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The detection of the gravitational capture of a stellar-mass compact object by a massive black hole
(MBH) will allow us to test gravity in the strong regime. The repeated, accumulated bursts of gravitational
radiation from these sources can be envisaged as a geodesic mapping of space-time around the MBH. These
sources form via two-body relaxation, by exchanging energy and angular momentum, and inspiral in a
slow, progressive way down to the final merger. The frequencies fall in the millihertz range for MBHs with
masses ∼106 M⊙, i.e., that of space-borne gravitational-wave observatories such as LISA. In this article we
show that, depending on their orbital parameters, intermediate-mass ratio inspirals (IMRIs) of MBHs with
masses between a hundred and a few thousand M⊙ have frequencies that make them detectable (i) with
ground-based observatories, or (ii) with both LISA and ground-based observatories (such as advanced
LIGO/Virgo) and third-generation observatories [such as the Einstein Telescope (ET)]. The binaries have a
signal-to-noise ratio large enough to ensure detection. More extreme values of the orbital parameters
correspond to systems that are only detectable with ground-based detectors and in particular enter the
LIGO/Virgo band in many different harmonics for masses up to 2000 M⊙. We show that environmental
effects are negligible, so the source should not have this kind of complication. The accumulated phase shift
is measurable with LISA and ET, and for some cases also with LIGO, so that it is possible to recover
information about the eccentricity and formation scenario. For IMRIs with a total mass ⪅ 2000 M⊙ and
initial eccentricities up to 0.999, LISA can give a advanced warning to ground-based detectors with
seconds of precision. The possibility of detecting IMRIs from the ground alone or combined with space-
borne observatories opens new possibilities for gravitational-wave astronomy.

DOI: 10.1103/PhysRevD.98.063018

I. INTRODUCTION

The typical size of a massive black hole (MBH), i.e., its
Schwarzschild radius, is extremely tiny from the point of
view of the host galaxy. For a 106 M⊙ MBH, this difference
is roughly 10 orders of magnitude. However, we have
discovered a deep link between the properties of the galaxy
and those of the MBH, in particular between the mass of the
MBH and the velocity dispersion σ of the spheroidal
component of the galaxy [1]. Because the region of interest
is difficult to resolve, the lower end of this correlation is
uncertain. However, if we extend these correlations to
smaller systems, globular clusters or ultracompact dwarf
galaxies should harbor black holes with masses ranging
between 102 and 104;M⊙, i.e., intermediate-mass black
holes (IMBHs) (for a review, see Refs. [2,3]), although such
black holes have never been robustly detected.
The best way to probe the nature of MBHs is with

gravitational waves (GWs), which allow us to extract
information that is unavailable electromagnetically.

Observing the gravitational capture and plunge of a compact
object through the event horizon of a black hole is one of the
main goals of the Laser Interferometer Space Antenna
(LISA) mission [4]. A compact object of stellar mass—so
dense that it overcomes the tidal forces of theMBH—is able
to approach the central MBH very closely, emitting a large
amount of gravitational radiation as orbital energy is
radiated away. This causes the semimajor axis to shrink.
This “doomed” object spends many orbits around the MBH
before it is swallowed. The radiated energy, which can be
thought of as a snapshot containing detailed information
about the system, will allow us to probe strong-field
gravitational physics. Depending on the mass ratio q, we
consider either extreme-mass ratio inspirals, q≳ 104∶1
(EMRIs; see Refs. [5,6]), or intermediate-mass ratio inspi-
rals, q ∼ 102–104∶1 (IMRIs; see e.g., Refs. [7–9]).
In galactic nuclei the predominant way of producing

EMRIs is via two-body relaxation [5]. At formation, these
sources have extremely large eccentricities, particularly if
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the MBH is a Kerr black hole [10], which is what we should
expect from nature. However, in globular clusters (which
harbor MBHs in the IMBH range) the loss-cone theory—
which is our tool to understand how EMRIs form (see, e.g.,
Refs. [11–13])—becomes very complex, mostly due to the
fact that the IMBH is not fixed at the center of the system. It
becomes even more difficult when we add the emission of
GWs—another layer of complication for the Newtonian
problem. As of now, we must rely on computer simulations
to address this problem.
The joint detection of a GW source with different

observatories has already been discussed in the literature,
but not in the mass ratio range that is addressed in this
work. The series of works [14–17] investigated the for-
mation, evolution, inspiral, and merger of IMBH binaries
with a mass ratio not larger than 10 and the prospects of
multiband detection with LISA and LIGO/Virgo. The
authors of Ref. [18] explored a joint detection by different
GW detectors in more detail than the previous references in
the context of bursting sources emitted by binaries in
galactic nuclei, also with a mass ratio not larger than 10.
After the first detections by LIGO, the prospect of detecting
similar-mass-ratio stellar-mass black holes with masses of
about 30 M⊙ with LIGO/Virgo and LISAwas discussed in
Ref. [19], and the authors of Ref. [20] clarified that this is
only possible for eccentric binaries in that mass rage.
In this paper we show that IMRIs, which typically form

in globular clusters (but not excluding larger systems such
as galactic nuclei and dense nuclear clusters), can be jointly
detected by ground-based and space-borne observatories.
In particular, Advanced LIGO and Virgo, and the proposed
third-generation Einstein Telescope (ET) [21,22], will be
able to detect IMRIs from very eccentric and hard binaries,
which form via two-body relaxation or the parabolic
capture of a compact object and abrupt loss of energy.
This idea was first presented in Ref. [23], while the energy
and angular momentum changes in the case of a hyperbolic
orbit were previously presented in Ref. [24]; see also
Refs. [25–29] for more recent works. However, LISA is
deaf to these kinds of sources. For milder eccentricities
and semimajor axes, however, the combined detection of
IMRIswith LISA andLIGO/Virgo or ET is a real possibility.
Due to the range of frequencies that these sources have, a
decihertz observatory such as theDECi-hertz Interferometer
Gravitational Wave Observatory [30], the Superconducting
Omni-directional Gravitational Radiation Observatory
[31,32], or the proposed geocentric TianQin Project [33]
would enhance the prospects of detection.
For some systems, LISA can give advance warning to

ground-based detectors weeks before the source appears in
their bandwidth and with an accuracy of seconds (and
possibly below) before the merger.

II. FORMATION OF INTERMEDIATE-MASS-
RATIO INSPIRALS IN GLOBULAR CLUSTERS

In this work the sources of interest are inspirals of
compact objects onto an IMBH with a mass ratio of about

∼102–104∶1. The most accurate simulations of a globular
cluster are the so-called direct-summation N-body algo-
rithms. In this scheme, one directly integrates Newton’s
equations of motion between all stars in a cluster at every
time step, with a regularization algorithm for binaries, so
that any phenomenon associated with gravity naturally
arises (see, e.g., Refs. [34–36], and the latter for the concept
of regularization). Following the first implementation in
Ref. [37], many modern direct-summation codes can mimic
the effects of general relativity via a post-Newtonian
expansion of the forces to be integrated (see Sec. IX of
Ref. [38] for a review of stellar-dynamical relativistic
integrators).
The first dynamical simulation that presented the for-

mation and evolution of an IMRI down to a few
Schwarzschild radii from coalescence using this scheme
was presented in Ref. [39]. In one of the simulations we
presented, we observed and tracked the spontaneous pro-
duction of an IMRI between an IMBH of mass MBH ¼
500 M⊙ and a stellar-mass black hole ofmassmCO¼26M⊙.
After a fewMyrs the IMRImerges, and the IMBH receives a
relativistic recoil [40–42] and escapes the whole cluster. It
must be noted that the IMBH was in a binary with another
compact object (a stellar-mass black hole) for almost the
entire simulation. The IMBH exchanged companions a few
times and was ionized for the last time very abruptly to form
the last binary. This binary started with a very small
semimajor axis of about a ∼ 10−5 pc and a very large
eccentricity of e ¼ 0.999, which fits within the parabolic
capture mechanism of Ref. [23]. A few years later, the
authors of Ref. [43] found similar results for a close range of
masses but with a different approach. The work of Ref. [44]
followed very closely the initial setup of Ref. [39] and
reproduced our results with a different integrator, which
corroborated our findings. Last, the numerical experiments
of Ref. [45] explored IMBHs in a lighter range of masses
around MBH ¼ 150 M⊙. However, they also reported that
the IMBH forms a binary about 90% of the time. The
probability distribution of the semimajor axis peaks at
about ≲10−5 pc.

III. LIGHT AND MEDIUM-SIZED IMRIs

The characteristic amplitude and the GW harmonics
in the quadrupolar radiation approximation can be calcu-
lated following the scheme of Ref. [46], in which the
orbital parameters change slowly due to the emission of
radiation. This is emitted at every integer multiple of the
orbital frequency, ωn ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMBH=a3

p
, where a is the

semimajor axis. The strain amplitude in the nth harmonic
at a given distance D, normalized to the typical values of
this work, is

hn ¼ gðn; eÞG
2MBHmCO

Dac4
ð1Þ
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≃ 8 × 10−23gðn; eÞ
�

D
500 Mpc

�
−1
�

a
10−5 pc

�
−1

×

�
MBH

103 M⊙

��
mCO

10 M⊙

�
: ð2Þ

In this expression, MBH is the mass of the IMBH, mCO is
the mass of the compact object (CO), and gðn; eÞ is a
function of the harmonic number n and the eccentricity e
[see [46]]. We consider the rms amplitude averaged over
the two GW polarizations and all directions. Other alter-
natives to this approach (such those in Refs. [47–50]) give a
more accurate description of the last few orbits, but remain
substantially equivalent to Ref. [46] at previous stages of
the evolution. This approach correctly estimates the fre-
quency cutoff at the innermost stable circular orbit fre-
quency and is enough for the main goal of this work. (See
also Ref. [51] for a discussion about the detection of
binaries with mass ratios of 0.1 with advanced ground-
based detectors using aligned-spin effective-one-body
waveforms.)
With this approximation, we show in Fig. 1 hc as a

function of the frequency of two different IMRIs, and a few
moments in the evolution before the final merger, which
happens at a time Tmrg. For the kind of eccentricities that

we consider in this work, this time can be estimated
following Ref. [52] for typical values as

Tmrg ≅
24

ffiffiffi
2

p

85

ð1 − e0Þ7=2c5
G3M2

BHmCO
a40 ≅ 6.4 × 105 yrs ð3Þ

×

�
MBH

103 M⊙

�
2
�

mCO

10 M⊙

�
−1
�

R0
P

200RS

�
4

×

�
1 − e0
10−5

�
−1=2

; ð4Þ

where R0
P and e0 are the initial pericenter distance and

eccentricity, respectively. In Fig. 1 the IMBH has a mass of
MBH ¼ 100 M⊙ and the mass of the CO is set to 10 M⊙.
The figure shows the LISA sensitivity curve and those of
Advanced LIGO (LIGO, henceforth) and ET in its D
configuration [22], but the characteristic amplitude is
shortened to start at lower values for clarity, since none
of the sources considered achieve higher values. For
reference, we also include the full waveform in the LIGO
sensitivity curve as estimated by the IMRPhenomD
approach of Refs. [53,54], which was developed to study
systemswith mass ratios of up to q ¼ 18. This curve is close
to the peak of harmonics in amplitude for this specific case,
but in general this is not true and depends on the specifics of

FIG. 1. Characteristic amplitude of the first ten harmonics emitted during the evolution of an IMRI. The solid V-shaped curve on the
left corresponds to LISA’s intrinsic noise, and the two U-shaped curves on the right correspond to ET (lower hc values) and Advanced
LIGO. The mass of the IMBH is fixed toMMBH ¼ 100 M⊙ and the mass of the compact object ismCO ¼ 10 M⊙. The source is assumed
to be located at a distance of D ¼ 500 Mpc. Each panel corresponds to a binary with different initial values for the semimajor axis or
eccentricity. The figure shows a few instants of time on the second harmonic in the evolution of the binary before the final merger. The
total amount of time for the binary to merge from the initial values of the semimajor axis and eccentricity is given in each panel, Tmrg.
The square symbol corresponds to 1 year before it. The rest of the harmonics also display the same instants of time using the same
symbol but without a text label. The value of the eccentricity at that particular moment and the pericenter value Rp as a function of the
Schwarzschild radius RS are also shown. Additionally, the full waveform of the system in the LIGO sensitivity curve as approximated by
the IMRPhenomD algorithm presented in Refs. [53,54] is depicted in the right panel by the dashed, orange curve.
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the binary, such as periastron argument, inclination angle,
precession of the orbital plane, etc.
We can see that eccentricities corresponding to those that

we can expect for a dynamical capture as described in the
Introduction produce IMRIs which are observable with
LISA and both ET and LIGO. In particular, the left panel
corresponds to an IMRI that spends half a minute in LIGO.
For lighter CO masses this time increases. For higher
eccentricities (which can be achieved via two-body relax-
ation or in the parabolic braking scenario), at these masses
the IMRIs can only be seen by ground-based detectors with
a significant amount of detection time and with the vast
majority of the harmonics in band. It is interesting to note

that ET may be able to detect up to several hundred events
per year; see Refs. [55,56].
In Fig. 2 we show a more massive system, with a

total mass of 310 M⊙. The source recedes in frequency
due to the larger mass. For the systems considered in
the upper panels, this allows IMRIs to spend more time
in LISA and accumulate a larger signal-to-noise ratio
(SNR), resulting in shortened time in the ground-based
detectors which, however, is still significant. For the
lower panels, however, LISA is again deaf to these
sources.
Finally, in Fig. 3 we show a system similar to what was

found in the numerical simulations of Ref. [39]. The mass

FIG. 2. Same as in Fig. 1 but for MMBH ¼ 300 M⊙ and mCO ¼ 30 M⊙ and with different labels in the evolution.
Notice the displacement of the frequency peaks, which wander from the LISA band to the LIGO/Virgo one (top left panel
to the bottom right one).
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of the IMBH is set to 500 M⊙. Higher-frequency sources
are only observable by ground-based detectors.

IV. LARGE-MASS IMRIs

Figures 4–6 depict IMBHs with masses MBH ¼
1000 M⊙, 2000 M⊙, and 3000 M⊙, respectively. For more
moderate eccentricities, the IMRIs in the examples can be
detected with LISA and ET, but they do not enter the
LIGO detection band. More extreme eccentricities lead to a
large amount of harmonics entering the ET band for

significant amounts of time. In the case of a 2000 M⊙
IMBH, it can spend as much as 10 minutes in band in
different harmonics. Larger masses (i.e., 3000 M⊙) pro-
duce short-lived sources that spend up to one minute in the
ET detection band.

V. ENVIRONMENTAL EFFECTS

In the previous sections we have shown the evolution of
an IMRI under the assumption that the binary is perfectly
isolated from the rest of the stellar system, i.e., the binary

FIG. 3. Same as in Fig. 1 but for MMBH ¼ 500 M⊙ and mCO ¼ 26, which is based on the relativistic stellar-dynamical simulation of
Ref. [39]. The left panel corresponds to the kind of eccentricity in that work and the right one corresponds to a more extreme one, with
different labels in the evolution.

FIG. 4. Same as in Fig. 1 but for MMBH ¼ 1000 M⊙ and mCO ¼ 30 and with different labels in the evolution.
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evolves only due to the emission of GWs. The reason
for this is that the problem is cleaner and easier to
understand. However, the binary is located in a dense
stellar system, (typically a globular cluster) and the role of
gas is negligible, since the gas density in these systems is
very low. Hence, to assess whether surrounding stars could
vary or modify the evolution after the IMRI has formed, in
this Sec. I investigate the impact of the stellar system using
a semianalytical approach. The basic idea is to split the
evolution of both the semimajor axis and the eccentricity

into two contributions: one driven by the dynamical inter-
actions with stars (subscript D), and one due to the emission
of GWs (subscript GW), _a ¼ _aGR þ _aD and _e ¼ _eGR þ _eD,
with dots representing a derivative with respect to time.
From Ref. [52],

_aGW¼−
64

5

G3MBHmCOðMBHþmCOÞ
c5a3ð1−e2Þ7=2

�
1þ73

24
e2þ37

96
e4
�
;

ð5Þ

_eGW ¼ −
304

15

G3MBHmCOðMBH þmCOÞ
c5a4ð1 − e2Þ5=2 e

�
1þ 121

304
e2
�
:

ð6Þ

The GW terms are as given in Ref. [52]. Using the
relationships of Ref. [57], we have that

_aD ¼ −H
Gρ
σ

a2: ð7Þ

Following the usual notation, G is the gravitational
constant, ρ is the stellar density around the binary, σ is
the corresponding velocity dispersion of the cluster, andH is
the so-called hardening constant, as introduced in Ref. [57].
For the kind of binaries we consider in this work (i.e., hard
ones), we have that ðde=d lnð1=aÞÞD ¼ KðeÞ. Since the
density drops significantly during the evolution, we
can regard σ as approximately constant and hence
de ¼ KðeÞd lnð1=aÞ ¼ −KðeÞ=ada, so that H ≃ 16, as in
the original work of Ref. [57] (see also Ref. [58]). Therefore,

_eD ¼ H
σ
GρaKðeÞ; ð8Þ

FIG. 5. Same as in Fig. 1 but for MMBH ¼ 2000 M⊙ and mCO ¼ 5 and with different labels in the evolution.

FIG. 6. Same as in Fig. 1 but for MMBH ¼ 3000 M⊙ and
mCO ¼ 30 and with different labels in the evolution.
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withKðeÞ ∼ K0eð1 − e2Þ, as in Ref. [59]. As an example, in
Fig. 7 we show an IMRI formed by an IMBH of mass
MBH ¼ 100 M⊙ and a CO of massmCO ¼ 30 M⊙. The left
panel corresponds to the case in vacuum, i.e., the binary
evolves only due to the emission of GWs, and the right panel
takes into account stellar dynamics. The reason for this
choice of parameters is twofold: on the one hand, the impact
of stellar dynamics on a lighter IMRI is more pronounced;
on the other hand, K0 has been estimated for more equal-
mass binaries than the other cases. As expected, the effect of
stellar dynamics on the binary at such a hardening stage is
negligible, so the previous results hold even if we do not take
into account the surrounding stellar system around the IMRI
from the moment of formation. The previous dynamical
story is however crucial for the initial orbital parameters of
the binary.

VI. LOUDNESS OF THE SOURCES

A. Low-eccentricity sources: LIGO

As it inspirals, a compact binary becomes observable and
more circular. The characteristic amplitude hc of an IMRI
emitting at a given frequency f is given by

hc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 _E= _fÞ

q
=ðπDÞ; ð9Þ

where _E is the power emitted, _f is the time derivative of the
frequency, andD is the distance to the source [60]. The sky-
and orientation-averaged SNR of a monochromatic source
with the ansatz of ideal signal processing is given by the
equation

�
S
N

�
2

¼ 4

πD2

Z _E
_fSSAh ðfÞ

df
f2

ð10Þ

as derived in Ref. [60], where D is the distance to the
source, _E is the rate of energy lost by the source, _f is the
rate of change of frequency, and SSAh ðfÞ ≈ 5ShðfÞ is
the sky- and orientation-averaged noise spectral density of
the detector. For a source with multiple frequency compo-
nents, the total SNR2 is obtained by summing the above
expression over each mode.
In Fig. 8 we show the Fourier-transformed waveform of

both panels of Fig. 1, as approximated by the algorithm of
Ref. [61]. Theirs is a time-domain waveform that describes
binary black holes evolving on mildly eccentric orbits, not
exceeding e≲ 0.2. When the binaries enter the LIGO/Virgo
band, even if they start with initially high eccentricities,
they reach values below the threshold of the algorithm,
which therefore is a good approximant to estimate the
waveform and compute the SNR.
For the IMRI examples given in Fig. 1, assuming a

distance of D ¼ 500 Mpc, we find SNRs in the LIGO
bandwidth of 42.87 and 42.55 for the left and right panels,
respectively. In Fig. 2, at the same distance, we find SNRs
of 17.12, 17.13, 17.15, and 16.40 for the top-left, top-right,
lower-left, and lower-right panels, respectively.

B. High-eccentricity sources

When moving to lower frequencies, the eccentricity
greatly exceeds the limit of the approximation of
Ref. [61] that we have used to derive the SNR. To calculate
it when the IMRIs sweep the LISA bandwidth, we use the

FIG. 7. (Left panel) As in Fig. 1 but forMMBH ¼ 100 M⊙ andmCO ¼ 30 and with different labels in the evolution. (Right panel) Same
as in the left panel but taking into account stellar dynamics (see text). We adopt an ambient stellar density of 2 × 105 M⊙ pc−3,
K0 ¼ 0.1, and a one-dimensional velocity dispersion of σ ¼ 15 km=s.
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expression (derived from Eq. 20 of Ref. [46], Eq. 2.1 of
Ref. [60] and Eq. 56 of Ref. [49])

�
S
N

�
2

n
¼

Z
fnðtiniÞ

fnðtiniÞ

�
hc;nðfnÞ
hdetðfnÞ

�
2 1

fn
dðlnðfnÞÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
simply dfn

: ð11Þ

In this equation, fnðtÞ is the (redshifted) frequency of
the nth harmonic at time t (fn ¼ n × forbital), hc;nðfnÞ is the
characteristic amplitude of the nth harmonic when the
frequency associated to that component is fn, and hdet is
the square root of the sensitivity curve of the detectors.
Below we give a few examples of the SNRs for the IMRI

systems in the LISA (ET) band of the previous sections,
assuming a distance of 500Mpc and taking the contribution
of the first 100 harmonics.
(1) Figure 1: Left panel: 15 (1036); right panel 0.01

(1087).
(2) Figure 2: Upper left panel: 50 (1994); upper right

panel: 24 (1995); lower left panel: 2 (1991); lower
right panel: 0.01 (2231).

(3) Figure 3: Left panel: 36 (1449); right panel: 0.05
(1461).

(4) Figure 4: Left panel: 79 (328); right panel: 0.4 (305).
(5) Figure 5: Left panel: 7 (15); right panel: 0.1 (37).
(6) Figure 6: 5 (1).
In Figs. 9 and 10 we give three examples of the

accumulated SNR as calculated in this section. In the left
and right panels of Fig. 9, we display the SNR in ET of the
system in the bottom-right panel of Fig. 2 and the right
panel of Fig. 3, respectively. In Fig. 10, we show the
accumulated SNR of the system depicted in the left panel of
Fig. 3 for LISA.
However, for LISA this is the total accumulated SNR for

the total time that the source spends on band. The obser-
vational time (the time during which we retrieve data from
the source) is in all cases shorter and, hence, the accumulated
observed SNR is lower. As an example, for the left panel of
Fig. 3, if we integrate all of the time the source spends on

FIG. 8. Plus polarizationhþ for the two systems of Fig. 1 from the
eccentricity of entrance into the LIGO bandwidth, i.e., when the
frequency is of 10 Hz as approximated by the Fourier-transformed
time-domain Taylor T4 algorithm of Ref. [61], which includes the
effects of mild orbital eccentricity (≲0.2). The orange dot-dashed
curve and the green dashed curve of higher eccentricity correspond
to the left and right panels of Fig. 1, respectively. The solid grey
curve shows the LIGO zero-detuned high-power design sensitivity.

FIG. 9. (Left panel) Accumulated SNR in ET as a function of the time to plunge, Tmrg, in seconds, for the IMRI in the bottom-right
panel of Fig. 2. we show the individual contributions of the first 100 harmonics and the total. (Right panel) Same for the right panel of
Fig. 3.
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band we obtain the aforementioned SNR of 36. However, if
we integrate the last 10 yrs beforemerger the SNR decreases
to 23, and it decreases to 19 for the last 5 yrs. If we observed
the source earlier in the evolution, say, e.g., 10 yrs before
merger to 5 yrs before it, the SNR would be 14, and if we
observed it 100 yrs beforemerger to 95 yrs before it, the SNR
would be 3. As an example, Fig. 11 shows the accumulated

SNR for this system 10 and 5 yrs before the final plunge.
This only applies to LISA, because the time spent in the
ground-based detector ET is much shorter.
To assess whether this approach is robust, we now give

the SNRs for the systems of Sec. VI A in the LIGO band,
which have been calculated with the waveform model
introduced in that section. In Fig. 1, as estimated with this
approach, the SNRs for the left and right panels are 41 and
40, respectively. In Fig. 2, the SNRs from left to right and
top to bottom are 12, 12, 11, and 14. These results are very
close to those of Sec. VI A. The small differences arise
from the fact that eccentricity tends to enhance the amount
of energy emitted during the inspiral as the system radiates
in band for longer. It is reasonable to take these estimates
for circular orbits as a guideline for eccentric systems with
masses similar to these. If the source is eccentric, since
a ¼ Rper=ð1 − eÞ, a is larger at the time the source reaches
a frequency of 10 Hz. The inspiral time depends on the
value of a, and is larger for larger a. Another way to see this
is that dE=dt is smaller when e is larger at fixed periapsis
(or frequency in our approximation). This is because at
fixed periapsis, increasing the eccentricity puts more of the
orbit further from the MBH and hence the energy flux is on
average reduced. As dE=dt is smaller, it takes longer to
inspiral. This also explains why the SNR is slightly lower:
dE=dt is lower at fixed periapsis and thus at fixed
frequency in this approximate model (physically, energy
is being radiated out of band so we do not detect all of it).

VII. ACCUMULATED PHASE SHIFT

Understanding how IMRIs form and the values of their
orbital parameters can help us to reverse engineer the

FIG. 10. Same as in Fig. 9 but for the same IMRI system in the
left panel of Fig. 3, and in years. we show the individual
contributions of the first ten harmonics, but the total SNR takes
into account the contribution of the first 100, which are not
displayed.

FIG. 11. Same as in Fig. 10 but taking into account only the SNR accumulated 10 (left panel) and 5 (right panel) years before the
merger. See discussion in text.
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environmental properties of the host cluster. Although the
IMRIs considered in this work have very large initial
eccentricities, when they reach the LIGO/Virgo band the
eccentricity is virtually zero. It is however important to
measure a nonzero eccentricity, because it can be a
constraint on the formation mechanism as well as the
stellar environment of the IMRI. If a residual eccentricity is
present, it will induce a difference in the phase evolution of
the signal as compared to a circular inspiral. Thanks to the
derivation in Ref. [62] of the phase correction due to
nonzero eccentricities, we can estimate the accumulated
phase shift to lowest post-Newtonian order and to first
order in e2 with

ΔΨeðfÞ ¼ Ψlast −Ψi ≅ −Ψi

¼ 7065

187136
e2i ðπfMzÞ−5=3: ð12Þ

In the last equation, ei is the eccentricity at the
frequency of the dominant harmonic at which it enters
the detector bandwidth, f is the frequency for the
n ¼ 2 harmonic, and we have introduced the quantity
Mz≔ð1þzÞGðMBH×mCOÞ3=5ðMBHþmCOÞ−1=5=c3. Also,
we made the approximation that ΔΨeðfÞ ¼ Ψlast − Ψi ≃
−Ψi, where Ψlast and Ψi are the final and initial phase,
because of the pronounced fall-off ofΨeðfÞwith increasing
frequency; see the discussion in Sec. B.2 of Ref. [63].
To derive the accumulated phase shift in terms of f and

the remaining time to merger, we now recall from Ref. [64]
that the semimajor axis of the binary is

a3 ¼ GðMBH þmCOÞ
ðπfÞ2 : ð13Þ

The time for merger for e ≪ 1 can be derived from
Ref. [52] as follows:

Tmrg ≅
5

256

c5

G3MBH ×mCOðMBH þmCOÞ

×
�
GðMBH þmCOÞ

ðπfÞ2
�
4=3

: ð14Þ

Last, let us recall that

e2f19=9 ≅ constant; ð15Þ

which can be derived from Eq. 5.12 of Ref. [52] with
1=ð1 − e2Þ ≃ 1 combined with Eq. (13),1 i.e., a ∝ f−2=3.

Therefore, if we use Eq. (13) in Eq. (14), we obtain

πf ≅
�

5

256

�
3=8

M−5=8
z T−3=8

mrg : ð16Þ

Hence, using Eqs. (12), (15), and (16), we have that
the accumulated phase shift in terms of f, eiðfÞ, Mz, and
Tmrg is

ΔΨeðfÞ ¼
�

5

256

�
−17=12 7065

187136
ðπfiÞ19=9e2i M25=36

z T17=12
mrg

≅ 10ðπfiÞ19=9e2i M25=36
z T17=12

mrg : ð17Þ

The accumulated phase shift is detectable if ≳π. With
this approximation, we find the following phase shifts (in
radians) for the IMRI systems presented in the previous
sections, imposing a minimum threshold SNR of 5 (the
numbers correspond to the panels of the figures from top to
bottom and left to right):

(i) LISA, taking into account only the last 5 years
before merger: Fig. 1 has a negligible phase shift;
Fig. 2: 180, 3.4 × 106, and the other two panels have
a a negligible phase shift; Fig. 3: 1.5 × 106 and the
right panel is negligible; Fig. 4: 8200 and the right
panel is negligible; Fig. 5: 9.7 × 105 and the right
panel is negligible; Fig. 6 also has a negligible
phase shift.

(ii) ET: Figure 1: ∼5.1 × 10−3 and 19 000; Fig. 2:
∼2.6 × 10−7, ∼3.4 × 10−3, 0.66, and 4600; Fig. 3:
1.3 × 10−3 and 3900; Fig. 4: 3.5 × 10−6 and 450;
Fig. 5: 1.3 × 10−2 and 2600. Figure 6 has a negli-
gible phase shift.

(iii) LIGO: Figure 1: 4×10−6 and 1.2; Fig. 2: 1.1×10−10,
1.4 × 10−6, 2.3 × 10−4, and 10. The rest of the cases
have negligible phase shifts.

VIII. CONCLUSIONS

Intermediate-mass-ratio inspirals are typically formed in
dense stellar systems such as galactic nuclei and globular
clusters, typically with very large eccentricities (from
e¼0.999) and small semimajor axes (below a∼10−5 pc),
as found in a number of stellar-dynamics simulations of
globular clusters [29,39,43–45]. Besides classical two-body
relaxation, an interesting way of explaining the formation of
these sources is the parabolic capture mechanism described
in Refs. [23,25].
In this work we showed that IMRIs in clusters are

not only detectable by space-borne observatories such as
LISA; depending on the properties of the IMRIs, they can
also be detected in conjunction with LIGO/Virgo or ET,
and thus ground-based and space-borne observatories
should be envisaged as one instrument if they are operated
simultaneously.

1As described in Astronomia nova, “Sed res est certissima
exactissimaque quod proportiō qua est inter binōrum quōrum-
cunque Planetārum tempora periodica, sit praecise sesquialtera
proportionis mediārum distantiārum (…)”.
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I have considered IMBHs with masses ranging between
MBH ¼ 100 M⊙ and 3000 M⊙ and COs with different
masses.We have separated them into light andmedium-sized
IMRIs for IMBHs with masses up to 500 M⊙ (which is a
particular case based on the findings of Ref. [39]) and large-
mass IMRIs for masses between 1000 M⊙ and 3000 M⊙.
I found that light and medium-sized IMRIs can be

observed by LISA and ground-based detectors for eccen-
tricities from 0.99 to 0.9995. In the range of frequencies
detectable by LIGO/Virgo, they spend a maximum of about
one minute on band. Higher-eccentricity sources, however,
can only be detected by ground-based detectors (see
Ref. [20] for a discussion on the role of eccentricity for
low-mass-ratio binaries). This is due to the fact that as the
eccentricity increases the pericenter distance decreases, so
that the characteristic frequency of the GWs emitted at the
pericenter increases (see Eq. 37 of Ref. [65] for a derivation
of the peak frequency in the same approximation used in this
work). In some cases, the full cascade of harmonics falls
entirelywithin the bandwidth of the ground-based detectors.
The peak of large-mass IMRIs recedes in frequency

compared to light and medium-sized ones, so that the
cascade of harmonics is shifted towards the LISA domain.
However, for eccentricities below 0.9995, IMRIs with
IMBHs covering the full range of masses considered in
this work (100 M⊙ to 3000 M⊙) should be detectable with
LISA with modest to large SNRs (from a few to tens)
depending on the eccentricity and duration of the obser-
vation. For ground-based detectors, we computed the SNR
for LIGO using the waveforms from a Fourier trans-
formation of the time-domain Taylor T4 algorithm of
Ref. [61] (limited to eccentricities ≲0.2) and derived large
enough SNRs (always of about a few 10).
Lower-frequency sources require larger eccentricities, and

we cannot use thesewaveforms. For these detectorsweused an
approximate scheme to calculate the SNR, andwe compared it
with the previous results for LIGO and found that the approach
is robust. Thevalues for the SNRwithET can reach asmuch as
∼2000, and are of typically a few hundred and of tens for
masses up to 2000 M⊙. LISA has SNRs of order 10, which
significantly decrease when the harmonics peak of the IMRI
system is closer to the ground-based regime.
By combining ground-based and space-borne observa-

tions we can impose better constraints on a system’s
parameters. On the one hand, LISA can observe the inspiral
and hence provide us with measurements of parameters

such as the chirp mass. On the other hand, ground-base
detectors detect the merger and ringdown, and therefore
measure other parameters such as the final mass and spin.
Thanks to this joint detection, one can split various
degeneracies and get better measurements of the parame-
ters, as compared to individual detections.2

Using a semianalytical approach, we have estimated the
possible influence of the environment after their formation
and found no impact, which will make it easier to detect
and interpret IMRIs, because they are clean sources.
By looking at the accumulated phase shift, one could

investigate the origin of light IMRIs thanks to a residual
eccentricity. We found that LISA binaries typically accu-
mulate hundreds of thousands and up to millions of radians,
while ET binaries can accumulate up to 19 000 radians
(typically a few thousand). While IMRI binaries are present
within LIGO for a much shorter time, there is a case which
does accumulate enough radians.
LISA can warn ground-based detectors at least one year

in advance and with seconds of precision, and thus this
observatory along with LIGO/Virgo and ET should be
thought of as a single detector if they operate at the same
time. Until LISA is launched, the perspective of detecting
IMRIs from the ground opens new possibilities.
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