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We derive a generalized luminosity distance versus redshift relation for a linearly perturbed Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric with two scalar mode excitations. We use two equivalent
approaches, based on the Jacobi map and the van Vleck determinant, respectively. We apply the resultant
formula to two simple models—an exact FLRWuniverse and an approximate FLRWuniverse perturbed by
a single scalar mode sinusoidally varying with time. For both models, we derive a cosmographic expansion
for dL in terms of z. We comment on the interpretation of our results and their possible application to more
realistic cosmological models.
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I. INTRODUCTION

Supernovae observations suggest that the Universe is
currently undergoing a period of accelerated expansion [1].
A crucial assumption in the interpretation of these results is
that our Universe is homogeneous and isotropic on suffi-
ciently large scales, i.e., that the background is at least
approximately FLRW so that

ds2 ≈ −dt2 þ a2ðtÞ
�

dr2

1 − kr2
þ r2dΩ2

�
: ð1Þ

For the purposes of this article, we shall immediately set
k ¼ 0 as we feel that there are both good theoretical
motivations and observational evidence for that choice
[2]. (Though see [3] for a recent countervailing point of
view.) In a recent related article on nonperturbative aspects
of the luminosity distance [4], we were careful to retain
potentially nonzero values of k. In the current article, we are
ultimately interested in perturbative analyses, and it makes
sense to set

ds2 ≈ −dt2 þ a2ðtÞ½dr2 þ r2dΩ2�: ð2Þ

Given this assumption, the most straightforward way
of analyzing the supernova data is via a cosmographic
approach [5–12]—in FLRW cosmology, one can, inde-
pendently from the gravitational field equations, express
the luminosity distance of a standardizable candle as a

power series of its redshift [5,6]. In the absence of any
peculiar velocities, and expanding around the current
epoch, for an exact FLRW universe, one has

dLðzÞ ¼
z
H0

�
1þ 1

2
½1−q0�z−

1

6
½1−q0− 3q20þ j0�z2

þ 1

24
½2− 2q0 − 15q20 − 15q30þ 5j0þ 10q0j0þ s0�z3

þOðz4Þ
�
: ð3Þ

Here the cosmographic coefficients—Hubble rate, decel-
eration parameter, jerk, and snap—are defined, respec-
tively, in terms of t-time derivatives as

H ¼ _a
a
; q ¼ −

1

H2

ä
a
; j ¼ 1

H3

⃛a
a
; s ¼ 1

H4

⃜a
a
:

ð4Þ

Given enough supernovae observations one can constrain
the shape of the cosmographic curve dLðzÞ and thus
constrain the values of the cosmographic parameters.
Current constraints suggest that q0 < 0 [1,2], which jus-
tifies the claim that the Universe is currently in a phase of
an accelerated expansion. In general, for a perturbed FLRW
universe a cosmographic analysis along these lines, or
along the lines indicated below, will only provide part of
the full formula for the luminosity distance, and in this
article, we shall among other things analyze various
deviations from simple cosmography.
Traditionally, the accelerated expansion is explained by

assuming an unknown matter component with negative
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pressure which enters the right-hand side of Einstein’s field
equation. This matter component is usually assumed to take
the form of a cosmological constant or vacuum energy and
thus to be constant over space and time. However, there
exist a plethora of models where this so-called dark energy
varies with time, and might potentially also vary with space
[13–17]. There also exist alternative explanations for the
observation q0 < 0, such as modification of GR at cos-
mological scales [18–20], and significant departures from
exact FLRW cosmology [21–25]. In the case of significant
departures from homogeneity or/and from uniform dark
energy, one does not expect the theoretical relation (3) to
hold any more, and one has to perform the supernovae data
fitting with some sort of improved dLðzÞ relation.
In this paper, we derive a generalized dLðzÞ relation and

consider its implications. Our motivation for this is twofold.
On the one hand we want to allow for the possibility to fit
supernovae data with alternative cosmological models with
varying dark energy, and thus constrain the parameter space
of such models. On the other hand, we want to consider the
implications of inhomogeneities due to the large scale
structure of the Universe on the interpretation of the
supernovae results.
There have been numerous attempts to derive a general-

ized dLðzÞ relation ever since the paper of Sasaki [26]. In that
paper, under suitable conditions, the following formula for
the luminosity distance in a perturbed geometry was derived:

dLðz; λsÞ ¼ d̄LðzÞ
�
1þ

�
a0

a
δη

�
o
þ cothð

ffiffiffiffiffiffi
−k

p
λsÞ

ffiffiffiffiffiffi
−k

p
δλs

−
1

2

Z
λs

0

δθðλÞdλ
�
: ð5Þ

Here d̄LðzÞ is the luminosity distance evaluated at the
background, while δη, δλ and δθ are the perturbations of
the conformal time, the affine parameter and the expansion.
Further progress was made in [27]. Their expression (53)
bears close similarity to our expression (126). Generalized
formulas for dL (or some function of it, such as the
magnitude or the fractional fluctuation) have also been
derived in [28–32]. In [30], the authors compute the two-
point correlation function of the luminosity distance while in
[32] the authors compute the luminosity distance to second
order in perturbations in the geodesic lightcone gauge and
then transform to the Poisson gauge.
In this paper, we shall assume the Universe is well

described by a linearly perturbed FLRW metric with two
scalar mode excitations

ds2 ¼ a2ðηÞ½−ð1þ 2ΨÞdη2 þ δijð1þ 2ΦÞdxidxj�: ð6Þ
Here the conformal time coordinate η is defined as
dη ¼ dt

aðtÞ. We derive a formula for the luminosity distance

in this geometry using two different but closely related
approaches—the Jacobi map approach and the van Vleck
determinant approach. Both approaches are kinematic in

nature—they assume nothing about what the correct theory
of gravity is. While the Jacobi map calculation is similar to
the one performed in [27], the van Vleck determinant
calculation is entirely new and, as we will see, leads to the
same final formula for the luminosity distance. We rewrite
this final formula in terms of the various contributions to
the redshift to the extent possible. We emphasize the
cosmographic approach by first reviewing the cosmo-
graphic expansion in FLRW universe and then by perform-
ing a generalized cosmographic expansion for a simple toy
model with a sinusoidally varying scalar perturbation. We
also show how to systematically introduce Doppler red-
shifts in the cosmographic series.
The structure of this paper is the following. In Sec. II, we

discuss cosmographic generalities, and in Sec. III, we
introduce the formalism behind the two approaches and
verify that they reproduce the correct result in a FLRW
universe. Furthermore, we show how to adapt the formal-
ism to get a handle on peculiar Doppler shifts in a FLRW
universe. In Sec. IV, we introduce linear perturbations to the
FLRW metric and derive formulas for the redshift and
luminosity distance in terms of conformal time using the
two approaches. In Sec. V, we apply the derived formulas to
a simple toy model and show how a generalized cosmo-
graphic expansion can be obtained in this case. We discuss
the implications of our results and conclude in Sec. VI.
Throughout the paper, we use units in which c¼1 and the

spacetime metric is taken to have a signature ð−1; 1; 1; 1Þ.

II. COSMOGRAPHIC GENERALITIES

Cosmographic analyses make good physical sense
whenever the cosmological spacetime can be sliced by
spacelike hypersurfaces which can be factored into an
overall “size of the Universe” (depending only on some
convenient global time parameter t, possibly some proper
time measured by some class of fiducial observers) multi-
plied by something that depends on the “shape” of the
spatial slices. That is, take

ds2 ¼ −Nðt; x⃗Þ2dt2 þ aðtÞ2½gshapeðt; x⃗Þ�ijdxidxj: ð7Þ

This form of the metric is a variant on the notion of
“synchronous gauge.” It might be called “presynchronous,”
or “conformally synchronous,” and is sufficiently general to
be compatible with our two-mode ansatz as presented
in Eq. (6).1

1Observe that the phrase “synchronous gauge”, where
Nðt; x⃗Þ ¼ 1, is somewhat of a misnomer. When enforced globally
it enforces the existence of a timelike geodesic vorticity-free
congruence V ¼ dt. The “conformally synchronous” gauge is
less restrictive, only requiring the existence of a timelike
vorticity-free congruence V ¼ N−1dt, that is not necessarily
geodesic. Note we also want ∂t detð½gshapeðt; x⃗Þ�ijÞ to be pertur-
batively small.
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Whenever such a decomposition makes sense one can
further construct a “conformal time” coordinate dη ¼
dt=aðtÞ and use this to recast the spacetime metric as

ds2 ¼ aðηÞ2f−Nðη; x⃗Þ2dη2 þ ½gshapeðη; x⃗Þ�ijdxidxjg: ð8Þ

As long as this can be done (and this is a rather mild
constraint on the cosmology), one can undertake a cosmo-
graphic analysis either in terms of the t-time derivatives, [as
in Eq. (4) above], or in terms of η-time derivatives

H ¼ a0

a
; Q ¼ −

1

H2

a00

a
; J ¼ 1

H3

a000

a
: ð9Þ

Indeed, we can expand the scale factor in a truncated Taylor
series around the “observer” conformal time ηo, the
conformal time equivalent of the present epoch, so that

aðηÞ ¼ aðηoÞ
�
1þHoðη − ηoÞ −

H2
oQo

2
ðη − ηoÞ2

þH3
oJ o

6
ðη − ηoÞ3 þOðη − ηoÞ4

�
; ð10Þ

and, using 1þ z ¼ ao=aðηÞ, we can derive an expansion of
z in terms of Hoðη − ηoÞ. We find

zðηÞ ¼ −½Hoðη− ηoÞ� þ
2þQo

2
½Hoðη− ηoÞ�2

−
J o þ 6Qo þ 6

6
½Hoðη− ηoÞ�3 þOð½Hoðη− ηoÞ�4Þ:

ð11Þ

Reverting the series, we obtain

Hoðη − ηoÞ ¼ −zþ 2þQo

2
z2 −

3Q2
o þ 6Qo þ 6 − J o

6
z3

þOðz4Þ: ð12Þ

Mutatis mutandis there is a completely analogous result in
terms of the t-time:

Hoðt − toÞ ¼ −zþ 2þ qo
2

z2 −
3q2o þ 6qo þ 6 − jo

6
z3

þOðz4Þ: ð13Þ

Such perturbative expansions can in principle be carried
out to arbitrarily high order, and their usefulness is limited
only by the extent to which we can measure, estimate, or
theoretically predict the Hubble, deceleration, jerk, and
higher-order parameters. Perhaps the key point is that these
cosmographic series make sense under very generic con-
ditions, whenever one is able to peel off an “overall size”
and a natural “global time” for the Universe. These
cosmographic series will generically only be part of the

full analysis, (for instance they ignore peculiar velocities
and the effect of local clumping), but if the “overall size”
aðtÞ or equivalently aðηÞ is chosen appropriately, they can
easily be the dominant feature contributing to the lumi-
nosity distance.

III. THE LUMINOSITY DISTANCE

A. Definition and interpretation

We now consider a spacetime (M, gμν) and a point
source emitting light at the source event S. An extended
observer located at O receives the light emitted by S. The
intrinsic luminosity of S is related to the flux F measured
by O by the integral [23]

L ¼
Z
S2
ð1þ zÞ2FdA: ð14Þ

Here S2 is the 2-sphere centered at the source S, and passing
through the observerO, while z is the redshift of the light. If
the source radiates isotropically, we can write (14) as a
differential relation

FdAo ¼
L
4π

dΩs

ð1þ zÞ2 : ð15Þ

Here dAo is an area element at the observer and dΩs is the
infinitesimal solid angle at the source. The luminosity
distance between the source and the observer is defined as

dLðS;OÞ ≔
ffiffiffiffiffiffiffiffiffi
L

4πF

r
: ð16Þ

One can easily see that in a Minkowski spacetime this
reduces to the standard notion of distance. Using (15) the
luminosity distance can be written as

dL ¼ ð1þ zÞ
ffiffiffiffiffiffiffiffi
dAo

dΩs

s
: ð17Þ

We want to relate the quantity dAo
dΩs

to the metric and thus
compute the luminosity distance.

B. The Jacobi map and the Jacobi determinant

The light rays emitted by the source form a congruence
of null geodesics (see Fig. 1) that can be parametrized as

xα ¼ fαðλ; yiÞ: ð18Þ

Here λ is the affine parameter along each light ray, and the
yi parametrize neighboring rays. For our purposes, it is
enough to concentrate on a single one-parameter family of
light rays
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xα ¼ fαðλ; yÞ: ð19Þ

The tangent vector and the wave vector are defined as

lα ¼ ∂fα
∂λ ; kα ¼ ω̃lα: ð20Þ

Here ω̃ is just a constant with dimension ½L−1�. The
geodesic deviation vector is defined as

Yα ¼ ∂fα
∂y : ð21Þ

For a point source all light rays intersect at S and therefore
Yα
s ¼ 0. The geodesic deviation equation for the family of

geodesics is

D2Yα

dλ2
¼ Rα

βγδlβlγYδ: ð22Þ

The equation is linear and, therefore, the solution at O is a
linear combination of the initial values at the source S (this
is a nontrivial result—see, for instance, [33]). Since
Yα
s ¼ 0, we must have

Yρ
o ¼ J ρ

αðO; SÞDYα
s

dλ
; ð23Þ

where J ρ
αðO; SÞ is called the Jacobi map. It is useful to

define the following infinitesimal vectors,

δxα ≔ Yαδy; ð24Þ

which can be thought of as pointing from one geodesic to a
neighboring one along the family, and

δθα ≔
DYα

dλ
δy; ð25Þ

which connects one geodesic to a neighboring one at the
source and whose magnitude is the angular separation

between the two geodesics at the source. Then (23)
becomes

δxμo ¼ J μ
αðO; SÞδθαs : ð26Þ

Thus the Jacobi map maps initial directions around the
source to vectors transversal to the photon beam at the
observer position.
The Jacobi map defined in (26) is a four-dimensional

map from the tangent space TsðMÞ to ToðMÞ. However
the vectors δxμo and δθαs live in two-dimensional subspaces
of the tangent spaces at O and S, normal to the four-
velocities of the observer and the source, Uo and Us,
respectively, and normal to the photon direction at O and S
(see Appendix A). To find the true Jacobi map, we need to
project onto these subspaces

JðO; SÞ ≔ PoJPs; ð27Þ

where Po and Ps are the projectors

ðPsÞμν ¼ ðδμν þ UμUν − nμnνÞs
ðPoÞμν ¼ ðδμν þ UμUν − nμnνÞo; ð28Þ

and where ns and no are normalized spacelike vectors
pointing in the photon direction in the reference frames of
the source and the observer

no ¼ ðlþ ðl · UÞUÞo; ns ¼ ðlþ ðl ·UÞUÞs: ð29Þ

Here JðO; SÞ is a two-dimensional map from a subspace of
TsðMÞ to a subspace of ToðMÞ. It follows from its
definition in (26) and (27) that

dAo

dΩs
¼ j det JðO; SÞj: ð30Þ

See general discussion in [4], and other sources
[27–32,34,35]. Thus the luminosity distance is given by

dLðS;OÞ ¼ j det JðO; SÞj12ð1þ zÞ: ð31Þ

We now want to solve the geodesic deviation equation (22)
in order to find the Jacobi map. In practice, it is easier to
transform the geodesic deviation equation, which is a
second-order differential equation for Yμ, into two coupled
first-order differential equations for δxμ and δθμ. (This is
similar to what one does in Hamiltonian mechanics where a
single second-order differential equation for a given
dynamical variable is transformed into two first-order
differential equations for the dynamical variable and
its conjugate momentum.) It follows from (24), (25),
and (22) that

FIG. 1. A congruence of light rays emitted at a point source S
and received by an extended observer O. The luminosity distance
between S and O is given by dL ¼ ð1þ zÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dAo=dΩs

p
, while lα

is a tangent vector to a geodesic in the congruence while Yα is
a transverse vector connecting different geodesics of the
congruence.
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DðδxμÞ
dλ

¼ δθμ;
DðδθμÞ
dλ

¼ Rμ
ναβl

νlαδxβ: ð32Þ

Equivalently

dðδxαÞ
dλ

¼ Cα
νðλÞδxν þ δθα;

dðδθαÞ
dλ

¼ Aα
νðλÞδxν þ Cα

νðλÞδθα; ð33Þ

where

Cα
νðλÞ ≔ −Γα

μνlμ; Aα
νðλÞ ≔ Rα

ρμνlρlμ: ð34Þ

In order to find the Jacobi map, this system must be solved
consistently with the initial conditions

δxαðλsÞ ¼ 0; ðlαδθαÞðλsÞ ¼ ðUα
sδθαÞðλsÞ ¼ 0: ð35Þ

Similar equations have also been derived in [27].

C. The van Vleck determinant

The van Vleck determinant measures the deviation from
the inverse square law [36]

F ¼ LΔvV

4πðλo − λsÞ2ð1þ zÞ2 : ð36Þ

This implies that the luminosity distance is given by

dL ¼ ðλo − λsÞð1þ zÞΔ−1
2

vV: ð37Þ

Comparing that with Eq. (31), we see that the van Vleck
determinant is related to the Jacobi determinant via

det J ¼ ðλo − λsÞ2Δ−1
vV: ð38Þ

D. Example: k= 0 FLRW universe
(without peculiar velocities)

First we calculate the dLðzÞ relation in a k ¼ 0 FLRW
universe expressed in terms of conformal time η

ds2 ¼ a2ðηÞdŝ2 ¼ a2ðηÞð−dη2 þ dx2 þ dy2 þ dz2Þ: ð39Þ

In this section and in later sections, we make use of the
following relations between quantities evaluated in con-
formally related metrics ds2 ¼ f2ðη; x⃗Þdŝ2 and for timelike
and null geodesic tangent vectors: Uμ ¼ dxμ

dτ and lμ ¼ dxμ
dλ .

Thereby,

dλ

dλ̂
¼ f2; lμ ¼ 1

f2
l̂μ; ð40Þ

dτ
dτ̂

¼ f; Uμ ¼ 1

f
Ûμ: ð41Þ

This allows us to derive an expression relating the redshifts
in the two conformal metrics

1þ z ¼ ðgμνkμUνÞs
ðgμνkμUνÞo

¼ foðĝμνk̂μÛνÞs
fsðĝμνk̂μÛνÞo

¼ fo
fs

ð1þ ẑÞ: ð42Þ

The Jacobi map scales as

JðO; SÞ ¼ foĴðO; SÞ; ð43Þ

and therefore

det JðO; SÞ ¼ f2o det ĴðO; SÞ: ð44Þ

Hence, we have for the luminosity distances in conformally
related spacetimes

dL ¼ ð1þ zÞj det JðO; SÞj12

¼ f2o
fs

ð1þ ẑÞj det ĴðO; SÞj12

¼ f2o
fs

d̂L: ð45Þ

We want to use (45) and, therefore, we first want to
compute dL for the reference Minkowski spacetime
dŝ2 ¼ ð−dη2 þ dx2 þ dy2 þ dz2Þ. For now we shall take
the source and the observer to be at rest with respect to each
other and with respect to the Hubble flow, so that there are
no peculiar velocities and no Doppler shift. Therefore the 4-
velocities of the observer and the source in synchronous
coordinates are

ðÛμÞo ¼ ð1; 0; 0; 0Þ; ðÛμÞs ¼ ð1; 0; 0; 0Þ: ð46Þ

Here l̂μ is a null vector: l̂μl̂νημν ¼ 0, and is the tangent

vector to an affinely parametrized null geodesic: dl̂μ

dλ̂
¼ 0.

Therefore, up to a normalization constant, it has the
following form,

l̂μ ¼ ð1; n⃗Þ; ð47Þ

where n⃗ is a unit vector. Therefore, the wave vector is
given by

k̂μ ¼ ω̃ð1; n⃗Þ: ð48Þ

Since the Christoffel symbols and the Riemann tensor
vanish in Minkowski, the system of Eqs. (33) reduces to
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dðδx̂αÞ
dλ̂

¼ δθ̂α;
dðδθ̂αÞ
dλ̂

¼ 0; ð49Þ

with the initial conditions (35). It is easy to solve this
system. The solution is

δθ̂α ¼ δθ̂αs ; δx̂αo ¼ ðλ̂o − λ̂sÞδθ̂αs : ð50Þ

Therefore, the unprojected Jacobi map is simply

Ĵ α
β ¼ ðλ̂o − λ̂sÞδαβ: ð51Þ

We also have that

n⃗o ¼ n⃗s ¼ n⃗; P̂o ¼ P̂s≕ P̂: ð52Þ

The projected Jacobi map is

Ĵμν ¼ P̂μ
αĴ α

βP̂
β
ν : ð53Þ

It is easy to check that

Ĵ00 ¼ Ĵ0i ¼ Ĵi0 ¼ 0; Ĵij ¼ ðλ̂o − λ̂sÞðδij − ninjÞ: ð54Þ

The determinant is the product of the two nonvanishing
eigenvalues:

det Ĵ ¼ ðλ̂o − λ̂sÞ2: ð55Þ

In Minkowski space, there is no gravitational redshift and
we chose the observer and the source to be at rest with
respect to each other and so there is no Doppler redshift.
Hence, ẑ ¼ 0 and the luminosity distance becomes

d̂L ¼ ðλ̂o − λ̂sÞ: ð56Þ

Now, using (45), the luminosity distance in FLRW becomes

dL ¼ a2o
as

d̂L ¼ a2o
as

ðλ̂o − λ̂sÞ ¼
a2o
as

ðηo − ηsÞ: ð57Þ

One can cast this in a more familiar form by recognising that

dm ¼ aoðηo − ηsÞ; ð58Þ

and

1þ zc ¼
ao
as

; ð59Þ

where dm is the metric distance and zc is the cosmological
redshift in FLRW. Then the luminosity distance becomes

dL ¼ dmð1þ zcÞ: ð60Þ

It is easy to check that the van Vleck approach also gives
the correct formula for the luminosity distance in FLRW. In
Minkowski space, we have that

ẑ ¼ 0; Δ̂vV ¼ 1: ð61Þ

Hence, applying (37), we get the luminosity distance in
Minkowski space

d̂L ¼ λ̂o − λ̂s; ð62Þ

and therefore the luminosity distance in FLRW is

dL ¼ a2o
as

ðηo − ηsÞ; ð63Þ

It is useful to rewrite the luminosity distance as a pertur-
bative power series in the redshift. Using the cosmographic
expansion (12) of Sec. II, we can write

dLðzÞ ¼
ao
Ho

�
z −

Qo

2
z2 þ 3Q2

o þ 3Qo − J o

6
z3 þOðz4Þ

�
:

ð64Þ

This is equivalent to (3) which was derived in [5], except
that now we are working with conformal time and consider
terms only up to Oðz3sÞ. Note that

ao
Ho

¼ ao
ðda=dηÞo=ao

¼ ao
ðda=dtÞo

¼ 1

Ho
; ð65Þ

where Ho is the usual Hubble parameter measured by the
astronomers. That is, in any FLRW cosmology

dLðzÞ ¼
1

Ho

�
z −

Qo

2
z2 þ 3Q2

o þ 3Qo − J o

6
z3 þOðz4Þ

�
:

ð66Þ

Furthermore, Qo and J o can be converted to qo and jo
which gives (3) up to third order in z as expected:

dLðzÞ ¼
1

H0

�
zþ 1− q0

2
z2 −

1− q0 − 3q20 þ j0
6

z3 þOðz4Þ
�

ð67Þ

This result is with hindsight actually quite straightforward,
and we can only justify the time spent on such an approach
by now modifying and applying it in several nontrivial
situations.
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E. Example: k= 0 FLRW universe
(with peculiar velocities)

From the above we see that in a k ¼ 0 FLRW universe
without peculiar velocities

dL ¼ ao
Ho

ð1þ zÞPðzÞ; ð68Þ

where PðzÞ is the specific polynomial

PðzÞ ¼ z−
2þQo

2
z2 þ 3Q2

o þ 6Qo þ 6− J o

6
z3 þOðz4Þ:

ð69Þ

If one now adds peculiar velocities, then the only change
is that

dL ¼ ao
Ho

ð1þ zÞPðzcÞ; ð70Þ

where zc is the cosmological contribution to the total
redshift z, and in terms of the Doppler contribution to
the redshift we have

1þ z ¼ ð1þ zcÞð1þ zDÞ: ð71Þ

Then, assuming that peculiar velocities, and hence zD, are
small, we have

zc ¼
1þ z
1þ zD

− 1 ≈ z − ð1þ zÞzD þOðz2DÞ: ð72Þ

Therefore

dL ¼ ao
Ho

ð1þ zÞPðz − ð1þ zÞzD þOðz2DÞÞ; ð73Þ

implying

dL ¼ ao
Ho

fð1þ zÞPðzÞ − ð1þ zÞ2P0ðzÞzD þOðz2DÞg:

ð74Þ

This gives an explicit formula for estimating the potential
effect of peculiar velocities on luminosity distance. The
fractional size of the effect is easily seen to be

ΔdL
dL

¼ −ð1þ zÞP
0ðzÞ

PðzÞ zD þOðz2DÞ: ð75Þ

Evaluating explicitly the polynomial PðzÞ to Oðz3Þ, we can
find an expression for dL to Oðz2Þ and OðzDÞ

dL ¼
ao
Ho

�
−zDþð1þQozDÞz

−
�
Qo

2
þ 3Q2

oþ 2Qo −J o

2
zD

�
z2þOðz3ÞþOðz2DÞ

�
:

ð76Þ

As a further application we might consider a situation
where on average the peculiar Doppler shifts are zero:
hzDi ¼ 0. Then on average

hdLi ¼
ao
Ho

�
z −

Qo

2
z2 þOðz3Þ þOðz2DÞ

�
; ð77Þ

and so

dL − hdLi ¼ −
aozD
Ho

�
1 −Qozþ

�
3Q2

o þ 2Qo − J o

2

�
z2

þOðz3Þ þOðzDÞ
�
: ð78Þ

This could be used, in principle, to estimate peculiar
Doppler redshifts zD (and so peculiar velocities) at various
values of total redshift z. This would be done by first
neglecting peculiar Doppler redshifts to naively fit dLðzÞ to
the supernova data, thereby determining the cosmographic
coefficients, and then binning the supernovae into small
redshift bins to observationally determine dL − hdLi. It will
now be interesting to extend this perturbative analysis
beyond simple FLRW universes.

IV. INTRODUCING LINEAR PERTURBATIONS

Now we look at a linearly perturbed FLRWmetric with 2
scalar modes in the Newtonian gauge

ds2¼ a2ðηÞ½−ð1þ2Ψðx⃗;ηÞÞdη2þð1þ2Φðx⃗;ηÞÞδijdxidxj�;
ð79Þ

where Ψ and Φ are the so-called Bardeen potentials. From
now on all quantities are expressed to first order in terms of
the Bardeen potentials. To first order, the metric (79) can be
cast in the form

ds2 ¼ f2ðη; x⃗Þ½−ð1þ 2ξÞdη2 þ δijdxidxj�; ð80Þ

where the overall conformal factor is

fðη; x⃗Þ ¼ aðηÞð1þ 2ΦÞ12 ≈ aðηÞð1þΦÞ; ð81Þ

and

ξ ¼ Ψ −Φ: ð82Þ
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A. Calculating the redshift

Now look at the simplified one-mode metric

dŝ2 ¼ −ð1þ 2ξÞdη2 þ δijdxidxj; ð83Þ

which is simply background Minkowski space plus a
perturbation: ĝμν ¼ ημν þ hμν. We require that the 4-veloc-
ities of the source and the observer are normalized
ÛμÛνĝμν ¼ −1 and we again first consider the case of
zero peculiar velocities. This implies that, to first order,

Ûμ
s ¼ Ûμ

o ¼ ð1 − ξ; 0⃗Þ: ð84Þ

The source emits light which travels on null geodesics with
wave vector k̂μs. The emission frequency is given by

ω̂s ≔ −ĝμνk̂μs Ûν
s ¼ −ω̃ĝμνl̂μ

s Û
ν
s ¼ ω̃ð1þ ξsÞ; ð85Þ

where we use the fact that locally at the source spacetime is

approximately flat. So l̂μ
s ≈ ˆ̄l

μ
s ¼ ð1; n⃗Þ where the bar here

and thereafter will denote the background value of a given
object. The observed frequency is similarly given by

ω̂o ¼ ω̃l̂0
oð1þ ξoÞ: ð86Þ

Then the redshift is given by

1þ ẑ ¼ ω̂s

ω̂o
¼ 1þ ξs

l̂0
oð1þ ξoÞ

¼ ðl̂0
oÞ−1ð1þ ξs − ξoÞ: ð87Þ

In order to calculate this redshift, we need to relate the
tangent vector of the light ray at the position of the observer
l̂μ
o to the tangent vector at the source l̂μ

s ≈ ð1; n⃗Þ. This can
be done via the geodesic equation

dl̂μ

dλ̂
¼ −Γ̂μ

ρσl̂ρl̂σ; ð88Þ

which to first order becomes

dl̂ð1Þμ

dλ̂
¼ −Γ̂μ

ρσ
ˆ̄l
ρ ˆ̄l

σ
; ð89Þ

where the background connection vanishes: ˆ̄Γμ
ρσ ¼ 0

because the background space isMinkowski. The Christoffel
symbols can be easily calculated from the metric (83)

Γ̂0
00 ¼ ξ;η; ð90Þ

Γ̂0
0i ¼ Γ̂0

i0 ¼ Γ̂i
00 ¼ ξ;i; ð91Þ

Γ̂0
ij ¼ Γ̂k

0i ¼ Γ̂k
i0 ¼ Γ̂k

ij ¼ 0; ð92Þ

Hence, the solution of the geodesic equation is given by

l̂ð1Þ0
o − l̂ð1Þ0

s ¼ −
Z

λ̂o

λ̂s

ðξ;η þ 2∇⃗ξ:n⃗Þdλ̂; ð93Þ

l̂ð1Þi
o − l̂ð1Þi

s ¼ −
Z

λ̂o

λ̂s

ξ;idλ̂: ð94Þ

Equation (93), and the fact that l̂μ
s ≈ ð1; n⃗Þ, together

imply that

l̂0
o ¼ 1 −

Z
λ̂o

λ̂s

ðξ;η þ 2∇⃗ξ · n⃗Þdλ̂: ð95Þ

Therefore, the redshift to first order becomes

1þ ẑ ¼ 1 − ðξo − ξsÞ þ
Z

λ̂o

λ̂s

ðξ;η þ 2∇⃗ξ · n⃗Þdλ̂: ð96Þ

We can put that in a more useful form by changing variables
from the affine parameter λ̂ to the conformal time η. Using
(95), we have that, to first order,

dλ̂ ¼ dη

�
1þ

Z
λ̂

λ̂s

ðξ;η þ 2∇⃗ξ · n̂Þdλ̂0
�
: ð97Þ

We also use that, to first order,

ξ;η ¼
dξ
dη

− ∇⃗ξ · n⃗: ð98Þ

This then gives us the following expression for the
redshift

1þ ẑ ¼ 1þ
Z

ηo

ηs

∇⃗ξ · n⃗dη: ð99Þ

or, equivalently,

1þ ẑ ¼ 1þ ξo − ξs −
Z

ηo

ηs

ξ;ηdη: ð100Þ

Now we can find the redshift in the full perturbed FLRW
metric

1þ z ¼ ao
as

�
1þΦo −Φs þ

Z
ηo

ηs

∇⃗ξ · n⃗dη
�
: ð101Þ

or, equivalently,

1þ z ¼ ao
as

�
1þΨo −Ψs −

Z
ηo

ηs

ξ;ηdη

�
ð102Þ
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The redshift is a product of different contributions

1þ z ¼ ð1þ zcÞð1þ zgrÞð1þ zISWÞ: ð103Þ

Here

1þ zc ¼
ao
as

; ð104Þ

is the cosmological redshift due to the overall expansionof the
Universe, and

1þ zgr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Ψo

1þ 2Ψs

s
≈ 1þ Ψo −Ψs; ð105Þ

is the gravitational redshift due to the potential wells of the
source and the observers. Finally

1þ zISW ¼ 1 −
Z

ηo

ηs

ξ;ηdη ¼ 1 −
Z

to

ts

ξ;tdt ð106Þ

is thegravitational redshift causedby changingpotentialwells
along the path of the light—an integrated Sachs-Wolfe effect
[37]. Equation (103) gives the total redshift without the
Doppler redshift arising due to the peculiar velocities of the
source and the observer. It is trivial to include the Doppler
redshift in the analysis—(103) is modified to

1þ z ¼ ð1þ zDÞð1þ zcÞð1þ zgrÞð1þ zISWÞ; ð107Þ

where the Doppler contribution to the redshift is

1þ zD ¼ γsð1 − v⃗s:n⃗Þ
γoð1 − v⃗o:n⃗Þ

; ð108Þ

and where γ ¼ ð1 − jv⃗j2Þ−1
2 and v⃗s, v⃗o are the peculiar

velocities of the source and the observer.
We can also adapt this redshift calculation to determine

the total lapse in affine parameter in terms of the total lapse
in conformal time. From the above, the relationship
between affine parameter and conformal time is

dλ̂ ¼ dη
�
1þ

Z
λ̂

λ̂s

ðξ;η þ 2∇⃗ξ · n̂Þdλ̂0
�

¼ dη
�
1þ 2ðξ − ξsÞ −

Z
η

ηs

ξ;η0dη0
�

¼ dη½1þ 2ðξ − ξsÞ þ zISWðηsÞ − zISWðηÞ�: ð109Þ

where

zISWðηÞ ¼ −
Z

ηo

η
ξ;η0dη0: ð110Þ

Integrating

λ̂o − λ̂s ¼ ðηo − ηsÞ½1þ 2ðhξi − ξsÞ þ zISW − hzISWi�:
ð111Þ

Here hξi and hzISWi are simply averages along the line of
sight:

hξi ≔ 1

ηo − ηs

Z
ηo

ηs

ξdη; ð112Þ

hzISWi ≔
1

ηo − ηs

Z
ηo

ηs

zISWðηÞdη: ð113Þ

While hξi and hzISWi, (and ξs and zISW for that matter),
might be difficult to measure, they do at least have clear
physical interpretations.

B. The Jacobi and van Vleck determinants

The Jacobi map and Jacobi determinant can be
calculated using the formalism developed in Sec. III B.
We present here the final result for the Jacobi determinant
and defer the full calculation to Appendix B. The Jacobi
determinant in the unphysical metric (83) is given by:

ðdet ĴÞ12 ¼ ðλ̂o − λ̂sÞ
�
1 −

1

2

1

λ̂o − λ̂s

×
Z

λ̂o

λ̂s

ðλ̂o − λ̂Þð∇2ξ − ninjξ;ijÞðλ̂ − λ̂sÞdλ̂
�
:

ð114Þ

If the Jacobi and the van Vleck approaches are equivalent,
as was nonperturbatively demonstrated in [4], we must
have that

ðdet ĴÞ12 ¼ Δ̂−1
2

vVðλ̂o − λ̂sÞ: ð115Þ

We will now show that this is indeed the case.
In the weak-field limit, the van Vleck determinant is

approximated by [36,38,39]

Δ̂vV ≈ exp

�
1

λ̂o − λ̂s

Z
λ̂o

λ̂s

ðλ̂o − λ̂ÞðR̂μνl̂
μl̂νÞðλ̂ − λ̂sÞdλ̂

�
;

≈ 1þ
�

1

λ̂o − λ̂s

Z
λ̂o

λ̂s

ðλ̂o − λ̂ÞðR̂μνl̂
μl̂νÞðλ̂ − λ̂sÞdλ̂

�
:

ð116Þ

The components of the Ricci tensor to first order are

R̂00 ¼ ∇2ξ; R̂0i ¼ 0; R̂ij ¼ −ξ;ij: ð117Þ

Since ˆ̄Rμν ¼ 0, only the term R̂ð1Þ
μν

ˆ̄l
μ ˆ̄l

ν
will contribute to

first order in the expression (116). We have
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R̂ð1Þ
μν

ˆ̄l
μ ˆ̄l

ν ¼ ð∇2ξ − ninjξ;ijÞ; ð118Þ

and therefore

Δ̂vV ¼ 1þ 1

λ̂o − λ̂s

Z
λ̂o

λ̂s

ðλ̂o − λ̂Þð∇2ξ − ninjξ;ijÞðλ̂ − λ̂sÞdλ̂:

ð119Þ

Hence,

Δ̂−1
2

vV ¼ 1−
1

λ̂o − λ̂s

1

2

Z
λ̂o

λ̂s

ðλ̂o − λ̂Þð∇2ξ− ninjξ;ijÞðλ̂− λ̂sÞdλ̂:

ð120Þ

We see that (115) is satisfied and so the two approaches are
equivalent.

C. The luminosity distance in perturbed FLRW

Now we finish the calculation of the luminosity
distance in perturbed FLRW. We can express the
Jabobi determinant (114) in terms of conformal time
by using the fact that

dη

dλ̂
¼ 1 −

Z
λ̂

λ̂s

ðξ;η þ 2∇⃗ξ · n⃗Þdλ̂0; ð121Þ

and, hence, to linear order,

dλ̂ ¼ dη

�
1þ

Z
η

ηs

ðξ;η þ 2∇⃗ξ · n⃗Þdη0
�
: ð122Þ

The resulting expression for the Jacobi determinant is:

ðdet ĴÞ12 ¼ ðηo − ηsÞ þ
Z

ηo

ηs

ξdη

þ
Z

ηo

ηs

ðηo − ηÞð∇⃗ξ · n⃗Þdη − ξsðηo − ηsÞ

−
1

2

Z
ηo

ηs

ðηo − ηÞð∇2ξ − ninjξ;ijÞðη − ηsÞdη;

ð123Þ

where again we have replaced a double integral by a
single integral. Hence, the luminosity distance in two-
mode perturbed (Φ, ξ) FLRW cosmology is given by

dLðηs; ηo; n⃗Þ ¼
f2o
fs

d̂L ð124Þ

¼ f2o
fs

ðdet ĴÞ12ð1þ ẑÞ ð125Þ

¼ a2o
as

½ðηo − ηsÞ þ 2Φoðηo − ηsÞ − Ψsðηo − ηsÞ

þ ðηo − ηsÞ
Z

ηo

ηs

∇⃗ξ · n⃗dηþ
Z

ηo

ηs

ξdη

þ
Z

ηo

ηs

ðηo − ηÞð∇⃗ξ · n⃗Þdη

−
1

2

Z
ηo

ηs

ðηo − ηÞð∇2ξ − ninjξ;ijÞðη − ηsÞdη�: ð126Þ

This formula shows the dependance of the luminosity
distance measured by an observer O as a function of the
conformal time of the source ηs in a given direction n⃗. At
this stage, this expression is somewhat formal, and
mainly useful as a starting point for further detailed
model-building. We shall present a particularly simple toy
model in the next section, but for now will try to recast
this expression (to the extent possible) in terms of various
contributions to the redshift. For instance, by recognizing

that dL;FLRW ¼ a2o
as
ðηo − ηsÞ is the luminosity distance in

FLRW without peculiar velocities, one can write

dLðηs; ηo; n⃗Þ

¼ dL;FLRWðzcÞ
�
1þ 2Φo − Ψs þ

Z
ηo

ηs

∇⃗ξ · n⃗dη

þ 1

ηo − ηs

Z
ηo

ηs

ξdηþ 1

ηo − ηs

Z
ηo

ηs

ðηo − ηÞð∇⃗ξ · n⃗Þdη

−
1

2

1

ηo − ηs

Z
ηo

ηs

ðηo − ηÞð∇2ξ − ninjξ;ijÞðη − ηsÞdη
�
:

ð127Þ

There are several other ways of usefully repackaging the
luminosity distance in the two-mode perturbed (Φ, ξ)
FLRW cosmology we are considering. For instance,
using (111), we have that

ðdet ĴÞ12 ¼ ðηo − ηsÞ½1þ 2ðhξi − ξsÞ þ zISW − hzISWi�Δ̂−1
2

vV

ð128Þ

and substituting that inside (125) we obtain

dL ¼ dL;FLRWðzcÞð1þΦoÞð1þ zgrÞð1þ zISWÞ
× ½1þ 2ðhξi − ξsÞ þ zISW − hzISWi�

×

�
1 −

1

2

1

ηo − ηs

Z
ηo

ηs

ðηo − ηÞð∇2ξ − ninjξ;ijÞ

× ðη − ηsÞdη
�
: ð129Þ

The (1þΦo) factor is relatively uninteresting, since it
only depends on what is happening at the observer, it is
common to all observations—at worst it is a rescaling to

IVANOV, LIBERATI, VIEL, and VISSER PHYS. REV. D 98, 063505 (2018)

063505-10



marginalize over. These various ways of looking at the
luminosity distance, we do feel, give us a somewhat better
handle on the fundamental physics. Equations (127) and
(129) are now manifestly of the form

dLðηs;ηo; n⃗Þ ¼ dL;FLRWðzcÞ× f1þðperturbatively smallÞg:
ð130Þ

V. SIMPLE TOY MODEL: SCALAR MODE
PERTURBATION SINUSOIDALLY

VARYING WITH TIME

We now consider a simple toy model where the Bardeen
potentials depend sinusoidally on conformal time and are
independent of space

Ψ ¼ −Φ ¼ ϵ sinðκηÞ: ð131Þ

where ϵ and κ are constants and ϵ is perturbatively
small. Initially, we shall neglect peculiar velocities, but
subsequently show how to put them back in. We choose
this particular toy model because it is tractable, and
because it serves to illustrate the basic principles behind
generalising the cosmographic approach to an inhomo-
geneous universe. Obviously, in order to analyze the real
universe, one would need to consider more sophisticated
models.

A. Toy model without peculiar velocities

Equations (126) and (101) become

dL ¼ a2o
as

�
Δηþ ϵ

�
−2 sinðκηoÞΔη − sinðκηsÞΔη − 2

cosðκηoÞ
κ

þ 2
cosðκηsÞ

κ

��
; ð132Þ

and

1þ zs ¼
ao
as

½1þ ϵð− sinðκηoÞ þ sinðκηsÞÞ�: ð133Þ

Nowwe derive a cosmographic series for dL in terms of z. The coefficients to leading order are expected to be the same as in
(64) plus corrections of order ϵ. The cosmographic parameters are defined in the same way as before—Eqs. (9)—and we
make use of the following relation, valid for any conformal time η,

1þ zðηÞ ¼ ao
aðηÞ ½1þ ϵð− sinðκηoÞ þ sinðκηÞÞ�: ð134Þ

Expanding aðηÞ and sinðηÞ as a series in terms of ðη − ηoÞ inside (134), we obtain a series for zðηÞ in terms
of ðη − ηoÞ

zðηÞ ¼ ½−Ho þ ϵðκ cosðκηoÞÞ�ðη − ηoÞ þ
�
H2

o

�
2þQo

2

�
þ ϵ

�
−κ cosðκηoÞHo − κ2

sinðκηoÞ
2

��
ðη − ηoÞ2

þ
�
−H3

o

�
J o þ 6Qo þ 6

6

�
þ ϵ

�
κ cosðκηoÞH2

o

�
2þQo

2

�
þ κ2

sinðκηoÞ
2

Ho − κ3
cosðκηoÞ

6

��
ðη − ηoÞ3

þOðη − ηoÞ4: ð135Þ

Reverting this series, we find

η − ηo ¼ A1zþ A2z2 þ A3z3 þOðz4Þ; ð136Þ

where

A1 ¼ −
1

Ho
þ ϵ

�
−κ

cosðκηoÞ
H2

o

�
; ð137Þ

A2 ¼
1

Ho

�
2þQo

2

�
þ ϵ

�
−κ

cosðκηoÞ
H2

o
− κ2

sinðηoÞ
2H3

o
þ κ

3 cosðηoÞ
H2

o

�
2þQo

2

��
; ð138Þ
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A3 ¼ −
1

Ho

�
6þ 3Q2

o þ 6Qo − J o

6

�
þ ϵ

1

H2
o

�
κ cosðκηoÞ

�
−6 − 9Qo þ 5Q2

o − 2J 2
o

2

�

þ κ3
cosðκηoÞ
6H2

o
þ κ

sinðκηoÞ
Ho

�
3þ 2Qo

2

��
ð139Þ

We also have

Δη ¼ ηo − ηs ¼ −A1zs − A2z2s − A3z3s þOðz4sÞ: ð140Þ

This allows us to expand sinðηsÞ, cosðηsÞ and ao
as

as functions of zs. We find

sinðκηsÞ ¼ sinðκηoÞ þ ½κ cosðκηoÞA1�zs þ
�
κ cosðκηoÞA2 − κ2

sinðκηoÞA2
1

2

�
z2s

þ
�
κ cosðκηoÞA3 − κ2 sinðκηoÞA1A2 − κ3

cosðκηoÞ
6

A3
1

�
z3s þOðz4sÞ; ð141Þ

while

cosðκηsÞ ¼ cosðκηoÞ þ ½−κ sinðκηoÞA1�zs þ
�
−κ sinðκηoÞA2 −

κ2 cosðκηoÞA2
1

2

�
z2s

þ
�
−κ sinðκηoÞA3 − κ2 cosðκηoÞA1A2 þ κ3

sinðκηoÞ
6

A3
1

�
z3s þOðz4sÞ; ð142Þ

and

ao
as

¼ 1þ ½1 − ϵκ cosðκηoÞA1�zs þ ϵ

�
−κ cosðκηoÞA2 þ κ2

sinðκηoÞA2
1

2
− κ cosðκηoÞA1

�
z2s

− ϵ

�
κ cosðκηoÞA3 − κ2 sinðκηoÞA1A2 − κ3

cosðκηoÞ
6

A3
1 þ κ cosðκηoÞA2 − κ2

sinðκηoÞA2
1

2

�
z3s þOðz4sÞ: ð143Þ

Substituting everything inside Eq. (132), we obtain an expansion of the luminosity distance dL in terms of the redshift z

dL
ao

¼
�
1

Ho
þ ϵX

�
zs þ

�
−

Qo

2Ho
þ ϵY

�
z2s þ

�
1

Ho

�
3Q2

o þ 3Qo − J o

6

�
þ ϵZ

�
z3s þOðz4sÞ: ð144Þ

Here

X ≔ 2
sinðκηoÞ

κ
− 2

cosðκηoÞ
κ

−
sinðκηoÞ

Ho
þ κ

cosðκηoÞ
H2

o
; ð145Þ

Y ≔ κ
6 cosðκηoÞ

H2
o

þ κ
3 cosðκηoÞQo

2H2
o

þ sinðκηoÞQo

2Ho
þ κ2

sinðκηoÞ
2H3

o
; ð146Þ

and

Z ≔ κ
2 cosðκηoÞ

H2
o

− κ2
2 cosðκηoÞ

H3
o

− κ2
cosðκηoÞQo

H3
o

− κ3
cosðκηoÞ
6H4

o
þ κ

cosðκηoÞ
H2

o

�
36þ 15Q2

o þ 36Qo − 4J o

6

�

−
4 sinðκηoÞ

Ho
− κ2

sinðκηoÞ
3H3

o
−
sinðκηoÞQo

2Ho
− κ2

sinðκηoÞQo

H3
o

þ 2 sinðκηoÞ
Ho

�
6þ 3Q2

o þ 6Qo − J o

6

�
: ð147Þ

This agrees to zeroth order in ϵ with Eq. (64).
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From the above we see that in our toy model
(a sinusoidally perturbed k ¼ 0 FLRW universe) without
peculiar velocities we have

dL ¼ ao
Ho

ð1þ zÞPðzÞ; ð148Þ

where PðzÞ is the specific polynomial

PðzÞ ¼ B1zþ B2z2 þ B3z3 þOðz4Þ: ð149Þ

with

B1 ¼ 1þ ϵHoX ; ð150Þ

B2 ¼ −
Qo þ 2

2
þ ϵHoðY − XÞ; ð151Þ

B3 ¼
3Q2

o þ 6Qo − J o þ 6

6
þ ϵHoðZ − Y þ XÞ: ð152Þ

The only thing that has changed with respect to standard
FLRW is the coefficients of the polynomial.

B. Toy model with peculiar velocities

If one now adds peculiar velocities, then again the only
change is that

dL ¼ ao
Ho

ð1þ zÞPðzcÞ; ð153Þ

where zc is the cosmological contribution to the total
redshift z. Now in terms of the redshift contributions
due to peculiar velocity zp we again have

zc ¼
1þ z
1þ zD

− 1 ≈ z − ð1þ zÞzD þOðz2DÞ; ð154Þ

again implying

dL ¼ ao
Ho

fð1þ zÞPðzÞ − ð1þ zÞ2P0ðzÞzD þOðz2DÞg;

ð155Þ

Within the context of this model universe, this gives an
explicit formula for estimating the potential effect of
peculiar velocities on the luminosity distance. Again
evaluating explicitly the polynomial PðzÞ to Oðz3Þ allows
us to express dL to Oðz2Þ and OðzDÞ

dL ¼ ao
Ho

�
−ð1þ ϵHoXÞzD

þ ½1þ ϵHoX − ð−Qo þ ϵ2HoYÞzD�z

þ
�
−
Qo

2
þ ϵHoY −

�
3Q2

o þ 2Qo − J o

2

þ ϵHoðY þ 3ZÞ
�
zD

�
z2 þOðz3Þ þOðz2DÞ

�
:

ð156Þ
We could proceed further for instance by assuming

hzDi ¼ 0, (effectively temporarily ignoring peculiar
Doppler shifts), and fitting

hdLi¼
ao
Ho

�
½1þ ϵHoX �zþ

�
−
Qo

2
þ ϵHoY

�
z2þOðz3Þ

�
:

ð157Þ
Then

dL − hdLi ¼ −
ao
Ho

zD

�
ð1þ ϵHoXÞ þ ð−Qo þ ϵ2HoYÞz

þ
�
3Q2

o þ 2Qo − J o

2
þ ϵHoðY þ 3ZÞ

�
z2
�

þOðz3Þ þOðz2DÞ: ð158Þ
So even in this sinusoidally perturbed FLRWmodel we see
how we can use cosmographic techniques to estimate the
size of the peculiar Doppler shifts.

VI. SUMMARY AND DISCUSSION

In this paper, we have derived a theoretical relation
between the luminosity distance and the redshift of a
standardizable candle in a linearly perturbed FLRW uni-
verse (79). The relation is given by Eqs. (101) and (126)

1þ z ¼ ao
as

�
1þΦo −Φs þ

Z
ηo

ηs

∇⃗ξ · n̂dη

�

¼ ð1þ zcÞð1þ zgrÞð1þ zISWÞ; ð159Þ

and

dL ¼ dL;FLRWðzcÞð1þΦoÞð1þ zgrÞð1þ zISWÞ
× ½1þ 2ðhξi − ξsÞ þ zISW − hzISWi�

×

�
1 −

1

2

1

ηo − ηs

Z
ηo

ηs

ðηo − ηÞð∇2ξ − ninjξ;ijÞ

× ðη − ηsÞdη
�
: ð160Þ

where the different contributions to the redshift, the
cosmological, local gravitational, and integrated Sachs–
Wolfe effects are:
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1þ zc ¼
ao
as

; ð161Þ

1þ zgr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Ψo

1þ 2Ψs

s
≈ 1þ Ψo −Ψs; ð162Þ

1þ zISW ¼ 1 −
Z

ηo

ηs

ξ;ηdη ¼ 1 −
Z

to

ts

ξ;tdt ð163Þ

In certain cases, a single equation for dLðzÞ can be derived
and this equation can be cast as a cosmographic series in z.
For instance, we showed that for a FLRW universe, we
have (64)

dL ¼ ao
Ho

�
z −

Qo

2
z2 þ 3Q2

o þ 3Qo − J o

6
z3 þOðz4Þ

�
:

ð164Þ

and that for a sinusoidally varying potential the coefficients
of this relation are corrected by terms of order ϵ as in
Eq. (144). A few comments regarding the interpretation of
our results are in order.
The redshift as written in Eq. (159) is a sum of three

contributions—a cosmological redshift, a gravitational
redshift, and a redshift due to an ISW effect. However,
what we measure only is the total redshift which includes
also a Doppler contribution due to the peculiar velocities of
the source and the observer. This can be included by hand
in the expression (159) by writing

1þ z ¼ ð1þ zDÞð1þ zcÞð1þ zgrÞð1þ zISWÞ; ð165Þ

where the Doppler contribution to the redshift is

1þ zD ¼ γsð1 − v⃗s · n̂Þ
γoð1 − v⃗o · n̂Þ

; ð166Þ

and where γ ¼ ð1 − jv⃗j2Þ−1
2 and v⃗s, v⃗o are the peculiar

velocities of the source and the observer. Usually, one
assumes that the peculiar velocities of the sources are
random and therefore cancel each other out for a large
enough sample, while the peculiar velocity of the observer
can be canceled from the dipole of the CMB angular
distribution [2]. Within our approach peculiar velocities can
be estimated from (78) for FLRW or from (158) for the
toy model.
Compared to previous discussions of the luminosity

distance in perturbed FLRW Universes such as in [27] we
have made the following improvements. We keep both Ψ
and Φ as general functions of the spacetime coordinates
without assuming any relation between them thus keeping
our discussion as general as possible within linear pertur-
bation theory. We derive our results using both the Jacobi
map and the van Vleck determinant approaches verifying

that they give the same results as they should [4]. While the
Jacobi map is extensively used in Cosmology, to the best of
our knowledge we are the first to extensively use the van
Vleck determinant in the analysis of the luminosity dis-
tance. The van Vleck determinant is a mathematical object
which appears in many other areas of theoretical physics,
and there are multiple techniques to calculate it in certain
specific cases of interest [36,38,39]. For current purposes,
the van Vleck determinant formalism is mathematically
equivalent to the Jacobi determinant formalism but in
general the van Vleck determinant has a cleaner physical
interpretation in terms of the focussing and defocussing of
geodesic flows in a curved spacetime. For that reason it is
an important tool in the analysis of the luminosity distance.
We focus on the cosmographic approach, which is the best
way to test the underlying geometry, by writing the final
result for the luminosity distance in the toy model as a
generalized cosmographic series. We show how to system-
atically include peculiar velocities and Doppler redshifts in
the cosmographic series both in FLRW and in the toy
model. Finally, we rewrite the general formula for the
luminosity distance at first order in perturbation theory as
much as possible in terms of various contributions to the
redshift giving the final formula (160).
The result for the luminosity distance has limited utility

in the vicinity of conjugate points of the congruence of null
geodesics emanating from the source. The vector field
δxμðλÞ is a Jacobi field on the congruence of geodesics and
it certainly has a conjugate point at the source: δxs ¼ 0. If
the observer is located at or near another conjugate point,
then δxo ≈ 0, so that J ðO; SÞ ≈ 0 and dL ≈ 0. For example,
if the source and the observer are located on antipodal
points in closed FLRW, the luminosity distance between
them is zero. Physically this corresponds to the fact that all
photons emitted at the source reach the observer, the
observer sees the source at all directions in the sky, as if
he is located inside the source.
The cosmographic series (67) and (144), if formally

extended to infinite order, converge for jzj < 1 and diverge
for jzj > 1. In order to fit supernovae at higher redshifts, it
is useful to perform the cosmographic expansion in terms
of the improved parameter y ¼ z

1þz [9,12].
Our equations can be applied and the discussion

extended in several different directions. The first applica-
tion is to explore the influence of inhomogeneities from the
cosmic structure on the estimation of the cosmographic
parameters. The cosmographic parameters are usually
estimated by fitting the data from Type Ia supernovae with
the theoretical relation (67) which is derived by assuming
an ideal FLRW cosmology. Fitting the data with a theo-
retical relation adapted to an inhomogeneous universe such
as (160) might lead to alteration of the estimated values of
the Hubble parameter, deceleration parameter and jerk. A
second application is to analyze and constrain alternative
cosmological models which go beyond the ΛCDM, for
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instance, models in which dark energy is dynamical or in
which it varies stochastically with cosmic time [13–16].
However, one has to be careful since our equations are
entirely kinematic in nature and insensitive to the precise
gravitational dynamics. In order to constrain the deviations
from the standard homogenous and isotropic FLRW cos-
mology, the best approach is to consider supernovae in a
tiny shell of fixed size Δz, at a fixed redshift z, and to look
at the power spectrum of the luminosity distance. In a
completely isotropic cosmology, only the monopole would
be active and therefore the size of the higher multipole
excitations would give a constraint on the possible depar-
tures from isotropy. The last application would be to try to
put constraints on the values of the peculiar velocities
within cosmography. We leave all further investigations
along these lines to future work.
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APPENDIX A: DEMONSTRATION THAT
δθs⊥ðks;UsÞ AND δxo⊥ðko;UoÞ

Here we demonstrate that the vectors δθμs and δxμo
indeed belong to two-dimensional subspaces orthogonal
to kμ ¼ ω̃lμ and to Uμ

s , U
μ
o.

1. δxo⊥ko
Since all photons start at the same point in spacetime,

they must have the same phase P defined as

lμ ¼ ∇μP: ðA1Þ

Since the phase does not change along a cross section of the
congruence, we must have that

0 ¼ ∇δxP ¼ δxμ∇μP ¼ δxμlμ; ðA2Þ

which implies that δx⊥ko.

2. δθs⊥ks
Define

vμ ≔
DYμ

dλ
¼ lρ∇ρYμ; ðA3Þ

so that δθμ ¼ vμδy. Then we have that

vμlμ ¼lμlρ∇ρYμ ¼lρ∇ρðlμYμÞ−Yμlρ∇ρlμ ¼ 0; ðA4Þ

where the first term vanishes due to (A2) and the second
term vanishes due to the geodesic equation. This implies
that δθs⊥ks.

3. δθs⊥Us

This follows from the fact that spacetime at the source S
is locally Minkowski and the emission of light is isotropic
in all directions.

4. δxo⊥Uo

In order for this to hold, we must choose a suitable
parametrization of the one-parameter family of null geo-
desics. Let’s say that we start with parameters (λ, y) such
that δxo ·Uo ≠ 0. We can obtain new parameters (λ̃, ỹ)
by performing a general coordinate transformation on the
2-surface spanned by Yμ and lμ

λ ¼ g1ðλ̃; ỹÞ; ðA5Þ

y ¼ g2ðλ̃; ỹÞ: ðA6Þ

However, we want this transformation to preserve the null
geodesic curves and to preserve the affinity of the param-
eter λ. Thus, we are left with

λ ¼ λ̃þ hðỹÞ; ðA7Þ

y ¼ gðỹÞ: ðA8Þ

This implies that

Ỹμ ¼ ∂fμ
∂ỹ

¼ ∂λ
∂ỹ

∂fμ
∂λ þ ∂y

∂ỹ
∂fμ
∂y

¼ ∂h
∂ỹ l

μ þ ∂y
∂ỹ Y

μ; ðA9Þ

which in turn implies

δx̃μ ≔ Ỹμδỹ ¼ lμδhþ δxμ: ðA10Þ

Hence

δx̃μoUOμ ¼ ðlμOUOμÞδhþ δxμoUOμ; ðA11Þ

and this will be zero, provided we choose the function h
such that

δh ¼ −
δxμoUOμ

lμ
oUOμ

: ðA12Þ
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APPENDIX B: CALCULATING THE JACOBI
MAP AND JACOBI DETERMINANT

We now show the full calculation of the Jacobi map and
Jacobi determinant in the perturbed FLRW spacetime. We
first work in the unphysical spacetime (83). The system of
Eqs. (33) reduces to

d

dλ̂
ðδx̂ð1ÞαÞ ¼ Cð1Þα

ν ðλ̂Þδ ˆ̄xν þ ðδθ̂αÞð1Þ; ðB1Þ

d

dλ̂
ðδθ̂αÞð1Þ ¼ Að1Þα

ν ðλ̂Þδ ˆ̄xν þ Cð1Þα
ν ðλ̂Þðδθ̂αÞ: ðB2Þ

The background equations are the same as those for
Minkowski space, (49). Therefore the background unpro-
jected Jacobi map is given by (51), so

ˆ̄J
α
β ¼ ðλ̂o − λ̂sÞδαβ; ðB3Þ

while the first-order correction to the unprojected Jacobi
map is given by

Ĵ ð1Þα
β ¼

Z
λ̂o

λ̂s

Cð1Þα
β ðλ̂Þðλ̂ − λ̂sÞdλ̂

þ
Z

λ̂o

λ̂s

Z
λ̂

λ̂s

½Að1Þα
β ðλ̂0Þðλ̂0 − λ̂sÞ þ Cð1Þα

β ðλ̂0Þ�dλ̂0dλ̂;

ðB4Þ

where

Cð1Þα
β ≔ −Γð1Þα

μβ
ˆ̄k
μ
; Að1Þα

β ≔ Rð1Þα
ρμβ

ˆ̄k
ρ ˆ̄k

μ
: ðB5Þ

and

ˆ̄k
μ ¼ ω̃ð1; n⃗Þ ðB6Þ

Calculating these for the metric (83), we obtain:

Cð1Þ0
0 ¼ −ð_ξþ ∇⃗ξ:n⃗Þ; Cð1Þj

0 ¼ Cð1Þ0
j ¼ −ξ;j; Cð1Þj

k ¼ 0;

ðB7Þ

and

Að1Þ0
0 ¼ ξ;ijninj; Að1Þk

0 ¼ −Að1Þ0
k ¼ ξ;kini; Að1Þk

l ¼ −ξ;kl:

ðB8Þ

The photon direction vectors (29) can be split into back-
ground plus perturbation

nμs ¼ n̄μs þ nð1Þμs ; nμo ¼ n̄μo þ nð1Þμo ; ðB9Þ

where

n̄μs ¼ n̄μo ¼ ð0; n⃗Þ; ðB10Þ

and

nð1Þμs ¼ ð0; ˆl⃗ð1Þ
s Þ ≈ 0⃗; nð1Þμo ¼ ð0; ˆl⃗ð1Þ

o Þ: ðB11Þ

Also the projectors (28) can be split into background plus
perturbation:

P̄μ
sν ¼ δμν þ ˆ̄Uμ

s
ˆ̄Usν − n̄μs n̄sν; P̄μ

oν ¼ δμν þ ˆ̄Uμ
o
ˆ̄Uoν − n̄μon̄oν;

ðB12Þ

and

Pð1Þμ
sν ¼ ˆ̄Uμ

s Û
ð1Þ
sν þ Ûð1Þμ

s
ˆ̄Usν;

Pð1Þμ
oν ¼ ˆ̄Uμ

oÛ
ð1Þ
oν þ Ûð1Þμ

o
ˆ̄Uoν − n̄μon

ð1Þ
oν − nð1Þμo n̄oν: ðB13Þ

In terms of the metric (83), the projectors are given by

P̄0
0 ¼ P̄0

i ¼ P̄i
0 ¼ 0; P̄i

j ¼ δij − ninj; ðB14Þ

and

Pð1Þμ
sν ¼ 0; Pð1Þ0

o0 ¼ Pð1Þ0
oi ¼ Pð1Þi

o0 ¼ 0;

Pð1Þi
oj ¼ −nil̂ð1Þ

oj − l̂ð1Þi
o nj: ðB15Þ

The projected Jacobi map is given by

Ĵ ¼ PoĴPs

¼ P̄o
ˆ̄J P̄s þ Pð1Þ

o
ˆ̄J P̄s þ P̄oĴ

ð1ÞP̄s

¼ ˆ̄J þ Ĵð1Þ: ðB16Þ

The background projected Jacobi map is the same as in
Minkowski space

ˆ̄J00 ¼ ˆ̄J0i ¼ ˆ̄Ji0 ¼ 0; ðB17Þ
ˆ̄Jij ¼ ðλ̂o − λ̂sÞðδij − ninjÞ: ðB18Þ

After a long but straightforward calculation, the full
projected Jacobi map can be shown to be equal to

Ĵ00 ¼ Ĵ0i ¼ Ĵi0 ¼ 0; ðB19Þ

Ĵij ¼ ðλ̂o − λ̂sÞ½δij − ninj�

−
Z

λ̂o

λ̂s

Z
λ̂

λ̂s

½ξ;ij − ξ;iln;ln;j − ninkξ
;k
;j þ ninkξ;klnlnj�

× ðλ̂0 − λ̂sÞdλ̂0dλ̂
þ ðλ̂o − λ̂sÞ½−nil̂ð1Þ

oj þ ninjð ˆl⃗
ð1Þ
o · n⃗Þ�: ðB20Þ
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Solving the characteristic equation, we find the two non-
vanishing eigenvalues of this 3 × 3 spatial matrix. Their
product gives the determinant of the Jacobi map (to first
order)

ðdet ĴÞ12 ¼ ðλ̂o − λ̂sÞ −
1

2

Z
λ̂o

λ̂s

Z
λ̂

λ̂s

ðλ̂0 − λ̂sÞξ;ijðδij − ninjÞ

× dλ̂0dλ̂: ðB21Þ

We can rewrite the double integral as a single integral by
using the identityZ

ηo

ηs

Z
η

ηs

gðη0Þdη0dη ¼
Z

ηo

ηs

ðηo − ηÞgðηÞdη: ðB22Þ

We then obtain

ðdet ĴÞ12 ¼ ðλ̂o − λ̂sÞ
�
1 −

1

2

1

λ̂o − λ̂s

Z
λ̂o

λ̂s

ðλ̂o − λ̂Þ

× ð∇2ξ − ninjξ;ijÞðλ̂ − λ̂sÞdλ̂
�
: ðB23Þ

Since (λ̂o − λ̂s) is positive and ξ is by assumption extremely
small, we must have that ðdet ĴÞ12 ¼ j det Ĵj12. If one desires,
one can now easily obtain the Jacobi map and Jacobi
determinant in the full perturbed FLRW spacetime by using
the relations (43) and (44):

J ¼ foĴ; and det J ¼ f2o det Ĵ: ðB24Þ
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