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We consider the total nonlocal energy associated with a particle at rest in the Hubble flow, i.e., the
relational energy between this particle and all connected particles within the causal horizon. The
particle, even while at rest, partakes in relative recessional and peculiar motion of connected particles
in three dimensions. A geometrical argument due to Berkeley suggests that the nonlocal mass of
recessional energy associated with the particle is 3 times its Newtonian mass. It follows that nonlocal
recessional and peculiar energy of the Universe are equal, and match Misner-Sharp energy within the
apparent horizon. Contributions of recessional and peculiar nonlocal energy are thus shown to generate
a 6 times higher level of matter energy than expected from the Newtonian mass. Accordingly, the
nonlocal energy density of baryons is expected to be 6 times the standard local energy density of
baryons, i.e., Ωb;eff ¼ 6Ωb. At Ωb ∼ 0.0484� 0.0017 [P. A. R. Ade et al. (Planck Collaboration),
Astron. Astrophys. 594, A13 (2016) ] this predicts a nonlocal baryon energy density Ωb;eff ∼
0.290� 0.010, in agreement with observed matter density Ωm ∼ 0.308� 0.012. The effect of nonlocal
mass on solar system and galactic scales is considered.
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I. INTRODUCTION

Newtonian physics has a concept of both local and
nonlocal energy. Kinetic energy is attributed to a particle,
so it is localizable at the particle’s position. Gravitational
potential energy, on the other hand, is mutual and shared
between particles; hence, it cannot be localized at a point.
This, however, means that the conserved total energy, the
sum of both, is necessarily nonlocal too. One of the main
criticisms of Newton’s theory from the start has been that
kinetic energy of an object is only physically meaningful
if considered in relation to other matter, ultimately the
background of the “fixed stars.” Thus, one can argue that
in Newtonian physics all energy is essentially nonlocal,
not just gravitational energy. It is legitimate to ask why this
would be any different in general relativity, which actually
was intended to satisfy this Machian principle. The rather
artificial distinction between local and nonlocal energy
becomes even less pertinent in the homogeneous, isotropic
universe, where both can only appear as spatially constant
energy densities. The question then is whether we can
recognize nonlocal components of the density parameter ρ.
Considering that in terms of local energy the density of
baryonic matter can only explain about 5% of the required
total energy density ρ, the remainder (or all) can perhaps be
attributed to nonlocal energy contributions.
Theoretical approaches to represent nonlocal energy

typically involve the use of pseudotensors (e.g., Einstein,
Landau-Lifshitz, Bergmann, Møller) or prescriptions of

quasilocal energy (e.g., Misner-Sharp, Hawking, Brown-
York, Epp). Although the literature is not conclusive,
studies mostly agree on zero, or constant, total energy of
the Universe, at least in the flat case [1–11]. Unfortunately,
these notions of nonlocal energy (e.g., a zero-energy
universe) provide no direct information about the evolution
of the density parameter ρ in a way consistent with
observation. There are various indications, however, apart
from the mass deficit itself, that mass in cosmological
context is not necessarily the same as mass in local context.
An intrinsic reason comes from a conjecture due to
Berkeley [12], which gives rise to a different particle mass
in peculiar and recessional motion, as shown hereafter.
Notice that mass associated with nonlocal energy is non-
local too, as it depends on distribution and motion of
interacting particles (mass of binding energy being a
familiar example). Within the context of general relativity,
the notion of (Misner-Sharp) quasilocal energy suggests
that the nonlocal energy density of cosmic matter differs
from the standard local energy density, as we shall point out
first. We use c ¼ 1 throughout.

II. MISNER-SHARP ENERGY

Misner-Sharp energy represents internal energy (kinetic
and potential) of a perfect fluid contained in a sphere of
arbitrary radius [13]. Within the apparent horizon of FLRW
universes, it equals (the Schwarzschild mass) [14,15]

EMS ¼
Ra

2G
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while the apparent horizon radius Ra satisfies [16]

H2R2
a ¼ 1þ 8

3
πGρkR2

a ; ð2Þ

where H is the Hubble parameter and ρk is curvature
energy density. Energy EMSð¼ MMSc2Þ exerts a potential
3
2
GMMSR−1

a ¼ 3
4
at the center of the sphere. Introducing the

density of Misner-Sharp energy, ρE ≡ EMS= 4
3
πR3

a , and
using Eqs. (1) and (2), one obtains the energy equation
(per unit mass)

Ta ¼
3

4
H2R2

a ¼ 2πGðρE þ ρkÞR2
a ¼ Ea − Va; ð3Þ

where, in classical terms, Ta ≡ 3
4
H2R2

a is kinetic energy,
Ea ≡ 2πGρER2

a ¼ 3
4
is conserved total energy and Va ≡

−2πGρkR2
a is curvature energy, i.e., gravitational potential

energy. Since the energies are expressed per unit mass, they
can be regarded potentials.
There are some observations to make: (a) conservation

of energy seems to hold if defined in terms of nonlocal
energy. (b) Equation (3) is actually the Friedmann equation,
multiplied on both sides by the common factor R2

a. Hence,
if the Misner-Sharp formalism is correct, then the total
density in the Friedmann equation equals ρ ¼ ρE þ ρk, and
nothing seems to be missing. For as far assumed local
matter density ρm is represented, it must take the nonlocal
form of ρ. We shall investigate this in the next section.
(c) The Misner-Sharp formalism employs comoving coor-
dinates [13]. Therefore, recessional speed in these coor-
dinates is zero, so that Misner-Sharp energy only represents
peculiar energy of the fluid. (d) Kinetic energy Ta ¼
3
4
H2R2

a is, for the appearance of H, naturally associated
with recessional motion of matter, while Misner-Sharp
energy only expresses peculiar energy, which one may not
immediately relate to the Hubble parameter. That is, unless
the two, peculiar and recessional energy, maintain a fixed
ratio. This indeed follows from both equipartition and the
relational derivation hereafter.

III. RELATIONAL ENERGY

In the relational (Machian) view [17], energy is exclu-
sively a mutual property between causally connected
particles, therefore not an intrinsic property of a particle,
meaning that local energy in fact does not exist in the
relational universe. This may be understood realizing that
the potential energy of a particle of mass m equals mφ,
where φ is the cosmic potential. Without the cosmic mass-
energy present, the potential energy of the particle would
vanish. A similar argument applies to photon energy hν,
where ν is the photon frequency. A vanishing potential
would redshift the photon frequency to zero. Note that the
Misner-Sharp mass within the apparent horizon indeed
equals the Schwarzschild mass. Hence the idea that particle

energy disappears in absence of other mass is not uncom-
mon. This dependency can be largely disregarded though
in the local frame, where spacetime is just an “empty” flat
Minkowski background to local physics. Accordingly, our
notions and unit of inertial mass relate to peculiar motion of
an object in some particular direction, while in the rela-
tional view this object, even when at rest in the Hubble
flow, partakes in energy exchange of recessional and
peculiar motion of cosmic mass in all directions. In other
words, the Newtonian mass and energy of an object in
peculiar motion express only part of the total energy
associated with the object. This follows directly from
Berkeley’s ontological conjectures [12].
George Berkeley, an early critic of Newton, noted that

one can not meaningfully attribute a position or velocity to
a single (point) particle in empty space. Consequentially,
this applies to kinetic and potential energy too, hence to
both inertial and gravitational mass. These properties can
only emerge from the interaction with other particles, and
are, therefore, necessarily shared, mutual properties
between particles, so not localizable in a point and not
intrinsic to a particle. Berkeley continues noting that of two
particles in otherwise empty space, only their radial
distance is observable. Motion in any perpendicular direc-
tion, like with these two particles in circular orbit of each
other, is unobservable in an empty background. Therefore
(and this is crucial), motion in nonradial direction, does not
represent energy between two point particles. This means
that both the kinetic energy Tij and potential energy Vij
between point particles i and j depend only on their
separation Rij, or time derivative thereof, as pointed out
by Poincaré and others [18–20]. Note that Newtonian
potential energy

Vij ¼ −GmimjR−1
ij ð4Þ

is perfectly Machian [18]. It is indeed a mutual, frame
independent property between two connected particles and
depends geometrically only on their separation. Newtonian
kinetic energy, on the contrary, is defined relative to a frame
of reference, so is not relational. Schrödinger [19,20]
reproduced Einstein’s expression of the anomalous peri-
helion precession from the following definition of Machian
kinetic energy,

Tij ¼
1

2
μij _R

2
ij; ð5Þ

where μij represents the mutual mass between particles i
and j,

μij ≡ Vij

φpx
: ð6Þ

The effective potential φpx, defined hereafter, normalizes
μij in order to match Newtonian mass and kinetic energy in
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peculiar motion [21]. Definition (5) meets the Machian
requirements: kinetic energy Tij is mutual between two
particles, is frame independent, and depends only on the
radial component of motion. The total kinetic and potential
energy associated with particle i follows from summation
over all particles within the causal radius Rg of particle i,
i.e., Ti ¼

P
jTij and Vi ¼

P
jVij ¼ miφN , where

φN ¼ −2πGρR2
g ð7Þ

is the Newtonian potential at the center of the causal sphere.

A. Nonlocal mass

Like kinetic and potential energy, the total mass μi
associated with particle i is a nonlocal, distributed property.
However, the value of μi does not follow from simple
addition, i.e., μi ≠

P
jμij, as pointed out next.

Due to the exclusively radial relationship in Eq. (5),
particle j only contributes to kinetic energy Ti and mass μi
if _Rij ≠ 0. Hence _Rij ¼ 0 effectively nullifies the contri-
bution of particle j to both μi and the Newtonian mass mi.
This implies that only a part of the total connected mass,
and therefore only a part φpx of the total Newtonian
potential φN, contributes to the Newtonian mass mi of a
particle i in peculiar motion in some direction x. In a
homogeneous, isotropic sphere, where all particles are in
random peculiar motion, this fraction is

ξpx ≡ h _R2
iji=hv2ijipx ¼

1

3
; ð8Þ

where vij is the relative speed, and _Rij the radial component
of vij, so that the effective potential in peculiar motion in an
arbitrary direction x is (cf. [19,21])

φpx ¼ ξpxφN ¼ 1

3
φN: ð9Þ

Likewise the mass of peculiar motion in the x-direction
between particle i and all connected particles equals

μðpxÞi ¼ ξpx
X

j

μij ¼
1

3

P
jVij

1
3
φN

¼ mi; ð10Þ

as expected. Thus Newtonian mass agrees with nonlocal
mass in peculiar motion in arbitrary direction.
Different from peculiar motion, recession is purely radial

motion between all particles, i.e., _Rij ¼ vij, and hence

ξr ¼ h _R2
iji=hv2ijir ¼ 1: ð11Þ

The kinetic energy of recession, therefore, balances with
the full potential; all connected particles contribute fully.
Thus the effective potential in recessional motion is

φr ¼ ξrφN ¼ φN: ð12Þ

This, however, means that a particle in recessional motion
effectively has an effective mass 3 times larger than the
Newtonian mass in peculiar motion. It interacts with 3
times as much mass. Indeed the total mass between particle
i and all connected receding particles equals

μðrÞi ¼ ξr
X

j

μij ¼
P

jVij
1
3
φN

¼ 3mi: ð13Þ

This is an intriguing consequence of Berkeley’s conjec-
tures, evidently hinting at a possible interpretation of
unidentified dark matter in the form of existing, but
unrecognized, nonlocal energy components associated with
each baryonic particle. Referencing Eqs. (13) and (10),
the total nonlocal mass associated with particle i in the
homogeneous, isotropic universe follows from adding up
the components of μi

μi ¼ μðrÞi þ μðpxÞi þ μðpyÞi þ μðpzÞi ¼ 6mi: ð14Þ

Note that this follows from geometrical considerations
only. Equation (14) reflects that nonlocal energy density
associated with baryonic matter is 6 times the local energy
density. A perhaps conceptually more satisfactory way to
derive this result is through actual calculation of the
recessional and peculiar energies, as follows.

B. Total recessional and peculiar energy

We consider a unit mass test particle at rest in the Hubble
flow at the position of the comoving observer. Adopting
Eq. (5), integration over the causal sphere Vg yields the
recessional Machian kinetic energy Tr between the test
particle and all receding mass within the causal horizon at
radius Rg ≡ arg [21],

Tr ¼
Z

Vg

1

2

dφrðr; θ;ϕÞ
1
3
φr

r2 _a2 ¼ 3

4
r2g _a2 ¼

3

4
H2R2

g: ð15Þ

According to Eq. (12), the potential in recessional motion is
the total Newtonian potential φr ¼ φN ¼ −2πGρR2

g, where
ρ is total density. Hence, the equation of total recessional
energy is

Tr ¼
3

4
H2R2

g ¼ 2πGρR2
g ¼ −φN: ð16Þ

This again is the Friedmann equation, but derived from
Machian principle [21].
Recalling that the effective potential in peculiar motion

in arbitrary direction x is φpx ¼ 1
3
φr ¼ 1

3
φN, we expect the

balancing kinetic energies to maintain the same ratio, i.e.,
Tpx ¼ 1

3
Tr. Thus
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Tpx ¼
1

4
H2R2

g ¼ −
1

3
φN: ð17Þ

Like with recessional motion, this holds for a test particle at
rest in the Hubble flow; i.e., Eq. (17) expresses the kinetic
energy due to the x-component of peculiar motion (on all
physical scales) of all connected particles. The total
peculiar energy associated with the test particle, summed
over three orthogonal directions, is

Tp ≡ Tpx þ Tpy þ Tpz ¼
3

4
H2R2

g ¼ 2πGρR2
g ¼ −φN:

ð18Þ

Hence Tp ¼ Tr, in agreement with both the equipartion
theorem (Tpx¼Tpy¼Tpz¼Trx¼Try¼Trz) and Misner-
Sharp energy (at Rg ¼ Ra). The nonlocal recessional and
peculiar energy combined thus add to

T ≡ Tr þ Tp ¼ 3

2
H2R2

g ¼ 4πGρR2
g ¼ −φ ¼ −2φN: ð19Þ

Therefore,

T ¼ 6Tpx; ð20Þ

consistent with Eq. (14).
Notice that the equivalence of inertial and gravitational

mass is implicitly satisfied by all energy equations
above. The equations, expressed per unit mass, have the
common form T⋆ ¼ −φ⋆. By definition, the kinetic
energy T⋆ involves inertial mass, and the Newtonian
gravitational potential φ⋆ involves gravitational mass.
For an arbitrary test particle with inertial mass mI and
gravitational mass mG, the equation becomes mIT⋆ ¼
−mGφ⋆. Hence mI ¼ mG.

IV. COSMOLOGICAL OBSERVATION
OF NONLOCAL MASS

Contributions of both recessional and peculiar nonlocal
energy in three spatial dimensions have been shown to
generate a 6 times higher level of matter energy than
expected from the Newtonian mass of cosmic matter. This
suggests an effective nonlocal baryon energy density of
the Universe of 6 times the local energy density of baryons,
i.e., Ωb;eff ¼ 6Ωb. According to Planck 2015 data [22], the
baryon density isΩbh2 ∼ 0.0222� 0.0002. At h ∼ 0.678�
0.009 this gives Ωb ∼ 0.0484� 0.0017, while estimated
matter density is Ωm ∼ 0.308� 0.012. The factor of six
then predicts a total nonlocal baryon energy density
Ωb;eff ¼ 6Ωb ∼ 0.290� 0.010, which matches Ωm within
the 68% confidence limits given. The nonlocal mass
associated with baryonic matter thus provides interpretation
to dark matter on the cosmological scale.

V. OBSERVATION OF NONLOCAL MASS ON
LOCAL SCALES

The above model of nonlocal energy regards the causally
connected mass of a homogeneous isotropic Universe. By
Mach’s principle the only true scale of any gravitational
system is the cosmological scale, meaning that cosmic
nonlocal energy acts on any scale, even while not neces-
sarily recognized as such. On the other hand, a specifically
local aspect of gravitational systems is inhomogeneity and
the interaction between the system’s constituents. A ques-
tion then is how nonlocal mass relates to Newtonian mass
and general relativistic effects in a gravitational system,
discussed as follows.
According to the above, the total nonlocal mass associated

with a body in the homogeneous Universe equalsmeff ¼6m,
where m is the Newtonian mass of the body, i.e., the part of
meff that is observed in peculiar motion. Hence, in the
relational view Newtonian mass arises from the interaction
with cosmic mass. The reason that 5

6
of meff is not locally

observable from the motion of the body itself is that the
body’s peculiar motion evidently is in one direction at the
time, while recessional motion of bodies in a gravitationally
bound local system is negligible or zero. A system, like the
solar system or a galaxy, may be seen as a distribution of
interacting local bodies superposed on a homogeneous cos-
mic background of relatively very low density. While the
huge total amount of cosmic mass outside the system
induces the Newtonian mass of all bodies, the interaction
of bodies i and j inside the system gives rise to additional
nonlocal mass μij, which, considering Eq. (6), is typically
extremely small compared with the Newtonian masses
involved. That is, μij⋘miþmj. Yet, the tiny effect of
the corresponding relational kinetic energy Tij ¼ 1

2
μij _R

2
ij

between the bodies is observable on the solar system scale,
for instance as the anomalous perihelion precession, or as
Lense-Thirring frame dragging. Schrödinger showed that the
effect of relational kinetic energy between two orbiting
bodies precisely matches the general relativistic expression
of the anomalous precession [19]. Thus Schrödinger’s model
is meaningful on both the small (solar system) and the large
(cosmic) scale.
What this suggests is that the internal, non-Newtonian,

part of the system mass arises from the local interaction of
bodies within the system, and that the kinetic energy of
these local interactions appears to be accountable for
general relativistic deviations. Moreover, at an increasing
number N of particles within the system, the number of
internal interactions grows as NðN − 1Þ. One, therefore,
expects the total internal part of the system mass [i.e.,P

i≠j
P

j μij ∼ NðN − 1Þ; i; j ¼ 1; ::N], to grow exponen-
tially faster than the Newtonian mass of the system, which
grows like ∼N, thus giving rise to much stronger deviations
from Newtonian behavior in more massive larger systems.
This may be of interest in the study of galaxy rotation and
clusters.
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