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If theUniverse’s energy densitywas dominated by a fast-rolling scalar fieldwhile the radiation bathwas hot
enough to thermally produce dark matter, then dark matter with larger-than-canonical annihilation cross
sections can generate the observed dark matter relic abundance. To further constrain these scenarios, we
investigate the evolution of small-scale density perturbations during such a period of kination. We determine
that once a perturbationmode enters the horizon during kination, the gravitational potential drops sharply and
begins to oscillate and decay. Nevertheless, dark matter density perturbations that enter the horizon during an
era of kination grow linearly with the scale factor prior to the onset of radiation domination. Consequently,
kination leaves a distinctive imprint on thematter power spectrum: scales that enter the horizonduring kination
have enhanced inhomogeneity.We also consider howmatter density perturbations evolvewhen the dominant
component of the Universe has a generic equation-of-state parameter w. We find that matter density
perturbations do not grow if they enter the horizon when 0 < w < 1=3. If matter density perturbations enter
the horizon when w > 1=3, their growth is faster than the logarithmic growth experienced during radiation
domination. The resulting boost to the small-scale matter power spectrum leads to the formation of enhanced
substructure, which effectively increases the darkmatter annihilation rate and couldmake thermal darkmatter
production during an era of kination incompatible with observations.
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I. INTRODUCTION

There are no direct observational probes of the period
between the end of inflation and the beginning of big bang
nucleosynthesis (BBN), and as a result, our understanding
of this period is severely limited. Unfortunately, this
ignorance hinders our ability to understand both baryo-
genesis and dark matter production (e.g., [1]). There is hope
that the spectrum of gravitational waves generated prior to
BBN could probe this era, but these probes either require
futuristic gravitational wave detectors [2–6] or a network of
cosmic strings [7]. The matter power spectrum provides
another way to probe this era. For example, an early-matter-
dominated era (EMDE) prior to BBN enhances the small-
scale matter power spectrum and increases the abundance
of microhalos [8,9]. These microhalos enhance the dark
matter annihilation rate by several orders of magnitude,
depending on the cutoff in the small-scale matter power
spectrum. These boosted annihilation rates are sufficient to
bring some EMDE scenarios with otherwise undetectable
dark matter particles into tension with Fermi-LAT obser-
vations of dwarf spheroidal galaxies [9,10].
Another possibility is that there was a period of kination

between the end of inflation and the beginning of BBN,
during which the Universe was dominated by a fast-rolling

scalar field (a kinaton) [11–13]. Kination was initially
proposed as a postinflationary model that allows the
Universe to transition to radiation domination even if the
inflaton does not fully decay into radiation [11]. Kination
also facilitates baryogenesis [12], and the kinaton can
mimic the effects of a cosmological constant if its potential
energy becomes dominant at very late times [13–17].
In Ref. [18], we explored how the dark matter density

evolves if it is thermally produced during an era of kination,
and we derived analytic expressions for the dark matter
relic abundance; see also Refs. [19–28]. To obtain the
observed dark matter relic abundance, dark matter that is
thermally produced during an era of kination requires larger
annihilation cross sections than dark matter that is ther-
mally produced during radiation domination. Using recent
observational limits on dark matter annihilations within
dwarf spheroidal galaxies [29] and the Galactic Center [30],
we were able to place tight constraints on the dark matter
mass and the temperature at which kinaton-radiation equal-
ity occurs, provided that the dark matter reaches thermal
equilibrium during an era of kination [18].
In this work, we study what effect kination has on the

growth of dark matter density perturbations. If kination
enhances the growth of dark matter density perturbations,
the resulting small-scale structure would increase the dark
matter annihilation rate. This boost to the annihilation rate
would place even tighter constraints on scenarios where
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dark matter reaches thermal equilibrium during an era of
kination. If the growth of perturbations during kination
amplifies the dark matter annihilation rate by a factor of 10,
then dark matter that is thermally produced during kination
and annihilates via the bb̄, τþτ−, or WþW− annihilation
channels will be ruled out [18].
First, we numerically determine the evolution of cosmo-

logical perturbations during an era of kination. Surprisingly,
we find that dark matter density perturbations grow linearly
with the scale factor for perturbation modes that enter the
horizon during kination. To better understand this linear
growth, we derive analytic expressions for the evolution of
the gravitational potential Φ and fractional dark matter
density perturbation δχ , not only during an era of kination,
but also for scenarios where the dominant component of the
Universe has a generic equation-of-state parameter w. We
determine that once a mode enters the horizon, the gravita-
tional potential drops sharply and then oscillates with a
decaying amplitude if the dominant energy density has
w > 0. In addition, if w > 1=3, then δχ ∝ a3w=2−1=2, where
a is the scale factor. Therefore, if a perturbation mode
enters the horizon during an era of kination (w ¼ 1), then
δχ grows linearly with the scale factor. This growth leaves an
imprint on the matter power spectrum.We determine that for
modes that enter the horizon during an era of kination,
δχ=Φ0 ∝ k1=2, where k is the comoving wave number, and
Φ0 is the value of the gravitational potential on superhorizon
scales during kination.
Our perturbation analysis is applicable for scenarios in

which dark matter does and does not reach thermal
equilibrium during an era of kination. The authors of
Refs. [18,26] determined that if dark matter reaches thermal
equilibrium during an era of kination, annihilations do not
cease until after the Universe becomes radiation dominated.
We determine that these “relentless” annihilations do not
significantly influence the evolution of δχ after a mode has
entered the horizon. Since dark matter annihilation cannot
lead to deviations from adiabaticity on superhorizon scales
[31–33], “relentless” annihilation has a minimal effect on
the matter power spectrum.
In Sec. II, we present the evolution equations that govern

density and velocity perturbations. In Secs. III A and III B,
we derive analytic expressions for the evolution of the
gravitational potential and dark matter density perturbations,
respectively. In Sec. IV, we determine how the matter power
spectrum scales with wave number following an era of
kination. In Sec. V, we summarize our results and discuss
their implications. The appendixes detail the derivation of the
perturbation evolution equations and their initial conditions.
Natural units ðℏ ¼ c ¼ kB ¼ 1Þ are used throughout
this work.

II. PERTURBATION EVOLUTION

We consider a three-fluid model consisting of dark matter,
radiation, and the kinaton. The kinaton is a fast-rolling scalar

field: w≡ Pϕ=ρϕ ≃ 1, where Pϕ is the kinaton pressure and
ρϕ is the kinaton energy density. We assume that the dark
matter is composed ofMajorana particles and that thekinaton
does not decay or otherwise interact with radiation or dark
matter. However, dark matter and radiation are thermally
coupled via pair production and annihilation. Therefore, the
equations for ρϕ, the radiation energy density ρr, and the dark
matter number density nχ are

d
dt

ρϕ ¼ −6Hρϕ; ð1aÞ

d
dt

nχ ¼ −3Hnχ − hσviðn2χ − n2χ;eqÞ; ð1bÞ

d
dt

ρr ¼ −4Hρr þ hσviEχðn2χ − n2χ;eqÞ; ð1cÞ

where hσvi is the velocity-averaged dark matter annihilation
cross section, hEχi ¼ ρχ=nχ is the average energy of a dark
matter particle, and nχ;eq is the number density of darkmatter
particles in thermal equilibrium. For a dark matter particle
with mass mχ and internal degrees of freedom gχ within a
thermal bath of temperature T,

nχ;eq ¼
gχ
2π2

Z
∞

mχ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

χ

q
eE=T þ 1

EdE: ð2Þ

We approximate nχ;eq as

nχ;eq ≃
gχ
2π2

m2
χTK2

�
mχ

T

�
; ð3Þ

where K2ðzÞ is a modified Bessel function of the second
kind. Equation (3) matches Eq. (2) to within 0.1% for
mχ=T ≳ 6. In addition, when evaluating hEχi, we make

the approximation that hEχi ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χ þ ð3.151TÞ2
q

, which

matches ρχ=nχ to within 10%.
Since the kinaton does not interact with either the

radiation or dark matter, the kinaton energy density scales
as ρϕ ∝ a−6. Even though the dark matter and radiation are
thermally coupled via pair production and annihilation, this
interaction is not sufficient to influence the evolution of the
radiation energy density ρr, and thus, ρr ∝ a−4 [18]. If dark
matter does not reach thermal equilibrium, the dark matter
“freezes in”. In these scenarios, after pair production ceases
(when T ≲mχ=4), the dark matter energy density scales as
ρχ ∝ a−3. If dark matter does reach thermal equilibrium, the
dark matter “freezes out”, and annihilations do not cease
until after kinaton-radiation equality [18,26]. As a result,
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ρχ ∝ ða3½1þ lnða=afÞ�Þ−1 between freeze-out ða ¼ afÞ
and kinaton-radiation equality [18].1

Perturbation modes are characterized by their
comoving wave number k. A perturbation mode enters
the horizon when k ¼ aH, where H is the Hubble
parameter. Each fluid has fractional density perturbations
δi ≡ ðρi − ρ0i Þ=ρ0i , where ρ0i ðtÞ is the fluid’s background
energy density. Each fluid also has velocity perturbations
θi ≡ a∂jvj, where vj ¼ dxj=dt is the fluid’s comoving
peculiar velocity. We assume that the relativistic particles
are tightly coupled so that we may neglect the higher
moments of the radiation perturbation.

In Appendix A we present the derivation of the
perturbation evolution equations using the conformal
Newtonian gauge. These equations govern the evolution
of δ and θ for all fluids. To numerically evaluate the
perturbation equations, we rewrite them in terms of the
scale factor and dimensionless parameters. We define
EðaÞ≡HðaÞ=H1, k̃≡ k=H1, and θ̃i ≡ θi=H1, where
H1 ≡Hða ¼ 1Þ and a ¼ 1 is the start of the numerical
integration. Using these conventions, the perturbation
equations for the kinaton ϕ, radiation r, and dark matter
χ are

δ0ϕ þ
2θ̃ϕ

a2EðaÞ þ 6Φ0 ¼ 0; ð4aÞ

θ̃0ϕ − 2
θ̃ϕ
a
þ k̃2Φ
a2EðaÞ −

1

2

k̃2δϕ
a2EðaÞ ¼ 0; ð4bÞ

δ0χ þ
θ̃χ

a2EðaÞ þ 3Φ0 ¼ hσviρ0χ
mχH1aEðaÞ

�
Φ
�
1 −

�
ρ0χ;eq
ρ0χ

�
2
�
− δχ þ

�
ρ0χ;eq
ρ0χ

�
2

ð2δχ;eq − δχÞ
�
; ð4cÞ

θ̃0χ þ
θ̃χ
a
þ k̃2Φ
a2EðaÞ ¼

hσviðρ0χ;eqÞ2
mχρ

0
χH1aEðaÞ

ðθ̃r − θ̃χÞ; ð4dÞ

δ0rþ
4

3

θ̃r
a2EðaÞþ4Φ0 ¼ hσviðρ0χÞ2

mχρ
0
rH1aEðaÞ

�
−Φ

�
1−

�
ρ0χ;eq
ρ0χ

�
2
�
þ2δχ−δr−

�
ρ0χ;eq
ρ0χ

�
2

ð2δχ;eq−δrÞ
�
; ð4eÞ

θ̃0r þ
k̃2Φ

a2EðaÞ −
1

4

k̃2δr
a2EðaÞ ¼

hσviðρ0χÞ2
mχρ

0
rH1aEðaÞ

�
3

4
θ̃χ − θ̃r þ

1

4

�
ρ0χ;eq
ρ0χ

�
2

θ̃r

�
; ð4fÞ

where 0 denotes a derivative with respect to the scale
factor, δχ;eq ≡ nχ;eq=n0χ;eq − 1 is the dark matter equilib-
rium density perturbation, and Φ and Ψ are metric
perturbations [see Eq. (A6)]. In addition, the perturbed
time-time component of the Einstein equation yields

k̃2Φþ 3a2E2ðaÞðΦ0aþΦÞ ¼ 3

2
a2ðρ̃ϕδϕ þ ρ̃rδr þ ρ̃χδχÞ;

ð5Þ

where ρ̃i ≡ ρ0i =ρc and ρc ≡ 3H2
1m

2
PL=8π. When deriving

Eqs. (4) and (5), we use the fact that, since scalar fields
cannot have anisotropic stress to first order in the
perturbations, Φ ¼ −Ψ.
We numerically solve Eq. (4) for various k values

starting well before each mode enters the horizon and after
the dark matter becomes nonrelativistic ðmχ=T ≳ 3Þ. For
any given k mode, we assume that the perturbations are
adiabatic before horizon entry.2 This implies that the initial
perturbations are all directly related to the initial gravita-
tional potential Φ0; see Appendix B.
It has been well established that for modes that enter

the horizon during radiation domination, matter density
1The logarithmic scaling of ρχa3 is the same for kination

models and cannibalistic dark matter models. In cannibalistic
dark matter models, the dark matter undergoes self-heating,
which produces a pressure term in the perturbation equations
[34–37]. This pressure term is absent in kination models because
the energy released by dark matter annihilations is transferred to
the radiation bath.

2References [32,33] demonstrated that perturbations that are
initially adiabatic remain adiabatic before horizon entry even in
the presence of energy exchange between fluids.
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perturbations grow logarithmicallywith the scale factor [38].
Once the Universe becomes matter dominated, the matter
density perturbations grow linearly with the scale factor. By
numerically solving the perturbation evolution equations, we
determine that if a mode enters the horizon during an era of
kination, matter density perturbations grow linearly with the
scale factor prior to the onset of radiation domination.
Figure 1 shows the evolution of dark matter density pertur-
bations obtained by numerically solving Eq. (4) for freeze-in
and freeze-out scenarios. The two modes shown in Fig. 1
both enter the horizon during an era of kination. The two
modes have wave numbers k ¼ 43kKR and k ¼ 3075kKR,
where kKR ≡ aKRHðaKRÞ is the wave number of the mode
that enters the horizon at kinaton-radiation equality. The two
modes enter the horizon respectively at a ¼ 1300 and
a ¼ 150, while kinaton-radiation equality occurs at
aKR ¼ 104. In the freeze-in scenarios, the darkmatter density
perturbations are initially constant in conformal Newtonian
gauge. Since our perturbation evolution starts after pair
production has mostly ended, ρχ ∝ a−3. To ensure that the
curvature perturbation ζχ ¼ Φ − δχρχ=ðaρ0χÞ remains con-
stant outside the horizon, δχ must also be constant outside the
horizon for freeze-in scenarios. The situation is more
complicated for freeze-out scenarios because δχ ¼ δχ;eq until
freeze-out, after which δχ decreases toward Φ0 to maintain
adiabaticity before horizon entry.
Once a mode enters the horizon, the dark matter density

perturbation experiences a kick from the decaying gravi-
tational potential (see Fig. 3). After the kick, the dark matter
density perturbations grow linearly with the scale factor
until kinaton-radiation equality, after which they grow
logarithmically. The evolution of dark matter density
perturbations is oddly similar during an era of kination
and matter domination, in spite of the fact that the pressure

of the kinaton forces Φ to evolve very differently during an
era of kination. In the following sections, we analytically
solve for the evolution ofΦ and δχ in order to determine the
physical mechanism behind the linear growth of δχ during
kination.

III. ANALYTIC EXPRESSIONS

A. Φ Evolution

To understand the evolution of δχ , we must first under-
stand the evolution of Φ. To do so, we compare how Φ
evolves for modes that enter the horizon during various
eras. To form a single differential equation for Φ, we start
with the time-time and space-space components of the
perturbed Einstein equations:

k2Φþ 3
_a
a

�
_Φ −

_a
a
Ψ
�

¼ 4πGa2δρ; ð6aÞ

Φ̈þ _a
a
ð2 _Φ − _ΨÞ −

�
2
ä
a
−

_a2

a2

�
Ψ

þ k2

3
ðΦþΨÞ ¼ −4πGa2δP; ð6bÞ

where a dot represents differentiation with respect to
conformal time, and δρ and δP are the dominant fluid’s
energy density and pressure perturbations. Assuming
that the dominant fluid has a constant equation of state,
δP ¼ wδρ. Combining Eq. (6) with the second Friedmann
equation yields a second-order differential equation for Φ
that is dependent on w:

Φ̈þ 6ð1þ wÞ
3wþ 1

τ−1 _Φþ wk2Φ ¼ 0; ð7Þ

100
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102
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δ χ
/Φ
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k = 3075 kKR
k = 43 kKR

aKR
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k = 3075 kKR
k = 43 kKR

δχ,eq/Φ0 aKRaKR

aF

FIG. 1. The evolution of dark matter density perturbations for two modes that enter the horizon during an era of kination. The left panel
corresponds to scenarios where dark matter freezes in during an era of kination with hσvi ¼ 1.4 × 10−46 cm3 s−1. The right panel
corresponds to scenarios where dark matter freezes out during an era of kination with hσvi ¼ 1 × 10−23 cm3 s−1 and freeze-out
occurring at aF ¼ 2.5. The short-dashed line corresponds to the dark matter equilibrium density perturbation δχ;eq. In both panels,
mχ ¼ 105 GeV and kinaton-radiation equality occurs at aKR ¼ 104. One mode has wave number k ¼ 3075kKR and enters the horizon at
a ¼ 150, while the other mode has wave number k ¼ 43kKR and enters the horizon at a ¼ 1300.
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where τ is the conformal time. The solution to Eq. (7) for
w > 0 is

ΦðτÞ ¼ C1ð2τ þ 6wτÞbJ−bðw1=2kτÞ
þ C2ð2τ þ 6wτÞbY−bðw1=2kτÞ; ð8Þ

where b ¼ 1=2 − 3ð1þ wÞ=ð3wþ 1Þ, C1 and C2 are inte-
gration constants, Jb is a Bessel function of the first
kind, and Yb is a Bessel function of the second kind.
Conformal time and the scale factor are related via w:
since HðaÞ¼H1a−3ð1þwÞ=2, τ¼½H1ð3wþ1Þ=2�−1að3wþ1Þ=2.
Using this relation, Eq. (8) is rewritten in terms of the scale
factor, and C1 and C2 are determined by demanding that
Φ → Φ0 as a → 0:

ΦðaÞ ¼ Φ0Γð1 − bÞwb
2

�
k̃

3wþ 1

�b

a
b
2
ð3wþ1Þ

× J−b

�
w1=2 2k̃

3wþ 1
a

3wþ1
2

�
; ð9Þ

where ΓðxÞ is the gamma function.
Figure 2 shows the analytic evolution of Φ given by

Eq. (9). Each curve represents a perturbation mode that
enters the horizon when the dominant component of the
Universe has w ¼ 1; 0.75; 0.5; 0.33, or 0.25. All the curves
have k̃ ¼ 10−5, and therefore the ratio between k and H1 is
the same for all scenarios, and the perturbation mode in
each scenario starts out equally far outside the horizon.
However, since EðaÞ ∝ a−3ð1þwÞ=2, these modes enter the
horizon at different values of a. Apart from the varying
horizon entries, the overall evolution of Φ is qualitatively
the same for w > 0. Once a perturbation mode enters the
horizon, the fluid’s pressure overwhelms the gravitational
attraction, causing a sudden drop in Φ, after which Φ

oscillates with a decaying amplitude. Setting w > 1, which
does not necessarily violate causality [26,39,40], leads to
the same Φ evolution. In contrast, Φ is constant during
matter domination. Therefore, the linear growth experi-
enced by matter perturbations that enter the horizon during
an era of kination is fundamentally different from the linear
growth experienced during matter domination.
During an era of kination, w ¼ 1, and

ΦðaÞ ¼ Φ0

4

k̃a2
J1

�
k̃a2

2

�
; ð10Þ

since Γð2Þ ¼ 1. Expanding the Bessel function in Eq. (10)
around k̃a2 ¼ 0 reproduces the initial condition for Φ
derived in Appendix B: Φ ≃Φ0 − k̃2Φ0a4=32 for
k̃2a4 ≪ 1. Figure 3 shows the evolution of Φ for the same
modes as those shown in Fig. 1 (the evolution of Φ is
identical for freeze-in and freeze-out scenarios since
ρχ ≪ ρϕ). The solid curves represent the numeric solution
to Eq. (5) and the dashed lines represent the analytic
approximation given by Eq. (10). We see from Fig. 3 thatΦ
remains constant while the perturbation mode is outside the
horizon. Upon horizon entry,Φ drops sharply and begins to
oscillate around zero with a decaying amplitude. The
percent error between the numeric and analytic solutions
for Φ remains below 0.1% as long as a ≲ 0.25 aKR. For
a≲ 0.25 aKR, the assumption that ρϕ is the sole component
of the Universe is valid because ρϕ contributes at least 95%
of the total energy density of the Universe. If a perturbation
mode enters the horizon near kinaton-radiation equality,
Eq. (10) becomes inaccurate because it assumes that the
kinaton is the sole component of the Universe.
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100 101 102 103 104 105 106 107

Φ
/Φ
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scale factor (a/aI)
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w = 1/3
w = 1/4

FIG. 2. The evolution of Φ given that the perturbation mode
enters the horizon when the dominant component of the Universe
has w ¼ 1; 0.75; 0.5; 0.33, or 0.25. All of these scenarios involve
a mode with k=H1 ¼ 10−5, but they enter the horizon at varying
values of a.
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Φ
/Φ

0

scale factor (a/aI)
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FIG. 3. The evolution ofΦ for two modes that enter the horizon
during an era of kination. In this figure, mχ ¼ 105 GeV,
hσvi ¼ 1.4 × 10−46 cm3 s−1, and kinaton-radiation equality oc-
curs at aKR ¼ 104. One mode has wave number k ¼ 3075kKR and
enters the horizon at a ¼ 150, while the other mode has wave
number k ¼ 43 kKR and enters the horizon at a ¼ 1300. The solid
lines represent the numeric solution to Eq. (5) and the dashed
lines represent the analytic approximations for Φ using Eq. (10).
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B. δχ Evolution

If a perturbation mode enters the horizon during an era of
kination, we have seen numerically that the dark matter
density perturbation experiences linear growth. By deriving
an analytic expression for δχ we will gain an understanding
of where this linear growth originates. In the limit of
kinaton domination, Eqs. (4c) and (4d) can be rewritten as

δ0χ ¼ −θ̃χa − 3Φ0; ð11aÞ

θ̃0χ ¼ −
θ̃χ
a
− ak̃2Φ: ð11bÞ

From these equations, we derive a single second-order
differential equation for δχ :

δ00χ ¼ Φ
�

a2

a4hor

�
− 3Φ00 ≡ Sðk; aÞ; ð12Þ

where ahor is the scale factor value at horizon entry. The
right-hand side of Eq. (12) is the source term Sðk; aÞ. To
solve Eq. (12), we first solve the homogeneous equation
δ00χ ¼ 0: δχ ¼ C1 þ C2a, where C1 and C2 are integration
constants. The full solution to Eq. (12) is a combination of
the homogeneous solution and the particular solution. The
particular solution is the integral of the source term times
the Green’s function (GF). The Green’s function itself is a
linear combination of the homogeneous solutions. If the
homogeneous solutions are D1ðaÞ and D2ðaÞ, the general
Green’s function is

GFða; bÞ ¼ D1ðaÞD2ðbÞ −D1ðbÞD2ðaÞ
D0

1ðbÞD2ðbÞ −D1ðbÞD0
2ðbÞ

; ð13Þ

where 0 denotes a derivative with respect to b. Given the
homogeneous solutions C1 and C2a, the Green’s function
for an era of kination is (a − b). Therefore, the particular
solution (PS) is

PSðaÞ ¼
Z

a

0

dbSðk; bÞða − bÞ: ð14Þ

The particular solution and its derivative equal zero at
a ¼ 0. If we neglect the effects of dark matter annihilations,
the adiabatic initial condition for δχ requires δχ ¼ Φ0

and δ0χðaÞ ¼ 0 at a ¼ 0, which implies that C2 ¼ 0 and
C1 ¼ Φ0. Combining the homogeneous and particular
solution produces the final analytic expression for δχ :

δχ ¼ Φ0 þ
Z

a

0

dbSðk; bÞða − bÞ: ð15Þ

Using the analytic expression for Φ given by Eq. (10),
we evaluate the source term and determine the evolution of
δχ well after the mode enters the horizon. If the integral in
Eq. (15) is evaluated for a ≫ ahor, changing the upper

bound on the integral from a to ∞ does not change the
value of the integral because the source term goes to zero at
a ≫ ahor. With this approximation, we find that, well after
horizon entry, δχ is equal to the sum of a constant term and
a term that grows linearly with the scale factor:

δχ ¼ Aþ Ba; ð16aÞ

A ¼ Φ0 þ
Z

∞

0

dbSðk; bÞð−bÞ ¼ Φ0 −Φ0 ¼ 0; ð16bÞ

B¼
Z

∞

0

dbSðk;bÞ ¼ 2
Γð3=4Þ
Γð5=4Þ k̃

1=2Φ0≃ 2.7k̃1=2Φ0: ð16cÞ

Therefore, if a perturbation mode enters the horizon during
kination, the subhorizon evolution of δχ for a≫ahor during
kination is

δχ ¼ 2.7k̃1=2Φ0a ¼ 2.7Φ0

�
a
ahor

�
: ð17Þ

The last equality follows from the fact that we defined
k̃≡ k=H1 ¼ ahorHðahorÞ=H1 ¼ ahorEðahorÞ. During an era
of kination, EðaÞ ¼ a−3, and therefore ahor ¼ k̃−1=2.
After the Universe becomes radiation dominated, δχ grows

logarithmically and aδ0χ is constant: aδ0χðaÞ ≃ aKRδ0χðaKRÞ.
Solving for the evolution of δχ after kinaton-radiation
equality and connecting it with Eq. (17) yields

δχ ¼ 2.7Φ0

�
aKR
ahor

��
1þ ln

�
a

aKR

��
: ð18Þ

Figure 4 shows the evolution of δχ using the numeric
solution to Eq. (4) and the analytic expressions given by
Eqs. (15) and (18) for freeze-in and freeze-out scenarios.
Equation (15) matches the numeric expression for δχ to
within 5% for a < 0.5aKR for freeze-in scenarios. We see
in the right panel of Figure 4 that the numeric evolution of
δχ does not match the analytic evolution for freeze-out
scenarios before horizon entry. This discrepancy is due to
the fact that Eq. (15) was derived while neglecting dark
matter annihilations and assuming that δχ ¼ Φ0 at a ¼ 0.
For freeze-out scenarios, the condition that δχ¼Φ0 at
a ¼ 0 is not valid, but δχ does evolve toward Φ0 after
freeze-out, as seen in Fig. 1. As ahor becomes much
larger than aF, δχ gets closer to Φ0 before horizon
entry, and Eq. (15) better matches the numeric solution
to Eq. (4). For example, with ahor=aF ¼ 485, Eq. (15)
must be multiplied by a factor of 0.95 to match the
numeric evolution of δχ between ahor < a < 0.5aKR. If
ahor=aF ¼ 57, the correction factor varies between 0.85
and 0.95 for different a values. These corrections must
also be taken into account when comparing Eq. (18)
to the numeric evolution of δχ for freeze-out scenarios.
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For freeze-in scenarios, Eq. (18) matches the numerics
after a ¼ 10aKR to within 5%.
To compare the evolution of δχ for modes that enter the

horizon during an era of kination to those that enter during
radiation domination, we repeat our previous analysis for
modes that enter the horizon when the dominant component
of the Universe has a generic equation-of-state parameter w.
Given that the dominant component of the Universe has a
constant w, the evolution equations for δχ and θ̃χ are

δ0χ ¼ −θ̃χa
−3
2
ð1
3
−wÞ − 3Φ0; ð19aÞ

θ̃0χ ¼ −
θ̃χ
a
− k̃2a

−3
2
ð1
3
−wÞΦ: ð19bÞ

Combining these equations results in a second-order differ-
ential equation for δχ :

δ00χ þ
3

2
ð1 − wÞ δ

0
χ

a
¼ k̃2a−3ð13−wÞΦ −

9

2
ð1 − wÞΦ

0

a
− 3Φ00:

ð20Þ

The homogeneous equation corresponding to Eq. (20)

is δ00χ þ 3
2
ð1 − wÞ δ0χa ¼ 0. If w ≠ 1=3, the homogeneous sol-

ution is

δχ ¼ C1 þ C2a
3
2
w−1

2; ð21Þ

whereas if w ¼ 1=3, the homogeneous solution is

δχ ¼ C1 þ C2 lnðaÞ: ð22Þ

We showed in Fig. 2 that the evolution of Φ is qualitatively
the same for perturbation modes that enter the horizon when

the dominant component of the Universe has w > 0.
Therefore, the source term will also be qualitatively the same
for these scenarios. Since the integral of the source term is
constant at late times, the Green’s function produces a similar
functional form for the evolution of δχ compared to the
homogeneous solution. Therefore, if a perturbation mode
enters the horizon and w > 0 and w ≠ 1=3, then the Green’s
function demands

δχ ¼ Aþ Ba
3
2
w−1

2; ð23Þ
and, if w ¼ 1=3, then

δχ ¼ Aþ B lnðaÞ; ð24Þ
where A and B are integration constants. Overall, the
logarithmic growth experienced by subhorizon matter per-
turbations during radiation domination is a by-product of
the homogeneous solution to Eq. (20). Similarly, it is the
homogeneous solution that leads to the linear growth of
subhorizon matter perturbations during an era of kination.
The different δχ growth rates can be attributed to the

motion of the dark matter particles. We saw in Fig. 1 that
once a mode enters the horizon, the dark matter density
perturbation experiences a kick from the decaying gravi-
tational potential. This kick causes the dark matter particles
to drift toward overdense areas, even after Φ → 0. The
comoving displacement of massive particles is

s⃗ ¼
Z

v
dt
a
∝
Z

dt
a2

∝
Z

da
a3H

; ð25Þ

where v ∝ 1=a is the physical particle velocity. Expressing
the Hubble parameter in terms of w, Eq. (25) implies that
s⃗ ∝ að3w−1Þ=2 for w > 1=3 and s⃗ ∝ ln a for w ¼ 1=3. To

linear order, δ evolves in the same manner as s⃗: δ ¼ −∇⃗ · s⃗.
Therefore, δχ grows as a direct consequence of the
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FIG. 4. Evolution of a dark matter density perturbation that enters the horizon during an era of kination. The left panel corresponds to
scenarios where dark matter freezes in during an era of kination with hσvi ¼ 1.4 × 10−46 cm3 s−1. The right panel corresponds to
scenarios where dark matter freezes out during an era of kination with hσvi ¼ 1 × 10−23 cm3 s−1 and freeze-out occurring at aF ¼ 2.5.
In both panels,mχ ¼ 105 GeV and aKR ¼ 104. The mode shown has wave number k ¼ 3075kKR and enters the horizon at a ¼ 150. The
solid curve represents the numerical solution for δχ using Eq. (4), the short-dashed line represents the analytical expression for δχ using
Eq. (15), and the long-dashed line corresponds to Eq. (18).
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particles’ drift toward overdense regions. If 0 < w < 1=3,
δχ does not grow because the expansion of the comoving
grid is faster than the particles’ drift velocity. During
radiation domination, the comoving drift velocity decays
as a−2, which is the same as the expansion of the comoving
grid ðH ∝ a−2Þ, resulting in logarithmic growth. During an
era of kination, HðaÞ decreases faster than during radiation
domination, so the expansion of the comoving grid slows
down faster, thereby allowing a particle with a given drift
velocity to cover more comoving space, which results in an
enhanced growth rate for δχ. It is important to note that this
mechanism for dark matter perturbation growth is different
than that experienced during matter domination. During
matter domination, the gravitational potential is constant in
time and the dark matter particles experience a perpetual
gravitational force, thereby causing δχ to grow linearly with
the scale factor.
The fact that dark matter particles are drifting toward

initially overdense regions does not necessarily mean
structure will form during an era of kination. In other
words, it is still uncertain how δχ will evolve in the
nonlinear regime. One possibility is that dark matter
particles are moving fast enough that, instead of collapsing
and forming structure, they pass by each other and over-
dense regions become underdense. Collapse may still be
possible, however, if local areas of matter domination
persist long enough to halt the motion of particles through
the overdense region. Further investigation is required to
determine how δχ evolves in the nonlinear regime during an
era of kination or radiation domination. However, we can
be certain that modes that remain linear until matter-
radiation equality will form halos. In addition, these halos
form earlier than they would if the Universe had been
radiation dominated when the relevant scales entered the
horizon, due to the enhanced growth of δχ during kination.

IV. THE MATTER POWER SPECTRUM

To analyze the matter power spectrum, we evaluate δχ at a
fixed time for various k values. Figure 5 shows how δχ
changes with k when numerically evaluating Eq. (4) at a
fixed value of the scale factor well after kinaton-radiation
equality. The scenario depicted is a freeze-in scenario with
mχ ¼ 105 GeV and hσvi ¼ 1.4 × 10−46 cm3 s−1. The trans-
fer functions for freeze-in and freeze-out scenarios differ by
less than 4% for modes with ahor=aF ≳ 800: these modes are
unaffected by “relentless” annihilations. In Fig. 5, there are
three distinct behaviors. Modes with k≲ 0.01 kKR are still
outside the horizon at a ¼ 100 aKR. To preserve adiabaticity,
superhorizon modes evolve and δχ increases by a factor of
4=3 as the Universe transitions from an era of kination to
radiation domination. Thus, δχð100 aKRÞ ¼ ð4=3ÞΦ0.
Modes with 0.01≲ k=kKR ≲ 1 enter the horizon during

radiation domination. The evolution of δχ for these modes
follows the function

δχðaÞ ¼ Φp

�
A ln

�
Ba
ahor

��
; ð26Þ

with A ¼ 9.11, B ¼ 0.594 [38]. In this expression,
Φp is defined as the superhorizon gravitational potential
during radiation domination. To determine how Φp

relates to Φ0, the superhorizon gravitational potential
during an era of kination, we evolve a superhorizon
mode across aKR. As the Universe transitions from an
era of kination to radiation domination, a superhorizon
mode will evolve to keep the curvature perturbation
ζ≡Φþ 2Φ=ð3þ 3wÞ constant. Since w ¼ 1 during an
era of kination, ζKða < aKRÞ ¼ ð4=3ÞΦ0. During radia-
tion domination w¼1=3, and ζRða>aKRÞ¼ð3=2ÞΦp.
Since ζK ¼ ζR for a superhorizon mode, then
Φp ¼ ð8=9ÞΦ0. The long-dashed line in Fig. 5 corre-
sponds to Eq. (26) evaluated at a ¼ 100aKR with
Φp ¼ ð8=9ÞΦ0. This analytical model matches the
numeric solution to Eq. (4) extremely well for modes
with 0.05≲ k=kKR ≲ 1. As expected, if a mode enters
the horizon during radiation domination, it is unaffected
by the preceding era of kination.
Modes with k=kKR ≳ 1 enter the horizon during an

era of kination. We wish to express the evolution of δχ
for these modes in the same fashion as Eq. (26). From
Eq. (18), we see that A ¼ ð9=8Þ × 2.7 aKRk̃

1=2 and
lnðBÞ ¼ 1þ lnðahor=aKRÞ. Since Fig. 5 is in terms of
k=kKR, we similarly need to express A and B in terms
of k=kKR. Using the fact that ahor ¼ k̃−1=2 during an era of
kination and that aKR ¼ k̃−1=2KR 21=4, we determine that for
modes with k=kKR ≳ 1,
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10-5 10-4 10-3 10-2 10-1 100 101 102 103

δ χ
(1

00
 a

K
R

)/
Φ

0

(k/kKR)

FIG. 5. The dark matter density perturbation evaluated at
100aKR for various k modes. In this figure, mχ ¼ 105 GeV,
hσvi ¼ 1.4 × 10−46 cm3 s−1, and kinaton-radiation equality
occurs at aKR ¼ 104. The solid curve represents the
numeric evaluation of Eq. (4), while the long-dashed line and
short-dashed line represent the analytical evolution via
Eqs. (26) and (27).
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δχðaÞ ¼ 2.7Φ0

�
k

ffiffiffi
2

p

kKR

�1=2

ln

�
e

�
kKR
k

ffiffiffi
2

p
�

1=2 a
ahor

�
: ð27Þ

The short-dashed line in Fig. 5 correspond to Eq. (27), where
a is evaluated at 100aKR. This analytical model matches the
numeric solution verywell for modeswith k=kKR ≳ 100. We
also found a fitting function that not only smoothly connects
Eqs. (26) and (27), but also matches the numeric solution of
δχ to within 5% for modes with 0.05 < k=kKR < 1000:

δχðaÞ ¼
8

9
Φ0

�
A ln

�
Ba
ahor

��

A ¼ 2.29

�
0.11 × 9.112.64 þ 2.9

�
k

kKR

�
1.32

�
:38

B ¼
�
0.594−6.59 þ e−6.59

�
k

kKR

�
3.29

�
−:15

: ð28Þ

From Eq. (27), it is clear that if a mode enters the
horizon during an era of kination, δχ=Φ0 ∝ k1=2. In con-
trast, it has been shown in Refs. [8,9] that if a mode enters
the horizon during an EMDE, δχ=Φ0 ∝ k2. Both of these
scalings are consistent with linear growth prior to the onset
of radiation domination. Since a mode enters the horizon at
k ¼ aH, during an era of kination ahor ∝ k−1=2, and during
an EMDE ahor ∝ k−2 [8,9]. Therefore, even though
δχ ∝ a=ahor during both eras, δχ scales differently with k.
With this scaling, we can determine how the

matter power spectrum scales with k for modes with
k > kKR. The power spectrum of density perturbations is
Pδ ¼ PΦðδ=Φ0Þ2, where PΦ ∝ kns−4 is the power spectrum
of curvature fluctuations and ns is the scalar spectral index.
Since δχ=Φ0 ∝ k1=2 for modes that enter the horizon during
an era of kination, Pδ ∝ kns−3 for k > kKR. In comparison,
Pδ ∝ kns for modes with k < keq and Pδ ∝ kns−4 ln2 k for
modes with keq < k < kKR, where keq is the wave number
of the mode that enters the horizon at matter-radiation
equality. Thus, there is a small-scale enhancement to the
matter power spectrum due to an era of kination compared
to modes that enter the horizon during radiation domina-
tion. In addition, the matter power spectrum is shallower on
small scales for modes that enter the horizon during
kination compared to modes that enter the horizon during
an EMDE, implying that collapse at a given scale will
happen later following an era of kination compared to
following an EMDE.

V. CONCLUSION

We determined how the gravitational potentialΦ and the
dark matter density perturbations δχ evolve for modes that
enter the horizon during an era of kination. In addition to
numerically solving for the evolution of Φ and δχ during
kination, we also derived analytic expressions for their

evolution during eras in which the dominant component of
the Universe has a general equation-of-state parameter w.
We determined that the gravitational potential vanishes
upon horizon entry if the dominant energy component
has w > 0. In addition, if w > 1=3, then δχ ∝ a3w=2−1=2.
Consequently, if a perturbation mode enters the horizon
during an era of kination (w ¼ 1), δχ grows linearly with
the scale factor. This linear growth is due to the drift of the
dark matter toward initially overdense regions. The comov-
ing displacement of massive particles under pure drift is
s⃗ ∝ að3w−1Þ=2 for w > 1=3. If 0 < w < 1=3, the expansion
rate of the Universe is greater than the particles’ drift
velocity and s⃗ cannot grow, thereby not permitting pertur-
bation growth. For modes that enter the horizon during an
era of kination, the linear growth of δχ during kination
implies that δχ=Φ0 ∝ k1=2. Therefore, for modes that enter
the horizon during kination, the matter power spectrum
Pδ ∝ kns−3. In comparison, for modes that enter the horizon
during radiation domination, Pδ ∝ kns−4ln2k and there is a
small-scale enhancement to the matter power spectrum due
to an era of kination compared to modes that enter the
horizon during radiation domination.
The linear growth experienced by δχ during kination will

lead to enhanced small-scale structure formation following
kination. The presence of small-scale structure effectively
increases the dark matter annihilation rate. If a perturbation
mode enters the horizon during an EMDE, δχ grows
linearly with the scale factor and the dark matter annihi-
lation rate is enhanced by several orders of magnitude,
depending on the formation time of the microhalos [8,9].
However, the boost to the dark matter annihilation rate is
limited to 106 if halos only form after z ∼ 500 [8,9]. In
Ref. [18] we found that in order to produce the observed dark
matter relic abundance, freeze-in scenarios during an era
of kination require hσvi to be between 10−50 cm3 s−1 and
10−37 cm3 s−1 for 10−2 GeV≲mχ <105 GeV. The strongest
observational bound on hσvi is hσvi < 10−27 cm3 s−1, and
that bound is applicable to 1 GeV≲mχ ≲ 10 GeV [29].
Therefore, even with a boost factor of 106, the dark matter
annihilation signal for freeze-in scenarios during an era of
kination is still not observable.
For freeze-out scenarios during an era of kination, the

hσvi values that would produce the observed dark matter
relic abundance are nearly ruled out by Fermi-LAT [29] and
H.E.S.S. [30] observations. A modest boost factor of 10
would completely rule out freeze-out scenarios during an
era of kination if dark matter annihilates via the bb̄, τþτ−,
or WþW− annihilation channels. It remains to be deter-
mined if the growth of perturbations during kination is
capable of generating this enhancement. Although an
EMDE can easily lead to boost factors of order 1000 or
more, the linear growth of perturbations during kination
leads to a shallower enhancement to the small-scale power
spectrum: PðkÞ ∝ kns−3 instead of PðkÞ ∝ kns . As a result,
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the formation of microhalos will be delayed relative to
EMDE cosmologies because a given value of k=kKR will
go nonlinear far later than the same value of k=kRH, where
kRH is the scale that enters the horizon at the end of anEMDE.
Equivalently, larger values of k=kKR are required to form
microhalos at a given redshift, which increases the likelihood
that these scales will be suppressed by the free-streaming of
the dark matter particles [41]. An analysis of the microhalo
abundance predicted by Press-Schechter theory [42] follow-
ing the same procedure as Refs. [8,9] would provide an
estimate of the boost factor and determine if freeze-out
scenarios during kination are compatible with current obser-
vational bounds on dark matter annihilation.

ACKNOWLEDGMENTS

We thank M. Sten Delos and Chris Hirata for insightful
and helpful discussions. This work was supported by NSF
Grant No. PHY-1417446.

APPENDIX A: DERIVATION OF THE
PERTURBATION EQUATIONS

The perturbation evolution equations are derived by
perturbing the covariant form of the energy-transfer equa-
tions given in Eq. (1). We follow the same approach as
that outlined in Refs. [8,9,43,44]. The kinaton, dark matter,
and radiation all behave as perfect fluids with energy
momentum tensors

Tμν ¼ pgμν þ ðρþ pÞuμuν; ðA1Þ
where ρ is the fluid’s energy density, p is its pressure, and
uμ ≡ dxμ=dλ is its four-velocity. The kinaton has p ¼ ρ, the
radiation has p ¼ ρ=3, and the dark matter is a pressureless
fluid. Equation (1) implies that the three fluids exchange
energy. This energy exchange is expressed covariantly as

∇μððiÞTμ
νÞ ¼ QðiÞ

ν ; ðA2Þ

where i represents the individual fluids. In the absence of
spatial variations,

∇μððiÞTμ
0Þ ¼ −_ρi − 3Hðρi þ piÞ; ðA3aÞ

∇μððiÞTμ
jÞ ¼ 0; ðA3bÞ

where a dot represents differentiation with respect to proper
time. Using Eq. (A3) and Eq. (1), the covariant energy
exchange for this three-fluid model is

QðϕÞ
ν ¼ 0; ðA4aÞ

QðχÞ
ν ¼ −Lν; ðA4bÞ
QðrÞ

ν ¼ Lν; ðA4cÞ

where

Lν ¼
hσvi
mχ

ðρ2χuðχÞν − ρ2χ;equ
ðrÞ
ν Þ: ðA5Þ

Equation (A5) is different than the definition of Lν in
Ref. [9]. We have corrected the expression for Lν to account
for the fact that, while in thermal equilibrium, the dark
matter is pair-produced with the same velocity as the
radiation. This change introduces coupling terms between
θχ and θr that are only relevant while pair production is
important.
Next, we evaluate Eq. (A2) using the perturbed

Friedmann-Robertson-Walker (FRW) metric

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ðtÞδijð1þ 2ΦÞdxidxj: ðA6Þ
Perturbations are introduced into the density of each fluid
with ρiðt; x⃗Þ ¼ ρ0i ðtÞ½1þ δiðt; x⃗Þ�, where ρ0i ðtÞ is the back-
ground energy density of each fluid and δiðt; x⃗Þ≡ δρi=ρ0i is
the density perturbation of each fluid. In addition, pertur-
bations are introduced into the four-velocity of each fluid:
u0 ¼ −ð1þΨÞ and ujðiÞ ¼ a2δkjvkðiÞ, where vkðiÞ ≡ dxk=dt

is the peculiar velocity of the ith fluid. The combination of
perturbations to the metric, energy density, and four-
velocity introduce perturbations to the energy exchange
variables Qν and Lν: the first-order components are

QðϕÞ;ð1Þ
0 ¼ QðϕÞ;ð1Þ

j ¼ 0; ðA7Þ

Lð1Þ
0 ¼ −

hσvi
mχ

½ðρ0χÞ2ð2δχ þ ΨÞ − ðρ0χ;eqÞ2ð2δχ;eq þ ΨÞ�;

ðA8Þ

Lð1Þ
j ¼ hσvi

mχ
a2½ðρ0χÞ2δijviðχÞ − ðρ0χ;eqÞ2δijviðrÞ�; ðA9Þ

where δχ;eq is the dark matter equilibrium density pertur-
bation. We see that both the zeroth- and first-order

components ofQðϕÞ
0 andQðϕÞ

j are zero, whereas Lν contains
both a zeroth- and first-order component.
Taking into account first-order perturbations, the μ ¼ 0

component of Eq. (A2) requires that each fluid obey the
equation

dδi
dt

þð1þwiÞ
θi
a
þ 3ð1þwiÞ

dΦ
dt

¼ 1

ρ0i
ðQðiÞ;ð0Þ

0 δi−QðiÞ;ð1Þ
0 Þ;

ðA10Þ
where wi is the equation of state parameter for a given fluid,
θi ≡ a∂jvj is the divergence of the fluid’s physical velocity,

and QðiÞ;ð0Þ
0 and QðiÞ;ð1Þ

0 are the zeroth-order and first-order

components of QðiÞ
0 for each fluid. The divergence of the

spatial component of Eq. (A2) requires that each fluid obey
the equation

REDMOND, TREZZA, and ERICKCEK PHYS. REV. D 98, 063504 (2018)

063504-10



dθi
dt

þ ð1 − 3wiÞHθi þ
∇2Φ
a

þ wi

1þ wi

∇2δi
a

¼ 1

ρ0i

� ∂iQi

að1þ wiÞ
þQðiÞ;ð0Þ

0 θi

�
: ðA11Þ

Applying Eqs. (A10) and (A11) to the kinaton (wk ¼ 1), dark matter (wχ ¼ 0), and radiation (wr ¼ 1=3) yields the
following perturbation equations:

dδϕ
dt

þ 2θϕ
a

þ 6
dΦ
dt

¼ 0; ðA12aÞ

dθϕ
dt

− 2Hθϕ þ
∇2Ψ
a

þ 1

2

∇2δϕ
a

¼ 0; ðA12bÞ

dδχ
dt

þ θχ
a
þ 3

dΦ
dt

¼ hσvi
mχρ

0
χ
½−Ψfðρ0χÞ2 − ðρ0χ;eqÞ2g − ðρ0χÞ2δχ þ ðρ0χ;eqÞ2ð2δχ;eq − δχÞ�; ðA12cÞ

dθχ
dt

þHθχ þ
∇2Ψ
a

¼ hσviðρ0χ;eqÞ2
mχρ

0
χ

ðθr − θχÞ; ðA12dÞ

dδr
dt

þ 4

3

θr
a
þ 4

dΦ
dt

¼ hσvi
mχρ

0
r
½Ψfðρ0χÞ2 − ðρ0χ;eqÞ2g þ ðρ0χÞ2ð2δχ − δrÞ − ðρ0χ;eqÞ2ð2δχ;eq − δrÞ�; ðA12eÞ

dθr
dt

þ∇2Ψ
a

þ 1

4

∇2δr
a

¼ hσvi
mχρ

0
r

�
ðρ0χÞ2

�
3

4
θχ − θr

�
þ 1

4
ðρ0χ;eqÞ2θr

�
: ðA12fÞ

The perturbed time-time component of the Einstein
equation yields

∇2Φ
a2

þ 3H

�
HΨ −

dΦ
dt

�
¼ −4πGðρ0ϕδϕ þ ρ0χδχ þ ρ0rδrÞ:

ðA13Þ

Equation (A12) assumes that the scalar field does not
interact with either the dark matter or radiation and also
assumes that the dark matter is created solely from thermal
production.

APPENDIX B: INITIAL CONDITIONS

The evolution of density and velocity perturbations for a
single plane-wave perturbation mode with wave number k
are obtained by numerically integrating Eq. (4) from a ¼ 1
to some scale factor value well after kinaton-radiation
equality. The integration begins when the mode is well
outside the horizon (k ≪ aH). To solve for the perturbation
initial conditions, we simplify Eq. (4) using the fact that at
early times the Universe was dominated by the kinaton, so
EðaÞ ≈ a−3 and ρ̃ϕ ≈ a−6.
We first solve for the evolution of the kinaton perturba-

tions and the gravitational potential during an era of

kination for superhorizon modes. Simplifying Eqs. (4a),
(4b), and (5) yields

δ0ϕ þ 2aθ̃ϕ þ 6Φ0 ¼ 0; ðB1aÞ

θ̃0ϕ −
2

a
θ̃ϕ þ k̃2aΦ −

1

2
k̃2aδϕ ¼ 0; ðB1bÞ

k̃2Φþ 3a−4ðΦ0aþΦÞ ¼ 3

2
a−4δϕ: ðB1cÞ

One would initially suspect that given these three equations
with three unknowns, we would have a fully defined set of
differential equations. Yet in solving these equations, we
discover that there is an ambiguity in the solution to θ̃ϕ such
that these three equations do not fully define the evolution
of θ̃ϕ for superhorizon modes. Equation (B1a) corresponds
to ∇μT

μ
0 ¼ 0 and Eq. (B1b) corresponds to ∇μT

μ
i ¼ 0. If

Eqs. (B1) formed a complete set, then they would be able to
produce an algebraic expression for G0

i using the Bianchi
identity, which states that ∇μG

μ
ν ¼ 0. Yet the Bianchi

identity does not provide an algebraic expression for G0
i

and there remains an undermined initial condition. The
time-space component of the perturbed Einstein equation
contains additional information regarding our system of
equations:
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k̃2ðΦ0aþΦÞ ¼ −3a−2θ̃ϕ: ðB2Þ

Equations (B1) and (B2) form a complete set of differential
equations and initial conditions. Utilizing Eqs. (B1) and
(B2), we solve for the evolution of the gravitational
potential and the kinaton perturbations for superhorizon
modes as an expansion in k̃2:

Φ ¼ Φ0 −
1

32
k̃2Φ0a4 þOðk̃4Þ; ðB3aÞ

δϕ ¼ 2Φ0 þ
17

48
k̃2Φ0a4 þOðk̃4Þ; ðB3bÞ

θ̃ϕ ¼ −
1

3
k̃2Φ0a2 þOðk̃4Þ: ðB3cÞ

Since the number of relativistic particles created or
destroyed from dark matter annihilations is not sufficient
to influence the evolution of ρr, the interaction between
dark matter and radiation will not influence the evolution of
radiation perturbations. Evaluating Eqs. (4e) and (4f) in the
superhorizon limit, while ignoring the effects of dark matter
annihilations, results in

δr ¼
4

3
Φ0 þ

17

72
k̃2Φ0a4 þOðk̃4Þ; ðB4aÞ

θ̃r ¼ −
1

3
k̃2Φ0a2 þOðk̃4Þ: ðB4bÞ

The initial condition for δχ is chosen to ensure that the
perturbations are adiabatic at superhorizon scales. For
freeze-out scenarios, while the dark matter is in thermal
equilibrium, the terms on the right-hand side of Eq. (4c) are
much larger than the terms on the left-hand side. To make
the terms on the right-hand side vanish while ρχ ¼ ρχ;eq,

δχ ¼ δχ;eq: ðB5Þ

Equation (B5) maintains adiabaticity while the dark matter
is in thermal equilibrium; if ρχ ¼ ρχ;eq, then Eq. (B5) makes
δiðρi=ρ0iÞ the same for all fluids.
For freeze-in scenarios, the initial condition for δχ is

more difficult to determine from the perturbation equations.
We therefore choose the freeze-in initial condition
for δχ to ensure that δiðρi=ρ0iÞ is the same for all fluids.
Equations (B3b) and (B4a) already imply that the perturba-
tions to the kinaton and radiation are adiabatic. To solve for
the initial condition for δχ, we set δχðρχ=ρ0χÞ ¼ δϕðρϕ=ρ0ϕÞ.
Since ρϕ ∝ a−6,

δχ ¼ −
1

6
δϕ

aρ0χðaÞ
ρχðaÞ

: ðB6Þ

Finally, since adiabatic perturbations require θ to be the same
for all fluids [31],

θ̃χ ¼ −
1

3
k̃2Φ0a2 þOðk̃4Þ ðB7Þ

for superhorizon modes.
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