial sampling of the parameter space.
To circumvent this issue, we build the initial training set
using a low-discrepancy quasirandom Sobol sequence [24],
which covers the parameter space more evenly.

D. Expressions for the approximate posterior

As discussed in Sec. III B, usingΔCθ
θ as the regressed qua-

ntity directly gives an estimate of JðθÞ in Eq. (23). The
response variable is thus fðθÞ≡ ΔCθ

θ and the regression then
gives

ĴðtÞðθÞ ¼ μðθÞ: ð35Þ
In the parametric approach to likelihood approxi-

mation, this is equivalent to an approximation of −2l̃ðθÞ ¼
−2 log L̃ðθÞ [see Eq. (21)]. The expectation of the (unnor-
malized) approximate posterior is therefore directly given as
[see Eq. (5)]

EðtÞ½PBOLFIðθjΦO; f;ΘÞ�≡ PðθÞ exp
�
−
1

2
μðθÞ

�
; ð36Þ

where PBOLFIðθjΦO; f;ΘÞ ≈ ZΦ × PðθjΦÞjΦ¼ΦO
.

The estimate of the variance of fðθÞ can also be
propagated to the approximate posterior, giving

FIG. 4. Illustration of four consecutive steps of Bayesian optimization to learn the test function of Fig. 3. For each step, the top panel
shows the training data points (red dots) and the regression (blue line and shaded region). The bottom panel shows the acquisition
function (the expected improvement, solid green line) with its maximiser (dashed green line). The next acquisition point, i.e., where to
run a simulation to be added to the training set, is shown in orange; it differs from the maximiser of the acquisition function by a small
random number. The acquisition function used is the expected improvement, aiming at finding the minimum of f. Hyperparameters of
the regression kernel are optimised after each acquisition. As can observed, Bayesian optimization implements a trade-off between
exploration (evaluation of the target function where the variance is large, e.g., after 12 points) and exploitation (evaluation of the target
function close to the predicted minimum, e.g., after 11, 13, and 14 points).
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VðtÞ½PBOLFIðθjΦO; f;ΘÞ�≡ PðθÞ2
4

exp ½−μðθÞ�σ2ðθÞ: ð37Þ

Details of the computations can be found in Appendix A 1.
Expressions for the BOLFI posterior in the nonparametric

approach with the uniform kernel can also be derived (see
[16], lemma 3.1). As this paper focuses on the parametric
approach, we refer to the literature for the former case.

E. Acquisition rules

1. Expected improvement

Standard Bayesian optimization uses acquisition func-
tions that estimate how useful the next evaluation of the
simulator will be in order to find the minimum or minima of
the target function. While several other choices are possible
(see e.g., [23]), in this work we discuss the acquisition
function known as expected improvement (EI). The improve-
ment is defined by Iðθ⋆Þ ¼ max ½minðfÞ − fðθ⋆Þ; 0�, and the
expected improvement is EIðθ⋆Þ≡ EðtÞ½Iðθ⋆Þ�, where the
expectation is taken with respect to the random observation
assuming decision θ⋆. For a Gaussian process regressor, this
evaluates to (see [23], Sec. 2.3)

EIðθ⋆Þ≡ σðθ⋆Þ½zΦðzÞþϕðzÞ�; with z≡minðfÞ−μðθ⋆Þ
σðθ⋆Þ

;

ð38Þ

or EIðθ⋆Þ≡ 0 if σðθ⋆Þ ¼ 0, where ϕ and Φ denote respec-
tively the pdf and the cumulative distribution function (cdf)
of the unit-variance zero-meanGaussian. The decision rule is
to select the location θ⋆ that maximizes EIðθ⋆Þ.
The EI criterion can be interpreted as follows: since the

goal is to find the minimum of f, a reward equal to the
improvement minðfÞ − fðθ⋆Þ is received if fðθ⋆Þ is smaller
than all the values observed so far, otherwise no reward is
received. The first term appearing in Eq. (38) is maximized
when evaluating at points with high uncertainty (explora-
tion); and, at fixed variance, the second term is maximized
by evaluating at points with low mean (exploitation).
The expected improvement therefore automatically cap-
tures the exploration-exploitation trade-off as a result of the
Bayesian decision-theoretic treatment.

2. Expected integrated variance

As pointed out by Jäarvenpää et al. [16], in Bayesian
optimization for approximate Bayesian computation, the
goal should not be to find the minimum of JðθÞ, but rather
to minimize the expected uncertainty in the estimate of the
approximate posterior over the future evaluation of the
simulator at θ⋆. Consequently, they propose an acquisition
function, known as the expected integrated variance
(ExpIntVar or EIV in the following) that selects the next
evaluation location to minimize the expected variance of

the future posterior density PBOLFIðθjΦO; f;Θ; θ⋆Þ over the
parameter space. The framework used is Bayesian decision
theory. Formally, the loss due to our uncertain knowledge
of the approximate posterior density can be defined as

L½PBOLFIðθjΦO; f;ΘÞ� ¼
Z

VðtÞ½PBOLFIðθjΦO; f;ΘÞ�dθ;

ð39Þ

and the acquisition rule is to select the location θ⋆ that
minimizes

EIVðθ⋆Þ≡ EðtÞ½L½PBOLFIðθjΦO; f;Θ; f⋆; θ⋆Þ��

¼
Z

L½PBOLFIðθjΦO; f;Θ; f⋆; θ⋆Þ�

× Pðf⋆jf;Θ; θ⋆Þdf⋆ ð40Þ

with respect to θ⋆, where we have to marginalize over the
unknown simulator output f⋆ using the probabilistic model
Pðf⋆jf;Θ; θ⋆Þ [Eqs. (28)–(30)].
Jäarvenpää et al. [16] (proposition 3.2) derive

the expressions for the expected integrated variance for a
GP model in the nonparametric approach. In Appendix A,
we extend this work and derive the ExpIntVar acquisition
function and its gradient in the parametric approach. The
result is the following: under the GP model, the expected
integrated variance after running the simulation model with
parameter θ⋆ is given by

EIVðθ⋆Þ ¼
Z

PðθÞ2
4

exp ½−μðθÞ�½σ2ðθÞ − τ2ðθ; θ⋆Þ�dθ;

ð41Þ

with

τ2ðθ; θ⋆Þ≡ cov2ðθ; θ⋆Þ
σ2ðθ⋆Þ

; ð42Þ

where covðθ; θ⋆Þ≡ κðθ; θ⋆Þ −K⊺K−1K⋆ is the GP pos-
terior predicted covariance between the evaluation point θ
in the integral and the candidate location for the next
evaluation θ⋆. Note that in addition to the notations given
by Eqs. (31)–(34), we have introduced the vector

K≡ ðκðθ; θðiÞÞÞ⊺ for θðiÞ ∈ Θ: ð43Þ

It is of interest to examine when the integrand in Eq. (41)
is small. As for the EI [Eq. (38)], optimal values are found
when the mean of the discrepancy μðθÞ is small or the
variance σ2ðθÞ is large. This effect is what yields the trade-
off between exploitation and exploration for the ExpIntVar
acquisition rule. However, unlike in standard Bayesian
optimization strategies such as the EI, the trade-off is a
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nonlocal process (due to the integration over the parameter
space), and also depends on the prior, so as to minimize
the uncertainty in the posterior (and not likelihood)
approximation.
Computing the expected integrated variance requires

integration over the parameter space. In this work, the
integration is performed on a regular grid of 50 points per
dimension within the GP boundaries. In high dimension,
the integral can become prohibitively expensive to compute
on a grid. As discussed by Jäarvenpää et al. [16], it can then
be evaluated with Monte Carlo or quasi–Monte Carlo
methods such as importance sampling.
In numerical experiments, we have found that the

ExpIntVar criterion (as any acquisition function for
Bayesian optimization) has some sensitivity to the initial
training set. In particular, the initial set (built from a Sobol
sequence or otherwise) shall sample sufficiently well the
GP domain, which shall encompass the prior. This ensures
that the prior volume is never wider than the training data.
Under this condition, as Jäarvenpää et al. [16], we have
found that ExpIntVar is stable, in the sense that it produces
consistent BOLFI posteriors over different realizations of the
initial training data set and simulator outputs.

3. Stochastic versus deterministic acquisition rules

The above rules do not guarantee that the selected θ⋆ is
different from a previously acquired θðiÞ. Gutmann and
Corander [12] (see in particular Appendix C) found that
this can result in a poor exploration of the parameter space,
and propose to add a stochastic element to the decision rule
in order to avoid getting stuck at one point. In some
experiments, we followed this prescription by adding an
“acquisition noise” of strength σpa to each component of the
optimizer of the acquisition function. More precisely, θ⋆ is
sampled from the Gaussian distribution Gðθopt;DÞ, where
θopt ≡ argoptθAðθÞ and D is the diagonal covariance
matrix of components ðσpa Þ2. The σpa are chosen to be of
order λp=10.
For a more extensive discussion and comparison of

various stochastic and deterministic acquisition rules, the
reader is referred to Järvenpää et al. [16].

IV. APPLICATIONS

In this section, we show the application of BOLFI to
several application studies. In particular, we discuss the
simulator and the computable approximation of the like-
lihood to be used, and compare BOLFI to likelihood-free
rejection sampling in terms of computational efficiency.
In all cases, we show that BOLFI reduces the amount of
required simulations by several orders of magnitude.
In Sec. IVA, we discuss the toy problem of summarizing

Gaussian signals (i.e., inferring the unknown mean and/or
variance of Gaussian-distributed data). In Sec. IV B, we
show the first application of BOLFI to a real cosmological

problem using actual observational data: the inference of
cosmological parameters from supernovae data. For each
test case, we refer to the corresponding section in the
Appendices for the details of the data model and inference
assumptions.

A. Summarizing Gaussian signals

A simple toy model can be constructed from the general
problem of summarizing Gaussian signals with unknown
mean, or with unknown mean and variance. This example
allows for the comparison of BOLFI and likelihood-free
rejection sampling to the true posterior conditional on the
full data, which is known analytically. All the details of this
model are given in Appendix B.

1. Unknown mean, known variance

We first consider the problem, already discussed by
Gutmann and Corander [12], where the data d are a vector
of n components drawn from a Gaussian with unknown
mean μ and known variance σ2true. The empirical meanΦ1 is
a sufficient summary statistic for the problem of inferring μ.
The distribution of simulated Φ1

μ takes a simple form,
Φ1

μ ∼ Gðμ; σ2true=nÞ. Using here the true variance, the
discrepancy and synthetic likelihood are

Δ1
μ ¼ −2l̂N

1 ðμÞ ¼ log

�
2πσ2true

n

�
þ n

ðΦ1
O − μ̂1μÞ2
σ2true

; ð44Þ

where μ̂1μ is an average of N realizations of Φ1
μ. In Fig. 5

(lower panel), the black dots show simulations of Δ1
μ for

different values of μ. We have μ̂1μ ∼ Gðμ; σ2true=ðNnÞÞ,
therefore the stochastic process defining the discrepancy
can be written

Δ1
μ ¼ log

�
2πσ2true

n

�
þ n

ðΦ1
O − μ − gÞ2
σ2true

; g ∼ Gð0; σ2gÞ;

ð45Þ

where σ2g ≡ σ2true=ðNnÞ. Each realization of g gives a
different mapping μ ↦ Δ1

μ. In Fig. 5, we show one such
realization in the lower panel, and the corresponding
approximate posterior in the upper panel. Using the percent
point function (inverse of the cdf) of the Gaussian Gð0; σ2gÞ,
we also show in red the mean and 2σ credible interval of the
true stochastic process.
The GP regression using the simulations shown as the

training set is represented in blue in the lower panel of Fig. 5.
The corresponding BOLFI posterior and its variance, defined
byEqs. (36) and (37), are shown in purple in the upper panel.
The uncertainty in the estimate of the posterior (shaded
purple region) is due to the limited number of available
simulations (and not to the noisiness of individual training
points). It is the expectation of this uncertainty under the next
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evaluation of the simulator which is minimized in parameter
space by the ExpIntVar acquisition rule.

2. Unknown mean and variance

We now consider the problem where the full data set d is
a vector of n components drawn from a Gaussian with
unknown mean μ and unknown variance σ2. The aim is the
two-dimensional inference of θ≡ ðμ; σ2Þ. Evidently, the
true likelihood Lðμ; σ2Þ for this problem is the Gaussian
characterized by ðμ; σ2Þ. The Gaussian-inverse-Gamma
distribution is the conjugate prior for this likelihood. It
is described by four parameters. Adopting a Gaussian-
inverse-Gamma prior characterized by ðα; β; η; λÞ yields a
Gaussian-inverse-Gamma posterior characterized by
ðα0; β0; η0; λ0Þ given by Eqs. (B8)–(B11). This is the analytic
solution to which we compare our approximate results.
For the numerical approach, we forward model the

problem using a simulator that draws from the prior,
simulates N ¼ 10 realizations of the Gaussian signal,
and compresses them to two summary statistics, the

empirical mean and variance, respectively Φ1 and Φ2.
The graphical probabilistic model is given in Fig. 8. It
is a noise-free simulator without latent variables (of
the type given by Fig. 1, right) completed by a deterministic
compression of the full data. Note that the vector Φ≡
ðΦ1;Φ2Þ is a sufficient statistic for the inference of ðμ; σ2Þ.
To perform likelihood-free inference, we also need a
computable approximation L̂Nðμ; σ2Þ of the true likelihood.
We derive such an approximation in Sec. B 3 using a
parametric approach, under the assumptions (exactly veri-
fied in this example) thatΦ1 is Gaussian distributed andΦ2

is Gamma distributed. We name it the Gaussian-Gamma
synthetic likelihood.
The posterior obtained from likelihood-free rejection

sampling is shown in green in Fig. 6 (left) in comparison to
the prior (in blue) and the analytic posterior (in orange). It
was obtained from 5,000 accepted samples using a thresh-
old of ε ¼ 4 on −2l̂N . The entire run required ∼350; 000
forward simulations in total, the vast majority of which
have been rejected. The rejection-sampling posterior is a
fair approximation to the true posterior, unbiased but
broader, as expected from a rejection-sampling method.
For comparison, the posterior obtained via BOLFI is

shown in red in Fig. 6 (right). BOLFI was initialized using a
Sobol sequence of 20 members to compute the original
surrogate surface, and Bayesian optimization with the
ExpIntVar acquisition function and acquisition noise was
run to acquire 230 more samples. As can be observed,
BOLFI allows very precise likelihood-free inference; in
particular, the 1σ, 2σ and 3σ contours (the latter corre-
sponding to the 0.27% least likely events) of the analytic
posterior are reconstructed almost perfectly. The overall
cost to get these results is only 2,500 simulations with
BOLFI versus ∼350; 000 with rejection sampling (for a
poorer approximation of the analytic posterior), which
corresponds to a reduction by 2 orders of magnitude.

B. Supernova cosmology

In this section, we present the first application of BOLFI to
a cosmological inference problem. Specifically, we perform
an analysis of the joint lightcurve analysis (JLA) data set,
consisting of the B-band peak apparent magnitudes mB of
740 type Ia supernovae (SN Ia) with redshift z between
0.01 and 1.3 [17]: dO ≡ ðmk

B;OÞ for k ∈ ⟦1; 740⟧. The
details of the data model and inference assumptions are
given in Appendix C. For the purpose of validating BOLFI,
we assume a Gaussian synthetic likelihood (see Sec. C 4),
allowing us to demonstrate the fidelity of the BOLFI

posterior against the exact likelihood-based solution
obtained via Markov chain Monte Carlo (MCMC). This
analysis can also be compared to the proof of concept for
another likelihood-free method, density estimation for
likelihood-free inference (DELFI) [25,26], as the assump-
tions are very similar.

FIG. 5. Illustration of BOLFI for a one-dimensional problem, the
inference of the unknown mean μ of a Gaussian. Lower panel:
The discrepancy Δμ (i.e., twice the negative loglikelihood) is a
stochastic process due to the limited computational resources.
Its mean and the 2σ credible interval are shown in red. The dashed
red line shows one realization of the stochastic process as a
function of μ. Simulations at different μ are shown as black dots.
BOLFI builds a probabilistic model for the discrepancy, the mean
and 2σ credible interval of which are shown in blue. Upper panel:
The expectation of the (rescaled) BOLFI posterior and its 2σ
credible interval are shown in comparison to the exact posterior
for the problem. The dashed red line shows the posterior obtained
from the corresponding realization of the stochastic process of the
lower panel.
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As described in Appendix C, the full problem is six
dimensional; however, in this work, we focus on the
inference of the two physically relevant quantities, namely
Ωm (the matter density of the Universe) and w (the equation
of state of dark energy, assumed constant), and marginalize
over the other four (nuisance) parameters (α, β, MB, δM).
We assume a Gaussian prior,

�Ωm

w

�
∼ G

��
0.3

−0.75

�
;

�
0.42 −0.24
−0.24 0.752

��
; ð46Þ

which is roughly aligned with the direction of the well-
known Ωm − w degeneracy. We generated 106 samples (out
of ∼6 × 106 data model evaluations) of the posterior for the
exact six-dimensional Bayesian problem via MCMC (per-
formed using the EMCEE code, [27]), ensuring sufficient
convergence to characterize the 3σ contours of the dis-
tribution.1 The prior and the exact posterior are shown in
blue and orange, respectively, in Fig. 7.
For likelihood-free inference, the simulator takes as

input Ωm and w and simulates N realizations of the
magnitudes mB of the 740 supernovae at their redshifts.
Consistently with the Gaussian likelihood used in the
MCMC analysis, we assume a Gaussian synthetic like-
lihood with a fixed covariance matrix C. The observed data
dO and the covariance matrix C are shown in Fig. 10.
The approximate posterior obtained from likelihood-

free rejection sampling is shown in green in Fig. 7. It
was obtained from 5,000 accepted samples using
a (conservative) threshold of ε ¼ 650 on ΔðΩm;wÞ, chosen
so that the acceptance ratio was not below 0.01. The
entire run required ∼450; 000 simulations in total. The

approximate posterior obtained via BOLFI is shown in red in
Fig. 7. BOLFI was initialized with a Sobol sequence of
20 samples, and 100 acquisitions were performed accord-
ing to the ExpIntVar criterion, without acquisition noise.
The BOLFI posterior is a much finer approximation to the
true posterior than the one obtained from likelihood-free
rejection sampling. It is remarkable that only 100 acquis-
itions are enough to learn the nontrivial banana shape of the
posterior. Only the 3σ contour, which is usually not shown
in cosmology papers (e.g., [17]), notably deviates from the
MCMC posterior. This is due to the fact that we used one
realization of the stochastic process defining ΔðΩm;wÞ and
only N ¼ 50 realizations per ðΩm; wÞ; the marginalization
over the four nuisance parameters is therefore partial,
yielding slightly smaller credible contours. However, a
better approximation could be obtained straightfowardly, if
desired, by investing more computational resources
(increasing N), without requiring more acquisitions.
As we used N ¼ 50, the total cost for BOLFI is 6,000

simulations. This is a reduction by ∼2 orders of magnitude
with respect to likelihood-free rejection sampling
(∼450; 000 simulations) and 3 orders of magnitude with
respect to MCMC sampling of the exact posterior (6 × 106

simulations). It is also interesting to note that our BOLFI

analysis required a factor of ∼3 fewer simulations than the
recently introduced DELFI procedure [26], which used
20,000 simulations drawn from the prior for the analysis
of the JLA.2

FIG. 6. Prior and posterior for the joint inference of the mean and variance of Gaussian signals. The prior and exact posterior (from the
analytic solution) are Gaussian-inverse-Gamma distributed and shown in blue and orange, respectively. In the left panel, the approximate
rejection-sampling posterior, based on 5,000 samples accepted out of ∼350; 000 simulations, is shown in green. It loosely encloses the
exact posterior. In the right panel, the approximate BOLFI posterior, based on 2,500 simulations only, is shown in red. It is a much finer
approximation of the exact posterior. For all distributions, the 1σ, 2σ and 3σ contours are shown.

1The final Gelman-Rubin statistic [28] was R − 1 ≤ 5 × 10−4

for each of the six parameters.

2A notable difference is that DELFI allowed the authors to
perform the joint inference of the six parameters of the problem,
whereas we only get the distribution ofΩm and w. However, since
these are the only two physically interesting parameters, infer-
ence of the nuisance parameters is not deemed crucial for this
example.
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V. DISCUSSION

A. Benefits and limitations of the proposed
approach for cosmological inferences

As noted in the Introduction, likelihood-free rejection
sampling, when at all viable, is extremely costly in terms of
the number of required simulations. In contrast, the BOLFI

approach relies on a GP probabilistic model for the
discrepancy, and therefore allows the incorporation of a
smoothness assumption about the approximate likelihood
LðθÞ. The smoothness assumption allows simulations in the
training set to share information about their value of Δθ in
the neighborhood of θ, which suggests that fewer simu-
lations are needed to reach a certain level of accuracy.
Indeed, the number of simulations required is typically
reduced by 2 to 3 orders of magnitude, for a better final
approximation of the posterior, as demonstrated by our tests
in Sec. IV and in the statistical literature (see [12]).
A second benefit of BOLFI is that it actively acquires

training data through Bayesian optimization. The trade-off
between computational cost and statistical performance is
still present, but in a modified form: the trade-off parameter
is the size of the training set used in the regression. Within
the training set, the user is free to choose which areas of the
parameter space should be prioritized, so as to approximate
the regression function more accurately there. In contrast,
in ABC strategies that rely on drawing from a fixed
proposal distribution (often the prior), or variants such
as PMC-ABC, a fixed computational cost needs to be paid per
value of θ regardless of the value of Δθ.
Finally, by focusing on parametric approximations to the

exact likelihood, the approach proposed in this work is
totally “ε-free,” meaning that no threshold (which is often
regarded as an unappealing ad hoc element) is required. As
likelihood-based techniques, the parametric version of
BOLFI has the drawback that assuming a wrong form for

the synthetic likelihood or miscalculating values of its
parameters (such as the covariance matrix) can potentially
bias the approximate posterior and/or lead to an under-
estimation of credible regions. Nevertheless, massive data
compression procedures can make the assumptions going
into the choice of a Gaussian synthetic likelihood (almost)
true by construction (see Sec. V B 4).
Of course, regressing the discrepancy and optimizing the

acquisition function are not free of computational cost.
However, the run-time for realistic cosmological simulation
models can be hours or days. In comparison, the computa-
tional overhead introduced by BOLFI is negligible.
Likelihood-free inference should also be compared to

existing likelihood-based techniques for cosmology such
as Gibbs sampling or Hamiltonian Monte Carlo (e.g.,
[29,30] for the cosmic microwave background; [31–33] for
galaxy clustering; [34] for weak lensing). The principal
difference between these techniques and BOLFI lies in its
likelihood-free nature. Likelihood-free inference has particu-
lar appeal for cosmological data analysis, since encoding
complex physical phenomena and realistic observational
effects into forward simulations ismuch easier than designing
an approximate likelihood which incorporates these effects
and solving the inverse problem. While the numerical
complexity of likelihood-based techniques typically requires
to approximate complex data models in order to access
required products (conditionals or gradients of the pdfs)
and to allow for sufficiently fast execution speeds, BOLFI

performs inference from full-scale black-box data models. In
the future, such an approach is expected to allow previously
infeasible analyses, relying on amuchmore precisemodeling
of cosmological data, including in particular the complicated
systematics they experience. However, while the physics and
instruments will be more accurately modeled, the statistical
approximation introduced with respect to likelihood-based
techniques should be kept in mind.

FIG. 7. Prior and posterior distributions for the joint inference of the matter density of the Universe, Ωm, and the dark energy equation
of state, w, from the JLA supernovae data set. The prior and exact posterior distribution (obtained from a long MCMC run requiring
∼6 × 106 data model evaluations) are shown in blue and orange, respectively. In the left panel, the approximate rejection-sampling
posterior, based on 5,000 samples accepted out of ∼450; 000 simulations, is shown in green. In the right panel, the approximate BOLFI

posterior, based on 6,000 simulations only, is shown in red. For all distributions, the 1σ, 2σ and 3σ contours are shown.
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Other key aspects of BOLFI for cosmological data
analysis are the arbitrary choice of the statistical summaries
and the easy joint treatment of different data sets. Indeed, as
the data compression from d to Φ is included in the
simulator (see Sec. II C), summary statistics do not need to
be quantities that can be physically modeled (such as the
power spectrum) and can be chosen robustly to model
misspecification. For example, for the microwave sky, the
summaries could be the cross spectra between different
frequency maps; and for imaging surveys, the cross-
correlation between different bands. Furthermore, joint
analyses of correlated data sets, which is usually challeng-
ing in likelihood-based approaches (as they require a good
model for the joint likelihood) can be performed straight-
forwardly in a likelihood-free approach.
Importantly, as a general inference technique, BOLFI can

be embedded into larger probabilistic schemes such as
Gibbs or Hamiltonian-within-Gibbs samplers. Indeed, as
posterior predictive distributions for conditionals and
gradients of GPs are analytically tractable, it is easy to
obtain samples of the BOLFI approximate posterior for use
in larger models. BOLFI can therefore allow parts of a larger
Bayesian hierarchical model to be treated as black boxes,
without compromising the tractability of the entire model.

B. Possible extensions

1. High-dimensional inference

In this proof-of-concept paper, we focused on two-
dimensional problems. Likelihood-free inference is in
general very difficult when the dimensionality of the
parameter space is large, due to the curse of dimensionality,
which makes the volume exponentially larger with dim θ.
In BOLFI, this difficulty manifests itself in the form of a hard
regression problem which needs to be solved. The areas in
the parameter space where the discrepancy is small tend to
be narrow in high dimension, therefore discovering these
areas becomes more challenging as the dimension
increases. The optimization of GP kernel parameters, which
control the shapes of allowed features, also becomes more
difficult. Furthermore, finding the global optimum of the
acquisition function becomes more demanding (especially
with the ones designed for ABC such as ExpIntVar, which
have a high degree of structure—see Fig. 12, bottom
right panel).
Nevertheless, Järvenpää et al. [16] showed on a toy

simulation model (a Gaussian) that up to ten-dimensional
inference is possible with BOLFI. As usual cosmological
models do not include more than ten free physical param-
eters, we do not expect this limitation to be a hindrance.
Any additional nuisance parameter or latent variable used
internally by the simulator (such as α, β, MB, δM in
supernova cosmology, see Sec. IV B) can be automatically
marginalized over, by using N realizations per θ. Recent
advances in high-dimensional implementation of the

synthetic likelihood [35] and high-dimensional Bayesian
optimization (e.g., [36,37]), could also be exploited. In future
work, we will address the problem of high-dimensional
likelihood-free inference in a cosmological context.

2. Scalability with the number of acquisitions and
probabilistic model for the discrepancy

In addition to the fundamental issues with high-
dimensional likelihood-free inference described in the
previous section, practical difficulties can be met.
Gaussian process regression requires the inversion of a

matrixK of size t × t, where t is the size of the training set.
The complexity is Oðt3Þ, which limits the size of the
training set to a few thousand. Improving GPs with respect
to this inversion is still subject to research (see [21],
Chap. 8). For example, “sparse” Gaussian process regres-
sion reduces the complexity by introducing auxiliary
“inducing variables.” Techniques inspired by the solution
to the Wiener filtering problem in cosmology, such as
preconditioned conjugate gradient or messenger field
algorithms could also be used [38–40]. Another strategy
would be to divide the regression problem spatially into
several patches with a lower number of training points [41].
Such approaches are possible extensions of the presented
method.
In the GP probabilistic model employed to model the

discrepancy, the variance depends only on the training
locations, not on the obtained values [see Eq. (30)].
Furthermore, a stationary kernel is assumed. However,
depending on the simulator, the discrepancy can show
heteroscedasticity (i.e., its variance can depend on θ—see
e.g., Fig. 5, bottom panel). Such cases could be handled by
nonstationary GP kernels or different probabilistic models
for the discrepancy, allowing a heteroscedastic regression.

3. Acquisition rules

As shown in our examples, attention should be given to
the selection of an efficient acquisition rule. Although
standard Bayesian optimization strategies such as the EI
are reasonably effective, they are usually too greedy,
focusing nearly all the sampling effort near the estimated
minimum of the discrepancy and gathering too little
information about other regions in the domain (see
Fig. 12, bottom left panel). This implies that, unless the
acquisition noise is high, the tails of the posterior will not
be as well approximated as the modal areas. In contrast, the
ExpIntVar acquisition rule, derived in this work for the
parametric approach, addresses the inefficient use of
resources in likelihood-free rejection sampling by directly
targeting the regions of the parameter space where
improvement in the estimation accuracy of the approximate
posterior is needed most. In our experiments, ExpIntVar
seems to correct—at least partially—for the well-known
effect in Bayesian optimization of overexploration of the
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domain boundaries, which becomes more problematic in
high dimension.
Acquisition strategies examined so far in the literature

(see [16] for a comparative study) have focused on single
acquisitions and are all “myopic,” in the sense that they
reason only about the expected utility of the next acquis-
ition, and the number of simulations left in a limited budget
is not taken into account. Improvement of acquisition rules
enabling batch acquisitions and nonmyopic reasoning are
left to future extensions of BOLFI.

4. Data compression

In addition to the problem of the curse of dimensionality
in parameter space, discussed in Sec. V B 1, likelihood-free
inference usually suffers from difficulties in the measuring
the (mis)match between simulations and observations if
the data space also has high dimension. As discussed in
Sec. II C, simulator-based models include a data compres-
sion step. The comparison in data space can be made more
easily if dimΦ is reduced. In future work, we will therefore
aim at combining BOLFI with massive and (close to) optimal
data compression strategies. These include MOPED [42], the
score function [43], or information-maximizing neural
networks [44]. Using such efficient data compression
techniques, the number of simulations required for infer-
ence with BOLFI will be reduced even more, and the number
of parameters treated could be increased.
Parametric approximations to the exact likelihood

depend on quantities that have to be estimated using the
simulator (typically for the Gaussian synthetic likelihood,
the inverse covariance matrix of the summaries). Unlike
supernova cosmology where the covariance matrix is easily
obtained, in many cases it is prohibitively expensive to run
enough simulations to estimate the required quantities,
especially when they vary with the model parameters. In
this context, massive data compression offers a way
forward, reducing enormously the number of required
simulations and making the analysis feasible when other-
wise it might be essentially impossible [45,46].
An additional advantage of several data compression

strategies is that they support the choice of a Gaussian
synthetic likelihood. Indeed, the central limit theorem
(for MOPED) or the form of the network’s reward function
(for information-maximizing neural networks) assist in
giving the compressed data a near-Gaussian distribution.
Furthermore, testing the Gaussian assumption for the
synthetic likelihood will be far easier in a smaller number
of dimensions than in the original high-dimensional
data space.

C. Parallelization and computational efficiency

While MCMC sampling has to be done sequentially,
BOLFI lends itself to more parallelization. In an efficient
strategy, a master process performs the regression
and decides on acquisition locations, then dispatches

simulations to be run by different workers. In this way,
many simulations can be run simultaneously in parallel, or
even on different machines. This allows fast application of
the method and makes it particularly suitable for grid
computing. Extensions of the probabilistic model and of the
acquisition rules, discussed in Secs. V B 2 and V B 3,
would open the possibility of doing asynchronous acquis-
itions. Different workers would then work completely
independently and decide on their acquisitions locally,
while just sharing a pool of simulations to update their
beliefs given all the evidence available.
While the construction of the training set depends on the

observed data ΦO (through the acquisition function),
simulations can nevertheless be reused as long as summa-
riesΦθ are saved. This means that if one acquires new data
Φ0

O, the existing Φθ (or a subset of them) can be used to
compute the new discrepancy ΔθðΦθ;Φ0

OÞ. Building an
initial training set in this fashion can massively speed up the
inference of PðθjΦÞΦ¼Φ0

O
, whereas likelihood-based tech-

niques would require a new MCMC.

D. Comparison to previous work

As discussed in the Introduction, likelihood-free rejec-
tion sampling is not a viable strategy for various problems
that BOLFI can tackle. In recent work, another algorithm for
scalable likelihood-free inference in cosmology, DELFI, was
introduced [25,26]. The approach relies on estimating the
joint probability Pðθ;ΦÞ via density estimation. This idea
also relates to the work of Hahn et al. [47], who fit the
sampling distribution of summaries PðΦjθÞ using
Gaussian mixture density estimation or independent com-
ponent analysis, before using it for parameter estimation.
This section discusses the principal similarities and
differences.
The main difference between BOLFI and DELFI is the

data acquisition. Training data are actively acquired in
BOLFI, contrary to DELFI which, in the simplest scheme,
draws from the prior. The reduction in the number of
simulations for the inference of cosmological parameters
(see Sec. IV B) can be interpreted as the effect of the
Bayesian optimization procedure in combination with the
ExpIntVar acquisition function. Using a purposefully con-
structed surrogate surface instead of a fixed proposal
distribution, BOLFI focuses the simulation effort to reveal
as much information as possible about the target posterior.
In particular, its ability to reason about the quality of
simulations before they are run is an essential element.
Acquisition via Bayesian optimization almost certainly
remains more efficient than even the PMC version of
DELFI, which learns a better proposal distribution but still
chooses parameters randomly. In future cosmological
applications with simulators that are expensive and/or have
a large latent space, an active data acquisition procedure
could be crucial in order to provide a good model for the
noisy approximate likelihood in the interesting regions of
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parameter space, and to reduce the computational cost. This
comes at the expense of a reduction of the parallelization
potential: with a fixed proposal distribution (like in DELFI

and unlike in BOLFI), the entire set of simulations can be run
at the same time.
The second comment is related to the dimensionality of

problems which can be addressed. Like DELFI, BOLFI relies
on a probabilistic model to make ABC more efficient.
However, the quantities employed differ, since in DELFI the
relation between the parameters θ and the summary
statistics Φ is modeled (via density estimation), while
BOLFI focuses on the relation between the parameters θ and
the discrepancy Δθ (via regression). Summary statistics are
multidimensional while the discrepancy is a univariate
scalar quantity. Thus, DELFI requires to solve a density
estimation problem in dim θþ dimΦ (which equals
2 × dim θ if the compression from [43] is used), while
BOLFI requires to solve a regression problem in dim θ. Both
tasks are expected to become more difficult as dim θ
increases (a symptom of the curse of dimensionality, see
Sec. V B 1), but the upper limits on dim θ for practical
applications may differ. Further investigations are required
to compare the respective maximal dimensions of problems
that can be addressed by BOLFI and DELFI.
Finally, as argued by Alsing et al. [26], DELFI readily

provides an estimate of the approximate evidence. In
contrast, as in likelihood-based techniques, integration over
parameter space is required with BOLFI to get

ZΦ ¼
�Z

PðΦjθÞdθ
�

Φ¼ΦO

: ð47Þ

However, due to the GP model, the integral can be more
easily computed, using the same strategies as for the
integral appearing in ExpIntVar (see Sec. III E 2): only
the GP predicted values are required at discrete locations on
a grid (in low dimension) or at the positions of importance
samples. A potential caveat is that DELFI has only been
demonstrated to work in combination with the score
function [43], which is necessary to reduce the dimension-
ality ofΦ before estimating the density.3 The score function
produces summaries that are only sufficient up to linear
order in the loglikelihood. However, in ABC, care is
required to perform model selection if the summary
statistics are insufficient. Indeed, Robert et al. [48]
[Eq. (1)] show that, in such a case, the approximate
Bayes factor can be arbitrarily biased and that the approxi-
mation error is unrelated to the computational effort
invested in running the ABC algorithm. Moreover, suffi-
ciency for models M1 and M2 alone, or even for both of
them—even if approximately realized via Alsing and

Wandelt’s procedure—does not guarantee sufficiency to
compare the two different modelsM1 andM2 [49]. As the
assumptions behind BOLFI do not necessarily necessitate to
reduce dimΦ (Δθ is always a univariate scalar quantity, see
above), these difficulties could be alleviated with BOLFI by
carefully designing sufficient summary statistics for model
comparison within the black-box simulator, if they exist.

VI. CONCLUSION

Likelihood-free inference methods allow Bayesian infer-
ence of the parameters of simulator-based statistical models
with no reference to the likelihood function. This is of
particular interest for data analysis in cosmology, where
complex physical and observational processes can usually
be simulated forward but not handled in the inverse
problem.
In this paper, we considered the demanding problem of

performing Bayesian inference when simulating data from
the model is extremely costly. We have seen that likelihood-
free rejection sampling suffers from a vanishingly small
acceptance rate when the threshold ε goes to zero, leading
to the need for a prohibitively large number of simulations.
This high cost is largely due to the lack of knowledge about
the functional relation between the model parameters and
the discrepancy. As a response, we have described a new
approach to likelihood-free inference, BOLFI, that uses
regression to infer this relation, and optimization to actively
build the training data set. A crucial ingredient is the
acquisition function derived in this work, with which
training data are acquired such that the expected uncer-
tainty in the final estimate of the posterior is minimized.
In case studies, we have shown that BOLFI is able to

precisely recover the true posterior, even far in its tails, with
as few as 6,000 simulations, in contrast to likelihood-free
rejection sampling or likelihood-based MCMC techniques
which require orders of magnitude more simulations. The
reduction in the number of required simulations accelerated
the inference massively.
This study opens up a wide range of possible extensions,

discussed in Sec. V B. It also allows for novel analyses of
cosmological data from fully nonlinear simulator-based
models, as required e.g., for the cosmic web (see the
discussions in [50–52]). Other applications may include the
cosmic microwave background, weak gravitational lensing
or intensity mapping experiments. We therefore anticipate
that BOLFI will be a major ingredient in principled,
simulator-based inference for the coming era of massive
cosmological data.
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APPENDIX A: DERIVATIONS OF THE
MATHEMATICAL RESULTS

1. Expressions for the approximate posterior

If we knew the target function f, the BOLFI posterior
would be given as

PBOLFIðθjΦOÞ≡ PðθÞ exp
�
−
1

2
fðθÞ

�
∝ PðθÞ exp ðl̃ðθÞÞ:

ðA1Þ

However, due to the limited computational resources we
only have a finite training set ðΘ; fÞ, which implies that
there is uncertainty in the values of fðθÞ, and therefore that
the approximate posterior is itself a stochastic process. To
get its expectation under the model, the loglikelihood l̃ðθÞ
is replaced by its expectation under the model, i.e., − 1

2
μðθÞ

[up to constants, see Eqs. (21) and (35)], giving Eq. (36).
Similarly, if the function f was known, the variance of

the approximate posterior could be computed by standard
propagation of uncertainties,

V½PBOLFIðθjΦO; f;ΘÞ� ¼
���� ∂
∂fPðθÞ exp

�
−
1

2
f

�����2V½f�
¼ PðθÞ2

4
expð−fÞ V½f�: ðA2Þ

The argument of the exponential is −fðθÞ ¼ 2l̃ðθÞ; it
should be replaced by its expectation under the model,
−μðθÞ. The variance of f under the model is, by definition,
VðtÞ½f� ¼ σ2ðθÞ. The result for VðtÞ½PBOLFIðθjΦO; f;ΘÞ� is
therefore given by Eq. (37).

2. The ExpIntVar acquisition function in the
parametric approach

We start by deriving the probability distributions for the
GP mean and variance after one future observation ðθ⋆; f⋆Þ
is added to the training set ðΘ; fÞ. We denote them by μ⋆
and σ2⋆ respectively. These quantities are random functions
of θ since the new value f⋆ is unknown. Assuming that the
GP mean is mðθÞ ¼ 0 for simplicity, and using Eq. (29)
with the full training set fðΘ; fÞ; ðθ⋆; f⋆Þg, we get

μ⋆ðθÞ¼
�

K
κðθ;θ⋆Þ

�⊤� K K⋆
K⊤⋆ K⋆⋆

�
−1
�

f
f⋆

�
; ðA3Þ

using the notations of Eqs. (31)–(34) and (43). By means of
a standard formula for block matrix inversion, we get

μ⋆ðθÞ¼K⊺K−1fþ½κðθ;θ⋆Þ−K⊺K−1K⋆�
× ½K⋆⋆−K⊺⋆K−1K⋆�−1½f⋆−K⊺⋆K−1f�

¼μðθÞþcovðθ;θ⋆Þ× ½σ2ðθ⋆Þ�−1½f⋆−μðθ⋆Þ�: ðA4Þ

According to the GP model trained with fðΘ; fÞg, the
unknown future observation f⋆ is Gaussian distributed, i.e.,
Pðf⋆jf;Θ; θ⋆Þ ¼ Gðμðθ⋆Þ; σ2ðθ⋆ÞÞ. Thus, ½σ2ðθ⋆Þ�−1½f⋆−
μðθ⋆Þ� is Gaussian distributed with mean zero and variance
½σ2ðθ⋆Þ�−1, and μ⋆ðθÞ is Gaussian distributed with mean
μðθÞ and variance τ2ðθ; θ⋆Þ,

Pðμ⋆ðθÞjf;Θ; θ⋆Þ ¼ GðμðθÞ; τ2ðθ; θ⋆ÞÞ; ðA5Þ

using the notation introduced in Eq. (42).
Similar calculations for the variance show that

σ2⋆ðθÞ ¼ σ2ðθÞ − τ2ðθ; θ⋆Þ; ðA6Þ

and therefore

Pðσ2⋆ðθÞjf;Θ; θ⋆Þ ¼ δDðσ2⋆ðθÞ − σ2ðθÞ þ τ2ðθ; θ⋆ÞÞ: ðA7Þ

This formula means that the reduction in the GP variance is
deterministic and depends only on the new location θ⋆,
independently of the future observation f⋆.
We now derive the expression for the expected integrated

variance in the parametric approach:

EIVðθ⋆Þ
≡ EðtÞ½L½PBOLFIðθjΦO; f;Θ; f⋆; θ⋆Þ��

¼
Z

L½PBOLFIðθjΦO; f;Θ; f⋆; θ⋆Þ�Pðf⋆jf;Θ; θ⋆Þdf⋆

¼
Z Z

V½PBOLFIðθjΦO; f;ΘÞ�dθPðf⋆jf;Θ; θ⋆Þdf⋆

¼
Z

PðθÞ2w2ðθ; θ⋆Þdθ; ðA8Þ

where in the last line we have interchanged the order of
integration, used Eq. (37), and introduced

w2ðθ; θ⋆Þ≡
Z

1

4
exp ½−μ⋆ðθÞ�σ2⋆ðθÞPðf⋆jf;Θ; θ⋆Þdf⋆

¼ EðtÞ
�
1

4
exp ½−μ⋆ðθÞ�σ2⋆ðθÞ

�
; ðA9Þ

that is to say the expectation of 1
4
exp ½−μ⋆ðθÞ�σ2⋆ðθÞ under

the GP model trained with fðΘ; fÞ; ðθ⋆; f⋆Þg. This expect-
ation can be treated using Eqs. (A5) and (A6), assuming
that mean and variance are independent: σ2⋆ðθÞ becomes
deterministically σ2ðθÞ − τ2ðθ; θ⋆Þ under the model. As in
Sec. A 1, the argument of the exponential, μ⋆ðθÞ, is
replaced by its mean μðθÞ. The final result is
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w2ðθ; θ⋆Þ ¼
1

4
exp ½−μðθÞ�½σ2ðθÞ − τ2ðθ; θ⋆Þ�: ðA10Þ

3. Gradient of the ExpIntVar acquisition function
in the parametric approach

In this section we derive the gradient of the expected
integrated variance in the parametric approach, which can
be used to find its minimum in parameter space. Inverting
the differentiation and the integration, we have

dEIVðθ⋆Þ
dθ⋆

¼ d
dθ⋆

Z
PðθÞ2w2ðθ; θ⋆Þdθ

¼
Z

PðθÞ2 ∂w
2ðθ; θ⋆Þ
∂θ⋆ dθ; ðA11Þ

where

∂w2ðθ; θ⋆Þ
∂θ⋆ ¼ ∂

∂θ⋆
�
1

4
exp ½−μðθÞ�½σ2ðθÞ − τ2ðθ; θ⋆Þ�

�

¼ −
1

4
exp ½−μðθÞ� ∂τ

2ðθ; θ⋆Þ
∂θ⋆ ; ðA12Þ

with

∂τ2ðθ; θ⋆Þ
∂θ⋆ ¼ 2

covðθ; θ⋆Þ
σ2ðθ⋆Þ

∂covðθ; θ⋆Þ
∂θ⋆

−
covðθ; θ⋆Þ
σ4ðθ⋆Þ

∂σ2ðθÞ
∂θ⋆ ; ðA13Þ

∂covðθ; θ⋆Þ
∂θ⋆ ¼ ∂κðθ; θ⋆Þ

∂θ⋆ −K⊺K−1 ∂K⋆
∂θ⋆ : ðA14Þ

The integral in Eq. (A11) can be evaluated similarly as
discussed in Sec. III E 2.

APPENDIX B: SUMMARIZING
GAUSSIAN SIGNALS

This Appendix gives the details of the problem of
summarizing Gaussian signals discussed in Sec. IVA.

1. Forward modeling

The problem considered is the joint inference of the
mean μ and of the variance σ2 of a Gaussian G, from which
we have n samples that constitute the observed data dO.
The true likelihood for this problem is therefore

Lðμ; σ2Þ≡ Pðdjμ; σ2Þjd¼dO
¼ Gðdjμ; σ2Þjd¼dO : ðB1Þ

The Gaussian-inverse-Gamma is the natural prior for this
problem, as it is conjugate for the Gaussian distribution with
unknown mean and variance. It is a two-dimensional dis-
tribution characterized by four hyperparameters ðα; β; η; λÞ.

Samples of this prior can be straightforwardly generated by
first sampling σ from the inverse-Gamma distribution Γ−1

with shape parameter α and scale parameter β, then by
drawing μ from the Gaussian distribution G with mean η and
variance σ2=λ.
A noise-free simulator can be designed for this inference

problem by taking the operations successively,

σ2↶Pðσ2jα; βÞ ¼ Γ−1ðσ2jα; βÞ; ðB2Þ

μ↶Pðμjσ2; η; λÞ ¼ Gðμjη; σ2=λÞ; ðB3Þ

d↶Pðdjμ; σ2Þ ¼ Gðdjμ; σ2Þ: ðB4Þ

After the full data d are generated, they can be compressed
to summary statistics. A simple choice is the empirical
estimator for the mean and (unbiased) variance, defined by

Φ1ðdÞ ¼ 1

n

Xn
k¼1

dk; ðB5Þ

Φ2ðdÞ ¼ 1

n − 1

Xn
k¼1

ðdk −Φ1ðdÞÞ2: ðB6Þ

Φ ¼ ðΦ1;Φ2Þ is a sufficient summary statistic for the
inference of ðμ; σ2Þ. For this model, no information is lost
in the reduction from d to Φ, which ensures LðθÞ ∝ LðθÞ.
Furthermore, the distribution of the summary statistics
Φðμ;σ2Þ are here known:

Φ1
ðμ;σ2Þ∼G

�
μ;
σ2

n

�
and Φ2

ðμ;σ2Þ∼Γ

�
n−1

2
;
2σ2

n−1

�
; ðB7Þ

where Γ is the Gamma distribution parametrized by its
shape and scale.
The hierarchical graphical representation of the simu-

lator is shown in Fig. 8.

2. Analytic solution

The exact solution of the problem described in the
previous section is known analytically: the posterior is
Gaussian-inverse-Gamma distributed, with parameters
ðα0; β0; η0; λ0Þ given by

α0 ¼ αþ n
2
; ðB8Þ

β0 ¼ β þ nλ
λþ n

ðΦ1
O − ηÞ2
2

þ n − 1

2
Φ2

O; ðB9Þ

η0 ¼ ληþ nΦ1
O

λþ n
; ðB10Þ

λ0 ¼ λþ n; ðB11Þ
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where Φ1
O and Φ2

O are the summary statistics of the
observed data, defined by applying Eqs. (B5) and (B6)
to dO.
For the experiment described in Sec. IVA 1, we have

used n ¼ 10 and N ¼ 20. The data have been generated
from ground truth parameters μtrue ¼ 0.8 and σ2true ¼ 2.9.
We have measured Φ1

O ¼ 1.3212, and have chosen a
Gaussian prior on μ with mean unity and variance unity.
The exact posterior is therefore a Gaussian with mean
1.2490 and variance 0.2248.
For the experiment described in Sec. IVA 2, we

have used n ¼ 50 and N ¼ 10. The data have been
generated from ground truth parameters μtrue ¼ 0.8 and
σ2true ¼ 2.9 (shown as the plus in Fig. 6). We have measured
Φ1

O ¼ 0.9925 and Φ2
O ¼ 2.8499. We have chosen a

prior with parameters ðα; β; η; λÞ ¼ ð22; 54; 0; 6Þ. The exact
posterior has therefore parameters ðα0; β0; η0; λ0Þ ¼
ð47; 127.8885; 0.8862; 56Þ.

3. Derivation of the Gaussian-Gamma synthetic
likelihood for likelihood-free inference

For likelihood-free inference, a computable approxima-
tion L̂Nðμ; σ2Þ to the true likelihood given by Eq. (B1) is

required. In this section, we design a parametric form for
L̂Nðμ; σ2Þ which we call the Gaussian-Gamma synthetic
likelihood.
As the approach is likelihood free, L̂Nðμ; σ2Þ should

be based only on realizations of the summary statistics.
Using the simulator described in Sec. B 1, we can generate
N realizations of Φ1 and Φ2 for each pair of input para-
meters ðμ; σ2Þ. Assuming exchangeability, we can use the
Ansatz Lðμ;σ2Þ≡L1ðμ;σ2ÞL2ðμ;σ2Þ and L̂Nðμ;σ2Þ≡
L̂N
1 ðμ;σ2ÞL̂N

2 ðμ;σ2Þ, or using the loglikelihood,

l̂Nðμ; σ2Þ≡ l̂N
1 ðμ; σ2Þ þ l̂N

2 ðμ; σ2Þ; ðB12Þ

where the first term depends only on Φ1 and the second on
Φ2. They are discussed successively in the following.
Φ1 is the empirical mean of the independent and

identically distributed components of d, obtained through
averaging. As discussed in Sec. II D 2, the Gaussian para-
metric approximation also known as the synthetic like-
lihood is appropriate in this case. We therefore define

−2l̂N
1 ðμ; σ2Þ≡ log j2πv̂1ðμ;σ2Þj þ

ðΦ1
O − μ̂1ðμ;σ2ÞÞ2
v̂1ðμ;σ2Þ

; ðB13Þ

where μ̂1ðμ;σ2Þ and v̂
1
ðμ;σ2Þ are respectively the empirical mean

and variance of the simulated Φ1, i.e.,

μ̂1ðμ;σ2Þ ≡ EN ½Φ1
ðμ;σ2Þ�; ðB14Þ

v̂1ðμ;σ2Þ ≡ EN ½ðΦ1
ðμ;σ2Þ − μ̂1ðμ;σ2ÞÞ2�: ðB15Þ

As PðΦ1jμ; σ2Þ is actually a Gaussian distribution, the
equality L̃1ðμ; σ2Þ ¼ L1ðμ; σ2Þ holds without approxima-
tion, in the limit of infinite computer resources. From
Eq. (B7), we also have

μ̂1ðμ;σ2Þ ∼ G
�
μ;

σ2

Nn

�
and

v̂1ðμ;σ2Þ ∼ Γ

�
N − 1

2
;

2σ2

nðN − 1Þ
�
; ðB16Þ

which allows a closed-form definition of the stochastic
process defining L̂N

1 ðμ; σ2Þ.
Φ2 is the empirical variance of the components of d. As

noted in Eq. (B7), PðΦ2jμ; σ2Þ is a Gamma distribution.
Consequently, we introduce for Φ2

O a Gamma synthetic
likelihood, namely

−2l̂N
2 ðμ;σ2Þ≡−2ðk̂ðμ;σ2Þ−1ÞlogΦ2

Oþ
2Φ2

O

θ̂ðμ;σ2Þ

þ2k̂ðμ;σ2Þ log θ̂ðμ;σ2Þ þ2 logΓðk̂ðμ;σ2ÞÞ: ðB17Þ

FIG. 8. Hierarchical forward model for the problem of sum-
marizing simulated Gaussian signals. The upper part corresponds
to the generation of random variables from the two-dimensional
Gaussian-inverse-Gamma prior parametrized by ðα; β; η; λÞ: first
σ2 is drawn from Pðσ2jα; βÞ (an inverse-Gamma distribution with
shape parameter α and scale parameter β), then μ is drawn from
Pðμjσ2; η; λÞ (a Gaussian distribution with mean η and variance
σ2=λ). A Gaussian likelihood Pðdjμ; σ2Þ with mean μ and
variance σ2 gives the data d. Finally, the simulator produces
two summary statistics: the estimated mean and variance, Φ1 and
Φ2 respectively.
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The question is now to use the simulator in order to learn
the shape and scale parameters k̂ðμ;σ2Þ and θ̂ðμ;σ2Þ. To do
so, the simplest possibility is the methods of moments:
using a Gaussian approximation to the first two moments
of the Gamma distribution, we have

μ̂2ðμ;σ2Þ ≈ k̂ðμ;σ2Þθ̂ðμ;σ2Þ; and ðB18Þ

v̂2ðμ;σ2Þ ≈ k̂ðμ;σ2Þðθ̂ðμ;σ2ÞÞ2; ðB19Þ

where μ̂2ðμ;σ2Þ and v̂
2
ðμ;σ2Þ are the empirical mean and variance

of Φ2, respectively, defined as in Eqs. (B14) and (B15).
Solving this system for k̂ðμ;σ2Þ and θ̂ðμ;σ2Þ, we obtain the

parameters of l̂N
2 ,

k̂ðμ;σ2Þ ≈
ðμ̂2ðμ;σ2ÞÞ2
v̂2ðμ;σ2Þ

; and ðB20Þ

θ̂ðμ;σ2Þ ≈
v̂2ðμ;σ2Þ
μ̂2ðμ;σ2Þ

: ðB21Þ

As PðΦ2jμ; σ2Þ is known to be a Gamma distribution, we
have, as for the first term, L̃2ðμ; σ2Þ ¼ L2ðμ; σ2Þ in the limit
of infinite computer resources. μ̂2ðμ;σ2Þ is the sum of N

independent random variables, identically distributed
according to a Gamma distribution with the same scale
parameter. Therefore, it obeys

μ̂2ðμ;σ2Þ ∼ Γ

�
Nðn − 1Þ

2
;

2σ2

Nðn − 1Þ
�
: ðB22Þ

Unlike μ̂2ðμ;σ2Þ, there is no closed-form expression for v̂2ðμ;σ2Þ,

k̂ðμ;σ2Þ and θ̂ðμ;σ2Þ with standard probability distributions.

However, these quantities, as well as L̂N
2 ðμ; σ2Þ, can be

easily simulated using their defining equations.
The resulting approximate likelihood L̂Nðμ; σ2Þ is the

product of a Gaussian synthetic likelihood for Φ1 and a
Gamma synthetic likelihood for Φ2. It is shown in Fig. 9.
There, the different panels show that realizations become
smoother as N increases, i.e., with more computational
resources.

FIG. 9. Illustration of the Gaussian-Gamma synthetic likelihood as a stochastic process. The observed data have been generated using
μtrue ¼ 0.8 and σ2true ¼ 2.9. The 100 sampling points form a low-discrepancy quasirandom Sobol sequence in parameter space. The three
rows show respectively the first term l̂N

1 ðμ; σ2Þ (a Gaussian synthetic likelihood for Φ1), the second term l̂N
2 ðμ; σ2Þ (a Gamma synthetic

likelihood for Φ2), and their sum l̂Nðμ; σ2Þ. The three columns show a varying number of simulations per value of ðμ; σ2Þ: N ¼ 3,
N ¼ 10, N ¼ 100. The use of simulations makes the synthetic likelihood a stochastic process. Its noisiness decreases as N increases,
i.e., as more computational resources are invested.
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APPENDIX C: SUPERNOVA COSMOLOGY

This Appendix gives the details of the data model and the
modeling assumptions for the problem of inferring cos-
mological parameters from the JLA catalog, presented in
Sec. IV B.

1. Data samples

Type Ia supernovae (SNe Ia) are “standard candles,” i.e.,
astrophysical objects that precisely map the distance-
redshift relation in the nearby Universe. As such, they
are one of the most sensitive probes of the late-time
expansion history of the Universe. The joint lightcurve
analysis (JLA) [17] is a compiled catalog of 740 SNe Ia.
374 objects in the redshift range 0.03 ≤ z ≤ 0.41 have
been identified by the Sloan Digital Sky Survey phase II
(SDSS-II) supernova survey [54] and confirmed as SNe Ia
by spectroscopic follow-up observations. The remaining
objects come from the earlier C11 compilation [55]: 118
are low-z (z ≤ 0.08) SNe Ia from the third release [56] of
photometric data acquired at the Whipple Observatory of
the Harvard-Smithsonian Center for Astrophysics (CfA3).
239 SNe Ia in the redshift range 0.12 ≤ z ≤ 1.07 have
been observed by the Supernova Legacy Survey (SNLS)
[57,58]. Finally, nine objects are high-redshift SNe Ia
(0.8 ≤ z ≤ 1.4) observed by the Hubble Space Telescope
(HST) [59].
For each supernova, the JLA catalog provides a rich

variety of information. The full data set comprises light-
curves in different bands and spectroscopic or photometric
observations of each SN Ia. These products are then used to
estimate the redshift z, the apparent magnitudem, the color
at maximum brightness C and a time-stretching parameter
for the lightcurve, X1. In particular, the catalog includes
several estimations of the redshift z. In this work, we use

z ¼ zCMB, the cosmological redshift of the object in the
frame of the cosmic microwave background (CMB),
including peculiar velocity corrections. For our data vector
dO, we use the estimated B-band peak magnitudes in the
rest frame, denoted ðmk

B;OÞ for k ∈ ⟦1; 740⟧ (as in the body
of the paper, the subscript O stands for “observed”). The
magnitudes are plotted as a function of redshift in the
Hubble diagram shown in Fig. 10 (left). The JLA catalog
also provides some properties of the SNe host galaxies, in
particular the stellar massMstellar. We denote by zO ≡ ðzkOÞ,
X1;O ≡ ðXk

1;OÞ, CO ≡ ðCk
OÞ, Mstellar;O ≡ ðMk

stellar;OÞ for
k ∈ ⟦1; 740⟧, and mO ≡ ðzO;X1;O;CO;Mstellar;OÞ the
metadata used in the analysis.

2. Supernova data model and distance estimates

Distance estimation with SNe Ia is based on the
assumption that they are standardizable objects, which is
quantified by a linear model for the apparent magnitude:

mB ¼ 5log10

�
DLðzÞ
10 pc

�
þ eMBðMstellar;MB;δMÞ− αX1 þ βC:

ðC1Þ

The absolute magnitude eMB depends on the stellar mass of
the host galaxy, Mstellar. This dependence is assumed to be
captured by the relation [55]

eMBðMstellar;MB; δMÞ ¼ MB þ δMΘðMstellar − 1010M⊙Þ;
ðC2Þ

where Θ is the Heaviside function and M⊙ the mass of the
Sun. The lightcurve calibration model therefore comprises

FIG. 10. Left panel: JLA Hubble diagram, representing the observed apparent magnitudesmB of 740 type Ia supernovae as a function
of their redshift. The error bars represented correspond to 2ΔmB, where ΔmB is included in the JLA catalog but not used in this work.
The different colors correspond to the different observational programs used in the compilation. Right panel: Correlation matrix of the
observed apparent magnitudes, taking into account statistical and various systematic uncertainties (see [17], Sec. V. 5, for details on the
construction of the covariance matrix).
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four nuisance parameters (α, β,MB, δM). They are assumed
to be independent of host galaxy properties.
The cosmological model enters in the analysis through

the distance-redshift relation. We assume a flat Universe
containing cold dark matter and a dark energy component
(wCDM hereafter). A wCDM Universe is characterized by
two physical parameters Ωm (the matter density) and w (the
equation of state of dark energy, assumed constant in time).
The luminosity distance appearing in Eq. (C1) is given by
(e.g., [60], Sec. VII)

DLðzÞ ¼
ð1þ zÞ c

H0

Z
z

0

dz0

Eðz0Þ ;

EðzÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ð1 − ΩmÞð1þ zÞ3ðwþ1Þ

q
; ðC3Þ

where c is the speed of light in vacuum and
H0 ≡ 100h km s−1 Mpc−1.

3. Forward modeling

The data model described in the previous section can be
simulated forward by taking the following operations
successively:

ðΩm; wÞ↶PðΩm; wjω;SÞ; ðC4Þ

ðα; β;MB; δMÞ↶Pðα; β;MB; δMjMÞ; ðC5Þ

DLðzOÞ↶PðDLðzOÞjΩm; wÞ; ðC6Þ

d↶PðdjDLðzOÞ; α; β;MB; δM;mOÞ: ðC7Þ

The last two steps are deterministic: in Eq. (C6), the
luminosity distance at the observed redshifts is computed
via Eq. (C3), and in Eq. (C7), the predicted data dðΩm;wÞ ≡
ðmk

B;ðΩm;wÞÞ come from Eqs. (C1) and (C2). We can there-

fore write

PðDLðzOÞjΩm; wÞ
¼ δDðDLðzOÞ − D̂LðzO;Ωm; wÞÞ;

PðdjDLðzOÞ; α; β;MB; δM;mOÞ
¼ δDðd − d̂ðDLðzOÞ; α; β;MB; δM;mOÞÞ;

PðdjΩm; w;M;mOÞ
¼ δDðd − d̂ðDLðzOÞ; α; β;MB; δM;mOÞÞ
× δDðDLðzOÞ − D̂LðzO;Ωm; wÞÞ
× Pðα; β;MB; δMjMÞ: ðC8Þ

The probability PðΩm; wjω;SÞ appearing in Eq. (C4) is
the Gaussian prior given by Eq. (46), i.e., PðΩm; wjω;SÞ≡
Gðω;SÞ with

ω≡
�

0.3

0.75

�
and S≡

�
0.42 −0.24
−0.24 0.752

�
: ðC9Þ

Finally, Pðα; β;MB; δMjMÞ is the sampling distribution
of nuisance parameters, characterized by hyperparameters
M. Following previous studies, we choose broad, inde-
pendent Gaussian priors on each of the four parameters.
Specifically, we assume

0
BBB@

α

β

MB

δM

1
CCCA∼G

2
6664
0
BBB@

0.125

2.6

−19.05
−0.05

1
CCCA;

0
BBB@
0.0252 0 0 0

0 0.252 0 0

0 0 0.12 0

0 0 0 0.032

1
CCCA
3
7775:

ðC10Þ

The hierarchical graphical representation of the simu-
lator is shown in Fig. 11.

4. Discrepancy

Following Betoule et al. [17] (formula 15), we define the
discrepancy between observed and simulated data as

ΔðΩm;wÞ ≡ ðdO − μ̂ðΩm;wÞÞ⊤C−1ðdO − μ̂ðΩm;wÞÞ; ðC11Þ

where μ̂ðΩm;wÞ is the average of N simulated realizations of
dðΩm;wÞ ≡ ðmk

B;ðΩm;wÞÞ for k ∈ ⟦1; 740⟧. This is equivalent to

assuming a Gaussian synthetic likelihood (see Sec. II D 2) in
approximate Bayesian computation, and to using a Gaussian
likelihood for the exact Bayesian problem, solved by
MCMC sampling for reference. Betoule et al. [17]
(Sec. 5. 5), constructed a covariance matrix Cðα;βÞ which
accounts for the uncertainty in the color, stretch and redshift
of each supernova, depending on the nuisance parameters
α and β, but dropped the term log j2πCðα;βÞj from the

FIG. 11. Hierarchical forward model for the analysis of the JLA
type Ia supernovae catalog. The prior on the physical parameters
Ωm and w is a Gaussian with mean ω and covariance matrix S.
The data generating process uses four nuisance parameters, the
distribution of which is characterized by the hyperparameters M
and the supernovae metadata mO.
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definition of the discrepancy. Since α and β are very well
constrained by the data, the dependence ofCðα;βÞ has a weak
effect on the final inference results. Therefore, in this work
(and as in [26]), we assume a fixed covariance matrix C
where the parameters α and β are taken at their maximum
a posteriori value (α ¼ 0.1256, β ¼ 2.6342). This also
justifies dropping the constant term log j2πCj from the
definition of the discrepancy.
We used the data (version 6) and the python script

provided along with the JLA4 to generate the 740 × 740
covariance matrix C. The associated correlation matrix is
shown in Fig. 10 (right).

5. Acquisition

For the analysis described in Sec. IV B, we used N ¼ 50
simulations per point ðΩm; wÞ, and the ExpIntVar rule
without acquisition noise. Figure 12 shows the state of
BOLFI after 20 acquisitions, for a training set of 40 samples.
As can be observed in the lower panels, the different
acquisition functions implement a different trade-off
between exploration and exploitation. In particular, the
ExpIntVar surface has a much more complex structure.
Simulations surrounding the 3σ contour of the posterior
have already been run (exploration). The proposed acquis-
ition is in a region of high estimated density (exploitation),
but not yet fully sampled. On the contrary, the next
acquisition suggested by theEI criterion stays in the “valley”
(the innermost contour line) where lies the estimated
optimum, meaning that the tails of the posterior will hardly
be sufficiently sampled.

FIG. 12. BOLFI at work after 20 acquisitions for the supernovae cosmology problem. Top panels: Isocontours of the Gaussian process
model for the discrepancyΔðΩm;wÞ. The mean (left) and variance (right) are shown in arbitrary units. The red dots mark the location of the
training parameters ðΩm; wÞ. Bottom panels: Isocontours of the acquisition surfaces built from the Gaussian process, using two different
acquisition rules: the expected improvement (which is maximized, left), and the expected integrated variance (which is minimized,
right). Units are arbitrary. The location of the next acquisition (i.e., the optimizer) is marked by the cross, and the contours of the exact
posterior are plotted as dashed gray lines for reference. The initial training set is composed of 20 samples, and the expected integrated
variance has been used for the 20 acquisitions shown.

4These products are available at http://supernovae.in2p3.fr/
sdss_snls_jla/ReadMe.html.
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