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We quantitatively study the stationary, axisymmetric, force-free magnetospheres of spinning (Kerr)
black holes (BHs) and the conditions needed for relativistic jets to be powered by the Blandford-Znajek
mechanism. These jets could be from active galactic nuclei, blazars, quasars, microquasars, radioactive
galaxies, and other systems that host Kerr BHs. The structure of the magnetosphere determines how the BH
energy is extracted, e.g., via the Blandford-Znajek mechanism, which converts the BH rotational energy
into Poynting flux. The key assumption is the force-free condition, which requires the presence of plasma
with the density being above the Goldreich-Julian density. Unlike neutron stars, which in principle can
supply electrons from the surface, BHs cannot supply plasma at all. The plasma must be generated in situ
via an electron-positron cascade, presumably in the gap region. Here we study varying conditions that
provide a sufficient amount of plasma for the Blandford-Znajek mechanism to work effectively.
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I. INTRODUCTION

Since Blandford and Znajek’s seminal paper, Ref. [1],
the plasma-rich magnetosphere around a Kerr black hole
(BH) has been employed to explain how energy is extracted
and used for powering jets. In the inner jet region, close to
the BH, the magnetosphere is expected to be force-free,
provided there is enough plasma. The force-free condition
is ρeEþ j=c × B ¼ 0, where ρe, E, j, c, and B are the
charge density, electric field, current density, speed of light,
and magnetic field, respectively. The mechanism for filling
the magnetosphere with plasma has been discussed in
previous works [2–5]. A similar phenomenon exists in
the magnetospheres around pulsars; see Refs. [6–15]. The
key difference between pulsars and Kerr BHs was shown
by Goldreich and Julian in Ref. [16]. If the electric field
generated by the rotating magnetic field gets large enough,
it will strip charges from the surface of the pulsar. This is
impossible in the case of BHs. One natural mechanism for
creating plasma in the magnetosphere near the BH surface
is a plasma cascade inside the gap.
We assume a stationary, axisymmetric, force-free mag-

netosphere around a Kerr BH with mass M and angular

momentum J. We use Boyer-Lindquist coordinates (t, r, θ,
ϕ) with the two scalar functions α and ω [17],

ds2 ¼ ðϖ2ω2 − α2Þdt2 − 2ωϖ2dϕdt

þ ρ2

Δ
dr2 þ ρ2dθ2 þϖ2dϕ2; ð1Þ

where

ρ2 ¼ r2 þ a2cos2θ; ð2Þ
Δ ¼ r2 þ a2 − 2Mr=c2; ð3Þ

Σ2 ¼ ðr2 þ a2Þ2 − a2Δsin2θ; ð4Þ

ϖ ¼ Σ
ρ
sin θ; ð5Þ

α ¼ ρ

Σ
ffiffiffiffi
Δ

p
; ð6Þ

ω ¼ 2aGMr
cΣ2

: ð7Þ

Here a is the spin parameter of the BH, a≡ J=Mc, and the
BH radius is

rH ¼ GM=c2 þ ½ðGM=c2Þ2 − a2�1=2: ð8Þ
The redshift factor or the lapse function is α and ω is the
angular velocity of the zero angular momentum observers
(ZAMO), which coincides with uniform rotation of the BH
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and vanishes at infinity. In order to describe the electromag-
netic processes, we use the 3þ 1 split of the laws of
electrodynamics [17]. We split the four-dimensional space-
time into a global time t and an absolute three-dimensional
curved space.
The poloidal magnetic field may be expressed in terms of

the magnetic flux function Ψ as follows [18]:

Bp ¼ ∇Ψ × ϕ̂

2πϖ
: ð9Þ

Then using the force-free condition, E ·B ¼ 0, to find the
poloidal electric field,

Ep ¼ ΩF − ω

2παc
∇Ψ; ð10Þ

where the velocity of the magnetic field lines from the
ZAMO’s reference frame is

vF ¼ ðΩF − ωÞϖ
α

ϕ̂: ð11Þ

The charge density needed for the degenerate magneto-
sphere to be force-free is

ρGJ ¼
1

4π
∇ ·Ep ¼ −1

4π
∇ ·

�
ΩF − ω

2παc
∇Ψ
�
: ð12Þ

Hereafter we assume the double-split monopole magnetic
field configuration used in Ref. [1] with

ΨðθÞ ¼ ΨMð1 − cosðθÞÞ: ð13Þ
This field geometry is chosen for several reasons. First, it
naturally represents a simplified model of the fields around
an accreting BH in that the polar regions mimic the
outflowing jet fields and the inner region corresponds to
the fields connected to the accretion disk. Second, we are
interested in the processes in the close proximity of the BH
horizon, so the global structure of the magnetic fields at
r ≫ rH is essentially irrelevant. Third, near the BH
horizon, where the gap region is always located, the field
must be nearly radial anyway. Therefore, our field con-
figuration nicely isolates the region of interest and allows
us to explore the plasma production in the jet forming
region isolated from the accretion region.
There exists a surface where ρGJ ¼ 0; see Fig. 1. In a

force-free magnetosphere, this “null surface” has the
potential to create a region with a strong electric field
(Ek) that is parallel to the magnetic field. The charge deficit
around the “null surface” allows Ek to emerge, and we will
refer to this region simply as the gap. Inside the gap, the
Poisson equation is

∇ · Ek ¼ 4πðρe − ρGJðx; θÞÞ; ð14Þ
where the charge density, ρe ≡ eðnþ − n−Þ, is viewed in the
corotating frame of the magnetic field and is the difference

between positive (nþ) and negative (n−) charges. As
originally suggested in Ref. [1], an electron-positron
cascade is needed to maintain a force-free magnetosphere.
Charged particles are accelerated by Ek inside the gap, and
these accelerated particles inverse Compton scatter with
background photons from, e.g., the accretion disk. This
produces γ rays which then collide with background
photons and produce electron-positron pairs. These pairs
in turn get accelerated and independently repeat the process
until the magnetosphere is filled.
We extend previous works, Refs. [2,3], by looking at

broad ranges of mass, magnetic field, background photon
energy density, and spin.

II. ELECTRON-POSITRON
CASCADE MECHANISM

In this section, we lay out the theoretical framework that
governs how an electron-positron cascade occurs in the gap.

A. Cascade equations

In the gap, there is insufficient plasma to screen out an
electric field, which is why Ek emerges. We reduce the
geometry to one dimension and rewrite the Poisson equation,

dEk
dx

¼ 4π½eðnþ − n−Þ − ρGJ�; ð15Þ

where x is perpendicular to the “null surface” and is zero at the
center of the gap, i.e., x ¼ ðr − r0Þ, with r0 being the null

FIG. 1. The BH radius is set to one. The blue/gray regions and
the red/yellow regions signify the plasma densities. The red, solid
line is the surface where ρGJ goes to zero. The green, dash-dotted
line is the ergosphere. The light gray, long-dashed lines represent
the inner and outer light cylinders. And finally, the dark gray,
short-dashed lines display the geometry of the magnetic
field lines.
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surface. As will be shown, the gap is usually considerably
smaller than rH; therefore, we can expand ρGJðx; θÞ around
x ¼ 0, the center of the gap. This allows us to rewrite the
Poisson equation once again,

dEk
dx

¼ 4π½eðnþ − n−Þ − Aθx�; ð16Þ

where Aθ is the expansion coefficient at a particular θ, Aθ ¼∂rðρGJðx; θÞÞ at x ¼ 0.
Inside the gap, the electrons/positrons (e� s) will be

accelerated by the Ek field. The motion of a single charge
can be determined by

mec2
dΓ
dx

¼ eEk − ðΓ2 − 1ÞσTUb; ð17Þ

where Γ, σT , and Ub are the Lorentz factor of the e�, the
Thomson cross section, and the energy density of the
background photon field, respectively. These e�’s can
produce γ-ray photons via inverse Compton scattering with
background photons [2]. The newly created γ rays can now
pair produce by colliding with other background photons.
If a γ ray with an energy of mec2ϵγ collides with a
background photon with an energy of mec2ϵs, then to
produce an e� pair the energies must satisfy

ϵγϵs ≥ 2=ð1 − μÞ; ð18Þ

where μ is the cosine of the angle between the colliding
photons.
Now considering the continuity equations for e�, the

direction of motion of the charges is set by the direction of
the current, which is toward the BH in polar regions. The
continuity equations are

� d
dx

�
n�ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

Γ2ðxÞ

s �

¼
Z

∞

0

ηpðϵγÞ½Fþðx; ϵγÞ þ F−ðx; ϵγÞ�dϵγ; ð19Þ

where ηp is the angle-averaged pair production redistrib-
ution function and F� are the number densities of the γ rays
traveling in the �x direction. At the boundary of the gap,
Ek must go to zero. This only happens when j0 ¼ jcritical,
where j0 is defined by

j0 ¼ e½nþðxÞ þ n−ðxÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=Γ2ðxÞ

q
: ð20Þ

The critical current density is the constant outflow from the
gap. The γ-ray distribution functions, F�, obey

� ∂
∂xF

�ðx;ϵγÞ

¼ ηcðϵγ;ΓðxÞÞn�ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

Γ2ðxÞ

s
−ηpðϵγÞF�ðx;ϵγÞ; ð21Þ

where ηc is the Compton redistribution function. In order to
numerically solve for the γ-ray distribution, ϵγ needs to be
divided into energy bins. Let ξi and ξi−1 be the upper and
lower limits of the ith normalized energy bin. This allows
us to rewrite the integral in Eq. (19) as a summation ofZ

ξi

ξi−1

ηpðϵγÞF�ðx; ϵγÞdϵγ: ð22Þ

Defining

ηp;i ≡ ηp

�
ξi þ ξi−1

2

�
ð23Þ

and

f�i ðxÞ≡
Z

ξi

ξi−1

F�ðx; ϵγÞdϵγ; ð24Þ

updating Eq. (19),

� d
dx

�
n�ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

Γ2ðxÞ

s �
¼
Xχ
i¼1

ηp;i½fþi ðxÞ þ f−i ðxÞ�;

ð25Þ
where χ is the number of normalized energy bins. An
analogous approximation to Eq. (22) is implemented for ηc,

ηc;iðΓðxÞÞ≡
Z

ξi

ξi−1

ηcðϵγ;ΓðxÞÞdϵγ; ð26Þ

and allows us to express Eq. (21) as

� d
dx

f�i ðxÞ ¼ ηc;iðΓðxÞÞn�ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

Γ2ðxÞ

s
− ηp;if�ðxÞ:

ð27Þ
For all presented solutions, a power law spectrum for the

background photon number density with an index of two is
used. The dependence on the spectral index has been
explored elsewhere [3]. The minimum and maximum
energies of the background photon spectrum are 4.1 eV
and 102 keV, respectively. After splitting ϵγ into χ discrete
energy bins, we are left with 2χ þ 3 ordinary differential
equations (ODEs). Solving the ODEs with appropriate
boundary conditions allows us to examine the structure of
the gap.

B. Boundary conditions

The assumptions of symmetry that are used are as
follows:

ELECTRON-POSITRON CASCADE IN MAGNETOSPHERES … PHYS. REV. D 98, 063016 (2018)

063016-3



EkðxÞ ¼ Ekð−xÞ;
ΓðxÞ ¼ Γð−xÞ;

nþðxÞ ¼ n−ð−xÞ;
FþðxÞ ¼ F−ð−xÞ: ð28Þ

For example, FþðxÞ ¼ F−ð−xÞ assumes that the ingoing
and outgoing γ-ray number densities are the same. These
assumptions are applicable so long as the conditions at the
boundary of the gap are similar (with opposite charge), i.e.,
the gap width stays small, less than a percent or so, of the
BH radius. Using these symmetries allows us to set the
boundary conditions at the center of the gap and the edge of
the gap, allowing us to only integrate over half of the gap
and obtain a full solution. Using Eq. (17) with EkðxÞ ¼
Ekð−xÞ and ΓðxÞ ¼ Γð−xÞ at x ¼ 0 we get a boundary
condition on Ek,

Ek ¼
σTUb

e
ðΓ2 − 1Þ: ð29Þ

Using Eq. (20) with nþðxÞ ¼ n−ð−xÞ at x ¼ 0 yields
another boundary condition

2nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

Γ2

r
¼ j0

e
: ð30Þ

Using FþðxÞ ¼ F−ð−xÞ at x ¼ 0 gives another boundary
condition

fþi ¼ f−i : ð31Þ
The boundary of the gap is defined as the position when the
plasma density in the gap is equal to ρGJ. Using Eq. (15) at
x ¼ H we get a boundary condition on Ek,

Ek ¼ 0: ð32Þ
Ek should go to zero smoothly at the boundary; therefore,
dEk=dx ¼ 0 at x ¼ H. Using this condition and Eq. (20) at
x ¼ H provides another boundary condition

j0

�
1 −

1

Γ2

�
−1=2

− Aθx ¼ 0: ð33Þ

Assuming that all of the charged particles are created inside
the gap, therefore, no charges should enter into the gap.
Using n− ¼ 0 and Eq. (20) at x ¼ H we get another
boundary condition

nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

Γ2

r
¼ j0

e
: ð34Þ

All upscattered photons are created inside the gap.
Assuming none will be coming into the gap, we get another
boundary condition

f−i ¼ 0: ð35Þ
This provides 2χ þ 5 boundary conditions for 2χ þ 3ODEs
and 2 constants: j0 and H. These boundary conditions have
be summarized in Table I for reference and clarity.

III. STRUCTURE OF THE GAP

The solution for the structure of the gap for a 107 M⊙
maximally spinning BH with an ambient photon energy
density of 106 ergs=cm3 and sitting in a magnetic field of
strength 104 G is shown in Figs. 2–4. Figure 2 details the

TABLE I. A complete overview of the boundary conditions and assumptions used to arrive at them.

Boundary condition Equation used Assumptions Boundary

Ek ¼ ðΓ2 − 1ÞσTUb=e mec2dΓ=dx ¼ eEk − ðΓ2 − 1ÞσTUb EkðxÞ ¼ Ekð−xÞ & ΓðxÞ ¼ Γð−xÞ x ¼ 0

2nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=Γ2

p
¼ j0=e j0 ¼ e½nþðxÞ þ n−ðxÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=Γ2ðxÞ

p
nþðxÞ ¼ n−ð−xÞ x ¼ 0

fþi ¼ f−i f�i ðxÞ≡
R ξi
ξi−1

F�ðx; ϵγÞdϵγ FþðxÞ ¼ F−ð−xÞ x ¼ 0

Ek ¼ 0 dEk=dx ¼ 4π½eðnþ − n−Þ − ρGJ� ρgap ¼ ρGJ x ¼ H

nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=Γ2

p
¼ j0=e j0 ¼ e½nþðxÞ þ n−ðxÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=Γ2ðxÞ

p
n−ðxÞ ¼ 0 x ¼ H

j0ð1 − 1=Γ2Þ−1=2 − Ax ¼ 0 j0 ¼ e½nþðxÞ þ n−ðxÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=Γ2ðxÞ

p
dEk=dx ¼ 0 x ¼ H

f−i ¼ 0 f−i ðxÞ≡
R ξi
ξi−1

F−ðx; ϵγÞdϵγ F−ðxÞ ¼ 0 x ¼ H

FIG. 2. The electric field in the gap and the Lorentz factor of the
charges in the gap as a function of position inside the gap. The x
axis has been normalized by the BH radius. This result is for a
maximally spinning BH of mass 107 M⊙ with a magnetic field
strength of 104 G and an ambient energy density of
106 ergs=cm3. The top curve shown in black represents the
Lorentz factor, and the orange curve represents the electric field.
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electric field in the gap and compares it to the Lorentz factor.
The charges inside the gap gain kinetic energy—for which
the Lorentz factor can be used as a proxy—by being
accelerated by the electric field and lose energy via inverse
Compton scattering.
The charge densities produced by the cascade is

shown in Fig. 3, and the outgoing photon energy flux is
illustrated in Fig. 4. The outgoing photons are potentially
observable, depending on the environment around the BH.
Figure 4 shows the approximate peaked spectral energy at
70 MeV (the peak energy can be seen more clearly
in Fig. 14).
As shown in Eq. (16), the one-dimensional (1D) solution

is for a particular ρGJ at a given angle, θ, with respect to the
axis of rotation. By solving for ρGJ as a function of θ, we
can obtain the two-dimensional (2D) structure of the gap.

To examine the efficiency of the cascade process we can
use the gap width as a proxy. Similarly, we can use the
Lorentz factor as a proxy for the available energy. The gap
width in Fig. 5 is not to scale but reflects the actual shape of
the gap. By looking at Fig. 5, we can see that the cascade
process is most efficient and energetic along the axis of
rotation. Figure 6 demonstrates the outgoing energy flux of
the γ rays that are from the comptonization of the ambient
photons.

FIG. 3. The charge density as a function of position inside the
gap. The blue curve represents the charge density that is moving
away from the BH, and similarly the orange curve represents the
inward moving charge density. The x axis has been normalized by
the BH radius. This result is for a maximally spinning BH of mass
107 M⊙ with a magnetic field strength of 104 G and an ambient
energy density of 106 ergs=cm3.

FIG. 4. The outgoing photon energy flux as a function of
position inside the gap. This result is for a maximally spinning
BH of mass 107 M⊙ with a magnetic field strength of 104 G and
an ambient energy density of 106 ergs=cm3. The x axis has been
normalized by the BH radius.

FIG. 5. Lorentz factor versus polar angle. This solution is for a
BH mass of 107 M⊙ with a magnetic field strength of 104 G and
an ambient energy density of 106 ergs=cm3.

FIG. 6. The outgoing energy flux from the upscattered photons
as a function of polar angle. This solution is for a BH mass of
107 M⊙ with a magnetic field strength of 104 G and an ambient
energy density of 106 ergs=cm3.
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IV. VARYING PHYSICAL PARAMETERS

The model has four parameters that can be varied: the
mass and spin of the BH, the ambient magnetic field, and
the background photon energy density. By changing the
magnetic field, mass, or spin, the physical change to our
model is in ρGJ. By changing the background energy
density; the physical changes to our model are in the angle-
averaged pair production redistribution function and the
Compton redistribution function. By changing these
parameters we can gain insight into how they affect the
different aspects of the cascade process, i.e., the gap width,
the peak Lorentz factor, maximum electric field, etc.

A. Changing the Goldreich-Julian charge density

1. Varying the black hole mass

Changing the mass and observing how the structure of
the gap changes give us insight into the conditions needed
to produce active galatic nuclei (AGN). Normalizing the
gap width to one at the axis of rotation, Fig. 7, we can see
that the relationship between the gap width and inclination
angle is invariant with respect to the BH mass, while the
gap is thin. The gap half-width as a function of θ is
H ∝ e7.4θ. Hereafter, the θ dependence is valid for
0 ≤ θ < θmax ¼ cos−1 f1= ffiffiffi

3
p g. Similar graphs can be

made for the magnetic field, spin, and background energy
density. The associated fits are provided in Appendix A and
listed in Table III.

2. Varying the magnetic field

The magnetic field that threads the BH likely originates
from the environment, i.e., the accretion disk. Figure 8 shows
the dropoff in outgoing photon energy flux as a function of θ
with the outgoing luminosity normalized to one at the axis of
rotation,

R
Fνdν ∝ −e4.5θ, for a sizable range of magnetic

fields. As θ increase, the outgoing energy flux drops by
approximately 80% at large θ (∼θmax). Similar graphs can be
made for the BHmass, spin, and background energy density.
Those fits are provided in Appendix A and listed in Table III.

3. Spin

To illustrate how large the gap is with respect to the BH
environment, Fig. 13 has the gap for varying spin overlaid
on a simplified version of Fig. 1. The gap width is increased
by an order of magnitude for demonstration purposes. The
energy stored in the kinetic energy of the charges can be
seen in Fig. 9 and details how the maximum Lorentz factor
varies as a function of polar angle for different spins.
Overlaid on the results in Fig. 9 are exponential fits as a
function of θ for θ < θmax; the fits are summarized in
Table III. These fits are useful, for example, in estimating
the change in available energy as a function of inclination
angle. Similar graphs can be produced for the other
parameters, and the fits are listed in Table III.
We can find a fit for the maximum Lorentz factor

normalized to one at the axis of rotation as a function of
θ for all spins, Γmax ∝ const − e4.4θ; fits of the normalized
maximum Lorentz factor as a function of the inclination
angle for the other parameters are listed in Table III.

FIG. 7. The width of half of the gap normalized at the axis of
rotation versus the polar angle. An exponential fit of all three
masses is 1þ 5.2 × 10−4e7.4θ. This demonstrates that the effi-
ciency of the cascade process as a function of polar angle, while
the gap is thin, is invariant relative to the mass of the BH.

FIG. 8. The outgoing photon energy density normalized at the
axis of rotation versus the polar angle. An exponential fit of all
three magnetic fields is 1 − 0.013e4.5θ.
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As spin decreases the BH’s radius increases, this is
shown in Eq. (8) and Fig. 9. The interplay between the
change in BH radius and gap width as a function of spin is
shown in Fig. 10. r0 −H is the position of the inner edge of
the gap and ðr0 −HÞ − rH is the distance between the inner
edge of the gap and the horizon of the BH.
Probing the structure of the gap over all spin allows us to

obtain relationships between physical parameters and a.
Figure 11 shows the gap half-width, the maximum Lorentz

factor, the maximum electric field, and the outgoing photon
energy flux plotted with respect to a on a log-log scale after
being normalized by their minimum value for the range in
spin is shown. These relationships allow estimations of the
structure of the gap for any BH of mass 107 embedded in a
104 G magnetic field with an available background photon

FIG. 9. Lorentz factor of the gap versus polar angle. The ten
curves represent the change in width as polar angles increase
going away from the axis of rotation for ten different spins and
their corresponding fits represented with dashed lines. From the
top down the spins are 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and
0.1. And similarly, the fits from the top down are 1900 − 6.3e5.0θ,
940 − 9.5e4.0θ, 1100 − 11e4.0θ, 1200 − 13e4.0θ, 1300 − 12e4.1θ,
1400 − 15e4.0θ, 1500 − 14e4.1θ, 1600 − 11e4.4θ, 1700 − 14e4.2θ,
and 1700 − 10e4.5θ.

FIG. 10. The distance between the BH horizon and the inner
edge of the gap as a function of spin for a BH of mass 107 M⊙
with a magnetic field strength of 104 G and an ambient energy
density of 106 ergs=cm3.

FIG. 11. The ⋆ is a place holder that represents the maximum
Lorentz factor, the maximum electric field, the gap width, and the
photon energy flux. Each physical quantity is normalized to its
minimum value and then plotted with respect to the spin of the
BH on a log-log scale.

FIG. 12. The ⋆ is a place holder that represents the maximum
Lorentz factor, the maximum electric field, the gap half-width,
and the photon energy flux. Each physical quantity is normalized
to its minimum value and then plotted with respect to the
background energy density on a log-log scale.
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energy density of 106 ergs=cm3 to be made. Similar graphs
can be made for the magnetic field, BH mass, and back-
ground energy density. The associated fits are provided in
Appendix A and the background energy density graph is
shown in Fig. 12.

B. Changing energy available for plasma cascade

1. Background energy density

Changing the background photon energy density
around the BH changes the energy available for e� to
inverse Compton scatter with and for γ rays to pair
produce within the model. Changing Ub and observing
how the structure of the gap changes give us insight into
the conditions needed to produce AGN. Figure 14 pro-
vides a comparison of the spectral transition through the
gap for two different background photon energy densities.
Each line is a snapshot in space of the upscattered
spectrum in the gap. The top plot is for Ub ¼

105 ergs=cm3 and has a peak in its spectrum around
103 MeV. The bottom plot is for Ub ¼ 106 ergs=cm3 and
peaks around 10 MeV.
After probing the structure of the gap over all spin, we

can construct a plot similar to Fig. 11. Figure 12 shows the
gap half-width, the maximum Lorentz factor, the maximum
electric field, and the outgoing photon energy flux plotted
with respect to the background energy density on a log-log
scale after being normalized by their minimum value over
the shown range of Ub. These relationships allow us to
estimate, for example, the gap width versus the BH radius
for any maximally spinning mass BH of mass 107 M⊙
embedded in a 104 G magnetic field.

V. DISCUSSION

Combining the data shown in Figs. 7, 8, 11, and 12 and the
data listed inTable III,we can construct expressions to estimate
the structure of the gap for any mass, spin, magnetic field, and
background energy density with an angular dependence.

HðθÞ ≃ 1.1 × 1010f1þ 2.8 × 10−3e5.7θga−0.31
�

M
107 M⊙

�
0.54
�

B
104 G

�
−0.27

�
Ub

106 ergs=cm3

�
−0.22

cm: ð36Þ

ΓmaxðθÞ ≃ 1.9 × 103f1 − 5.1 × 10−3e4.6θga0.24
�

M
107 M⊙

�
−0.52

�
B

104 G

�
0.25
�

Ub

106 ergs=cm3

�
−0.88

: ð37Þ

EmaxðθÞ ≃ 69f1 − 1.4 × 10−2e4.1θga0.49
�

M
107 M⊙

�
−1.1
�

B
104 G

�
0.49
�

Ub

106 ergs=cm3

�
−0.75

V=m: ð38Þ
Z

FνdνðθÞ ≃ 6.7 × 1014f1 − 4.3 × 10−2e3.2θga0.96
�

M
107 M⊙

�
−4.5
�

B
104 G

�
0.95
�

Ub

106 ergs=cm3

�
−1.17 MeV

cm2 s
: ð39Þ

Using Eq. (39), the gap (inner jet) luminosity per steradian can be approximated,

dL
dΩ

≈ r0ðθÞ2 ×
Z

FνdνðθÞ ≃ 2.5 × 1035f1 − 4.3 × 10−2e3.2θgf1þ 1.6 × 10−4e5.0θg2

× f1þ 5.1 × 10−3e4.2ag2a0.96
�

M
107 M⊙

�
−2.5
�

B
104 G

�
0.95
�

Ub

106 ergs=cm3

�
−1.17

ergs=s=sr; ð40Þ

where we approximate the gap’s radial distance in a similar fashion to Eqs. (36)–(39),

r0ðθÞ ≃ 1.5 × 1013f1þ 1.6 × 10−4e5.0θgf1þ 5.1 × 10−3e4.2ag
�

M
107 M⊙

�
cm: ð41Þ

By doubling Eq. (36) and dividing by the radius of the BH, we can relate the relative full gap width, which is a proxy to the
efficiency of the plasma cascade process over a wide range of parameters or for a particular object. Comparing an active
galaxy, e.g., M87, to an inactive galaxy, e.g., Sagittarius A, is illustrative. First, we must estimate the background energy
density from the luminosity, Ub ≃ L=ð4πcr2Þ. We can estimate r using the innermost stable circular orbit [19],

risco ¼
GM
c2

ð3þ Z2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1ÞðZ1 þ 2Z2 þ 3Þ

p
Þ; ð42Þ

where

Z1 ¼ 1þ
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ac2

GM
þ 1

3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ac2

GM
3

r ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

a2c4

G2M2

3

s
; ð43Þ

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2c2

GM
þ Z1

r
: ð44Þ
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FIG. 13. Gap width increased by an order of magnitude and the radius is set to one, for a maximally spinning BH. The plasma density
is displayed in red and green which correspond to positive and negative charge densities, respectively. It can be seen that as the BH’s spin
decreases the gap width increase and the plasma density around the gap decreases.
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The luminosity ofM87 is2.7 × 1042 ergs=s [20]. SgrA� has a
luminosity of1037 ergs=s [21]. Let the ratio of the fullwidth of
the gap to the BH radius with θ ¼ 0 be

ϒ ¼ 9.4 × 108r−1H a−0.31

×

�
M
M⊙

�
0.54
�
B
G

�
−0.27

�
L=ð4πcr2iscoÞ
ergs=cm3

�−0.22
: ð45Þ

Using amass of 109.5 M⊙, a spin of 0.65, and amagnetic field
of 15G forM87 yieldsΥM87 ¼ 0.11 [22,23]. Similarly, using
a mass of 106.6 M⊙, a spin of 0.65, and a magnetic field of
30 G for Sgr A� yields ϒSgr A� ¼ 1.3 [24,25]. The order of
magnitude difference betweenϒ is consistent withM87 being
active and Sgr A� not being active. Figure 15 displays the gap
width over theBH radius versus themagnetic field strength for
M87 and Sgr A� and eight additional AGN. Table II contains
the physical quantities used. Figure 15 shows that the ratio of
the gap width to the BH radius for AGN is<1 for reasonable
values of the magnetic field.
Using the same example as above, M87 and Sgr A�, we

can use Eq. (36) to make a plot similar to Fig. 13. Figure 16
FIG. 14. A comparison of the spectral transition from the inner
boundary of the gap through the center of the gap (bold dashed
line) and to the outer boundary of the gap (bold solid line).
Starting at 12% of the gap width after the inner (closest to the BH)
boundary (bottommost curve), 14 spectral lines are shown. The
top spectral transition plot is for Ub ¼ 105 ergs=cm3. The bottom
spectral transition plot is for Ub ¼ 106 ergs=cm3.

FIG. 15. The curve for Sgr A� is at the top and followed by
M87. Next is MCG-6-30-15 and NGC 3783. They are followed
by 1H0707-495. Next Mrk 79, Mrk 335, and SWIFT J2127.4þ
5654 are clustered together. They are followed by NGC 7469 and
Fairall 9. The values for mass, spin, and energy density in
Eq. (36) are listed in Table II.

TABLE II. The values used in Eq. (36) to make Fig. 15
[20–22,24,26].

AGN Spin Mass Energy density

M87 0.65 109.5 M⊙ 0.33 ergs=cm3

Sgr A� 0.65 106.6 M⊙ 2.1 ergs=cm3

MCG-6-30-15 0.98 106.65 M⊙ 3.8 × 107 ergs=cm3

Fairall 9 0.65 108.41 M⊙ 8.2 × 104 ergs=cm3

SWIFT
J2127.4þ 5654

0.65 107.18 M⊙ 5.0 × 106 ergs=cm3

1H0707–495 0.98 106.7 M⊙ 8.4 × 107 ergs=cm3

Mrk 79 0.7 107.72 M⊙ 4.0 × 105 ergs=cm3

Mrk 335 0.7 107.15 M⊙ 7.5 × 106 ergs=cm3

NGC 7469 0.69 107.09 M⊙ 3.8 × 107 ergs=cm3

NGC 3783 0.98 107.47 M⊙ 8.5 × 104 ergs=cm3
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shows the gapwidths ofM87 and SgrA� to scalewith theBH
radius. The inner boundary of the gap of Sgr A� goes into the
BH. The gap of Sgr A� is too close to the event horizon to
maintain the assumptions of symmetry in Eq. (28). Further
study is needed to get a clear understanding of the structure of
the gap around SgrA�. However, a plausible interpretation of
Fig. 16 is that when the gap reaches the event horizon the
cascade process becomes too inefficient, and therefore the
Blandford-Znajek process cannot power the jet. It is thus an
intriguing possibility that this effect can explain the con-
ditions needed for the AGN jet to occur.

VI. CONCLUSIONS

In this paper we explored a plasma cascade model that
produces a force-free magnetosphere around stationary,
axisymmetric Kerr BHs. A force-free magnetosphere is
needed for the Blandford-Znajek mechanism to efficiently
convert rotational energy from theBH into Poynting flux that
can power relativistic jets. The 2D structure of the gap—
where the electron-positron cascade takes place—in the
magnetosphere was examined. Considering a gap that is
thin with respect to the size of the BH, we assumed the
structure inside the gap to be symmetric and employed a
power law spectrum with a single power law index. Using
these assumptions we were able to numerically compute the
2D structure of the gap over 3 orders of magnitude in BH
mass and magnetic field, 2 orders of magnitude in

background photon energy density, and over all spin.
Probing this parameter space allowed us to construct
Eqs. (36)–(39) and to give estimates for the structure of
the gap for observed BHs (see Figs. 15 and 16). Solving for
the 2D structure of the gap shows that the cascade is most
efficient and energetic along the axis of rotation.Akey aspect
of the cascade process is the comptonization of background
photons; the outgoing energy flux of these photons and the
gap (inner jet) luminosity can be estimatedwithEqs. (39) and
(40), and examples are shown in Figs. 4 and 6.One intriguing
observation, shown in Fig. 16, is that for non-jet-producing
AGN, the distance between the inner edge of the gap and the
BH horizon is small or vanishes. Bright AGN radio emission
is commonly attributed to a jet. Herewe showed that the pair-
production efficiency controls the gap size and, likely, the
origin of a jet. Thus we speculate that it is the gap cascade
efficiency that can control and lead to the observed radio-
loud/radio-quiet dichotomy of AGNs [27]. Further inves-
tigation into the relationship between gap width and jet
production is needed. All specifics of these results are
tentative until further work has been done to use a more
realistic background spectrum and relax the assumptions of
symmetry in the gap. Nevertheless, the assumptions used do
cover a large set of BH environments; and therefore, the
general trends are expected to hold.
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APPENDIX: EXPONENTIAL PARAMETER FITS

By probing the structure of the gap over several orders of
magnitude in BH mass, we can find relationships between
relevant physical parameters and the BH mass. These
relationships allow us to estimate the energy output, energy
available, cascade efficiency, etc., for anymaximally spinning
BH embedded in a 104 G magnetic field with an available
background photon energy density of 106 ergs=cm3,

H ¼ 3.2 × 106
�
M
M⊙

�
0.51

cm;

Γmax ¼ 9.2 × 106
�
M
M⊙

�
−0.52

;

Emax ¼ 3.5 × 109
�
M
M⊙

�
−1.05

V=m;

Z
Fνdν ¼ 2.0 × 1046

�
M
M⊙

�
−4.5

MeV=cm2=s: ðA1Þ

Likewise, probing the structure of the gap for a range in
background energy density, we can find relationships
between relevant physical parameters and Ub. These

ρGJ
=0

BH

Sgr A*

M87

1 2 3 4

1

2

3

4

FIG. 16. The BH radius of a maximally spinning BH has been
set to one, and the gap widths have been left to scale. M87 has a
luminosity of 2.7 × 1042 ergs=s, mass of 109.5 M⊙, a spin of
0.65, and a magnetic field of 15 G. Sgr A� has a luminosity of
1037 ergs=s, mass of 106.6 M⊙, a spin of 0.65, and a magnetic
field of 30 G.
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relationships allow us to estimate the structure of the gap
for any maximally spinning BH of mass 107 M⊙ embedded
in a 104 G magnetic field. The fits in Eq. (A2) are shown in
Fig. 12,

H¼ 1.4×1012
�

Ub

ergs=cm3

�
−0.35

cm;

Γmax ¼ 3.4×108
�

Ub

ergs=cm3

�
−0.88

;

Emax ¼ 4.7×106
�

Ub

ergs=cm3

�
−0.75

V=m;

Z
Fνdν¼ 1.8×1029

�
Ub

ergs=cm3

�
−1.2

MeV=cm2=s: ðA2Þ

Similarly we can find relationships between relevant
physical parameters and the ambient magnetic field.
These relationships allow us to estimate the structure
of the gap for any maximally spinning BH of mass

107 M⊙ with an available background photon energy
density of 106 ergs=cm3,

H ¼ 1.5 × 1011
�
B
G

�
−0.27

cm;

Γmax ¼ 190

�
B
G

�
0.25

;

Emax ¼ 1.6

�
B
G

�
0.49

V=m;

Z
Fνdν ¼ 2.1 × 107

�
B
G

�
0.95

MeV=cm2=s: ðA3Þ

Finally, analyzing the structure of the gap over all spin,
we can obtain relationships between physical parameters
and a. These relationships allow us to estimate the structure
of the gap for any BH of mass 107 embedded in a 104 G
magnetic field with an available background photon energy
density of 106 ergs=cm3. The fits in Eq. (A4) are shown in
Fig. 11.

TABLE III. Angular fits for the peak Lorentz factor, gap half width, and outgoing photon energy flux. A representative selection of
these fits are shown in Figs. 7, 8, 11, and 12.

Mass Lorentz factor Gap half-width [cm] Energy flux [MeV=cm2=s]

106 M⊙ 7.0 × 103 − 11e5.9θ 4.5 × 105e9.0θ þ 4.1 × 109 1.5 × 1013 − 4.5 × 1011e3.6θ

107 M⊙ 1.9 × 103 − 6.3e5.0θ 7.1 × 106e7.2θ þ 1.2 × 1010 1.4 × 1011 − 2.8 × 109e4.0θ

108 M⊙ 6.1 × 102 − 1.6e5.2θ 1.3 × 107e8.1θ þ 4.1 × 1010 1.8 × 109 − 4.4 × 107e3.8θ

All 1 − 2.5 × 10−3e5.4θ 5.2 × 10−4e7.4θ þ 1 1 − 1.7 × 10−2e4.2θ

Magnetic field Lorentz factor Gap half-width [cm] Energy flux [MeV=cm2=s]

102 G 2.0 × 103 − 6.3e5.0θ 4.2 × 107e6.8θ þ 4.1 × 1010 1.7 × 109 − 3.3 × 107e4.1θ

103 G 1.0 × 103 − 2.2e5.4θ 1.4 × 107e7.3θ þ 2.2 × 1010 1.6 × 1010 − 2.7 × 108e4.2θ

104 G 6.1 × 102 − 1.4e5.3θ 7.1 × 106e7.2θ þ 1.2 × 1010 1.4 × 1011 − 2.8 × 109e4.0θ

All 1 − 2.3 × 10−3e6.8θ 1.0 × 10−4e5.3θ þ 1 1 − 0.013e4.5θ

Energy density Lorentz factor Gap half-width [cm] Energy flux [MeV=cm2=s]

105 ergs
cm3 1.4 × 104 − 40e5.4θ 1.2 × 107e7.4θ þ 2.6 × 1010 1.9 × 1012 − 6.3 × 1010e3.6θ

106 ergs
cm3 1.9 × 103 − 6.3e5.0θ 7.1 × 106e7.2θ þ 1.2 × 1010 1.0 × 1010 − 8.4 × 108e2.6θ

All 1 − 2.9 × 10−3e5.2θ 7.6 × 10−4e6.8θ þ 1 1 − 0.017e4.3θ

Spin Lorentz factor Gap half-width [cm] Energy flux [MeV=cm2=s]

1 1900 − 6.3e5.0θ 7.1 × 106e7.3θ þ 1.2 × 1010 1.4 × 1011 − 2.8 × 109e4.0θ

0.9 940 − 9.5e4.0θ 1.7 × 107e6.6θ þ 1.3 × 1010 1.0 × 1010 − 8.4 × 108e2.6θ

0.8 1100 − 11e4.0θ 2.7 × 107e6.3θ þ 1.4 × 1010 1.9 × 1010 − 1.6 × 109e2.6θ

0.7 1200 − 13e4.0θ 3.4 × 107e6.1θ þ 1.5 × 1010 5.6 × 1010 − 4.0 × 109e2.8θ

0.6 1300 − 12e4.1θ 3.7 × 107e6.1θ þ 1.5 × 1010 4.6 × 1010 − 3.4 × 109e2.8θ

0.5 1400 − 15e4.0θ 4.3 × 107e6.1θ þ 1.6 × 1010 3.7 × 1010 − 3.1 × 109e2.6θ

0.4 1500 − 13e4.1θ 4.7 × 107e6.1θ þ 1.7 × 1010 2.8 × 1010 − 2.2 × 109e2.7θ

0.3 1600 − 11e4.4θ 5.1 × 107e6.1θ þ 1.9 × 1010 6.8 × 1010 − 4.5 × 109e2.9θ

0.2 1700 − 14e4.2θ 7.9 × 107e5.8θ þ 2.1 × 1010 8.0 × 1010 − 4.4 × 109e3.1θ

0.1 1700 − 10e4.5θ 9.7 × 107e5.8θ þ 2.5 × 1010 9.6 × 1010 − 4.3 × 109e3.3θ

All 1 − 6.8 × 10−3e4.4θ 5.2 × 10−4e7.4θ þ 1 1.1 − 0.055e3.1θ
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H ¼ 1.3 × 1010a−0.28 cm;

Γmax ¼ 1.6 × 103a0.24;

Emax ¼ 110a0.49 V=m;Z
Fνdν ¼ 8.3 × 1010a0.96 MeV=cm2=s: ðA4Þ

Table III displays fits for the maximum Lorentz factor,
half-width of the gap, and outgoing photon energy flux as a
function of the inclination angle for various BH masses and
spins, ambient magnetic fields, and background spectral
energy densities.
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