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Current cosmological constraints on the scalar spectral index of primordial fluctuations ns in the ΛVcold
dark matter (ΛCDM) model have excluded the minimal scale-invariant Harrison-Zel’dovich model
(ns ¼ 1; hereafter HZ) at high significance, providing support for inflation. In recent years, however, some
tensions have emerged between different cosmological data sets that, if not due to systematics, could
indicate the presence of new physics beyond the ΛCDMmodel. In light of these developments, we evaluate
the Bayesian evidence against HZ in different data combinations and model extensions. Considering only
the Planck temperature data, we find inconclusive evidence against HZ when including variations in the
neutrino number Neff and/or the helium abundance YHe. Adding the Planck polarization data, on the other
hand, yields strong evidence against HZ in the extensions we considered. Perhaps most interestingly,
Planck temperature data combined with local measurements of the Hubble parameter [A. G. Riess et al.,
Astrophys. J. 826, 56 (2016); A. G. Riess et al. Astrophys. J. 861, 126 (2018)] give as the most probable
model a HZ spectrum, with additional neutrinos. However, with the inclusion of polarization, standard
ΛCDM is once again preferred, but the HZ model with extra neutrinos is not strongly disfavored. The
possibility of fully ruling out the HZ spectrum is therefore ultimately connected with the solution to current
tensions between cosmological data sets. If these tensions are confirmed by future data, then new physical
mechanisms could be at work and a HZ spectrum could still offer a valid alternative.
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I. INTRODUCTION

Current observations of cosmic microwave background
(CMB) anisotropies and large scale structure are in good
agreement with the hypothesis that cosmic structures
originated from tiny density perturbations in the early
universe. The inflationary theory (see, e.g., [1] for reviews)
predicts the existence of such perturbations by stretching
microscopic quantum fluctuations to cosmological scales
[2]. While the exact inflationary mechanism by which these
perturbations are generated is not yet known, a general
prediction is that their power spectrum can be well
described by a power law Askns where As and ns are
defined as the primordial amplitude and spectral index
while k is the perturbation wave number measured in
Mpc−1h. Furthermore, the value of the spectral index

should be nearly one, ns ∼ 1, reflecting the constancy of
the Hubble horizon during inflation, but at the same time
not exactly one, due to the dynamics of the inflaton field
(again, see [2]).
An exact value of ns ¼ 1 is indeed not expected in

inflation and would coincide with the phenomenological
model proposed by Harrison [3], Zel’dovich [4], and
Peebles and Yu [5], known as Harrison-Zel’dovich (HZ)
spectrum, proposed well before the formulation of infla-
tion, and corresponding to perfect scale invariance of the
fluctuations. While it is still possible to have inflationary
models with spectral index nearly identical to HZ (see,
e.g., [6]), a measurement of ns close but different from one
should be considered as a further corroboration of inflation.
In the past twenty years, CMB measurements made by

balloon experiments such as BOOMERanG [7,8] and
satellite experiments such as WMAP [9,10] and, more
recently, Planck [11,12], have provided improving con-
straints on ns. From the constraint of ns ¼ 0.90� 0.08 at
68% credible interval from BOOMERanG [8], we have
now ns ¼ 0.9645� 0.0049 from the Planck 2015 data
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release, i.e., an increase by a large factor of ∼16 in the
precision of the measurement and a preference over the HZ
spectrum at about 7 standard deviations.
This is a success for the theory of inflation and several

CMB experiments are now aiming at the measurement of
polarization B modes generated by gravitational waves
during inflation (see, e.g., [13]).
It is important to stress, however, that the above con-

straints have been obtained indirectly, assuming the ΛCDM
model based on cold dark matter (CDM) and a cosmo-
logical constant (Λ). Moreover, the unprecedented sensi-
tivity in cosmological experiments is revealing several
interesting discrepancies and tensions in the ΛCDMmodel.
For example, the Planck constraint on the Hubble

constant, obtained under ΛCDM, is about 3.3 standard
deviation from the direct constraint of Riess et al. [14] (R16
hereafter), derived from direct observations. The disagree-
ment is even larger, 3.8 standard deviations, for the new
determination of Riess et al. [15]. Furthermore, the Planck
temperature anisotropy power spectrum data seems to
suggest an amplitude of gravitational lensing larger than
the one expected in the ΛCDM scenario at about ∼2–2.5
standard deviations ([12,16–18]), showing a possible inter-
nal tension in the Planck data itself. A greater amount of
lensing in the Planck power spectra, parametrized by the
Alens factor (see [19]), puts the Planck cosmology in better
agreement with the cosmic shear data from surveys such as
the Kilo-degree survey KiDS-450 [20] and the dark energy
survey [21,22], as well as with the cosmological parameters
derived from WMAP data [23].
While the statistical significance of these tensions is mild

[24], the possibility of extensions to the ΛCDM scenario
that could explain them is clearly open. For example, an
increase in the number density of relativistic particles at
recombination Neff or a change in the dark energy equation
of state w could both alleviate the current discrepancy on
the Hubble parameter (see, e.g., [25]). In the past years the
possibility of new physics either in the dark energy sector
either in the neutrino sector to solve the Hubble tension has
been considered in several works ([25–42]).
It is therefore timely to investigate the robustness of the

conclusion that the HZ spectrum is ruled out while
considering extended cosmological scenarios, beyond
ΛCDM. A similar analysis has been already performed
in recent papers (see, e.g., [43–46]). Here we extend these
previous analyses by including more data (e.g., the Planck
polarization CMB data), by considering more parameter
extensions, and by using a different approach in calculating
Bayesian evidence using the MCEvidence code described
in [47]. Moreover, when computing Bayesian evidence we
will compare the viability of the HZ spectrum not only with
respect to ΛCDM but also to its extensions.
As wewill see, a crucial point in this investigation is that a

HZmodel hasns ¼ 1, i.e., one parameter fewer than standard
ΛCDM. The HZ model is therefore less complicated (from

the point of view of the number of parameters) and this may
lead to a higher Bayesian evidence when compared with
models where ns is an additional parameter and which
produce similar fits to the data. Indeed, Bayesian evidence
weights the simplicity of the model with the Occam factor,
the inverse factor bywhich the prior space collapseswhen the
data arrive.
The paper is structured as follows: in the next section we

describe the data analysis method, in Sec. III we discuss the
results and in Sec. IV we present conclusions.

II. METHOD

A. Models considered

As stated in the Introduction, the goal of this paper is
to determine the Bayesian evidence for a HZ spectrum
in ΛCDM and extended scenarios. We have therefore
analyzed the cosmological data under the assumption of
the following models:

(i) StandardΛCDM. In this casewe assume a flat model,
with cold dark matter, a cosmological constant and
adiabatic primordial fluctuations. For this model we
have considered variations in 6 parameters: the
amplitude As and spectral index ns of primordial
scalar fluctuations, the coldωc andbaryonicωb matter
densities, the angular size of the acoustic horizon at
decoupling θc, and the reionization optical depth τ.

(ii) ΛCDMþ Neff . In this case we have extended the
ΛCDMmodel described above by including variation
in the neutrino effective number Neff that essentially
counts the number of relativistic degrees of freedom
at recombination. The standard model with three
neutrinos of negligible mass predicts Neff ¼ 3.046.
We assume a flat prior on Neff between 0.05 and 10.
The inclusion of Neff affects the CMB constraints on
ns (see, e.g., [45]).

(iii) ΛCDMþ YHe. Varying the helium abundance YHe
modifies the process of recombination and changes
the structure of peaks in the CMB anisotropy spectra.
This quantity is usually derived from the value
of the baryon density ωb assuming standard big bang
nucleosynthesis (BBN). However, it is plausible
to take a more model-independent approach and to
derive constraints on YHe directly from CMB obser-
vations. The assumed prior on YHe is flat between 0.1
and 0.5.

(iv) ΛCDMþ Neff þ YHe. In this case we remove com-
pletely the assumption of BBN and of the standard
three neutrino framework and consider both the
possibilities of an extra background of relativistic
particles and free YHe.

(v) ΛCDMþ Neff þ nrun þ Σmν þ Alens. The model de-
scribed above is further extended by considering the
possibility of a running of the spectral index with
scale nrun ¼ dns=d ln k, a total neutrino mass Σmν,
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and a varying amplitude of the CMB lensing signal
Alens. In what follows we will refer to this model as
extended-10 since we consider 10 free parameters.
The prior on nrun is flat between −1 and 1. The prior
onmν is flat between 0 and 5 eV. The prior on Alens is
flat between 0 and 10.

(vi) ΛCDMþNeffþnrunþΣmνþAlensþw. We further
extend the extended-10 model by considering var-
iations in the dark energy equation of state w ¼
p=ðρc2Þ, assumed to be constant with redshift. We
will refer to this model as extended-11. The prior on
w is flat between −3 and 0.3.

The inclusion of Neff and w is motivated by a well-
known parameter degeneracy with the value of the Hubble
constant derived from the Planck data. Increasing Neff or
decreasing w could bring the Planck constraint on H0 in
better agreement with the direct measurement of H0 from
R16 [14]. We consider variation in Alens given the indica-
tion from the Planck data for an anomalous Alens > 1 value.
We also include nrun and YHe since these parameters are
correlated with ns.
A few remarks about other parameters is in order. Aside

from cosmological parameters, the Planck analysis also
includes a number of nuisance parameters. These are
marginalized over before the evidence is computed, which
is a valid procedure if the nuisance parameters are inde-
pendent of the cosmological parameters. It is a good
approximation for Planck [16].
Finally, we note that, for uniform priors, the Bayesian

evidence depends inversely on the prior range, provided
that the prior encompasses all of the likelihood. This makes
it very straightforward to recalculate the Bayes factors for
different prior ranges, if desired.

B. Data

As cosmological data we examine the high-l temper-
ature and low-l temperature and polarization CMB angular
power spectra released by Planck in 2015 [16]. We consider
different sets of data combinations. The first set includes
the large angular-scale temperature and polarization anisot-
ropies measured by the Planck LFI experiment and the
small-scale temperature anisotropies measured by Planck
HFI experiment, we refer this case by “Planck TT.” The
second set includes Planck TT together with the high-l
polarization data measured by Planck HFI [16], and this
data set is refereed as “Planck TTTEEE.” We also include
the R16 bound in the form of an additional Gaussian
likelihood weighting for the Hubble constantH0 ¼ 73.24�
1.75 km s−1 Mpc−1 at 68% credibility interval, as measured
by [14].
Finally, in some cases we will also use information from

Baryon Acoustic Oscillation (BAO) and cosmic shear weak
lensing (WL) surveys as in [12].
The data are first analyzed using the November 2016

version of the publicly available Monte Carlo Markov

Chain (MCMC) package cosmomc [48] with a convergence
diagnostic based on the Gelman and Rubin statistic
(see [49]). The MCMC chains in the Planck legacy archive
are described at [50].

C. Bayesian evidence

In this paper we compare models principally using the
framework of Bayesian evidence. The posterior proba-
bility of a model M given the data x, pðMjxÞ depends on
the Bayesian evidence (or marginal likelihood), pðxjMÞ,
which is the denominator in the posterior for a vector of
parameters θ of a model M and a set of data x:

pðθjx;MÞ ¼ pðxjθ;MÞπðθjMÞ
pðxjMÞ : ð1Þ

Here pðxjθ;MÞ is the likelihood and πðθjMÞ is an assumed
prior on the parameters.
The Bayesian evidence ensures that the posterior is

normalized, and is given by

E≡ pðxjMÞ ¼
Z

dθpðxjθ;MÞπðθjMÞ: ð2Þ

In light of data x, the Bayesian model comparison
proceeds by a pairwise comparison of competing models,
say M0 and M1, through their posterior odds ratio:

pðM0jxÞ
pðM1jxÞ

¼ pðxjM0Þ
pðxjM1Þ

πðM0Þ
πðM1Þ

: ð3Þ

Assuming equal prior probabilities for the competing
models, πðM0Þ ¼ πðM1Þ, the models’ posterior odd ratio
is the Bayes factor,

B≡ pðxjM0Þ
pðxjM1Þ

: ð4Þ

According to the revised Jeffreys scale by Kass and
Raftery [51], the evidence (against M1) is considered as
positive if 1.0 < lnB < 3.0, strong if 3.0 < lnB < 5.0, and
very strong if lnB > 5.0.
In what follows we will always consider the evidence

against a HZ model, i.e., M0 is a model with varying ns
parameter, while M1 is a model with a HZ spectrum.
Following this definition, a positive value of lnB provides
evidence against a HZ spectrum. A negative value of lnB
means evidence against a ns ≠ 1 model.
The evidence is computed from the MCMC chains using

the MCEvidence code described in [47].

III. RESULTS

Before discussing in detail all the obtained results in the
next section it is useful to consider Fig. 1 where we plot the
Bayes factors considering several data combinations and
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different theoretical scenarios. The Bayes factors for each
data set are with reference to the ΛCDM case; solid
symbols identify a model where ns is allowed to vary
while empty symbols correspond to models where a HZ
spectrum is assumed. If we first consider models with free
ns (solid symbols) we notice that there is no parameter
extension that is favored with respect to ΛCDM with the
only exception of the ΛCDMþ Alens model (solid green
triangle) with just a minor, positive, evidence for the
PlanckþWL data set. This is a direct consequence of
the anomalous Alens value seen by the Planck data. We can
also notice a strong and a very strong evidence against
extended-10 and extended-11 (solid brown diamond and
solid pink cross) with respect to ΛCDM, especially in the

case of the Planck TTTEEE data set. Models with one
single additional parameter as ΛCDMþ Neff (red solid
squares) or ΛCDMþ YHe (orange solid cross) are not
strongly disfavored. In practice the visual fact that most
of the models are below the blue line clearly indicates that
there is currently no strong evidence against the ΛCDM
standard scenario.
When moving to empty symbols, i.e., to models that now

assume a HZ spectrum, we also see that there is no positive
evidence for them with the single notable exception of
the Planck TTþ R16 data set. Indeed, in this case we see
a positive evidencewith respect toΛCDM for HZΛCDMþ
Neff (empty orange times) and HZΛCDMþ YHe (empty red
square). The positive evidence for the HZ ΛCDMþ Alens

FIG. 1. Bayes factors − lnB with respect to the flat ΛCDM model. Following our definition, a negative value (please note the minus
sign on the y label) provides evidence against a HZ spectrum while a positive value favors it. Models with varying spectral index
(ns ≠ 1) are shown by filled markers while the Harrison-Zel’dovich (ns ¼ 1) cases are shown by the open markers. The different models
shown in the bottom left legend are extensions of the flat ΛCDM model while those in the bottom right legend are extensions of the flat
ΛCDM with HZ spectral index. The number of parameters in the model is represented by the relative size of the markers. The colored
boundaries delineating the evidence degrees are based on the Kass and Raftery [51] scale. Note that in the case of the BAO and WL data
sets we consider just Neff and Alens respectively as extra parameters.
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is still marginally present for the PlanckTTþWL data set
but disappears completely for Planck TTTEEEþWL case,
with a very strongnegative evidence.We alsonotice strong or
very strong evidence against HZ in the ΛCDMmodel for all
data sets considered. Very strong evidence against HZ with
respect to ΛCDM is also present for all model extensions
considered in the case of the Planck TTTEEE data sets.
Visually we see that the Planck TTþ R16 data set provides
the least stringent constraints on HZ and that the inclusion of
R16 reduces the evidence against HZ for Planck TTTEEE.
In the next sections we discuss these results in more

detail and provide the Bayesian evidences for several data
and model combinations. The constraints on cosmological
parameters can be found in the Appendix of this paper.

A. Planck data and the R16 constraint

In Table I we compute the evidence for a HZ spectrum
for several model extensions with respect to the standard
ΛCDM model, i.e., the quantity

lnB≡ ln
pðxjMΛCDM;ns≠1Þ
pðxjM1;ns¼1Þ

; ð5Þ

where MΛCDM is standard ΛCDM with variable ns and M1

is one of the models listed in the first column of Table I with
a HZ primordial spectrum, i.e., ns ¼ 1. The evidences are
computed assuming the Planck CMB data with and without
the inclusion of the R16 constraint.
We can immediately notice (first row of Table I) that a

HZ spectrum is strongly disfavored with a very strong
negative evidence (lnB > 5) in the case of ΛCDM for any
data combination. In the framework of ΛCDM, a HZ
spectrum is therefore significantly ruled out. This is clearly
in agreement with the accurate constraint that the Planck
data provides on the scalar spectral index when a ΛCDM
model is assumed (see the results in Tables V–VIII in the
Appendix).
However, when we consider extensions involving Neff or

YHe but with a HZ spectrum (rows 2–4 of Table I), the
Planck TT data alone do not significantly prefer standard
ΛCDM over these models providing just a negative
evidence (lnB > 2). Furthermore, when the R16 constraint
is included with TT, model extensions with a HZ spectrum

are even favored with respect to standard ΛCDM with
positive, albeit not significantly large, evidences (lnB < 0).
In practice both the ΛCDMþ Neff and ΛCDMþ YHe
models with ns ¼ 1 provide a better fit to the Planck TTþ
R16 data set than standard ΛCDM with the same number
of parameters (6) (see the discussion on this point in the
Appendix).
The inclusion of CMB polarization data, however, lifts

some of the parameter degeneracies that affect the CMB
temperature data, provides a better constraint on Neff and
YHe compatible with the expected standard values, and
disfavors a HZ spectrum in these model extensions. Indeed,
very strong evidence (lnB > 5) against a HZ spectrum for
all the model extensions considered with respect to stan-
dard ΛCDM is obtained with the Planck TTTEEE data.
Once the R16 data are included, the evidence is still present
against HZ in model extensions that vary Neff or YHe but
only at the level of lnB > 2. A HZ spectrum in these
models is therefore disfavored but not fully excluded with
respect to ΛCDM when the Planck TTTEEEþ R16 data
set is considered. For the same data set, the very extended
models, extended-10 or extended-11, with a HZ spectrum
are strongly disfavored with respect to ΛCDM (lnB > 5).
It is interesting to compute the evidence for a HZ

spectrum not with respect to standard ΛCDM but consid-
ering the same model but with ns free to vary, i.e.,

lnB≡ ln
pðxjM1;ns≠1Þ
pðxjM1;ns¼1Þ

; ð6Þ

where M1 is one of the of the extensions to ΛCDM.
The results of this kind of analysis are reported in

Table II. As we can see, when considering extensions to
ΛCDM, there is no very strong evidence against a HZ
spectrum (all the values in the Table are <5). In particular,
we always found a positive evidence for HZ in the Planck
TTþ R16 data set and a marginally negative or positive
evidence in the case for Planck TTTEEEþ R16. In short,
when considering model extensions, a HZ spectrum is
never significantly ruled out from CMB data alone and is in
some cases even favored when the R16 constraint is
included. Therefore, if the current case for extensions
motivated by the tensions between the Planck and the R16
results on the Hubble constant will be further confirmed by

TABLE I. Bayesian evidences against a HZ spectrum under different model assumptions with respect to the
standard ΛCDM model with ns free to vary.

Model Planck TT Planck TTþ R16 Planck TTTEEE Planck TTTEEEþ R16

ΛCDM (HZ) 9.94 5.86 21.42 16.99
ΛCDM þ Neff (HZ) 2.11 −2.04 7.73 2.75
ΛCDM þ YHe (HZ) 2.53 −0.55 7.24 3.82
ΛCDM þ YHe þ Neff (HZ) 3.71 −0.14 9.4 4.83
Extended-10 (HZ) 7.85 4.18 13.08 7.91
Extended-11 (HZ) 8.48 6.78 13.67 10.82
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future data, the HZ spectrum could be still a viable option for
the primordial density perturbations.

B. Planck+BAO

In the previous section we have considered the combi-
nation of Planck data with the R16 constraint. The R16
constraint on the Hubble constant is in tension with the
corresponding Planck constraint obtained standard ΛCDM.
We have therefore seen that if we assume this tension as
genuine and not produced by unknown systematics in the
data then there is no significant evidence (lnB > 5) against
an extended model with a HZ spectrum either with respect
to ΛCDM, or to the extension itself with ns ≠ 1.
However, other data sets such as BAO are in better

agreement with Planck when ΛCDM is assumed and it is
interesting to evaluate the evidence against HZ when these
two data sets are combined.
In Table III we report the Bayesian evidence for HZ

for Planck TTþ BAO and Planck TTTEEEþ BAO data,
considering for simplicity just the ΛCDMþ Neff exten-
sion. Indeed, this extension seems to provide the best
solution to the H0 tension. In the second column of
Table III we provide the evidence against the model with
HZ listed in the first column with respect to standard
ΛCDM. In the third column of Table III we report the
similar evidence but now with respect to ΛCDMþ Neff
with ns free to vary.
As we can see (second column), Planckþ BAO always

provides strong evidence against HZ with respect to
standard ΛCDM. When the BAO data are included, the
evidence against HZ under ΛCDM grows by Δ lnB ¼
10.18 for Planck TT and by Δ lnB ¼ 6.9 for Planck

TTTEEE. When considering a HZ spectrum in a ΛCDMþ
Neff extension, the evidence against it with respect to
standard ΛCDM also grows by Δ lnB ¼ 3.33 for Planck
TT and by Δ lnB ¼ 1.98 for Planck TTTEEE. While HZ
was already ruled out from Planck TTTEEE data alone, the
inclusion of the BAO data sets excludes HZ also in the case
of Planck TT.
When we consider the evidence with respect to

ΛCDMþ Neff (third column) we first note that ΛCDM
models with a HZ spectrum are significantly disfavored
(lnB > 5) both from Planck TTþ BAO and Planck
TTTEEEþ BAO, even being based on fewer free param-
eters (5 instead of 7). Interestingly, there is no significant
evidence against a HZ spectrum when the ΛCDMþ Neff
model is considered from Planck TTþ BAO data even if
there is an increase of Δ lnB ¼ 3.07 with respect to the
Planck TT case. Finally, we see that inclusion of the BAO
data with Planck TTTEEE data provides now a very strong
evidence against HZ also in the ΛCDMþ Neff scenario.

C. Planck+WL

As discussed in the Introduction the Planck data set shows
an internal tension above the 2 standard deviations on the
determination of the amplitude of the lensing parameterAlens.
Interestingly, the inclusion of Alens as a free parameter in the
Planck analysis results in a σ8 estimate that is in better
agreement with the one obtained from cosmic shear surveys.
It is therefore important to assess the viability of a HZmodel
in the framework of a ΛCDMþ Alens model when consid-
ering cosmic shear data—we use the revised version of the
CFHTLenS cosmic shear data set [12].
In Table IV we report the Bayesian evidence for the

PlanckþWLdata set, including the possibility of a variation
in Alens. We see very strong evidence against a HZ spectrum
in most cases. However, if we limit just to Planck TTþWL,
the evidence against HZ in a ΛCDMþ Alens scenario is just
marginal when compared either with ΛCDM, either with
ΛCDMþ Alens itself.
Interestingly, including the polarization data changes this

conclusion quite dramatically. Indeed, if we now focus
attention on the results in the last row of Table IV, we see
that a HZ spectrum in a ΛCDMþ Alens framework is
strongly ruled out by the Planck TTTEEEþWL data set
with a very strong negative evidence (Δ lnB > 5).

TABLE II. Bayesian evidences against a HZ spectrum under different model assumptions but now comparing with
the corresponding model extension with ns free. For example, the HZ spectrum under ΛCDM þ Neff in the first line
is compared with the corresponding ΛCDM þ Neff model but with ns free to vary.

Model Planck TT Planck TTþ R16 Planck TTTEEE Planck TTTEEEþ R16

ΛCDM þ Neff (HZ) −0.55 −2.31 4.30 0.72
ΛCDM þ YHe (HZ) 0.25 −1.95 4.74 1.57
ΛCDM þ YHe þ Neff (HZ) −0.95 −2.04 3.79 0.44
Extended-10 (HZ) −1.86 −2.60 1.32 −3.2
Extended-11 (HZ) −1.35 −1.45 1.29 1.61

TABLE III. Bayesian evidence for a HZ spectrum in the case of
ΛCDM and ΛCDMþ Neff . Planck TTþ BAO and Planck
TTTEEEþ BAO data are considered.

Planck TTþ BAO ΛCDM ΛCDMþ Neff

ΛCDM (HZ) 20.12 17.08
ΛCDMþ Neff (HZ) 5.43 2.52
Planck TTTEEEþ BAO ΛCDM ΛCDMþ Neff
ΛCDM (HZ) 28.3 25.05
ΛCDMþ Neff (HZ) 9.71 6.46
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In summary, the Alens tension brings a HZ spectrum back
in to agreement with Planck TT data but not when the
Planck TTTEEE data are considered.

IV. CONCLUSIONS

In this paper we have discussed the agreement of a
Harrison-Zel’dovich primordial power spectrum with cos-
mological data under the assumption of extended cosmo-
logical scenarios motivated by tensions between current
cosmological data sets. This is an important analysis since
having very strong evidence against HZ even in extended
scenarios would further support inflation.
As already pointed out in the literature, we have shown

that a HZ spectrum, in the framework of ΛCDM, is indeed
strongly disfavored by Planck temperature and polarization
data with very strong evidence against it.
However, focusing just on Planck TT data, we have

found no significant evidence against HZ when considering
variations in the neutrino number Neff, in the helium
abundance YHe, and in a combination of the two.
Furthermore we have found even a positive evidence for
HZ with respect to ΛCDM when R16 is included.
The Planck TT result changes with the inclusion of

polarization data, which improves the determination of
Neff , producing now from Planck TTTEEE data strong
evidence against HZ with respect to ΛCDMþ Neff and
very strong evidence against HZ within ΛCDM.
This is mitigated by the inclusion of R16 data. From the

Planck TTTEEEþ R16 data set we found only positive
evidence againstHZwith respect toΛCDMand inconclusive
evidence with respect to ΛCDMþ Neff and ΛCDMþ YHe.
If we include information from BAO, we have found

very strong evidence against HZ in all cases with the
exception of the ΛCDMþ Neff scenario.
Therefore, when considering the ΛCDMþ Neff scenario

we can state that R16 and BAO data have opposite effects in
ruling out HZ. R16 is in someway reducing the discrepancy
with HZ while BAO data increases it.
If we include information from cosmic shear, we have

found from Planck TT data very strong evidence against
HZ assuming ΛCDM but no significant evidence against
HZ in the case of a ΛCDMþ Alens scenario. However, the
inclusion of Planck polarization data again works against

HZ and we found very strong evidence against HZ from
Planck TTTEEEþWL data even when allowing Alens
to vary.
We have also investigated if further parameter extensions

could alter the conclusions. When polarization data are
included, there is always a very strong evidence against these
extensions with respect to ΛCDM due to the increased
number of parameters, but within these extended parameter
frameworks, a HZ spectrum is not yet ruled out, with strong
evidence in favor of it when considering the Planck
TTTEEEþ R16 data set and the extended-10 scenario.
The possibility of fully ruling out the HZ spectrum with

very strong evidence is therefore ultimately connected with
the solution to the current tension on the Hubble parameter
between Planck and R16. If the tension is confirmed by
future data, then new physical mechanisms could be at work
and a HZ spectrum could still offer a possible alternative.
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APPENDIX: CONSTRAINTS ON
COSMOLOGICAL PARAMETERS

In this Appendix we discuss the constraints on cosmo-
logical parameters from the several analyses performed.

1. Planck TT

Herewe report the constraints on cosmological parameters
from the Planck TT data set under the assumption ofΛCDM,
ΛCDMþ Neff , extended-10, and extended-11 models in
Table V. The results for the ΛCDMþ YHe and ΛCDMþ
YHe þ Neff models using the same data set are presented in
the first columns of Tables IX and X. Although the main
conclusions come from the Bayesian evidence, for com-
pleteness we report the mean effective chi-square, χ̄2eff ,
computed by weighting the χ2 values of the models present
in the MCMC chains, at the bottom of each table. This
quantity can give an idea, albeit not fully rigorous, of the
goodness of fit of the selected scenario (see [12]). As we can
see, in the case of standard ΛCDM, the HZ spectrum is
strongly disfavored with Δχ̄2eff ∼ 26. We also note that the
assumption of HZ introduces a major shift in most of the
parameters. In particular, the ΛCDM HZ model prefers a
higher value for the optical depth τ, a higher Hubble constant
of H0 ¼ 72.01� 0.51 km s−1Mpc−1 at 68%, i.e., in agree-
mentwith theR16 constraint [14], a smaller value for the cold
darkmatter density, and a higher value for the baryon density.

TABLE IV. Bayesian evidence for a HZ spectrum in the case
of ΛCDM and ΛCDM þ Alens. Planck TTþWL and Planck
TTTEEEþWL data are considered.

Planck TTþWL ΛCDM ΛCDMþ Alens

ΛCDM (HZ) 7.51 8.65
ΛCDMþ Alens (HZ) 0.01 1.15
Planck TTTEEEþWL ΛCDM ΛCDMþ Alens
ΛCDM (HZ) 19.17 18.55
ΛCDMþ Alens (HZ) 14.11 13.49
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When we move to the case of ΛCDMþ Neff we see that
the introduction of Neff essentially weakens the constraints
on the Hubble constant by nearly a factor 3 and the
constraints on the baryon and cold dark matter densities
and ns by nearly a factor of 2. The mean values of the
parameters are almost the same as in the case of ΛCDM.
A variation in Neff changes the epochs of equality and
decoupling affecting the sound horizon scale rs and the silk
damping scale rd. Moreover, varying Neff introduces the
possibility of changing the early integrated Sachs-Wolfe
effect that shifts the peaks positions and is degenerate with
θc. This introduces a further degeneracy between the
parameters that explains the weakening of the constraints.
The value of χ̄2eff is practically unchanged from ΛCDM.
When the HZ spectrum is assumed in the ΛCDMþ Neff
scenario we note first a strong indication for Neff > 3.046.
Indeed, the ns ¼ 1 spectrum, with pivot scale at
kp ¼ 0.05h Mpc−1, shows a CMB first peak in the TT
spectrum that is lower with respect to the ns ¼ 0.969
model. Increasing Neff adds power to the first peak owing
to the early integrated Sachs-Wolfe effect and helps in
reconciling HZ with data. We also see that the Hubble
constant is again increased and in perfect agreement with
R16. The cold dark matter density, however, is larger with
respect to the varying ns case. The assumption of HZ
results in a moderate increase of Δχ̄2eff ∼ 3.5; i.e, HZ is in
better agreement with the data when variable Neff is
considered. If instead of Neff we vary YHe, we see from
the constraints in Table IX that the bounds on ns are
strongly weakened–increasing the error by almost a factor
2 with respect to ΛCDM. Variation on YHe has a smaller
effect on the constraint of the Hubble constant. In sum-
mary, variable Neff and variable YHe both weaken the
constraints on ns, but only Neff significantly shifts the
mean value and broadens the constraint on H0. When both
Neff and YHe are varied (see Table X) the constraints on ns
are further enlarged by ∼60%. As in the ΛCDMþ Neff

case, there is a moderate increment in the value of the χ̄2eff
when imposing a HZ spectrum, with Δχ̄2eff ∼ 4–5.

When we consider the extended-10 and extended-11
scenarios as shown in the Table V, we note the following:
(a) the χ̄2eff is always very close and slightly better than the
ΛCDM case, (b) there is very little variation in χ̄2eff when
HZ is introduced, i.e., HZ cannot be ruled out on the basis
of a simple χ̄2eff analysis in these extended scenarios, (c) the
main effect of assuming a HZ is to provide evidence for
Neff > 3.046 and to further improve the indication for
Alens > 1, and (d) the Hubble constant is left practically as
undetermined even when imposing HZ.

2. Planck TT +R16

In Tables VI, IX, and X we report the 68% credible
intervals for the cosmological parameters using the Planck
TTþ R16 data set. We can immediately see that theTA
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inclusion of R16 forces the spectral index ns to be slightly
higher in the case of ΛCDM. Not surprisingly, the χ̄2eff is
definitely worse for ΛCDM in the case of Planck
TTþ R16, as a result of the tension between the Planck
data and R16. However, we see that this is not the case
when comparing the χ̄2eff values for models with a HZ
spectrum between Planck TTand Planck TTþ R16. As we
discussed in the previous paragraph, the assumption of the
HZ spectrum shifts the values of the Hubble constant in
agreement with R16. Therefore, for these models, the
inclusion of R16 has little impact on the χ̄2eff . Imposing in
the case of the Planck TTþ R16 data set a HZ spectrum in
ΛCDM increases the χ̄2eff by ∼18, i.e., a smaller value with
respect to the Planck TT case.
As we can see, now theΛCDMþ Neff scenario produces

a fit to PlanckTTþ R16 that is better than theone achievable
assuming ΛCDM, i.e., the inclusion ofNeff helps in solving
the tension on the Hubble constant. With respect to Planck
TT alone, the inclusion of R16 increases the effective mean
chi-square by just Δχ̄2eff ∼ 3. More importantly, we can also
see that imposing HZ in this scenario does not worsen the
χ̄2eff , i.e., HZ is now fully consistent with the data.
Looking at Tables IX and X, an increase of Δχ̄2eff ∼ 7 is

however present when including R16 in the case of
ΛCDMþ YHe and ΛCDMþ YHe þ Neff with respect to
Planck TT alone. Indeed, as we discussed in the previous
paragraph, including YHe weakens the bounds on ns but
less significantly on H0; i.e., it does not fully help in
solving the Hubble tension. However, in both ΛCDMþ
YHe and ΛCDMþ YHe þ Neff , imposing HZ has negligible
effect on χ̄2eff .
If we look at the small differences in the χ̄2eff values in

Table VI we can conclude that HZ is also consistent with
Planck TTþ R16 when we consider the extended-10 and
extended-11 models.

3. Planck TTTEEE

As we can see in Table VII, Planck polarization data
significantly improves the constraints on cosmological
parameters. For example, if we focus attention on the
simple ΛCDM model we see that the inclusion of CMB
polarization data increases the accuracy on ns by ∼25%.
The consequence of this is that now a HZ spectrum in the
ΛCDM scenario is ruled out even more with Δχ̄2eff ∼ 39.
The interesting point is that a HZ spectrum is significantly
disfavored also when considering the inclusion ofNeff . The
assumption of HZ produces a worse fit to the data with
Δχ̄2eff ∼ 14 in the ΛCDMþ Neff scenario. Polarization data
indeed increases significantly the constraint on Neff by
more than 30% with a mean value close to the standard
expectation of Neff ¼ 3.046. The physical reason for this is
that polarization data are unaffected by the additional early
integrated Sachs Wolfe produced by a larger Neff.
Including polarization therefore helps in its determinationTA
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and breaks some of the degeneracies between, e.g.,Neff and
Ωch2. A similar argument is also valid in the case of YHe.
As we can see from Tables IX and X, the inclusion of
polarization data significantly improves the constraints on
ns also in these cases.

4. Planck TTTEEE+R16

The inclusion of R16 data, as in the case of the Planck TT
data, has themain effect of favoring a higher Hubble constant
and to put a HZ spectrum in better agreement with the data.
However, aswe can see fromTableVIII, now the inclusion of
R16 is problematic also for theΛCDMþ Neff model. Indeed,
since the polarization data now better constrains Neff to the
standardvalue, there is nowclearly a tensionbetween the data
sets even in this scenario.When including R16 we can notice
an increase ofΔχ̄2eff ∼ 7 assuming theΛCDMþ Neff model.
Aswe can see fromTable IX the inclusionofR16with Planck
TTTEEE is even more problematic in the case of ΛCDMþ
YHe with an increase of Δχ̄2eff ∼ 9. As we can see, imposing
HZ in this case raises χ̄2eff significantly, clearly indicating that
HZ no longer provides a good fit. Moreover, the assumption
of HZ produces a significantly worse fit to the data also in the
case of extended-10 and extended-11. We have therefore a
higher evidence for HZ with respect to Planck TTTEEE but
still worse with respect to the case of the Planck TTþ R16
data set.

5. Planck+BAO

We now consider the combination of Planck data with
the BAO data set as used in [12]. This data set is in very
good agreement with the PlanckΛCDM cosmology and we
indeed expect a significant exclusion of the HZ spectrum.
In Table XI we report the 68% credible intervals for the
ΛCDM and ΛCDMþ Neff models, for the Planck TTþ
BAO and Planck TTTEEEþ BAO data sets. As we can see
the error on ns is further reduced by ∼27% with respect to
Planck TT and ∼15% with respect to Planck TTTEEE. The
direct consequence for this is that the HZ spectrum worsens
the χ̄2eff value by Δχ̄2eff ∼ 47 in the case of TTþ BAO data
and of Δχ̄2eff ∼ 64 in the case of Planck TTTEEEþ BAO.

The situation improves for HZ but not significantly when
considering Neff . Assuming HZ in ΛCDMþ Neff worsens
the χ̄2eff value by Δχ̄2eff ∼ 10 in the case of TTþ BAO data
and of Δχ̄2eff ∼ 18 in the case of Planck TTTEEEþ BAO.

6. Planck+WL

As discussed in the Introduction, the Planck data set has
an internal tension at the level of 2 standard deviations on
the determination of the amplitude of the lensing parameter
Alens. Interestingly, the inclusion of Alens as a free parameter
in the Planck analysis results in a σ8 estimate that is in
better agreement with the one obtained from cosmic shear
surveys. It is therefore important to assess the viability of a
HZ model in the framework of a ΛCDMþ Alens model
when considering cosmic shear data—we use the revised
version of the CFHTLenS cosmic shear data set [12]. The
parameter constraints from Planck TTþWL and Planck
TTTEEEþWL data are reported in Table XII. As we can
see, comparing with the Planck TT case in Table V in the
standardΛCDM case, the inclusion of the WL data set goes
in the direction of slightly increasing ns and lowering σ8.
HZ spectra are therefore in slightly better agreement with
the PlanckþWL data set with respect to the Planck alone
data. As we can see, Planck TTþWL suggest an anoma-
lous value for Alens at more than 2.7 standard deviations.
Moreover, when the Alens parameter is allowed to vary, ns,
in the case of Planck TTþWL, is now closer to 1. When
we consider the 6 parameter HZ model ΛCDMþ Alens we
found that this model has in practice the same χ̄2eff value of
standard ΛCDM (compare the second and fourth columns
of Table XII). The inclusion of the polarization data reduces
the uncertainties on Alens but also shifts its value closer to 1.
For the Planck TTTEEEþWL data set, the indication for
Alens > 1 is now slightly larger than 2.5 standard devia-
tions. The fact that Alens is now closer to 1 shifts the value of
the spectral index to lower values with respect to the Planck
TTþWL case. As a consequence, the HZ spectrum is in
strong tension with the Planck TTTEEEþWL data set,
increasing χ̄2eff by ∼28 even in the ΛCDMþ Alens scenario.
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