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We derive a generalized luminosity distance versus redshift relation for a linearly perturbed Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric with two scalar mode excitations. We use two equivalent
approaches, based on the Jacobi map and the van Vleck determinant, respectively. We apply the resultant
formula to two simple models—an exact FLRW universe and an approximate FLRW universe perturbed by
a single scalar mode sinusoidally varying with time. For both models, we derive a cosmographic expansion
for d; in terms of z. We comment on the interpretation of our results and their possible application to more

realistic cosmological models.
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I. INTRODUCTION

Supernovae observations suggest that the Universe is
currently undergoing a period of accelerated expansion [1].
A crucial assumption in the interpretation of these results is
that our Universe is homogeneous and isotropic on suffi-
ciently large scales, i.e., that the background is at least
approximately FLRW so that

dr?

1 —kr?

ds? ~ —dr* + a*(¢) { + rzdszﬂ . (1)

For the purposes of this article, we shall immediately set
k=0 as we feel that there are both good theoretical
motivations and observational evidence for that choice
[2]. (Though see [3] for a recent countervailing point of
view.) In a recent related article on nonperturbative aspects
of the luminosity distance [4], we were careful to retain
potentially nonzero values of k. In the current article, we are
ultimately interested in perturbative analyses, and it makes
sense to set

ds? & —dr* + a*(1)[dr? + r2dQ?). (2)

Given this assumption, the most straightforward way
of analyzing the supernova data is via a cosmographic
approach [5—12]—in FLRW cosmology, one can, inde-
pendently from the gravitational field equations, express
the luminosity distance of a standardizable candle as a
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power series of its redshift [5,6]. In the absence of any
peculiar velocities, and expanding around the current
epoch, for an exact FLRW universe, one has

Z 1 1 .
d;(z) :H_0{1+§[1 —CIo]Z—g[l — g0 =34} + jo)z*

1
+ﬁ[2—2610 —15¢% — 15g3 + 5jo + 10q0,jo + s0)2°

+ 0(14)}. (3)

Here the cosmographic coefficients—Hubble rate, decel-
eration parameter, jerk, and snap—are defined, respec-
tively, in terms of #-time derivatives as

la

H_c.l. -
a’ 1=~y

1 d 1 a
=——; §=—.
T =W H*a

(4)

Given enough supernovae observations one can constrain
the shape of the cosmographic curve d;(z) and thus
constrain the values of the cosmographic parameters.
Current constraints suggest that gy < 0 [1,2], which jus-
tifies the claim that the Universe is currently in a phase of
an accelerated expansion. In general, for a perturbed FLRW
universe a cosmographic analysis along these lines, or
along the lines indicated below, will only provide part of
the full formula for the luminosity distance, and in this
article, we shall among other things analyze various
deviations from simple cosmography.

Traditionally, the accelerated expansion is explained by
assuming an unknown matter component with negative
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pressure which enters the right-hand side of Einstein’s field
equation. This matter component is usually assumed to take
the form of a cosmological constant or vacuum energy and
thus to be constant over space and time. However, there
exist a plethora of models where this so-called dark energy
varies with time, and might potentially also vary with space
[13—17]. There also exist alternative explanations for the
observation gy < 0, such as modification of GR at cos-
mological scales [18-20], and significant departures from
exact FLRW cosmology [21-25]. In the case of significant
departures from homogeneity or/and from uniform dark
energy, one does not expect the theoretical relation (3) to
hold any more, and one has to perform the supernovae data
fitting with some sort of improved d; (z) relation.

In this paper, we derive a generalized d; (z) relation and
consider its implications. Our motivation for this is twofold.
On the one hand we want to allow for the possibility to fit
supernovae data with alternative cosmological models with
varying dark energy, and thus constrain the parameter space
of such models. On the other hand, we want to consider the
implications of inhomogeneities due to the large scale
structure of the Universe on the interpretation of the
supernovae results.

There have been numerous attempts to derive a general-
ized d; (z) relation ever since the paper of Sasaki [26]. In that
paper, under suitable conditions, the following formula for
the luminosity distance in a perturbed geometry was derived:

dp(z.25) = dy(2) [1 + (%m)o + coth(V—kA, ) V—ké4,

—% A 8 59(&)&] (5)

Here d;(z) is the luminosity distance evaluated at the
background, while 67, 64 and 66 are the perturbations of
the conformal time, the affine parameter and the expansion.
Further progress was made in [27]. Their expression (53)
bears close similarity to our expression (126). Generalized
formulas for d; (or some function of it, such as the
magnitude or the fractional fluctuation) have also been
derived in [28-32]. In [30], the authors compute the two-
point correlation function of the luminosity distance while in
[32] the authors compute the luminosity distance to second
order in perturbations in the geodesic lightcone gauge and
then transform to the Poisson gauge.

In this paper, we shall assume the Universe is well
described by a linearly perturbed FLRW metric with two
scalar mode excitations

ds? = a*(n)[—(1 + 2¥)dn* + 5;;(1 + 2®)dx'dx/].  (6)

Here the conformal time coordinate # is defined as

dn = %. We derive a formula for the luminosity distance

in this geometry using two different but closely related
approaches—the Jacobi map approach and the van Vleck
determinant approach. Both approaches are kinematic in

nature—they assume nothing about what the correct theory
of gravity is. While the Jacobi map calculation is similar to
the one performed in [27], the van Vleck determinant
calculation is entirely new and, as we will see, leads to the
same final formula for the luminosity distance. We rewrite
this final formula in terms of the various contributions to
the redshift to the extent possible. We emphasize the
cosmographic approach by first reviewing the cosmo-
graphic expansion in FLRW universe and then by perform-
ing a generalized cosmographic expansion for a simple toy
model with a sinusoidally varying scalar perturbation. We
also show how to systematically introduce Doppler red-
shifts in the cosmographic series.

The structure of this paper is the following. In Sec. II, we
discuss cosmographic generalities, and in Sec. III, we
introduce the formalism behind the two approaches and
verify that they reproduce the correct result in a FLRW
universe. Furthermore, we show how to adapt the formal-
ism to get a handle on peculiar Doppler shifts in a FLRW
universe. In Sec. [V, we introduce linear perturbations to the
FLRW metric and derive formulas for the redshift and
luminosity distance in terms of conformal time using the
two approaches. In Sec. V, we apply the derived formulas to
a simple toy model and show how a generalized cosmo-
graphic expansion can be obtained in this case. We discuss
the implications of our results and conclude in Sec. VI.

Throughout the paper, we use units in which ¢ =1 and the
spacetime metric is taken to have a signature (—1,1,1,1).

II. COSMOGRAPHIC GENERALITIES

Cosmographic analyses make good physical sense
whenever the cosmological spacetime can be sliced by
spacelike hypersurfaces which can be factored into an
overall “size of the Universe” (depending only on some
convenient global time parameter ¢, possibly some proper
time measured by some class of fiducial observers) multi-
plied by something that depends on the “shape” of the
spatial slices. That is, take

ds* = =N(1,X)*dr* 4 a(t)*[ggnape (1. X)];dx'dx’ . (7)

This form of the metric is a variant on the notion of
“synchronous gauge.” It might be called “presynchronous,”
or “conformally synchronous,” and is sufficiently general to
be compatible with our two-mode ansatz as presented
in Eq. (6)."

'Observe that the phrase “synchronous gauge”, where
N(t,X) = 1, is somewhat of a misnomer. When enforced globally
it enforces the existence of a timelike geodesic vorticity-free
congruence V = dt. The “conformally synchronous” gauge is
less restrictive, only requiring the existence of a timelike
vorticity-free congruence V = N~!'dt, that is not necessarily
geodesic. Note we also want 0, det([gsnape (1, X)];;) to be pertur-
batively small.
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Whenever such a decomposition makes sense one can
further construct a “conformal time” coordinate dn =
dt/a(r) and use this to recast the spacetime metric as

ds* = a(n)*{=N (1, X)*dn* + [ggnape (1, X)];;dx"dx’}.  (8)

As long as this can be done (and this is a rather mild
constraint on the cosmology), one can undertake a cosmo-
graphic analysis either in terms of the 7-time derivatives, [as
in Eq. (4) above], or in terms of #-time derivatives

~

1 a///

“Ha

1 a//
Q=—s" 9
H? a ©)
Indeed, we can expand the scale factor in a truncated Taylor
series around the “observer” conformal time #,, the

conformal time equivalent of the present epoch, so that

1o,
aln) = aln) |1+ H, g =n,) = 52 (g =,
",
+ 100,y 4 00 =n,)?). (10)

and, using 1 + z = a,/a(n), we can derive an expansion of
z in terms of H,(n —n,). We find

2+Qo
2

[H(z(”l - 7]0)]3 + 0([H0(n - ’70)]4)‘
(11)

Z(’1) = _[Ho(’? - 770)] + [H() (77 - ’70)]2

T, +6Q,+6
6

Reverting the series, we obtain

2+Qo 2 3Q%+6Q0+6_L70 3
e Z
2 6
+ 0(z%). (12)

Ho(r] _’70) =—-z+

Mutatis mutandis there is a completely analogous result in
terms of the r-time:

2+‘11)Z2_3qg +6‘I0 +6_joz3
2 6
+ 0(z). (13)

Ho(t - to) =—z+

Such perturbative expansions can in principle be carried
out to arbitrarily high order, and their usefulness is limited
only by the extent to which we can measure, estimate, or
theoretically predict the Hubble, deceleration, jerk, and
higher-order parameters. Perhaps the key point is that these
cosmographic series make sense under very generic con-
ditions, whenever one is able to peel off an “overall size”
and a natural “global time” for the Universe. These
cosmographic series will generically only be part of the

full analysis, (for instance they ignore peculiar velocities
and the effect of local clumping), but if the “overall size”
a(t) or equivalently a(n) is chosen appropriately, they can
easily be the dominant feature contributing to the lumi-
nosity distance.

III. THE LUMINOSITY DISTANCE

A. Definition and interpretation

We now consider a spacetime (M, g,,) and a point
source emitting light at the source event S. An extended
observer located at O receives the light emitted by S. The
intrinsic luminosity of S is related to the flux " measured
by O by the integral [23]

L= /52(1 + 22FdA. (14)

Here S is the 2-sphere centered at the source S, and passing
through the observer O, while 7 is the redshift of the light. If
the source radiates isotropically, we can write (14) as a
differential relation

L dQ
=2 15

Here dA, is an area element at the observer and d€2 is the
infinitesimal solid angle at the source. The luminosity
distance between the source and the observer is defined as

4, (S, 0) = ,/#. (16)

One can easily see that in a Minkowski spacetime this
reduces to the standard notion of distance. Using (15) the
luminosity distance can be written as

dL:(1+z)1/jgo- (17)

g?z” to the metric and thus

compute the luminosity distance.

We want to relate the quantity

B. The Jacobi map and the Jacobi determinant

The light rays emitted by the source form a congruence
of null geodesics (see Fig. 1) that can be parametrized as

Xt = fo(,y,). (18)

Here 4 is the affine parameter along each light ray, and the
y; parametrize neighboring rays. For our purposes, it is
enough to concentrate on a single one-parameter family of
light rays
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O
dA4,

S dQs

FIG. 1. A congruence of light rays emitted at a point source S
and received by an extended observer O. The luminosity distance
between S and O is given by d; = (1 + z)+/dA,/dQ,, while £*
is a tangent vector to a geodesic in the congruence while Y* is
a transverse vector connecting different geodesics of the
congruence.

x = f4(4y). (19)

The tangent vector and the wave vector are defined as

af®
= ; k% = oce. 20
o @ (20)
Here @ is just a constant with dimension [L~!]. The
geodesic deviation vector is defined as
of”
Y* = . 21
o e1)

For a point source all light rays intersect at S and therefore
Y% = 0. The geodesic deviation equation for the family of
geodesics is

D*Y*
_ 5
The equation is linear and, therefore, the solution at O is a
linear combination of the initial values at the source S (this

is a nontrivial result—see, for instance, [33]). Since
Y% =0, we must have

DY?
di’

Yo = J%(0,S) (23)

where J%(0,S) is called the Jacobi map. It is useful to
define the following infinitesimal vectors,

Sx® = Y%5y, (24)

which can be thought of as pointing from one geodesic to a
neighboring one along the family, and

DY“
60% =
dA

Sy, (25)

which connects one geodesic to a neighboring one at the
source and whose magnitude is the angular separation

between the two geodesics at the source. Then (23)
becomes

8x = J4(0, S)805. (26)

Thus the Jacobi map maps initial directions around the
source to vectors transversal to the photon beam at the
observer position.

The Jacobi map defined in (26) is a four-dimensional
map from the tangent space T(M) to T,(M). However
the vectors 8x), and 56% live in two-dimensional subspaces
of the tangent spaces at O and S, normal to the four-
velocities of the observer and the source, U, and U,
respectively, and normal to the photon direction at O and §
(see Appendix A). To find the true Jacobi map, we need to
project onto these subspaces

J(0,S) :=P,JP;, (27)
where P, and P, are the projectors

(Py)y = (8, + U*U, — n*n,),

(Po)e = (8, + UMU, = n'ny),; (28)
and where n; and n, are normalized spacelike vectors

pointing in the photon direction in the reference frames of
the source and the observer

n, =+ (2-U)U),;  n=(+(2-U)U);. (29)
Here J(O, S) is a two-dimensional map from a subspace of
T (M) to a subspace of T,(M). It follows from its
definition in (26) and (27) that

dA() _
i = 4etI(0.5)] (30)

See general discussion in [4], and other sources
[27-32,34,35]. Thus the luminosity distance is given by

d; (S, 0) = |detJ(0, S)[(1 + z). (31)

We now want to solve the geodesic deviation equation (22)
in order to find the Jacobi map. In practice, it is easier to
transform the geodesic deviation equation, which is a
second-order differential equation for Y, into two coupled
first-order differential equations for 6x* and 66*. (This is
similar to what one does in Hamiltonian mechanics where a
single second-order differential equation for a given
dynamical variable is transformed into two first-order
differential equations for the dynamical variable and
its conjugate momentum.) It follows from (24), (29),
and (22) that
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D(5+) D(56%)
= 00", =R!' /eooxP. (32
da da vaf X ( )
Equivalently
d(6x)
= CH(2)5x + 56
2 = o +
d(66”
( - ) _ AX(A)8x* + C2(1)567; (33)

where

Ca(d) = -T%0%  AS(A) = Re, 0000, (34)

pHY

In order to find the Jacobi map, this system must be solved
consistently with the initial conditions

ox(As) = 0, (£700,)(4) = (U566,)(4) = 0. (35)

Similar equations have also been derived in [27].

C. The van Vleck determinant

The van Vleck determinant measures the deviation from
the inverse square law [36]

LAUV

P =, - o

47(4, (36)

This implies that the luminosity distance is given by

dy = (3, = 2)(1 + 2)A%. (37)

Comparing that with Eq. (31), we see that the van Vleck
determinant is related to the Jacobi determinant via

detJ = (4, — A,)?A7). (38)

D. Example: k=0 FLRW universe
(without peculiar velocities)

First we calculate the d; (z) relation in a k = 0 FLRW
universe expressed in terms of conformal time 7

ds? = a®(n)ds* = a*(n)(—dp* + dx® + dy? +dz?).  (39)
In this section and in later sections, we make use of the

following relations between quantities evaluated in con-
formally related metrics ds> = f2(i, x)ds? and for timelike

and null geodesic tangent vectors: U* = 4 and ¢# = &~
Thereby,

a 1,

Yo 40

d .
G=f o w=2On (41)

~I =

This allows us to derive an expression relating the redshifts
in the two conformal metrics

(9uk"U")s [0k T); £,

1 + 7= g = e
(glll’kﬂ Uu)o fs (gA/wk” Uy)o fs

(1+2). (42)

The Jacobi map scales as
J(0.8) = £,J(0.5), (43)
and therefore
detJ(0,S) = f2detJ(0,S). (44)

Hence, we have for the luminosity distances in conformally
related spacetimes

d; = (1+2z)|detJ(0,S)|

fa j 1
_ f_0(1 + 2)|detJ(0, S) 2

2 A
- %dL. (45)

We want to use (45) and, therefore, we first want to
compute d; for the reference Minkowski spacetime
d§? = (=dy? + dx? + dy* + dz?). For now we shall take
the source and the observer to be at rest with respect to each
other and with respect to the Hubble flow, so that there are
no peculiar velocities and no Doppler shift. Therefore the 4-

velocities of the observer and the source in synchronous
coordinates are
(U"), = (1,0,0,0);  (U"),; =(1,0,0,0).  (46)

Here 7% is a null vector: ?”?”nw =0, and is the tangent
vector to an affinely parametrized null geodesic: ‘% =0.

Therefore, up to a normalization constant, it has the
following form,

2= (1,7), (47)

where 7 is a unit vector. Therefore, the wave vector is
given by

"= a(1,7). (48)

Since the Christoffel symbols and the Riemann tensor
vanish in Minkowski, the system of Egs. (33) reduces to
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d(é)?") _ 59'\0. d(éea) -0 (49)
di ’ di ’

with the initial conditions (35). It is easy to solve this
system. The solution is

80" = 807, 882 = (4, — 4,)80°. (50)
Therefore, the unprojected Jacobi map is simply

75 = (4, — 4,)55. (51)

We also have that

The projected Jacobi map is
Jb = Phagpl. (53)

It is easy to check that

A ~ A~

B=7=J=o0; Ji= (4, = 4,) (8, —n'nj).  (54)

The determinant is the product of the two nonvanishing
eigenvalues:

detJ = (4, — A,)% (55)

In Minkowski space, there is no gravitational redshift and
we chose the observer and the source to be at rest with
respect to each other and so there is no Doppler redshift.
Hence, Z = 0 and the luminosity distance becomes

‘?L = (’io - /is> (56)

Now, using (45), the luminosity distance in FLRW becomes

2. @&. . a&

a
dy ==2d;, ==2(4, - A) =", -n,). (57
L a, L as( 0 /15) a, (770 ﬂs) ( )

One can cast this in a more familiar form by recognising that
dm = a,)(n,) - 77‘\‘)’ (58)

and

a
1 =2 5
=" (59)

s

where d,, is the metric distance and z,. is the cosmological
redshift in FLRW. Then the luminosity distance becomes

dp, = dm<1 + Zc)' (60)

It is easy to check that the van Vleck approach also gives
the correct formula for the luminosity distance in FLRW. In
Minkowski space, we have that

:=0;, Ay,=1. (61)
Hence, applying (37), we get the luminosity distance in
Minkowski space

=4 -k, (62)

and therefore the luminosity distance in FLRW is

2
a,

dL = (7]0 - ’73)’ (63)

Ay

It is useful to rewrite the luminosity distance as a pertur-
bative power series in the redshift. Using the cosmographic
expansion (12) of Sec. II, we can write

2 —
dz) = |, oL 3 +3Q =T

0.3 4
Ho > G 2+ 0(z%)].

(64)

This is equivalent to (3) which was derived in [5], except
that now we are working with conformal time and consider
terms only up to O(z3). Note that

a, a, a, 1

H, (dajdn),ja, (dajdi), H,

(65)

where H, is the usual Hubble parameter measured by the
astronomers. That is, in any FLRW cosmology
1 Q 307439, -J
d _ '__() 2 0 0
1(2) 7 {z S ot 5

2+ 0(z4)] )
(66)

Furthermore, Q, and J, can be converted to ¢, and j,
which gives (3) up to third order in z as expected:

di(z)

1 1 90 2 1 q0 3Q% jO 3 4
—_ + — +0
HO |:Z 2 ‘ () ‘ (Z )

(67)

This result is with hindsight actually quite straightforward,
and we can only justify the time spent on such an approach
by now modifying and applying it in several nontrivial
situations.
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E. Example: k=0 FLRW universe
(with peculiar velocities)

From the above we see that in a kK = 0 FLRW universe
without peculiar velocities

d, = 7‘_’[ (1+2)P(2). (68)

where P(z) is the specific polynomial

249, 302+6Q,+6-7

— 03 4
Pr)=z-——F—"2"+ c 2 +0(z%).

(69)

If one now adds peculiar velocities, then the only change
is that

a o

d pr—
L Ho

(1+2)P(z), (70)

where z. is the cosmological contribution to the total
redshift z, and in terms of the Doppler contribution to
the redshift we have

I+z=(142z.)(+zp). (71)

Then, assuming that peculiar velocities, and hence zp,, are
small, we have

I+z
=T l~z—(1+2)2p+0(z3). (72)
Therefore
aO
d = (1+ 9Pz = (1+2)zp + 0(p).  (73)
implying

dy =51+ 2P = (1+ 2P (2)2p + 0(h)).

(74)

This gives an explicit formula for estimating the potential
effect of peculiar velocities on luminosity distance. The
fractional size of the effect is easily seen to be

P'(z)
P(z)

Ad,
i A
a0 (1+2)

2p + 0(2p). (75)

Evaluating explicitly the polynomial P(z) to O(z?), we can
find an expression for d; to O(z*) and O(zp)

aO
d; = |:—ZD +(1+9Q,zp)z

2 —
~ <%+W1D)ZZ+O(Z3)+O(Z%) :
(76)

As a further application we might consider a situation
where on average the peculiar Doppler shifts are zero:
(zp) = 0. Then on average

(dy) = ;—i [z - %Zz +0(Z) + O(zf))} . (77)
and so
302420, —
d, —(d) = - aHZD [1 - Q7+ ( Q + 2Q” j”)zz
+0(2%) + O(ZD):|. (78)

This could be used, in principle, to estimate peculiar
Doppler redshifts z, (and so peculiar velocities) at various
values of total redshift z. This would be done by first
neglecting peculiar Doppler redshifts to naively fit d; (z) to
the supernova data, thereby determining the cosmographic
coefficients, and then binning the supernovae into small
redshift bins to observationally determine d; — (d; ). It will
now be interesting to extend this perturbative analysis
beyond simple FLRW universes.

IV. INTRODUCING LINEAR PERTURBATIONS

Now we look at a linearly perturbed FLRW metric with 2
scalar modes in the Newtonian gauge

ds? = a®(n)[=(1+2%¥(X,n))di® + (1 +20(¥, 1)) 5;;dx'dx],
(79)
where ¥ and ® are the so-called Bardeen potentials. From
now on all quantities are expressed to first order in terms of
the Bardeen potentials. To first order, the metric (79) can be
cast in the form
ds? = f2(n. X)[-(1 4+ 2&)dn* + 6;;dx'dx/],  (80)
where the overall conformal factor is
fn.%) = a(n)(1 +20) ~a(n)(1 +®),  (81)

and

E=V—-0. (82)

063505-7



IVANOV, LIBERATI, VIEL, and VISSER

PHYS. REV. D 98, 063505 (2018)

A. Calculating the redshift

Now look at the simplified one-mode metric
d§? = —(1 + 2&)di* + 5;;dx'dx/, (83)

which is simply background Minkowski space plus a
perturbation: g, = n,, + h,,. We require that the 4-veloc-
ities of the source and the observer are normalized

U”U”gw = —1 and we again first consider the case of
zero peculiar velocities. This implies that, to first order,

0% = 0% = (1-¢0). (84)

The source emits light which travels on null geodesics with
wave vector k%. The emission frequency is given by

@y = =G KUY = -a§,, U = @(1 + &), (85)

where we use the fact that locally at the source spacetime is

approximately flat. So 7* ~ ;’f = (1, 1) where the bar here
and thereafter will denote the background value of a given
object. The observed frequency is similarly given by

®, = @fS(1+E&,). (86)
Then the redshift is given by

~
Wy

1+ &
1+2= ¢

= -_-———_= AO -1 1 ¢ .
6(’)() 1/22(1 + f{)) (l/ﬂo) ( " é‘ 50) (87)

In order to calculate this redshift, we need to relate the
tangent vector of the light ray at the position of the observer

2" to the tangent vector at the source 2% ~ (1, 7). This can
be done via the geodesic equation

~

de* ny Ao
dj = _F%afpfav (88)

which to first order becomes

dz2Wn By as
= = 14, (89)

where the background connection vanishes: IQJ;G =0
because the background space is Minkowski. The Christoffel
symbols can be easily calculated from the metric (83)

fgo = 5,17; (90)
fgi :f?o :ff)o =& (91)

Hence, the solution of the geodesic equation is given by

R R , L
A0 0 - A (&, +2Vem)dl;  (93)

L O A £,di. (94)

Equation (93), and the fact that 2~ (1,7), together
imply that

N Ao - A
A=1- / (&, +2VE-n)di. (95)
j’s
Therefore, the redshift to first order becomes
Jo - .
1+2=1-(& —¢&)+ / (f,,, +2VE-n)di.  (96)
j's

We can put that in a more useful form by changing variables

from the affine parameter J to the conformal time n. Using
(95), we have that, to first order,

« i - A
dl=dpy {1 + / (5,,7 +2VE- ﬁ)dﬂ’} . (97)
ls
We also use that, to first order,
é,n =--Vé-n (98)

This then gives us the following expression for the
redshift

o =
1+2:1+/ VE - ndn. (99)
rIS
or, equivalently,

’70
1+f=1+§0—§s—/ £ dn.

Ns

(100)

Now we can find the redshift in the full perturbed FLRW
metric

1+z:@(1+<I>o—<1>s+/"“§é-r‘idn)- (101)
715‘

s

or, equivalently,

a, o
1+z:—<1+‘1’0—‘1’s—/ (:,,,dn> (102)
aS s
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The redshift is a product of different contributions

I+z=(1+z)(+zg)(1 +zsw).  (103)

Here

1+zc:%, (104)

N

is the cosmological redshift due to the overall expansion of the
Universe, and

1+ 2%,

1+Zgr: 1+2‘Ps

~14+%, -9,  (105)

is the gravitational redshift due to the potential wells of the
source and the observers. Finally

,10 to
1+ ZIsW = 1 —/ 5,7di7 =1 —/ é.tdl

N I

(106)

is the gravitational redshift caused by changing potential wells
along the path of the light—an integrated Sachs-Wolfe effect
[37]. Equation (103) gives the total redshift without the
Doppler redshift arising due to the peculiar velocities of the
source and the observer. It is trivial to include the Doppler
redshift in the analysis—(103) is modified to

T+z=(1+2zp)(1 +2)(1 +2e)(1 + 2isw),  (107)
where the Doppler contribution to the redshift is
vs(1 = 0,.7i)
1 = —, 108
T 0(1 - a'n) ( )

1

and where y = (1 —|#|?)™ and ¥,, ¥, are the peculiar
velocities of the source and the observer.

We can also adapt this redshift calculation to determine
the total lapse in affine parameter in terms of the total lapse
in conformal time. From the above, the relationship
between affine parameter and conformal time is

R A > N
di=dp [1 + / (&, +2Ve- ﬁ)d/l’]
Ay
= di’] |:1 + 2(5 - gs) - /"7 g,ﬂ’d’/],]

s

=dn[l +2(£=¢&,) + zisw(ns) — zisw(m)].  (109)

where
7’0 /
ZI1SwW (’7) = f.n’d’Y . (110)
n

Integrating

j'\0 - /i\s = (’70 - ’79)[1 + 2(<§> - gs) + Zisw — <ZISW>]‘
(111)

Here (£) and (zigw) are simply averages along the line of
sight:

1 Mo
Mo — N s

1 o
L/aw@M

Mo — Ny s

(&) : &dn; (112)

(zisw) = (113)

While (&) and (zigw), (and &, and zigw for that matter),
might be difficult to measure, they do at least have clear
physical interpretations.

B. The Jacobi and van Vleck determinants

The Jacobi map and Jacobi determinant can be
calculated using the formalism developed in Sec. III B.
We present here the final result for the Jacobi determinant
and defer the full calculation to Appendix B. The Jacobi
determinant in the unphysical metric (83) is given by:

(114)

If the Jacobi and the van Vleck approaches are equivalent,
as was nonperturbatively demonstrated in [4], we must
have that

(det )t = A3(A, - 4,). (115)
We will now show that this is indeed the case.

In the weak-field limit, the van Vleck determinant is
approximated by [36,38,39]

A 1 Zo A A ~ ~ A A A
A,y ~exp [ ] [ (G = D(RuW??)(A —/I‘Y)dxl};

(116)
The components of the Ricci tensor to first order are

Roo = vzf; RO[ =0; Rij = —ﬁ,ij- (117)

Since ﬁ/w =0, only the term R,(,L);”? will contribute to

first order in the expression (116). We have
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RWE'E = (V& - ninig ), (118)
and therefore
N 1 A o A A
By =15 [0, =DV i) (2~ 1)l
/10_1? is -
(119)
Hence,
A‘é =1 —%1/2”(20 —D)(V2E—niniE ) (A= 1,)dA.
' /10_/1s2 jx " ‘
(120)

We see that (115) is satisfied and so the two approaches are
equivalent.

C. The luminosity distance in perturbed FLRW

Now we finish the calculation of the luminosity
distance in perturbed FLRW. We can express the
Jabobi determinant (114) in terms of conformal time
by using the fact that

dn

i - .
—=1 —/ (&, +2Ve-i)dl, (121)
di i,

and, hence, to linear order,
d/f—dr](l +/n(§.q+2§f'ﬁ)dﬂ/>. (122)
1y
The resulting expression for the Jacobi determinant is:
Al Mo
(det /) = (n, =) + / &dy
s

+ / " (n, —n)(VE-i)dn = &(n, = ny)

s

1

_ E/ng (n, —n)(V2E = n'nié ;) (n — ny)dn,
s

(123)

where again we have replaced a double integral by a
single integral. Hence, the luminosity distance in two-
mode perturbed (®, &) FLRW cosmology is given by

2
dL(nsv Mo> ﬁ) = _UdL

7 (124)

5

s

(det J)2(1 + 2) (125)

=—=[(n, —ny) +2®,(n, —ny) — Y1, — 1)
No = N ’71}
+ (no—ns)/ Vf-ndn+/ &dn
r’_l' r]S

+/Wm—mwamm

s

1

— EA;"’ (770 - ﬂ)(VZef - ninjg’ij)(” _ ’7s>dl1].

(126)
This formula shows the dependance of the luminosity
distance measured by an observer O as a function of the
conformal time of the source 7, in a given direction 7. At
this stage, this expression is somewhat formal, and
mainly useful as a starting point for further detailed
model-building. We shall present a particularly simple toy
model in the next section, but for now will try to recast
this expression (to the extent possible) in terms of various
contributions to the redshift. For instance, by recognizing

2 . .. . .
that d; prrw = Z—z(no —1,) is the luminosity distance in
FLRW without peculiar velocities, one can write

dL (’13‘5 Mo> ﬁ)

No = N
=d; prw(2c) [1 +20, - ¥, + / V¢& - ndn
715

o 1 o >
ey + / (1 — n)(VE - R)dn
No — Ns Jy, Mo — Ns Jn,
s [T = (T - i) m]
- = o — —n'n'é ;) (n—n, .
T AT ) (n=ng)dn

(127)

There are several other ways of usefully repackaging the
luminosity distance in the two-mode perturbed (P, &)
FLRW cosmology we are considering. For instance,
using (111), we have that

1

A1

(detj)% = (’10 - nv)[l + 2(<§> - és) + Zisw — <ZISW>]AU‘2/

(128)
and substituting that inside (125) we obtain
dp = dpprw(ze) (14 @,) (1 + 2g) (1 + zisw)
x [14+2((&) — &) + zisw — (zisw)]
X {1 - %'70 1% /j (o = m) (V€ ~ ninjf.ij)
x (n— ns)dn}- (129)

The (1 + ®,) factor is relatively uninteresting, since it
only depends on what is happening at the observer, it is
common to all observations—at worst it is a rescaling to
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marginalize over. These various ways of looking at the ¥ = —® = esin(ky). (131)
luminosity distance, we do feel, give us a somewhat better
handle on the fundamental physics. Equations (127) and

(129) are now manifestly of the form where ¢ and x are constants and e is perturbatively
small. Initially, we shall neglect peculiar velocities, but
dy (n4:10.1) = dp pLrw(ze) X {1 + (perturbatively small) }. subsequently show how to put them back in. We choose

this particular toy model because it is tractable, and

(130) because it serves to illustrate the basic principles behind

generalising the cosmographic approach to an inhomo-

V. SIMPLE TOY MODEL: SCALAR MODE geneous universe. Obviously, in order to analyze the real

PERTURBATION SINUSOIDALLY universe, one would need to consider more sophisticated
VARYING WITH TIME models.

We now consider a simple toy model where the Bardeen

potentials depend sinusoidally on conformal time and are A. Toy model without peculiar velocities

independent of space Equations (126) and (101) become
a; . : cos(kn,) . cos(kny)
d; == |An+ e =2sin(kn,)An — sin(kn,) Ay — 2 +2 ; (132)
s K K
and
a, . .
1 4z, = —[1 + e(—sin(kn,) + sin(k7ny))]. (133)

N

Now we derive a cosmographic series for d; in terms of z. The coefficients to leading order are expected to be the same as in
(64) plus corrections of order e. The cosmographic parameters are defined in the same way as before—Eqgs. (9)—and we
make use of the following relation, valid for any conformal time #,

1+2z(n) = ac(l;) [1 + e(—sin(kny,) + sin(xn))]. (134)

Expanding a(n) and sin(y) as a series in terms of (y—n,) inside (134), we obtain a series for z() in terms
of (7= 1,)

£0) = [, + etwoostonir =) + |1 (252) e —wcosten 1, = @ 22512 | -,

2 2
6 6 2 i
g (Lot 6 L i cos (i, ) H2 2+ ) | o MH(, _ a cos(r,) (1—1.)?
6 2 2 6
+ 0(’7_7]0)4' (135)
Reverting this series, we find
n—n,=Az+ A% + A3 + 0(z%), (136)
where
1 cos(kn,)
Al =—— - ; 137
R, T 6[ " } 17
1 240, cos(kn,)  ,sin(n,) | 3cos(n,) 2+ Q,
Az:’H_0< 5 >+€|:—K 2 - K2 70 +x o 5 ; (138)
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Ay = —— + €7 Kk cos(kn,)

H, 6 2
43 COZ(HKg”) + KSIH(K”" (3 +29, ] (139)
We also have
An =1, —ny = A1z, — Ayzs — Aszy + O(2)). (140)
This allows us to expand sin(7), cos(r,) and Z_; as functions of z,. We find
sin(kn,) = sin(xn,) + [k cos(xn,)A |z, + |:K cos(kn,)A, — k* %} 2
+ |:K‘ cos(kn,)Az — k*sin(kn,)A Ay — &3 %Aﬂ 2+ 0(z}); (141)
while
cos(kn,) = cos(kn,) + [~k sin(kn,)A |z, + |:—K,‘ sin(xn,)A, — K%LW] 72
+ [—K sin(kr7,)As — k> cos(kr,)A Ay + 3““%‘”")#] +0(h); (142)
and
& =1+ [1 —excos(kn,)A ]z, + € |:—K cos(kn,)A, + k* M - KCOS(K?’]O)A1:| 2
—€ |:K‘ cos(kn,)Az — k*sin(kn,)A 1Ay — 3 MA? + K cos(kn,)A, — k? M} Z+0(). (143)

Substituting everything inside Eq. (132), we obtain an expansion of the luminosity distance d; in terms of the redshift z

. [1 1 (397 +3Q,-J, ; 4
a [H()+€X}zs+ [ 2H ] [Ho < G > +€Z]zs+0(zs). (144)
Here
sin(kn,) . cos(kn,) _sin(xn,) | cos(kn,)
X:=2 -2 - ; 14
K K H, . H: (145)
_ 6cos(kn,) | 3cos(kn,)Q,  sin(kn,)Q, = ,sin(xn,)
Y=k 3 + K 2 T +x 7 (146)
and
2. K2 cos(kn,) 2 2cos(kn,) 2 cos(kn,)Q, 3 cos(k7,) Kcos(xno) 36 + 1503 + 369, — 47,
W H H 6H H> 6
. . . . . 2 _
4 sin(kn,) e sm(;czo) B sin(k7,)Q, _e sm(Kng)Qo n 2sin(kny,) (6 4+ 395 + 69, - J, ‘ (147)
H, 3H; 2H, H, H, 6

This agrees to zeroth order in € with Eq. (64).
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From the above we see that in our toy model
(a sinusoidally perturbed £ = 0 FLRW universe) without
peculiar velocities we have

a

=3 (1+2)P(2), (148)
where P(z) is the specific polynomial
P(z) = Biz + By2> + B3 + 0(z%).  (149)
with
By =1+ €H,X; (150)
2
B, — _Q"; FeH,(V-X)  (151)
392 +6Q, — 6
B; = L +6Q = J, + +eH,(Z-Y+ X). (152)

6

The only thing that has changed with respect to standard
FLRW is the coefficients of the polynomial.

B. Toy model with peculiar velocities

If one now adds peculiar velocities, then again the only
change is that

dp = =2 (1 4 2)P(z,),

Ho (153)

where z. is the cosmological contribution to the total
redshift z. Now in terms of the redshift contributions
due to peculiar velocity z,, we again have

14z
1+ZD

—1wxz—(142)zp+0(z3), (154

e =

again implying

a()

H,

dp = {(1+2)P(z) = (1 +2)*P'(2)zp + O(z) },

(155)

Within the context of this model universe, this gives an
explicit formula for estimating the potential effect of
peculiar velocities on the luminosity distance. Again
evaluating explicitly the polynomial P(z) to O(z?*) allows
us to express d; to O(z%) and O(zp)

aO
dL = H_o {—(1 + €H0X)ZD

+ [1 + €H()X - (_Q() + €2H()y)ZD]Z

2 —
. {—%Hmy— <BQO +2290 T

+eH, (Y + 3Z)>ZD] 2?2+ 0(3) + 0(2%))}.

(156)

We could proceed further for instance by assuming
(zp) =0, (effectively temporarily ignoring peculiar
Doppler shifts), and fitting

(d,) _;_’[—“0{[1 +eH,X]z+ |:—%+€H0y:| 2+ 0(13)}.

(157)

Then

= (o) = =] (14 €M, + (-0, + QMY

0

2 —
+ (3 %+ ZZQ" Jo +eH (Y + 32)) zz}
+0(2%) + 0(z3). (158)

So even in this sinusoidally perturbed FLRW model we see
how we can use cosmographic techniques to estimate the
size of the peculiar Doppler shifts.

VI. SUMMARY AND DISCUSSION

In this paper, we have derived a theoretical relation
between the luminosity distance and the redshift of a
standardizable candle in a linearly perturbed FLRW uni-
verse (79). The relation is given by Egs. (101) and (126)

1+z_@<1+q>0—<l>s+/””€§-ﬁdn)
r]Y

as
= (14 2.)(1+ 2g0) (1 + zisw), (159)
and
dp, = dpprw(2e) (1 + @) (1 + 2g0) (1 + z1sw)
X [1+2((6) = &) + zisw — (21sw)]
{13 [ ==y
x (n —m)dn}- (160)

where the different contributions to the redshift, the
cosmological, local gravitational, and integrated Sachs—
Wolfe effects are:
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a
1 =2, 161
ta= (161)
1429,
1+ 2 = T ~1+¥,-Y,, (162)
]’]0 t(J
I+ zigw=1- Epdn =1 —/ £, dt (163)
’7: ts

In certain cases, a single equation for d; (z) can be derived
and this equation can be cast as a cosmographic series in z.
For instance, we showed that for a FLRW universe, we
have (64)

a, |:Z _%ZQ + SQ(ZJ + 36Qo - j

°+ O(z“)] )
(164)

and that for a sinusoidally varying potential the coefficients
of this relation are corrected by terms of order ¢ as in
Eq. (144). A few comments regarding the interpretation of
our results are in order.

The redshift as written in Eq. (159) is a sum of three
contributions—a cosmological redshift, a gravitational
redshift, and a redshift due to an ISW effect. However,
what we measure only is the total redshift which includes
also a Doppler contribution due to the peculiar velocities of
the source and the observer. This can be included by hand
in the expression (159) by writing

T+z=(1+2zp)(1 4 z.)(1 + zg)(1 + zisw).  (165)
where the Doppler contribution to the redshift is
75(1 - ES i ﬁ)
1 =, 166
+ Va(l_va'ﬁ) ( )

and where y = (1 — |B2)2 and ¥,, ¥, are the peculiar
velocities of the source and the observer. Usually, one
assumes that the peculiar velocities of the sources are
random and therefore cancel each other out for a large
enough sample, while the peculiar velocity of the observer
can be canceled from the dipole of the CMB angular
distribution [2]. Within our approach peculiar velocities can
be estimated from (78) for FLRW or from (158) for the
toy model.

Compared to previous discussions of the luminosity
distance in perturbed FLRW Universes such as in [27] we
have made the following improvements. We keep both ¥
and @ as general functions of the spacetime coordinates
without assuming any relation between them thus keeping
our discussion as general as possible within linear pertur-
bation theory. We derive our results using both the Jacobi
map and the van Vleck determinant approaches verifying

that they give the same results as they should [4]. While the
Jacobi map is extensively used in Cosmology, to the best of
our knowledge we are the first to extensively use the van
Vleck determinant in the analysis of the luminosity dis-
tance. The van Vleck determinant is a mathematical object
which appears in many other areas of theoretical physics,
and there are multiple techniques to calculate it in certain
specific cases of interest [36,38,39]. For current purposes,
the van Vleck determinant formalism is mathematically
equivalent to the Jacobi determinant formalism but in
general the van Vleck determinant has a cleaner physical
interpretation in terms of the focussing and defocussing of
geodesic flows in a curved spacetime. For that reason it is
an important tool in the analysis of the luminosity distance.
We focus on the cosmographic approach, which is the best
way to test the underlying geometry, by writing the final
result for the luminosity distance in the toy model as a
generalized cosmographic series. We show how to system-
atically include peculiar velocities and Doppler redshifts in
the cosmographic series both in FLRW and in the toy
model. Finally, we rewrite the general formula for the
luminosity distance at first order in perturbation theory as
much as possible in terms of various contributions to the
redshift giving the final formula (160).

The result for the luminosity distance has limited utility
in the vicinity of conjugate points of the congruence of null
geodesics emanating from the source. The vector field
5x*(2) is a Jacobi field on the congruence of geodesics and
it certainly has a conjugate point at the source: dx; = 0. If
the observer is located at or near another conjugate point,
then 6x, = 0, so that 7(0, S) ~ 0 and d; ~ 0. For example,
if the source and the observer are located on antipodal
points in closed FLRW, the luminosity distance between
them is zero. Physically this corresponds to the fact that all
photons emitted at the source reach the observer, the
observer sees the source at all directions in the sky, as if
he is located inside the source.

The cosmographic series (67) and (144), if formally
extended to infinite order, converge for |z| < 1 and diverge
for |z| > 1. In order to fit supernovae at higher redshifts, it
is useful to perform the cosmographic expansion in terms
of the improved parameter y = 3 [9,12].

Our equations can be applied and the discussion
extended in several different directions. The first applica-
tion is to explore the influence of inhomogeneities from the
cosmic structure on the estimation of the cosmographic
parameters. The cosmographic parameters are usually
estimated by fitting the data from Type la supernovae with
the theoretical relation (67) which is derived by assuming
an ideal FLRW cosmology. Fitting the data with a theo-
retical relation adapted to an inhomogeneous universe such
as (160) might lead to alteration of the estimated values of
the Hubble parameter, deceleration parameter and jerk. A
second application is to analyze and constrain alternative
cosmological models which go beyond the ACDM, for
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instance, models in which dark energy is dynamical or in
which it varies stochastically with cosmic time [13-16].
However, one has to be careful since our equations are
entirely kinematic in nature and insensitive to the precise
gravitational dynamics. In order to constrain the deviations
from the standard homogenous and isotropic FLRW cos-
mology, the best approach is to consider supernovae in a
tiny shell of fixed size Az, at a fixed redshift z, and to look
at the power spectrum of the luminosity distance. In a
completely isotropic cosmology, only the monopole would
be active and therefore the size of the higher multipole
excitations would give a constraint on the possible depar-
tures from isotropy. The last application would be to try to
put constraints on the values of the peculiar velocities
within cosmography. We leave all further investigations
along these lines to future work.
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APPENDIX A: DEMONSTRATION THAT
80, L (k,.U,) AND 6x, L (k,.U,)

Here we demonstrate that the vectors 8¢ and o&xh
indeed belong to two-dimensional subspaces orthogonal
to k* = @¢/* and to U%, Uk,

1. 6x, Lk,

Since all photons start at the same point in spacetime,
they must have the same phase P defined as
£, =V,P. (A1)

Since the phase does not change along a cross section of the
congruence, we must have that

0= V4P = 6x#V,P = ox'¢,, (A2)
which implies that ox_Lk,.
2. 00, Lk,
Define
DY#
M= —— =PV, YH, A3
A7) , (43)
so that 66" = v#6y. Then we have that
e, =, 0PN Y =P (LYH) =YY 6, =0, (A4)

where the first term vanishes due to (A2) and the second
term vanishes due to the geodesic equation. This implies
that 66, Lk;.

3.80, LU,

This follows from the fact that spacetime at the source S
is locally Minkowski and the emission of light is isotropic
in all directions.

4. 6x,1U,

In order for this to hold, we must choose a suitable
parametrization of the one-parameter family of null geo-
desics. Let’s say that we start with parameters (4, y) such
that dx, - U, #0. We can obtain new parameters A, )
by performing a general coordinate transformation on the
2-surface spanned by Y# and ¢#

A=g(2.9); (AS)

y =04, 3). (A6)
However, we want this transformation to preserve the null
geodesic curves and to preserve the affinity of the param-
eter A. Thus, we are left with

A=A+ h(y); (A7)
y=y9(§) (A8)
This implies that
- ofH
YH =
9y
_ondp oyop
0y 04 Oy Oy
Oh dy
="+ =Y, A9
5" oy (49)
which in turn implies
S == YHSY = L1Sh + Sxt. (A10)
Hence
5%[]0’” = (I%Uaﬂ)5h+5ng0ﬂ, (All)

and this will be zero, provided we choose the function &
such that

55U,

oh = .
U,

(A12)
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APPENDIX B: CALCULATING THE JACOBI
MAP AND JACOBI DETERMINANT

We now show the full calculation of the Jacobi map and
Jacobi determinant in the perturbed FLRW spacetime. We
first work in the unphysical spacetime (83). The system of
Egs. (33) reduces to

d ) n e )
a(&?‘”") = (Dor + (560, (BI)

d A~ asn A A

E(59“)“) = AV (Dsw + V(A (86%).  (B2)

The background equations are the same as those for
Minkowski space, (49). Therefore the background unpro-
jected Jacobi map is given by (51), so

Th = (e = 1,52, (B3)

while the first-order correction to the unprojected Jacobi
map is given by

5 a i” aAryN/4y N
gy :/ (3 (A - 4,)d
A

. [ [

z)+c “(A)]dAdA,
(B4)
where
= T AP =RIR. (BS)
and
K =a(1.7) (B6)

Calculating these for the metric (83), we obtain:

) =—(E+Veq)y, V="’ =-¢; V=0

(87)
and
A(()l)o =& n'n/; Aél)k = _Al(cl)o =& n'; Agl)k = =S
(B8)

The photon direction vectors (29) can be split into back-
ground plus perturbation

(Du

s =5 +ng = it + ni (B9)

where

(B10)

ity = ity = (0,17);
and

A= 0,2 %0 A= 0,2y, B

Also the projectors (28) can be split into background plus
perturbation:

Pl =3t + UL0, —itha,:  Phy =5+ UL0,, — dhii,,;
(B12)
and
P =0 + 00,
PO = Uﬂ 0% + 00 U,, — nby) — nf,””ﬁm,. (B13)

In terms of the metric (83), the projectors are given by

Pj=P)=Py=0;  Pi=6 —n'n; (B14)
and
P =0, PG =P =P =0
Wi _ _ip() _ 2(Di
P,; =-n foj -2y n;. (B15)
The projected Jacobi map is given by
J=P,JP,
= P,JP,+ P 7P, + P,J VP,
= J+JW (B16)

The background projected Jacobi map is the same as in
Minkowski space

(B17)
(B18)

After a long but straightforward calculation, the full
projected Jacobi map can be shown to be equal to

A

Jo0 =00 =J,=0; (B19)
= (o = Ay)[6'; — n'n;]
/ / £ —Ean'n —nnkf + ningé yn'ng
x (A = A;)dAdi
+ (B = A)=n2Y) + nin, (2 - ) (B20)
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Solving the characteristic equation, we find the two non-
vanishing eigenvalues of this 3 x 3 spatial matrix. Their
product gives the determinant of the Jacobi map (to first
order)

5 N B C I SV
(det])% = (/10 - AY) — Eé A (ﬂ./ - Af)g,l]<61] - nl-nj)
x di'd]. (B21)

We can rewrite the double integral as a single integral by
using the identity

/,1:70 /: g0r')di'dn = /ﬂ :70 (n, = m)g(n)dn.  (B22)

We then obtain
(det J): = (4 i){1 — i"(ﬁ )
etJ) =4, —A)¢ 1 —=—— -

s)di}.

Since (4, — 4,) is positive and ¢ is by assumption extremely
small, we must have that (detJ): = | det J|2. If one desires,
one can now easily obtain the Jacobi map and Jacobi
determinant in the full perturbed FLRW spacetime by using
the relations (43) and (44):

o)

x (V¢ - n"nff,ij)(i — (B23)

J=7f,J; and detJ = f2detlJ. (B24)
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