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The kinetic Sunyaev Zel’dovich (kSZ) effect, cosmic microwave background (CMB) anisotropies
induced by scattering from free electrons in bulk motion, is a primary target of future CMB experiments.
In addition to shedding light on the distribution of baryons and the details of the epoch of reionization,
measurements of the kSZ effect have the potential to address fundamental questions about the structure and
evolution of our Universe on the largest scales and at the earliest times. This potential is unlocked by
combining measurements of small-scale CMB anisotropies with large-scale structure surveys, a technique
known as kSZ tomography. Previous work established a quadratic estimator for the remote dipole field, the
CMB dipole observed at different locations in the Universe, given a CMB map, and a redshift-binned map
of large-scale structure. This previous work did not include gravitational lensing, redshift space distortions,
or nonlinear evolution of structure. In this paper, we investigate how well the remote dipole field can be
reconstructed in the presence of such effects by using mock data from a suite of simulations of gigaparsec-
sized regions of the Universe. To properly model both large and small scales, we develop a novel box-in-
box simulation pipeline, where small-scale information is obtained from L-PICOLA N-body simulations,
and large-scale information obtained by evolving fields using linear theory and adding the resulting
corrections to the N-body particle data. This pipeline allows us to create properly correlated maps of the
primary CMB including lensing as well as the kSZ effect and density maps on the past light cone of an
observer. Analyzing an ensemble of mocks, we find that the dipole field can be reconstructed with high
fidelity over a range of angular scales and redshift bins. However, we present evidence for a bias due to the
nonlinear evolution of structure. We also analyze correlations with the primary CMB, investigating the
ability of kSZ tomography to reconstruct the intrinsic CMB dipole. Our results constitute a proof-of-
principle that kSZ tomography is a promising technique for future data sets.
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I. INTRODUCTION

Fueled by rapid improvement on the experimental and
data analysis fronts, our theoretical understanding of the
Universe has condensed into the standard model of cosmol-
ogy, ΛCDM. This model is able to describe our Universe
with a high degree of accuracy. Nevertheless, the funda-
mental nature of the major constituents of the model remains
unknown, and a number of potential anomalies remain
unexplained (see [1] for a recent review). The primary
cosmic microwave background (CMB) has thus far been
the workhorse of cosmology; however, the primary CMB
temperature anisotropies have now been measured across

an impressive range of angular scales to their ultimate cosmic
variance limit by the Planck satellite. While additional
progress can be made using measurements of CMB polari-
zation, it will be necessary to cultivate additional observables
to further improve.
One of the next frontiers of observational cosmology lies

in the secondary CMB, temperature and polarization anisot-
ropies induced by the scattering of CMB photons from mass
(lensing) or free charges (the Sunyaev Zel’dovich effect).
These effects are important on angular scales of roughly an
arcminute, where the power in the primary CMB is rapidly
falling due to Silk damping. In this paper, our primary focus
is the kinetic Sunyaev Zel’dovich (kSZ) effect, temperature
anisotropies generated byCMBphotons scattering off of free
electrons in bulk motion. The kSZ effect is the dominant
blackbody contribution to the CMB on small angular scales.
Although the amplitude of fluctuations is small, of order a
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microkelvin, the kSZ effect has now been detected at greater
than 4σ [2–5], with future experiments [6] forecasted to
achieve signal to noise in excess of 102.
The kSZ effect can be expressed as the line of sight

integral [7]

ΔT
T

����
kSZ

ðn̂eÞ ¼ −σT
Z

χre

0

dχeaeðχeÞn̄eðχeÞ

× ð1þ δeðn̂e; χeÞÞveffðn̂e; χeÞ; ð1Þ

where σT is the Thompson cross-section, n̄eðχeÞ is the
average electron number density at comoving distance χe,
δeðn̂e; χeÞ is the electron overdensity field, n̂e is the angular
direction on the sky to the electron, veffðn̂e; χeÞ is the
projection of the remote CMB dipole field (the CMB dipole
observed by each electron along the line of sight), and ae is
the scale factor at the scatterer’s location.
The remote dipole field at any given point in spacetime

depends on the local peculiar velocity of electrons as well
as primordial contributions from the surface of last scatter-
ing (SLS). Because each electron samples a different
portion of the SLS, the kSZ effect in principle contains
more information about fluctuations on the largest scales
than the primary CMB alone [8–18]. However, much of this
extra information is diluted by the line of sight integral in
Eq. (1), presenting a challenge for making progress with the
kSZ power spectrum alone.
Key to extracting information about the dipole field,

and therefore the largest scales, is to use cross-correlations
with probes of large-scale structure (LSS) such as galaxy
surveys and 21 cm measurements, a technique known as
kSZ tomography [19–21]. While a number of variants exist,
we focus on direct cross-correlations between the small
angular scale CMB and the redshift-binned density field. A
set of theoretical tools for kSZ tomography was developed
in [17], and an optimal quadratic estimator derived in [18].
Schematically, the correlation function is hΔTkSZδi ∼
hveffδδei ∼ veffhδδei where δ is the overdensity field for
the tracer. Importantly, since the dipole field receives
contributions mainly from large scale modes, while the
density fields receive contributions mainly from small-scale
modes, the result is an isotropic power modulated by the
dipole field. In analogy with reconstruction techniques
for CMB lensing [22] and patchy reionization [23], this
statistical anisotropy is the basis for reconstructing the
remote dipole field. By constructing correlators for each
redshift bin, one can reconstruct the fully three-dimensional
coarse-grained dipole field. Ref. [18] forecasted that a high
fidelity reconstruction of the dipole field should be possible
with next-generation galaxy surveys such as LSST [24] and
next-generation CMB experiments such as CMB-S4 [6].
The goal of this paper is to further explore the

reconstruction of the remote dipole field by analyzing a
set of mock CMB and LSS maps generated from a suite of
simulations. Such simulations allow us to explore previously

neglected effects such as gravitational nonlinearities, redshift
space distortions, and CMB lensing. However, a proper
treatment of all relevant physics is intrinsically challenging.
One must model both the dipole field, which receives
important contributions from scales of order the size of
the observable Universe, as well as the density fields, which
depend on small scales and include baryonic physics.
Evolving a standard N-body simulation incorporating such
a large range of scales is currently computationally intrac-
table. To overcome this limitation, we develop a novel box-
in-box simulation framework which consistently embeds a
∼Gpc-sized N-body simulation inside of a box whose
volume is larger than the observable Universe, and which
contains large-scale modes evolved using linear theory.
This box-in-box procedure allows us to use the data from
both of these simulations to produce properly correlated
maps of the lensed primary CMB temperature anisotropies,
kSZ temperature anisotropies, the dipole field, and the
dark matter overdensity field. We do not model baryonic
physics in the present analysis, and therefore use the dark
matter density as a proxy for the electron density. However,
because our simulation framework is modular, N-body
simulations including baryonic physics will be incorpo-
rated in the future.
We find that the quadratic estimator efficiently recon-

structs the remote dipole field over a range of angular scales
and redshift bins, indicating that kSZ tomography is
generally robust. However, we present evidence for a bias
due to nonlinear structure at low redshifts. We demonstrate
the ability of kSZ tomography to reconstruct the funda-
mental component of the observed CMB dipole, supporting
the suggestion in previous work [18] that this could be an
early application of kSZ tomography on large angular
scales. The results we present here are intended primarily as
a proof-of-principle both of the simulation framework and
remote dipole reconstruction. To lay the groundwork for
the analysis of near-term data sets, various layers of realism
will be added to our simulation framework in future work,
including the construction of mock galaxy catalogs,
improved resolution, inclusion of baryonic physics, corre-
lated foregrounds such as thermal SZ, and partial sky data.

II. THE REMOTE DIPOLE FIELD

In this section, we briefly present expressions for the
remote dipole field, its theoretical power spectrum, and the
real-space quadratic estimator that we use to reconstruct
the dipole field. Further details on thevelocity power spectra,
transfer functions and harmonic-space quadratic estimators
can be found in [17,18]. In order to work with a binned
version of Eq. (1), we consider a bin-averaged remote dipole
field v̄αeffðn̂eÞ, which can be expressed in terms of contribu-
tions to the CMB temperature Θðn̂e; χe; n̂Þ seen along the
sky direction n̂ by free falling electrons at positions re ¼
χen̂e inside each redshift bin:
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v̄αeffðn̂eÞ ¼
3

4π

1

Δχα

Z
χαmax

χαmin

dχe

Z
d2n̂Θðn̂e; χe; n̂Þðn̂ · n̂eÞ;

ð2Þ

Here, the index α labels each bin, which extend over the
range in comoving distance χαmin < χ < χαmax, and where
Δχα ¼ χαmax − χαmin. The radiation field is

Θðn̂e; χe; n̂Þ ¼ ΘSWðn̂e; χe; n̂Þ þ ΘISWðn̂e; χe; n̂Þ
þ ΘDopplerðn̂e; χe; n̂Þ; ð3Þ

which receives contributions from the Sachs-Wolfe effect,
the integrated Sachs-Wolfe effect due to the evolution of
the gravitational potential along the line of sight, and the
Doppler effect due to peculiar motion of electrons at re
relative to the SLS (see e.g., [25]). The binned power
spectrum is given by

Cv̄ v̄
αβl ¼

Z
d3k
ð2πÞ3 PΨðkÞΔv̄�

αl ðkÞΔv̄
βlðkÞ; ð4Þ

where Greek indices denote redshift bins, PΨðkÞ is the
power spectrum of the Newtonian gauge primordial gravi-
tational potential Ψ, and Δv̄

l ðk; χeÞ is the remote dipole
transfer function, given in Ref. [18]. As shown in [18], the
presence of a large scale dipole will manifest in the cross
correlation between the kSZ contribution to the CMB
temperature and the moments of a redshift binned density
distribution δα defined by

δαðn̂Þ ¼ 1

Δχα

Z
χαmax

χαmin

dχδðn̂; χÞ: ð5Þ

A real-space optimal quadratic estimator for the moments
of the bin-averaged remote dipole field, v̂αeff;lm, is given by:

v̂αeff;lm ¼ Nv̄ v̄
αl

Z
d2n̂Y�

lmðn̂Þξðn̂Þζαðn̂Þ: ð6Þ

ξðn̂Þ ¼
X
lm

aTlm
CTT
l

Ylmðn̂Þ ð7Þ

ζαðn̂Þ ¼
X
lm

δαlmC
δτ
αl

Cδδ
αl

Ylmðn̂Þ ð8Þ

where

1

Nv̄ v̄
αl

¼ 1

2lþ 1

X
l1l2

ΓkSZ
l1l2lα

ΓkSZ
l1l2lα

CTT
l1 Cδδ

αl2

: ð9Þ

The coupling constant ΓkSZ
l1l2lα

is defined by

ΓkSZ
l1l2lα

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2lþ 1Þ

4π

r �
l1 l2 l

0 0 0

�
Cτδ
α;l2

;

ð10Þ

where the quantities with parenthesis are Wigner 3j symbols
and Cτδ

α;l2
is the cross-power between the binned galaxy

density and the anisotropies in the optical depth of the
redshift bin

ταðn̂Þ ¼ −σT
Z

χαmax

χαmin

dχaðχÞn̄eðχÞð1þ δeðn̂; χÞÞ: ð11Þ

Because the simulations presented below do not contain
baryons, we assume that the electron density field traces the
dark matter density field.

III. SIMULATIONS

Our simulation framework includes two components: a
small-scale N-body simulation and a large-scale random
field evolved using linear perturbation theory. We explore
the idea of “sewing” these simulations together in order to
accurately model physics on both large and small scales,
thereby obtaining consistent realizations of both the pri-
mary CMB and angular, projected matter fields.
In order to obtain light-cone data on small scales, we use

the publicly available L-PICOLA code [26]. L-PICOLA is a
“Lightcone-enabled Parallel Implementation of the COLA”
method, providing an efficient means for generating both
data on an observer’s past light cone and data on spatial
hypersurfaces. The COmoving Lagrangian Acceleration
(“COLA”) method [27,28] works by solving the second-
order Lagrangian perturbation theory (2LPT) equations in
order to generate an initial guess for the motion of particles
in the simulation, and subsequently solves a set of equations
describing the difference between the 2LPT solution and the
full N-body equations in order to improve the accuracy of
the 2LPT solution. This method allows L-PICOLA to obtain
results with an accuracy similar to full N-body simulations
on the scales we are interested in, but with a substantially
larger simulation time step, and therefore at a substantially
reduced computational cost. In the limit of many time steps,
the output from L-PICOLA should be equivalent to a
traditional N-body simulation.
Although these N-body simulations are able to provide

us with particular realizations of physics on small-scales,
we are interested in modeling both the primary CMB and
kSZ temperature fields. In order to obtain contributions to
the kSZ temperature from the full dipole field [Eq. (2)] in
a manner consistent with the small-scale L-PICOLA data,
as well as to generate the primary CMB, we utilize a novel
“box-in-box” technique. This technique is similar in spirit
to the mode-adding procedure (MAP) described in [29,30],
in that information about large scales is added to a small-
scale simulation. However, the technique we utilize differs
in several important regards. Similar to [31], we add
information at the level of the density and peculiar velocity
fields directly in Eulerian or configuration space, rather than
in either Fourier space or Lagrangian space; additionally, no
information is removed from the small-scale simulation.
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We utilize N-body simulations with a number of particles
Np ¼ 12803 in a comoving volume ð2 Gpc=hÞ3, corre-
sponding to a maximum simulation redshift of z ∼ 0.37 and
particle mass 2 × 1012 M⊙. While this coarse resolution
does not allow us to resolve the structure of small mass
halos, and also does not necessarily result in high-fidelity
simulation data on the associated length scales, we find that
the data we do obtain is sufficient for use in producing
maps at angular resolutions of interest to us. We require the
large-scale random field to encompass a volume containing
the CMB (and ideally larger modes), so we utilize a large-
scale “box” with volume ð32 Gpc=hÞ3, resolved by 3203

grid points.
The “box-in-box” method should be valid in a regime

similar to the MAP method, which itself has been shown to
perform well when linear theory provides a good description
of the field content. This is a somewhat stronger condition
than requiring mode amplitudes or the power spectrum to be
well-described by linear theory. While the linear and non-
linear matter power spectra agree to within a few percent
down to scales of order 10 Mpc, mode coupling can exist—
nonlinear terms of order δρ2 can constitute percent or larger
corrections to evolution of the density field on scales of order
a few hundred Mpc. So long as we remain in a regime where
the field configuration is sufficiently well described by
(only) linear theory, we can expect the box-in-box technique
to work. For the Gpc-scale N-body box sizes we employ
here, this is the case.

A. Simulating small scales using L-PICOLA

We make use of both the light-cone output from L-
PICOLA as well as data from spatial slices. The particle
data from spatial slices is used to compute both primordial
and large-scale components of the kSZ and primary CMB,
and will be discussed in Sec. III B. The light-cone data are
used to construct light-cone-projected sky maps of the
density contrast field, velocity, and momentum fields, as
well as convergence maps.
We generate radially binned maps of various fields,

both in order to examine the underlying physics of the
simulations, as well as to test reconstruction techniques
at various redshifts. We divide the light-cone data into a
number of radial bins between us and the largest redshift
probed by the simulation. These radial bins can then be
selectively integrated over to construct the contributions
to a given field, such as density or kSZ temperature, from
a given redshift range.
In order to produce density maps in both radial and

angular bins, we bin particle data by noting that

δbin ¼
ρbin − ρ̄bin

ρ̄bin
¼ nbin

n̄bin
− 1; ð12Þ

where ρ is the physical density inside a radial-angular-bin on
the light-cone with comoving volume Vbin ¼ Ωbin

3
ðχ3B − χ3AÞ,

where the bin has radial boundaries at χA and χB, and
subtends a solid angle Ωbin. The number of simulated
particles of mass m in a bin is n ¼ ρ=m, and the average/
expected/background number of particles in a pixel is

n̄bin ¼ Nsim
Vbin

Vsim
¼ Nsim

Vsim

Ωbin

3
ðχ3B − χ3AÞ

in the case of discrete bins, or

n̄bin ¼
Nsim

Vsim

Ωbin

3
3χ2dχ

in the continuum limit, with Nsim the total number of
particles in a simulation of comoving volume Vsim. The
overdensity is then given by taking nbin to be the number of
particles in a given bin, so explicitly,

δbin ¼ −1þ
X

particles∈bin

1

n̄bin
: ð13Þ

This expression is similar in spirit to that of [32], although
not identical. We also integrate the density contrast along a
line of sight—or in a pixel subtending some solid angle
on the sky; this can bewritten as a sum over the densities of
all bins along the line of sight of the pixel,

δ ¼
Z

dχδðχÞ ¼
X

bin∈pix
δbindχbin; ð14Þ

where the bins that lie along the direction of the pixel on
the sky are summed over. For different choices of radial
binning, the sum will agree up to terms Oðdχ2Þ.
We are additionally interested in accounting for red-

shift-space distortions (RSDs) within this framework,
requiring a small modification to the density field used
in the reconstruction, Eq. (5). In order to take RSDs into
account, we perturb particle positions by a small amount
corresponding to the mis-inferred distance. Quantitatively,
we compute

χRSD ¼ χFRWðzFRWðχÞ þ vDopplerÞ; ð15Þ
where functions with the FRW subscripts indicate the
background FRW cosmology has been used, and where
we then bin particles using Eq. (13) but according to their
position χRSD. During the later discussion of reconstruction
in this paper, the density field used in reconstruction is the
one that accounts for RSDs.
The convergence, formally written as

κ ¼ 3

2
H2

0Ωm;0

Z
χCMB

0

dχ
χðχCMB − χÞ

χCMB

δðχÞ
aðχÞ ; ð16Þ

can similarly be binned. An expression for convergence
binned in discrete angular pixels that is independent of
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radial binning is used [33,34], allowing contributions to be
placed into radial bins that can be summed over later to
examine the convergence contribution from a given radial
bin or range of radial bins,

κbin ¼
3

2
H2

0Ωm;0
Vsim=Nsim

Ωbin

X
particles;p;∈bin

1

χpaðχpÞ
χCMB − χp

χCMB
;

ð17Þ

so that for each angular pixel on the sky the total
convergence will be

κpix ¼
X

bin∈pix
κbin: ð18Þ

We use this convergence map to lens the primary CMB.
There are several ways to compute the kSZ temperature

fluctuations from particle data. The kSZ temperature
fluctuations given by Eq. (1) can be evaluated by binning
the components of the fields v and δ separately. However,
the peculiar velocity field can be severely undersampled in
simulated data, with nonzero velocities determined by only
a single particle, or not at all in some pixels. In the case of
the density field, the issue is not as severe, as a lack of
particles is merely indicative of an underdense region,
where the density should be small anyway. A standard
practice is, therefore, to write the integral in terms of a sum
over peculiar particle momenta [35],

�
ΔT
T

�
kSZ

¼ −
σTfbμ
Ωpix

X
particlesp∈bin

mpv

D2
A;p

: ð19Þ

In standard techniques used to construct kSZ temperature
maps, the only contribution to the temperature field consid-
ered is the peculiar velocity of matter in the Newtonian
gauge projected along the line of sight, v ¼ vDoppler; N-body.
Thus, important contributions to the observed kSZ temper-
ature perturbations on large angular scales from ISW, SW, or
large-scale velocity modes (modes larger than the simulation
volume) have not been modeled, each of which will
contribute to the kSZ temperature fluctuations as described
by Eq. (3).
In Sec. III B, we discuss more precisely how we model

these additional contributions; however, at the level of
binning, we have two options. We can include these fields
at the level of the already-binned light-cone data, replacing
v with

v → veff ¼ vDopp;N-Body þ vDopp;LS þ vISW þ vSW; ð20Þ

where the ISW and SW components are given by the
respective contributions of the effects [Eq. (3)] to the
temperature perturbation [Eq. (1)], and where the Doppler
contributions are from both the N-body simulation and

large-scale (LS) modes not included in the N-body
simulation. Alternatively, we can compute the overdensity
δbin and the velocity vbineff in each bin and evaluate Eq. (1)
directly. We find that both methods result in nearly
identical kSZ temperature maps and power spectra for
the angular resolutions we are interested in, although for
the final maps, we use Eqs. (19) and (20).
The final quantity we compute using light-cone data is

the peculiar velocity field, taking the velocity in each bin
to simply be the average velocity of particles within each
bin. At low angular resolutions, which for our simulations
means a HEALPIX [36] resolution of Nside ¼ 1024, the
narrowest redshift-angular bins we consider will typically
contain at least one particle. At higher resolutions,
artifacts become apparent in velocity maps due to unde-
fined velocities in cells without particles [37]. However,
for the dipole field in particular, it is sufficient to compare
low-N-side maps to our reconstructed velocity maps as we
are interested in reconstructing the dipole field on large
angular scales (l≲ 20).
As a final point of note, and as a check that the temper-

ature maps and especially the dipole field reconstruction is
insensitive to the precise binning method used, we employ
binning using both a “nearest gridpoint” assignment scheme
and a “cloud-in-cell”-type assignment scheme where con-
tributions from individual particles of fields are distributed to
a weighted average of nearby cells, both radially and in an
angular direction. The latter of these methods introduces
additional smoothing, or aliasing, on bin-sized scales; this
suppresses power on these scales, but also suppresses the
effects of shot noise. Despite this difference, we find that
the performance of the dipole field reconstruction presented
below is largely insensitive to this detail.

B. Large scales: “box-in-box”

We formally describe the process of sewing the N-body
data and the large-scale modes together using a “coloring”
operator CPc

ðfÞ that rescales a stochastic field f (with its
own power spectrum Pf) by a power spectrum Pc,

CPc
ðfÞ ¼

Z
d3k
ð2πÞ3 e

ik⃗ x⃗fðk⃗ÞP1=2
c ðkÞ; ð21Þ

so the power spectrum of the resulting field is given by
PfPc. For a coloring spectrum Pc ¼ P−1

f , the field will be
whitened. We additionally make use of an “inlay” operator,
Iðf1; f2Þ, which acts in configuration space to replace
values in the interior of a (large-scale) field by values of a
second (coarsened, small-scale) field. The procedure of
sewing a small field into another larger field then consists
of the following operations:

fsewn ¼ CPf
ðIðCP−1

f
ðflgÞ; CP−1

f
ðfsmÞÞÞ: ð22Þ
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Evaluating the above expression entails taking Gaussian
random fields fsm and flg, both with statistical properties
described by Pf, whitening these fields, replacing values of
the lg field by ones from the sm field, and finally
dewhitening the fields.
The result of this procedure on the lg field is that the

small-scale modes in the region of replacement are now
given by modes from the sm field, while large-scale modes
have been preserved and superimposed upon the small-
scale field.
Although L-PICOLA provides us with information

about the density field, we are ultimately interested in
obtaining the primordial potential, from which we can
compute corrections to the velocity field using linear
theory. In order to obtain the primordial potential on large
scales, we extract the potential on the initial slice using the
density field and Poisson equation,1

∇2Φ ¼ 4πGa2δsimρ : ð23Þ
The potential can then be evolved back in time using the
transfer function for the potential, Tðϕsim → ϕprimÞ, and
corrections to the velocity field then found using the
velocity growth function defined in [17].
We are, therefore, interested in computing

ϕsewn ¼ Tðϕsim → ϕprimÞ
4πGa2

∇2

× CPδ
ðIðCP−1

δ
ðδBoxÞ; CP−1

δ
ðδLPÞÞÞ; ð24Þ

where the L-PICOLA density field is noted by the LP
subscript, and the Box subscript refers to a random
realization of a density field with power spectrum Pδ.
Written in Fourier space, the outermost coloring operation,
transfer function operation, and the inverse Laplacian
operation can all be combined into an operation equivalent
to coloring by the primordial spectrum. Coloring the large-
scale Box modes with its inverse spectrum is also equiv-
alent to simply generating a field of white noise, Nwhite.
Thus the final operation we perform in order to obtain a
large-scale primordial potential consistent with the density
field from the L-Picola simulation is

ϕsewn ¼ CPϕ;prim
ðIðNwhite; CP−1

δ
ðδLPÞÞ: ð25Þ

The power spectra for the comoving density field is obtained
using the CLASS code [41], and the primordial Newtonian
potential is chosen to be the usual scale-invariant one.
We show snapshots of various steps of this procedure in
Fig. 1.

Once we have the primordial potential, we use the CMB
radiation transfer functions to obtain the primary CMB, and
velocity transfer functions to compute the contributions to
the dipole field due to large-scale modes.2 From the large-
scale modes, we can then compute the contributions to veff
from Eq. (20) and, thus, their contribution to the observed
kSZ temperature fluctuations. When computing large-scale
contributions to veff , we also need to ensure we do not
double-count modes already accounted for by the N-body
simulation. Therefore, when computing the large-scale
Doppler contribution to veff , we only integrate over modes
with wavelengths larger than the N-body simulation volume.
The CMB multipoles are then computed using the large-

volume simulated primordial potential up to l ¼ 28. In
principle, we could generate additional CMB modes using
simulated data; however, they will not be correlated with
the remote dipole field or the density field. We, therefore,
use a random realization of the primary CMB alms at
l > 28, based on the theoretical power spectrum obtained
from CLASS.
We also include lensing of the primary CMB, utilizing

the convergence maps generated from the light-cone data.
From the maps, we can compute the lensing potential ϕ in
harmonic space as

ϕlm ¼ 2κlm
lðlþ 1Þ : ð26Þ

The lensed CMB temperature is then given by

Tðn̂Þ → Tðn̂þ∇ϕÞ ≃ Tðn̂Þ þ∇ϕ∇Tðn̂Þ: ð27Þ

Although the CMB is lensed, the kSZ temperature is not. In
principle, there could be lensing of the kSZ temperature
fluctuations due to any structures between kSZ sources and
an observer; however, we do not model this. The lensing we
compute is also derived from only the N-body volume we
simulate, thus in a more realistic treatment, structure at
higher redshifts and on large scales would need to be
included. However, the small-scale density-temperature
correlations induced by lensing from the density field
we use for reconstruction are accounted for. In future
work, we would nevertheless prefer to include lensing (and
kSZ) contributions from additional redshifts.
To model kSZ temperature anisotropies sourced at red-

shifts beyond our N-body simulation, we include Gaussian
random noise on angular scales l≳ 1000 with ampli-
tude ∼2 μK.
In Fig. 2, we show various outputs of our simulation

pipeline. Of particular note is that the projected density is
properly correlated with the convergence field and the kSZ
temperature anisotropies, and the dipole field is properly1As a technical note, we can safely interpret output from the

L-PICOLA simulations in a standard way[38–40]: the density
field is interpreted as the comoving synchronous gauge one,
while the velocity and metric fields are interpreted as the
Newtonian ones. We then evolve large-scale modes using linear
cosmological perturbation theory in Newtonian gauge.

2We could also modulate large-scale modes in the density
field; however, long-wavelength density perturbations contribute
negligibly to the cross correlation between the kSZ temperature
and density field [17], so we do not include this modulation.
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correlated with the primary CMB and the kSZ temperature
anisotropies. Focusing on the kSZ map, both the large-scale
contributions and large-scale modulation of power from the

dipole field are visible. In addition, the primordial compo-
nents of the dipole field (i.e., contributions from modes in
the big box) are visible as responsible for the structure of

FIG. 1. Slices of spatial hypersurfaces of simulations during various parts of the sewing-in procedure described by Eq. (25). Top left:
the initial L-Picola density contrast field at z ¼ 9, with comoving box size L ¼ 2 Gpc=h. Top right: the density field at z ¼ 0. Middle
left: the initial z ¼ 9 density field, whitened using the matter power spectrum, averaged over (coarsened) so the resolution is the same as
that of the box containing large-scale modes. Middle right: A random realization of white noise for large-scale modes, with
L ¼ 32 Gpc=h. The central 2 Gpc=h region that will be replaced has been outlined with a yellow border. Bottom left: The primordial
potential with white-noise values in the large box replaced using the whitened L-PICOLA field, then colored using the primordial power
spectrum. Bottom right: The central 5 Gpc=h, with the colored small-scale box values directly subtracted. Small residual large-scale
modes can be seen in the center. The region where the subtraction has been performed is outlined.
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the dipole field on large angular scales. On these scales, the
primordial contributions can dominate the power, resulting
in a temperature asymmetry that can be seen “by eye.” The
particular north-south direction of the asymmetry in Fig. 2
is peculiar to the realization.

IV. RESULTS

A. Reconstruction using a quadratic estimator

We now analyze data from an ensemble of ten simu-
lations to assess the performance of the quadratic estimator,
Eq. (6). We utilize two radial binning schemes, with the
density field on the light cone of each simulation arranged
into either a single bin or eight bins of equal radial
comoving width. For each simulation and bin we construct
maps of ξ defined in Eq. (7) and ζα defined in Eq. (8). The
power spectra CTT

l , Cδδ
αl, and Cδτ

αl used in Eqs. (7)–(8) to
generate the ξ, ζα fields and reconstruction noise are the
sample variances from each realization. We then obtain the

estimated moments of the binned dipole field from Eq. (6),
and generate a map of the reconstructed average dipole
field in each bin.
In Fig. 3, we compare the reconstructed and actual bin-

averaged dipole fields for a single bin and for the eighth binof
the eight-bin configuration. All maps are filtered to contain
only multipoles l < 28. “By-eye,” the reconstruction per-
forms well on large angular scales. We quantify the agree-
ment between the reconstructed and actual dipole field in
two ways.
First, we make a comparison at the level of the power

spectra in Fig. 5. We compute the mean and standard
deviation of the reconstructed dipole field power (with the
noise bias removed) and the actual dipole field power (total,
and separate contributions from the small andbig boxmodes),
as well as the prediction from linear theory using Eq. (4). In
this figure, we plot these quantities for the single bin (top left)
and bins 2, 4, and 8 of the eight-bin configuration. In general,
the agreement between the mean reconstructed and the mean

FIG. 2. Hammer-Aitoff projections of different fields on the sky from the box-in-box simulations; all fields are properly correlated.
Top left: the total CMB temperature fluctuations, including kSZ contributions. The CMB dipole is not included. Top right: the
contribution of the kSZ effect to temperature fluctuations. Middle left: the binned, average density field [Eq. (5)]; middle right:
the binned, average dipole field; bottom left: the binned convergence field; bottom right: the contribution to the remote dipole field from
the big-box modes. Binning is performed over a redshift range z ¼ 0.18 to z ¼ 0.27.
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actual power is quite good at low multipoles, within a single
standard deviation. For highermultipoles, the reconstruction is
poor and there is an excess of power due to the reconstruction
noise. In addition, there appears to be a systematic bias towards
extra power in the reconstructed field at low multipoles,
especially in the single-bin configuration and the lowest
redshift bins of the eight-bin configuration; the agreement
with linear theory becomes better at higher redshift. This is
consistentwith abias due togravitational nonlinearities,which
we expect to be more important at low redshift. A similar bias
exists in CMB lensing [42], and we hope to investigate this
possibility in future work.
As an additional diagnostic of the performance of the

reconstruction, we compute the reconstruction efficiency

rL ≡ Ĉv̂ v̄
L

ðĈv̂ v̂
L Ĉv̄ v̄

L Þ1=2 ; ð28Þ

where v̂ denotes the reconstructed field and v̄ the actual
field. The efficiency is not sensitive to an overall change in
normalization, but instead provides us with a measure of
how strongly correlated reconstructed and simulated modes

are. In general, we find that the reconstructed modes agree
well with the simulated modes on the largest angular scales.
The reconstruction efficiency is found to be better at higher
redshift; again, we expect this due to a lack of nonlinear
effects. Reconstruction is also found to perform better in
smaller bins, an effect we can at least partially attribute to
the increased information content: information from small-
scale modes has not been so heavily averaged away.
However, in larger redshift bins, the correlation with
primordial modes is larger, as discussed in the next section.

B. CMB-kSZ dipole correlation

We now consider how well we can determine the
intrinsic CMB dipole using information from the recon-
structed large-scale velocity field, as suggested in Ref. [18].
This idea is not without ambiguity—because one can
arbitrarily change the CMB dipole by performing a boost,
there is no unique definition of the intrinsic dipole. Instead,
one must settle on a definition universal and specific
enough to facilitate a meaningful comparison. We can
make progress by noting that the local CMB dipole should,

FIG. 3. The remote dipole field obtained from simulations compared to the reconstructed remote dipole field. The maps do not include
modes higher than l > 28. The reconstruction of the top two plots was done using a single redshift bin from z ¼ 0.086 to z ¼ 0.37,
while the bottom plots are a redshift bin from z ¼ 0.33 to z ¼ 0.37. By eye, it is noticeable that large angular modes between the two
maps tend to agree, while smaller-scale modes only do to a moderate extent. The reconstruction of smaller scales is also found to be
better in the smaller, higher-redshift bin. This is in agreement with results obtained by looking at the reconstruction efficiency, shown in
the top left panel of Fig. 5. Excess power can also be seen on small scales, consistent with the spectra found in Fig. 4.
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to an extent depending on one’s definition of the intrinsic
CMB dipole, be correlated with the l ¼ 1 moments of the
remote dipole field. The contributions to our measured CMB
dipole and the remote dipole field of a nearby observer are
determined primarily by small-scale modes which source
local peculiar velocities. However, there are also subdomi-
nant contributions to the CMB dipole from larger-scale (but
still local) velocity modes and other effects both along our
past light cone and at the CMB last scattering surface.
A standard definition of the fundamental CMB dipole is

obtained by boosting to a reference frame in which the
relativistic aberration of the CMB vanishes (see e.g., [43]).
In Newtonian gauge, this aberration-free dipole is calcu-
lated in the frame where an observer has vanishing local
peculiar velocity, altering the Doppler term in Eq. (3). A
more general definition of the fundamental CMB dipole is
obtained by applying a low-pass filter to the Fourier modes
contributing to local peculiar velocities. The aberration-free
dipole is a special case, where all modes contributing to
the local Doppler term are filtered out. This more general

definition is also more closely related to the dipole field
obtained in kSZ tomography, since the bin-averaging effec-
tively imposes a low-pass filter on radial peculiar velocities.
We will refer to this as the large-scale Doppler dipole.
We can quantitatively express the correlation between

the remote dipole field and the various definitions of the
CMB dipole in terms of transfer functions, with the CMB
transfer function filtered below a given scale kcut,

CTv̄
α1 ¼

Z
d3k
ð2πÞ3 PΨðkÞΔv̄�

α1ðkÞΔT
filt;1ðkÞ; ð29Þ

where as before, α labels a redshift bin in which the remote
dipole field v̄ is averaged. The filtered CMB transfer
function for the dipole is given by

ΔT
filt;1 ¼ Θðkcut − kÞΔT

dopp;local;1ðkÞ þ ΔT
dopp;CMB;1ðkÞ

þ ΔT
ISW;1ðkÞ þ ΔT

SW;1ðkÞ ð30Þ
where Θ is the Heaviside step function, and the individual
contributions to the radiation transfer function include ISW,

FIG. 4. The velocity power spectra from simulated data, compared to the theoretical and reconstructed spectra. Contributions to the
spectra from the N-body simulation are shown in red, contributions from the large-scale box modes in blue, and the total in purple. The
reconstructed spectra with noise subtracted is in green, and linear theory prediction in black. Lines indicate the mean spectrum from our
simulations, while solid bands indicate the variance. The reconstruction is performed using redshift data in bins over a redshift range of
z ¼ 0.086 to z ¼ 0.37, subdivided into one or eight bins of equal comoving distance. Reconstruction efficiencies are shown in Fig 5.
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SW, and both local and last-scattering-surface (CMB)
Doppler contributions. For the large-scale Doppler dipole,
we choose a filtering scale equal to the N-body simulation
volume (Lcut ∼ 2π=kcut ∼ 3 Gpc). For the aberration-free
dipole, kcut → ∞.
In Fig. 6, we plot the theoretical prediction for the

correlation coefficient [e.g., Eq. (28)] using linear theory
between the l ¼ 1 moment of the bin-averaged remote
dipole field and three definitions of the CMB dipole: the
observed CMB dipole (“all Doppler”), the aberration-free
dipole, and the large-scale Doppler dipole. We plot the
theory prediction for a single bin of varying radial extent
in redshift. In addition, we show the mean and standard
deviation of the correlation coefficient calculated from ten
simulations for redshift bins of two different size using the
simulated CMB large-scale-filtered dipole and the recon-
structed dipole field. As expected from the discussion above,
the correlation between the observed CMB dipole and the
bin-averaged dipole field is small for all but the smallest
bins. Because they are composed primarily of large-scale
modes, the correlation between the bin-averaged dipole field
and the aberration-free and large-scale Doppler dipoles
improves with bin width. However, the dipole field has a

FIG. 5. The reconstruction efficiency for the runs in Fig. 4. The solid line indicates the mean reconstruction efficiency in each bin for
each simulation realization, and the solid band the standard deviation.
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FIG. 6. The reconstructed velocity field and CMB temperature
dipole correlation coefficient, CTv̄

1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CTT
1 Cv̄ v̄

1

p
, computed using

different CMB dipoles. The theoretical correlation using the full
CMB transfer function is shown in blue, correlation with the
aberration-free dipole in red, and the correlation with “filtered”
CMB dipole shown in green. Data point show the correlation of
the simulated CMB dipole filtered on 3 Gpc (box-sized) scales for
two redshift bin sizes. The points are the mean correlation from
all simulations we perform, and error bars denote the standard
deviation.
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finite correlation length, and therefore the correlation coef-
ficient eventually goes down. We find that the large-scale
Doppler dipole can in principle be determined with a
maximum correlation coefficient of r ∼ 0.9 while the aberra-
tion-free dipole can be determined with a maximum correla-
tion coefficient of r ∼ 0.65. The optimal reconstruction bin
width corresponds to a redshift of z ∼ 0.4. In conclusion,
our simulations indicate that constraints on the intrinsic
CMB dipole should reasonably be attainable in individual
realizations.

V. DISCUSSION AND CONCLUSIONS

kSZ tomography is a useful tool for probing the largest
observable scales in our Universe, providing information in
addition to what the primary CMB and large-scale density
surveys alone can tell us. In this work we have explored the
ability of a quadratic estimator to reconstruct the remote
dipole field using simulated maps of the CMB and density
field. We have found that the reconstruction process is able
to capture highly significant information about large scales,
even in the presence of physical effects with the potential to
contaminate our ability to reconstruct, including nonlinear
growth of structure, RSDs, lensing, and contributions to
the kSZ temperature from structures outside the range of
redshifts considered for reconstruction.
We have accomplished this using a novel simulation

technique, in which a small-scale N-body simulation is
sewn into a large-scale volume evolved with linear theory,
allowing us to generate self-consistent maps of kSZ temper-
ature fluctuations, the primary CMB, CMB lensing, density,
and dipole fields. In turn, the consistency of these compo-
nents allows us to explore the ability of reconstruction
techniques to probe fundamental physics such as determining
the intrinsic CMBdipole. Forthcomingwork will additionally

allow us to asses the ability of kSZmeasurements to constrain
parameters of cosmological models, especially important in
the context of theories competing to describe dark energy
and dark matter, and the presence of unexplained anomalies
in the measured CMB.
While this work furthers our confidence in the ability of

the reconstruction procedure to work in practice, it will be
important to incorporate additional physics into our models
in order to make future predictions as realistic and robust
as possible. The presence of foregrounds may hamper our
ability to reconstruct the remote dipole field; it will be
necessary to ensure we can adequately clean thermal
Sunyaev Zel’dovich emissions, a foreground strongly corre-
lated with the density field.
We have also relied on several physical assumptions

that can potentially affect the results presented here. One
assumption is that the electron field directly traces the dark
matter density field, something that in practice has been
shown to fail on length scales below∼10 Mpc [44].Research
precisely modeling the impact of physics at play on small
scales is ongoing; however, we have found that the angular
resolution requirements for accurate reconstruction of low-l
modes of the remote dipole field are fairly mild, thus the
physical scales resolved by the simulations are as well.
Observations will also not provide perfect information

about the density field as assumed in this study; rather, this
information is typically obtained through direct observa-
tions, such as of galaxies and clusters at low redshift, or
the 21 cm signal at higher redshifts. Accounting for
these effects in angular maps of the density field can be
accomplished in a future study in which we generate mock
galaxy catalogs. In principle, existing data of this type can
be combined with the box-in-box technique we introduce
in order to produce maps of increasing realism.
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