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I consider the thermal conductivity and shear viscosity of leptons (electrons and muons) in the nucleon
neutron star cores where protons are in the superconducting state. I restrict the consideration to the case of
not too high temperatures T ≲ 0.35Tcp, where Tcp is the critical temperature of the proton pairing. In this
case, lepton collisions with protons can be neglected. Charged lepton collision frequencies are mainly
determined by the transverse plasmon exchange and are mediated by the character of the transverse plasma
screening. In our previous works [Shternin and Yakovlev, Phys. Rev. D 75, 103004 (2007); Phys. Rev. D
78, 063006 (2008)] the superconducting proton contribution to the transverse screening was considered in
the Pippard limit Δ ≪ ℏqvFp, where Δ is the proton pairing gap, vFp is the proton Fermi velocity, and ℏq is
the typical transferred momentum in collisions. However, for large critical temperatures (large Δ) and
relatively small densities (small q) the Pippard limit may become invalid. In the present study I show that
this is indeed the case and that the older calculations severely underestimated the screening in a certain
range of the parameters appropriate to the neutron star cores. As a consequence, the kinetic coefficients at
T ≪ Tcp are found to be smaller than in previous calculations.
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I. INTRODUCTION

Neutron stars (NSs) are the most compact stars known in
the Universe comprising about 1.5 solar masses in a
∼12 km radius sphere. In their interiors, NSs contain
superdense matter of largely unknown composition [1].
Their astrophysical manifestations are numerous, deliver-
ing signals in all bands of the electromagnetic spectra [2].
Moreover, gravitational waves from a binary NS merger
were detected recently [3]. Understanding NSs requires
modeling of various processes in their interiors. Important
ingredients for this modeling are the transport coefficients
of the superdense matter [4,5].
In the present paper I discuss the thermal conductivity κ

and shear viscosity η in NS cores of the simplest compo-
sition containing mainly neutrons (n) with admixture of
protons (p), electrons (e), and muons (μ). Electrons and
muons form relativistic degenerate almost ideal Fermi
gases, while baryons (neutrons and protons) form nonideal
strongly-interacting Fermi liquid [1]. Transport coefficients
are governed by the particle collisions. Leptons collide with
themselves and with charged protons due to electromag-
netic interaction, while collisions between baryons are
mediated mainly by the strong interaction. To a good
approximation, it is possible to consider lepton and baryon
subsystems separately [6]. For instance for the thermal
conductivity one writes κ ¼ κeμ þ κnp. In this case, when
the lepton part, κeμ (or ηeμ), is calculated, protons (or

other charged baryons if present) are treated as passive
scatterers.
Currently adopted calculations of the lepton contribution

to transport coefficients of nonsuperfluid NS core matter
were performed in Refs. [7–9] with a proper account for the
screening of electromagnetic interaction following original
ideas of Heiselberg et al. [10] and Heiselberg and Pethick
[11]. Calculations of the nucleon part, κnp and ηnp, are
more uncertain since one needs to rely on a certain many-
body theory of nuclear matter. Transport coefficients in the
nucleon sector are studied, for instance, in Refs. [12–15]
and more complete list of references can be found in the
recent review [4].
Nuclear matter in NS cores can be in the superfluid

(paired) state due to an attractive component of the nuclear
interaction [16–19]. Critical temperatures of the proton
paring TcpðnBÞ and neutron pairing TcnðnBÞ depend on the
baryon number density nB. Neutrons are believed to be
paired in the singlet 1S0 state at low densities (low Fermi
momenta). In most models this type of the neutron pairing
realizes in the NS inner crust, where the gas of free
unbound neutrons coexists with the Coulomb lattice of
ions and the degenerate electron gas. The singlet neutron
pairing ceases in the core, where the 1S0 channel of the
nuclear interaction becomes repulsive. Instead, the neutron-
neutron interaction becomes attractive in the triplet 3P2
channel leading to the anisotropic paired state in the NS
core. Proton number density is ∼10 times smaller than the
neutron one, therefore protons in the outer core are thought*pshternin@gmail.com
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to be paired in the 1S0 channel. In the inner core, where the
proton number density increases, the 1S0 proton pairing is
thought to disappear. Calculations of critical temperature
profiles for triplet neutron and singlet proton pairings in the
NS core are very model-dependent [16,17,20]. Generally,
the profiles TcpðnBÞ and TcnðnBÞ are bell-like, reaching
maximum at some density within the core. The maximal
critical temperature for protons is thought to be in the range
109–1010 K, while for triplet neutron superfluidity the
corresponding values are found to be generally smaller,
in the range of 108–5 × 109 K. For typical temperatures in
the interiors of not too young NSs, T ∼ 108 K [21], protons
in a large part of the core are expected to be in the paired
and hence superconducting state.
Neutron superfluidity does not produce immediate

effect on the lepton contribution to the transport coef-
ficients. In contrast, the superfluidity of protons affects κeμ
and ηeμ in two aspects. The first one is the damping of the
lepton-proton collisions due to the reduction of the
number of the proton excitations. The lepton-proton
scattering is damped roughly by the exponential factor
expð−Δ=TÞ, where Δ is the gap in the proton energy
spectrum.1 The second effect comes from the modification
of the screening of the electromagnetic interactions which
affects collisions between all charged particles including
unpaired ones (leptons in the present case). Both these
effects were investigated in Refs. [7,8]. In these papers,
the proton contribution to screening was taken in the so-
called Pippard limit, qvFp ≫ Δ, where vFp is the proton
Fermi velocity and q is the momentum transfer in
collisions, both of which increase with density. In the
present paper I show that this limit is inapplicable for the
wide range of conditions relevant for NS cores, i.e., for not
too high densities (small qvFp) or for relatively high gap
values (high Tcp). The opposite, London limit, Δ ≫ qvFp
can be equally relevant for lepton scattering, and the
transition between two limiting cases occurs roughly at
the transition between the superconductors of the first and
second kind.
The paper is organized as follows. In Sec. II the general

formalism needed to calculate transport coefficients of
npeμ matter of NS cores is briefly outlined and the results
of Refs. [7,8] for a normal (nonsuperfluid) case are
reviewed. In Sec. III A the plasma screening properties
in presence of the proton pairing are discussed and in
Sec. III B–III D transport coefficients in this case are
calculated. The results are summarized and discussed in
Sec. IV. I conclude in Sec. V.
The consideration in this study is limited to small

temperatures, T ≲ 0.35Tcp and the effects of magnetic
fields are not included.

II. GENERAL EXPRESSIONS

Transport coefficients in NS cores can be calculated in
the framework of the transport theory of Fermi liquids [22]
adapted for multicomponent systems [4,6,23]. Below I
closely follow Refs. [7,8] and omit the details.
Thermal conductivity κc and shear viscosity ηc of

particle species c can be conveniently written as

κc ¼
π2Tnc
3m�

c
τκc; ηc ¼

p2
Fcnc
5m�

c
τηc; ð1Þ

where nc is the number density of the corresponding
species, pFc is their Fermi momentum, and m�

c is their
effective mass on the Fermi surface. The quantities τκ;ηc are
effective relaxation times which are generally not the same
for different transport problems (thermal conductivity
and shear viscosity in present case, as indicated by the
corresponding superscripts here and in the rest of the paper)
and need to be determined from the transport theory.
The effective relaxation times τκ;ηc are found from the

solution of a system of coupled transport equations.
However, for strongly degenerate matter in NS cores it
is enough to rely on the simplest variational solution of this
system [4,7,8] (see, however, Sec. III D). Then the problem
of finding effective relaxation times reduces to a system of
algebraic equation

1 ¼
X
i

ðνciτc þ ν0ciτiÞ; ð2Þ

where indices c, i number particles species and the effective
collision frequencies νci and ν0ci are related to the transport
cross-sections as shown below. The correction to the
variational solution for lepton transport coefficients in
normal matter was found to be within 10% [7,8] which
is unimportant for practical applications. The frequencies
νci describe relaxation due to collisions of particle species c
with all other particles including the passive scatterers. The
primed quantities ν0ci are the mixing terms. Notice, that the
summation in Eq. (2) is carried over all particle species in
both terms, so that the actual collision frequency for
collisions of like particles is νcc þ ν0cc. These two parts
are kept separated for convenience.
Collision frequencies are calculated by integrating the

squared matrix element jMcij2 of corresponding interaction
over the available phase space with certain phase factors.
Consider particle collisions c, i → c0, i0. Primes here mark
the particle states after the collision. Due to a strong
degeneracy, the particle states before and after the collision
can be placed on the respective Fermi surfaces whenever
possible, hence the absolute values of input and output
momenta are fixed: pc ¼ pc0 ¼ pFc and pi ¼ pi0 ¼ pFi.
Owing to the momentum conservation, the relative ori-
entation of the four participating momenta is fixed by two
angular variables. In the case of electromagnetic collisions,

1Throughout the paper the natural unit system is used, where
ℏ ¼ c ¼ kB ¼ 1.
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the convenient pair of variables is the absolute value of the
transferred momentum q, where q ¼ pc0 − pc, and the
angle ϕ between the vectors pc þ pc0 and pi þ pi0 .
Notice, that these two vectors are transverse to q. It is
instructive to introduce the spin-averaged squared matrix
element Qciðω; q;ϕÞ ¼ ð1þ δciÞ−1

P
spins jMcij2=4, where

the factor ð1þ δciÞ−1 is included in order to avoid double
counting the same collisions when antisymmetrized ampli-
tudes are used. In general, Qci depends also on the
transferred energy ω ¼ ϵc0 − ϵc, where ϵc is the particle
energy. In degenerate matter, ω is of the order of T and
therefore small. In the limit ω ≪ qvFi, the collision
frequencies to be used in Eq. (2) are [7,8]

νκci ¼
3T2m�

cm�2
i

4π4pFc

×
�

ω2

π2T2

�
1þ

�
π2T2

3ω2
−
1

6

�
q2

p2
Fc

�
Qci

�
; ð3Þ

ν0κci ¼ −
3T2pFim�2

c m�
i

4π4p2
Fc

×

*
ω2

π2T2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

q2

4p2
Fc

��
1 −

q2

4p2
Fi

�s
cosϕQci

+
;

ð4Þ

νηci ¼
3T2m�

cm�2
i

4π4pFc

�
q2

p2
Fc

�
1 −

q2

4p2
Fc

�
Qci

�
; ð5Þ

ν0ηci ¼ −
3T2pFim�2

c m�
i

4π4p2
Fc

×

*
q2

p2
Fc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

q2

4p2
Fc

��
1 −

q2

4p2
Fi

�s
cosϕQci

+
; ð6Þ

where the angular brackets denote phase-space integration

h·i ¼
Z∞
0

dw
ðw=2Þ2

sinh2ðw=2Þ
Zqm
0

dq
Zπ
0

dϕ·; ð7Þ

w ¼ ω=T, and qm ¼ minð2pFc; 2pFiÞ. Dependence of Qci
on ω determines the temperature behavior of collision
frequencies and hence of the corresponding transport
coefficients. In the traditional transport theory of Fermi
systems, the transition probability is assumed to be inde-
pendent of ω. Then each collision frequency in Eqs. (3)–(6)
obeys νci ∝ T2 scaling which according to Eqs. (1) and (2)
results in standard dependencies κ ∝ T−1 and η ∝ T−2.
These relations hold, for instance, for the transport coef-
ficients in the nucleon sector, e.g., [4].
Consider leptonic (electrons and muons) subsystem.

Leptons collide with all charged particles due to

electromagnetic interaction. The matrix element of this
interaction can be written as a sum of the longitudinal and
transverse parts

Mci ¼ 4παf

�
Jð0Þc Jð0Þi

q2 þ Πlðω; qÞ
−

Jc;t · Ji;t
q2 − ω2 þ Πtðω; qÞ

�
; ð8Þ

where αf ≈ 1=137 is the fine structure constant, Jð0Þc and
Jc;t are timelike and transverse (with respect to q) spacelike
components of the transition current, respectively, and Πl
and Πt are the longitudinal and transverse polarization
functions, respectively.
The transition four-current in Eq. (8) is Jλc ¼

Zcūðpc0 ÞγλuðpcÞ=ð2 ffiffiffiffiffiffiffiffiffi
ϵcϵc0

p Þ, where Zc is the charge num-
ber of the particle species c, γλ is a Dirac matrix, and uðpcÞ
is the Dirac spinor. Performing spin summations (in the
limit ω ≪ qvFi), one obtains [7,8,24]

Qci ¼ 16π2α2fZ
2
cZ2

i

�
Ll

jq2 þ Πlðω; qÞj2

− 2Re
vFcvFiLtl

ðq2 þ Πlðω; qÞÞðq2 þ Πtðω; qÞÞ�

þ v2Fcv
2
FiLt

jq2 þ Πtðω; qÞj2
�
; ð9Þ

where the numerators are

Ll ¼
�
1 −

q2

4m�2
c

��
1 −

q2

4m�2
i

�
; ð10Þ

Ltl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

q2

4p2
Fc

��
1 −

q2

4p2
Fi

�s
cosϕ; ð11Þ

Lt ¼
�
1 −

q2

4p2
Fc

��
1 −

q2

4p2
Fi

�
cos2 ϕ

þ q2

4p2
Fc
þ q2

4p2
Fi
: ð12Þ

In the case of identical particles, Qcc also contains an
exchange contribution from the interference between two
scattering channels with the final states interchanged.
However, for the electromagnetic collisions, small momen-
tum transfer q ≪ pFc dominates the scattering, interference
corrections are of the next order in q and are found to be
negligible [7,8].
As follows from Eq. (9), Qci has contributions from

longitudinal, transverse, and mixed parts of electromag-
netic interaction. Moreover, due to a specific cosϕ depend-
ence in Eqs. (3)–(6) and Eqs. (10) and (11), the mixed term
does not contribute to “direct” collision frequencies
Eqs. (3) and (5), so one can write νci ¼ νlci þ νtci. In
contrast, only the mixed term contributes to the primed
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collision frequencies, ν0ci ¼ νtlci [7,8]. In the nonrelativistic
limit vFc=i ≪ 1 and the transverse part of the interaction is
unimportant. However, it turns out that for relativistic
particles this part gives the dominant contribution because
of the weaker screening. The leading q−4 dependence of
Qci is regularized at small q by the polarization functions
Πl and Πt which play the central role in determining the
collision frequencies. Characters of the longitudinal and
transverse screening are very different. It is enough to
consider screening in the limits of small q ≪ pFi and
ω ≪ μi, where μi is the chemical potential of the i species,
and also in the static limit ω ≪ qvFi. Then the longitudinal
part of the interaction is screened on a static Thomas-Fermi
scale

Πlðω; qÞ ¼ q2TF ≡ 4αf
π

X
i

Z2
i m

�
i pFi; ð13Þ

where qTF is the Thomas-Fermi screening momentum. In
contrast, the transverse screening is dynamical

Πtðω; qÞ ¼ i
π

4

ω

q
q2t ≡ i

ω

q
αf
X
i

Z2
i p

2
Fi; ð14Þ

where qt is a characteristic transverse momentum.
Therefore the screening scale of the transverse part of
the interaction is ∼ðωq2t Þ1=3 ≪ qTF [examine the denom-
inator in the third term in Eq. (9)]. This leads to a dominant
contribution of the transverse interaction to the collision
frequencies, νtci ≫ νlci, ν

tl
ci. As a consequence, the system

Eq. (2) decouples, and in the leading order τc ¼ ðPiν
t
ciÞ−1.

Retaining only the transverse contribution and the leading
order in q in Eqs. (3)–(6), one gets the following expres-
sions for the lepton thermal conductivity and shear vis-
cosity in normal matter [4,7,8]

κeμ ¼
π2

54ζð3Þ
p2
Fe þ p2

Fμ

αf
; ð15Þ

ηeμ ¼
1.1
αf

n2e þ n2μ
q1=3t

T−5=3; ð16Þ

where ζð3Þ is the Riemann zeta function. Notice the
unusual temperature behavior of κeμ and ηeμ in comparison
to the standard Fermi-liquid results. This is a consequence
of the dynamical character of the transverse screening. The
different powers of T in Eqs. (15) and (16) are traced back
to the different leading orders in q for the thermal
conductivity (q0) and shear viscosity (q2) problems in
Eqs. (3)–(6). Expression (15) is a good approximation to
the exact result, which includes all contributions to colli-
sion frequencies. For the shear viscosity, the dominance of
the transverse part of interaction is not so strong, and
Eq. (16) can actually result in a strong overestimation of the

shear viscosity coefficient [8,13]. In this case all terms need
to be retained.

III. LEPTON TRANSPORT COEFFICIENTS IN
SUPERCONDUCTING NS CORES

Shternin and Yakovlev [7,8] also calculated κeμ and ηeμ
in the case when the protons are in the paired state. They
noticed that the proton pairing changes the character of
transverse plasma screening from the dynamical to the
static one restoring the Fermi-liquid behavior of transport
coefficients. Below I show that this qualitative result is
correct, but the treatment of screening in Refs. [7,8] was
incomplete. For simplicity, I restrict myself to the case of
well-developed superconductivity T ≲ 0.2Δ. For 1S0 pair-
ing, dependence of the superfluid gap on temperature can
be approximated as [25]

Δ
T
¼

ffiffiffiffiffiffiffiffiffiffi
1 − t

p �
1.456 −

0.157ffiffi
t

p þ 1.764
t

�
; ð17Þ

where t ¼ T=Tcp. Thus the condition T ≲ 0.2Δ translates
to T=Tcp ≲ 0.35. In this case, first of all, lepton-
proton collisions can be neglected, and, second, the
zero-temperature limit for the proton polarization function
can be used. Provided high expected values of Tcp, this
limit is comfortably satisfied at T ≲ 108 K.

A. Plasma screening in presence
of proton pairing

The pairing of protons, which are charged particles,
modifies the screening of the electromagnetic interaction.
Up to the order Δ=μp, the static longitudinal screening does
not change [26,27] and Πl is given by Eq. (13). In contrast,
the transverse screening modifies. At low T, the dominant
contribution to screening comes from protons. In the zero-
temperature limit T → 0 in the Bardeen-Cooper-Schrieffer
(BCS) theory the static (ω → 0) transverse polarization
function can be written as [28]

Πtð0; qÞ ¼ q2MJðζÞ; ð18Þ

where ζ ¼ qvFp=Δ ¼ πqξ, ξ is the coherence length,
and qM is the Meissner screening momentum (Meissner
mass)

q2M ¼ 4αf
3π

p2
FpvFp: ð19Þ

The function JðζÞ in Eq. (18) is [28]
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JðζÞ ¼ 3

8

Z∞
−∞

dη
Z1
−1

dxð1 − x2Þffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ 1

p
ðη2 þ 1þ ðζxÞ2=4Þ

¼ 3

4

Z1
−1

dxð1 − x2Þ 2ArcSinhðζx=2Þ
ζx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðζxÞ2=4

p : ð20Þ

In principle, the integration over x in the second line in
Eq. (20) can be performed analytically with the result being
expressed via the polylogarithmic functions.
The function JðζÞ is plotted in Fig. 1. At small ζ (small

momentum q ≪ ξ−1), which corresponds to the London
limit, JðζÞ ¼ 1. In this limit, the transverse screening is
independent of Δ and the screening momentum is equal to
qM. The real transverse photons obey the Meissner mass
qM in this limit. This leads to the Meissner effect in
superconductors. In the opposite, Pippard limit, ζ ≫ 1 and
Πt is inversely proportional to ζ as shown by the dashed
line in Fig. 1. The asymptotic expression in the Pippard
limit reads JðζÞ ¼ 3π2=ð4ζÞ. In this limit, the characteristic
transverse screening momentum is qP ¼ ð3π2Δq2M=
ð4vFpÞÞ1=3. This expression resembles the screening
momentum in the nonsuperfluid case, with Δ in place of
ω and qM in place of qt. In the Pippard limit, contrary to the
London limit, the screening depends on Δ.
In Fig. 2, the characteristic transverse screening

momenta qM (dashed lines) and qP (dash-dotted lines
for Tcp ¼ 109 K and double-dot-dashed lines for Tcp ¼
1010 K) are compared with the longitudinal screening
momentum qTF (solid lines). The momenta in the plot
are normalized to 2pFe, which is the maximum momentum
transfer in electron-electron collisions. Thick and thin lines
correspond to two widely used equations of state (EOSs) of

dense nucleon matter in NS cores. Namely, by the abbre-
viation HHJ (thick lines) I denote the EOS constructed by
Heiselberg and Hjorth-Jensen [29] as an analytical para-
metrization of the variational EOS by Akmal et al. [30].
Specifically, I use the model with the parameter γ ¼ 0.6 of
Ref. [29]; this model was designated as APR I in Ref. [31]
and the NS properties with such EOS can be found there.
With thin lines I show the results for one of the EOSs based
on the Brussels-Skyrme nucleon interaction functionals,
namely the BSk21 model [32]. Both EOSs satisfy the
equilibrium conditions with respect to the weak processes.
Unless otherwise indicated, the proton effective mass is set
to m�

p ¼ 0.8mu, where mu is the nucleon mass unit. Two
EOSs are different in the particle fractions, however the
results shown in Fig. 2 are qualitatively same. As in the
normal matter, characteristic transverse screening momenta
(qM or qP) are much smaller than the longitudinal one. As a
consequence, the transverse part of the interaction domi-
nates in the presence of proton superconductivity as well.
In Refs. [7,8] it was assumed that the typical transferred

momentum q is not so small, so that the Pippard limit gives
appropriate description of the transverse plasma screening
in NS cores. In fact, which limit, London or Pippard, gives
the dominant contribution depends on the value of ζ at
q¼qM. This point was overlooked in Refs. [7,8]. It is hence
convenient to introduce the parameter A≡ζðq¼qMÞ¼
vFpqM=Δ. In the BCS approximation, this parameter is
related to the familiar Ginzburg-Landau coherence param-
eter ϰ, namely ϰ ¼ λL=ξ ¼ π=A, where λL ¼ q−1M is the

FIG. 1. Proton contribution to the zero-temperature transverse
polarization function in the static limit. The polarization function
is normalized to q2M. Dashed line shows the asymptote in the
Pippard limit.

FIG. 2. Ratios of characteristic screening momenta to 2pFe
versus baryon density (in units of the nuclear saturation density
n0 ¼ 0.16 fm−3) for two EOSs desribed in the text. Thick lines
correspond to the HHJ EOS, while thin lines show the results for
the BSk21 EOS. Solid lines show the longitudinal (Thomas-
Fermi) screening momentum qTF, dashed lines give the Meissner
momentum qM. Dash-dotted and double-dot-dashed lines show
the characteristic screening momenta in Pippard limit for Tcp ¼
109 K and 1010 K, respectively.
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London penetration depth. The value of ϰ determines the
superconductivity type. The transition from type I super-
conductor to type II superconductor occurs at ϰ > 1=

ffiffiffi
2

p
as

type-I [28,33], which corresponds to A <
ffiffiffi
2

p
π ≈ 4.4.2 The

parameter A can be written as

A ¼ 1.12

�
xp
0.1

�
5=6

�
nB
n0

�
5=6

�
m�

p

mu

�
−3=2 0.5 MeV

Δ
; ð21Þ

where n0 ¼ 0.16 fm−3 is the nuclear saturation density. In
Fig. 3, the parameter A is plotted for two EOSs discussed
above and for Δ ¼ 1 MeV. This corresponds to Tcp ≈
6.5 × 109 K [see Eq. (17) at T ¼ 0]. For this large Δ, most
of the core forms type-II superconductor [35]. Since A is
inversely proportional to Δ, it is higher for lower Δ (lower
Tcp). For the NS core conditions, A can vary in the range
0.1÷100. Figure 1 shows that these values correspond to the
intermediate region between the London and Pippard
limits, thus one can expect that neither of these limits is
strictly applicable in NS cores, and the general form of Πt
should be used for calculating the transport coefficients.
This is demonstrated in the next Section.

B. Calculation of transport coefficients
in the leading order

According to the discussion in Secs. II and III A (see also
Fig. 2), the dominant contribution to the lepton collision
frequencies comes from the transverse part of the electro-
magnetic interaction. In addition, since the screening is
weak, the lowest orders in q in Eqs. (3)–(6), Eqs. (9)–(12)
give the leading contribution to transport coefficients. In
order to calculate the transverse collision frequencies νtci,
the integrals

ItnðA; qMÞ ¼
Zqm
0

dqqn

ðq2 þ q2MJðζÞÞ2
ð22Þ

are needed. The exponent n ¼ 0 in Eq. (22) gives the
leading order contribution for the thermal conductivity
problem, while for the shear viscosity the leading order is
given by n ¼ 2 (Sec. II). Retaining only the leading
contributions one gets the following results for the lepton
thermal conductivity and shear viscosity

κt;Leadeμ ¼ 5

72πα2fT
½It0ðA; qMÞ�−1; ð23Þ

ηt;Leadeμ ¼ 3π

10α2fT
2

n2e þ n2μ
p2
Fe þ p2

Fμ
½It2ðA; qMÞ�−1: ð24Þ

Let us analyze an asymptotic behavior of the integrals
Eq. (22). In the weak-screening limit qM ≪ qm it is enough
to extend the upper integration limit to infinity. Then, the
low-A asymptote becomes

Itn ¼
π

4q3−nM
; A ≪ 1; ð25Þ

while the high-A asymptotes are

It0 ¼
4A

9π2q3M
; It2 ¼

4A1=3

9qM

22=3π1=3

35=6
; A ≫ 1: ð26Þ

Remarkably, the low-A asymptote (25), which corresponds
to the London limit, is independent of A and hence of Δ.
This is a consequence of the independence of the Meissner
momentum qM of the gap value. The case of large A,
Eq. (26), corresponds to the Pippard limit that was
employed in Refs. [7,8]. In the intermediate case, the
integrals It0 and I

t
2 were fitted by the analytic expressions to

facilitate their use in applications. These expressions are
given in the Appendix. Substituting the limiting expres-
sions (25)–(26) into Eqs. (23) and (24), one obtains the
asymptotic expressions for the thermal conductivity and
shear viscosity

FIG. 3. The coherence scale parameter A as a function of the
total baryon density for two selected EOSs. Effective masses are
set to m�

p ¼ 0.8mu and Δ ¼ 1 MeV.

2Notice, that this criterion modifies in the superfluid-super-
conducting mixtures [34] which is quite possible in NS cores
where (in large part at least) neutrons can also be in the superfluid
state. According to Ref. [34], the point ϰ ¼ 1=

ffiffiffi
2

p
does not

separate the topologically different type-I and type-II phases in
this case, and the situation is more complicated. Since the results
of the present paper are not affected by these complications, we
will nevertheless call the region where ϰ > 1=

ffiffiffi
2

p
as type-II

superconductivity region, and where ϰ < 1=
ffiffiffi
2

p
as type-I super-

conductivity region for simplicity.
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κLoneμ ¼ 5q3M
18π2α2fT

; ð27Þ

ηLoneμ ¼ 6qM
5α2fT

2

n2e þ n2μ
p2
Fe þ p2

Fμ
; ð28Þ

κPipeμ ¼ 5p2
Fp

24αf

Δ
T
; ð29Þ

ηPipeμ ¼ 1.71pFp

α5=3f T2

n2e þ n2μ
p2
Fe þ p2

Fμ

�
Δ

pFpc

�
1=3

; ð30Þ

where the superscripts Lon and Pip correspond to the
London and Pippard approximations to Πt, respectively.
Comparing the expressions (25) and (26) one can

roughly estimate that the crossover between the two
limiting cases occurs at A ≈ 17.5 for n ¼ 0 and at A ≈
6.8 for n ¼ 2. From Fig. 3, one concludes that for large
Δ ∼ 1 MeV or for small nB if Δ is lower, the Pippard limit
used in Refs. [7,8] is inapplicable. To illustrate the possible
degree of inaccuracy of the older results, let us construct the
ratio RðAÞ of the leading contribution to transverse colli-
sion frequency to those calculated in the Pippard limit:
νLeadt ¼ νPipt RðAÞ. This ratio is plotted as a function of A in
Fig. 4 for n¼0 (thermal conductivity, solid lines) and n ¼ 2
(shear viscosity, dashed lines). The plot clearly shows
underestimation of the collision frequencies, and, hence
overestimation of the transport coefficients by the Pippard
limiting values Eqs. (29) and (30). For small A and n ¼ 0
this overestimation reaches two orders of magnitude. For
the shear viscosity problem (n ¼ 2), the overestimation is
modest because of the weaker dependence of the collision

frequencies on the screening momentum (Sec. II). Thin
lines in Fig. 4 show the same factors, where the London
asymptotic expression for collision frequencies is used in
place of νt;Lead. One concludes, that the London limit for
screening is appropriate in the case of type-II supercon-
ductivity, but for large values of A it becomes inapplicable.
Figure 4 shows that both asymptotic limits generally
underestimate the collision frequencies and overestimate
the transport coefficients. This is because of an overesti-
mation of the screening at large q by the London expression
and at small q by the Pippard expression, see Fig. 1.
For illustration, the same ratios R are plotted in Fig. 5

now as functions of the baryon density for the HHJ EOS
and three values of Tcp ¼ 1010 K (solid lines), 3 × 109 K
(dashed lines), and 109 K (dash-dotted lines). Figure 5(a)
shows the results appropriate for the thermal conductivity
(n ¼ 0), while for the shear viscosity problem (n ¼ 2), R is
shown in Fig. 5(b). Like in Fig. 4, thin lines give the ratio R
calculated with London limiting expression. For the highest
shown critical temperature, Tcp ¼ 1010 K, R is largest and
the London expression is a good approximation for n ¼ 0
in the whole shown range of densities and for nB ≲ 3n0 for
n ¼ 2. With decreasing Tcp (increasing A), the ratio R
lowers down and the applicability range of the London
limiting expression shifts to lower densities. For instance,
for Tcp ¼ 109 K and n ¼ 2 the London approximation is
always inaccurate, as seen from a comparison of thin and
thick dash-dotted lines in Fig. 5(b).

C. Kinematic corrections

In the previous section the leading order contribution to
the collision frequencies was discussed. However, as was
mentioned at the end of the Sec. II, this approximation can
be inaccurate, especially for the shear viscosity and in
principle the full result that follows from Eqs. (2)–(6) and
Eqs. (9)–(12) shall be used [4,8,13]. The main corrections
come from the inclusion of the longitudinal part of the
interaction, and from the kinematic corrections of high-q
powers in Eqs. (3)–(6) and Eqs. (10)–(12). Going beyond
the long-wavelength and static limit in polarization func-
tions is not necessary, since the possible difference would
be sizable at large q, where the q2 term dominates in the
denominators in Eq. (9). Since both longitudinal and
transverse screening are static, the integration over w in
Eqs. (3)–(6) can be performed analytically, as well as the
integration over ϕ, leaving one with the following result for
the thermal conductivity collision frequencies

νκci ¼ νκ;tci þ νκ;lci ; ð31Þ

νκ;tci ¼ 8πα2fT
2pFcp2

Fi

5m�
c

Zqm
0

dq
	
1þ q2

4p2
Fc



2
	
1þ q2

4p2
Fi



ðq2 þ q2MJðζÞÞ2

; ð32ÞFIG. 4. The ratioRðAÞ for n ¼ 0 (solid lines) and n ¼ 2 (dashed
lines). Thin lines represent the low-A approximation (25).
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νκ;lci ¼
16πα2fT

2m�
cm�2

i

5pFc

Zqm
0

dq
	
1þ q2

4p2
Fc


	
1− q2

4m�2
c


	
1− q2

4m�2
i



ðq2þq2TFÞ2

;

ð33Þ

ν0κci ¼
16πα2fT

2m�
i pFi

5

Zqm
0

dq
	
1 − q2

4p2
Fc


	
1 − q2

4p2
Fi



ðq2 þ q2TFÞðq2 þ q2MJðζÞÞ

ð34Þ

and similarly for the shear viscosity collision frequencies

νηci ¼ νκ;tci þ νκ;lci ; ð35Þ

νη;tci ¼ 2πα2fT
2p2

Fi

m�
cpFc

Zqm
0

dqq2
	
1 − q4

16p4
Fc


	
1þ q2

4p2
Fi



ðq2 þ q2MJðζÞÞ2

; ð36Þ

νη;lci ¼
4πα2fT

2m�
cm�2

i

p3
Fc

Zqm
0

dqq2
	
1− q2

4p2
Fi


	
1− q2

4m�2
c


	
1− q2

4m�2
i



ðq2þq2TFÞ2

;

ð37Þ

ν0ηci ¼
4πα2fT

2m�
i pFi

p2
Fc

Zqm
0

dqq2
	
1 − q2

4p2
Fc


	
1 − q2

4p2
Fi



ðq2 þ q2TFÞðq2 þ q2MJðζÞÞ

: ð38Þ

Thus in order to calculate the transverse part of the collision
frequencies, νκ;tci and νη;tci , including all kinematic correc-
tions one needs integrals Itn defined in Eq. (22) up to n ¼ 8.
Similarly, to calculate longitudinal contributions, νκ;lci and
νη;lci , analogous longitudinal integrals

IlnðqTFÞ ¼
Zqm
0

dqqn

ðq2 þ q2TFÞ2
ð39Þ

are required. These are standard integrals, and their explicit
expressions up to n ¼ 8 can be found, for instance, in the
Appendix in Ref. [8]. Finally, to calculate the mixing terms,
we need integrals

Itln ðA; qM; qTFÞ ¼
Zqm
0

dqqn

ðq2 þ q2TFÞðq2 þ q2MJðζÞÞ
ð40Þ

up to n ¼ 6.
In Fig. 6, the results of full calculationswhich are based on

Eqs. (31)–(38) and Eq. (2) are compared with the leading-
order results in Eqs. (23) and (24) for two values of the
critical temperature, Tcp ¼ 109 K and 1010 K. Clearly, the
kinematic corrections to the thermal conductivity coefficient
can be safely ignored in applications. However, the leading-
order expression in Eq. (24) overestimates the shear vis-
cosity by 50% for Tcp ¼ 109 and up to a factor of two for
Tcp ¼ 1010 K, since in the latter case the transverse screen-
ing momentum is larger, see Fig. 2. It is thus advisable to go
beyond the leading-order expression when calculating ηeμ.
A detailed analysis of various corrections shows that it is
necessary to include all three contributions—transverse,
longitudinal, and mixed—but it is enough to use the lowest-
order terms in q, namely retain only q2 in numerators for
each of these terms. In this approximation, ηeμ stays within
10% of the total result. The lowest-order contribution to νη;tci
is discussed in the previous section, while the explicit

(a) (b)

FIG. 5. The ratios R for (a) thermal conductivity (n ¼ 0) and (b) shear viscosity (n ¼ 2) as function of nB for the HHJ equation of state
and three values of Tcp ¼ 1010 K (solid lines), 3 × 109 K (dashed lines), and 109 K (dash-dotted lines). Thin lines give a low-A
approximation, where the interaction is screened by the pure Meissner mass. Double-dot-dashed lines show with right vertical scales the
combination ATcp;9 which is independent of Tcp. Here Tcp;9 ≡ Tcp=ð109 KÞ.
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leading-order expression for νη;lci is given in the Appendix,
Eq. (A6). It remains to consider the leading-order contri-
bution to ν0ηci. Because of q2 in the numerator and since
qM ≪ qTF, it is possible to neglect the transverse screening
in Eq. (38) [8]. Then the integration over q is trivial. Explicit
result is given in Eq. (A7). Notice, that this procedure does
not work for ν0κci, Eq. (34). However, as discussed before, ν

0κ
ci

is actually not needed.

D. Corrections to variational solution

Up to now the simplest variational solution of the system
of transport equations was employed. However, it is
possible to obtain the exact solution. For a single-compo-
nent Fermi liquid, the general theory was developed in
Refs. [36–38] and was extended to the multicomponent
case in Refs. [6,23]. In these references, the exact solution
was given in analytical way in form of the rapidly
converging series. Equivalently, the system of transport
equations can be solved numerically.
Let me briefly outline the method of the exact solution of

transport equations for the thermal conductivity and shear
viscosity problems. Here I mainly follow the notations in
Ref. [39]. Instead of Eq. (1), transport coefficients are
rewritten in the form

κc ¼ Cκ
c
π2Tnc
3m�

c
τc0; ηc ¼ Cη

c
p2
Fcnc
5m�

c
τc0; ð41Þ

where the characteristic relaxation time

τ−1c0 ¼ νc0 ¼
3T2m�

c

8π4pFc

X
i

m�2
i hQciiqϕ ð42Þ

is introduced. By h·iqϕ in Eq. (42), the w-independent part
of Eq. (7) is denoted. Characteristic relaxation times are
now the same for the thermal conductivity and for the shear
viscosity. The differences between the specific transport
problems are encapsulated in the coefficients Cκ

c and C
η
c. In

order to find these coefficients, one starts from the system
of transport equations for the nonequilibrium distribution
functions FcðpcÞ for the particle species c. These equations
are then linearized by introducing a correction to the local
equilibrium distribution function as

FcðpcÞ ¼ fðxcÞ þ τc0ΨcðxcÞDðpcÞ
1

T
∂fðxcÞ
∂xc ; ð43Þ

where fðxÞ ¼ ½1þ expðxÞ�−1 is the Fermi-Dirac distribu-
tion, xc ¼ ðϵc − μcÞ=T, μc is the chemical potential
and DðpÞ is the anisotropic part of the driving term.
For the thermal conductivity, DðpÞ ¼ v∇T where v
is the particle velocity, while for the shear viscosity,
DðpÞ ¼ ðvαpβ − 3−1vpδαβÞð∂βVα þ ∂αVβÞ=2, where V
is the hydrodynamical velocity with divV ¼ 0. Transport
coefficients can be found by substituting Eq. (43) into the
equations for the corresponding thermodynamic fluxes
[22,40]. This results in

Cκ
c ¼

3

π2

Zþ∞

−∞

dxxΨκ
cðxÞfðxÞð1 − fðxÞÞ ð44Þ

and

Cη
c ¼

Zþ∞

−∞

dxΨη
cðxÞfðxÞð1 − fðxÞÞ: ð45Þ

Unknown functions ΨcðxÞ obey the system of integral
equations, derived by the linearization of the system of
transport equations using the ansatz (43). Without going
into details [22,23,39], the resulting system of integral
equations takes a form

ΞðxÞfð−xÞ ¼
�
1þ x2

π2

�
ΨcðxÞfð−xÞ

−
2

π2

Zþ∞

−∞

dx0fð−x0Þ x − x0

1 − ex
0−x

X
i

λciΨiðx0Þ;

ð46Þ

where ΞðxÞ ¼ 1 for the shear viscosity and ΞðxÞ ¼ x for
the thermal conductivity. This simple form is possible due

FIG. 6. Comparison of the thermal conductivity and shear
viscosity in the leading approximation, Eqs. (23) and (24), to the
results of complete calculations. Upper pair of curves shows the
ratio ηt;Leadeμ =ηeμ, while lower pair of curves marked κ shows

κt;Leadeμ =κeμ. Results for the HHJ EOS are shown and for two
values of the proton critical temperature. Tcp ¼ 1010 K (solid
lines) and 109 K (dashed lines). Variational solutions are em-
ployed. See text for details.
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to the appropriate choice of the relaxation time τc0 by
Eq. (42). All information about the quasiparticle scattering
is encapsulated in the matrix λci which depends on the
transport coefficient in question. In the case of thermal
conductivity, this matrix can be expressed through the
collision frequencies discussed in the previous sections in
the following way:

λκci ¼ −
5

4

ν0κci
νi0

; i ≠ c; ð47Þ

λκcc ¼ 3 −
5

4

X
i

νκci
νc0

−
5

4

ν0κcc
νc0

: ð48Þ

The simplest variational solution discussed above is Ψκ
c ¼

Cκ
cxc which corresponds to the solution of the linear system

5=4 ¼ P
ið3δci − λκciÞCκ

i . Once λ
κ
ci is calculated, the system

(46) can be solved numerically and the correction coef-
ficients Cκ

c can be obtained. It turns out, however, that λκci ≈
δci in the conditions of the present study. This is because
both νκci and νc0 are dominated by the transverse contri-
bution in its leading order, while the mixed collision
frequencies ν0κci are of the next order and thus their ratios
to νc0 are small. As a result, the system of Eqs. (46)
decouples to independent equations for each species.
Therefore the correction to variational solution is given
by the expression for the single-component Fermi liquid
with λκ ¼ 1. In this case, one obtains Cκ

c=C
κ;Var
c ¼ 1.2, see,

e.g., Ref. [22]. The numerical solution of Eq. (46) supports
this conclusion, giving κeμ=κVareμ ≈ 1.20–1.22 in all consid-
ered cases.
The situation is similar for the shear viscosity. The

matrix ληci is

ληci ¼ −
3

4

ν0ηci
νi0

; i ≠ c; ð49Þ

ληcc ¼ 1 −
3

4

X
i

νηci
νc0

−
3

4

ν0ηcc
νc0

; ð50Þ

and simplest variational result is Ψη
c ¼ Cη

c and corresponds
to the solution of the linear system 1 ¼ P

iðδci − ληciÞCη
i . In

this case, since the collision frequencies for shear viscosity
are q2 in the leading order, in the weak-screening approxi-
mation they are much smaller than νc0. As a consequence,
ληci ≈ δci as well. Moreover, this means that variational
result does not need to be corrected and ηeμ ¼ ηVareμ [22].
Numerical calculations show that this conclusion holds up
to 0.1% for the present conditions.

IV. DISCUSSION

The results of the previous sections can be used for
calculating the lepton contribution to transport coefficients

of superconducting NS cores at not-too-high temperatures.
Since these coefficients are governed by the electromag-
netic interactions, the obtained results are applicable for
any npeμ EOS of a neutron star core, provided the particle
fractions and proton effective masses are known. It is clear
from examining Eqs. (27)–(30), that the increase in proton
fraction at a given baryon density leads to increase in both
κeμ and ηeμ. At the same time, the parameter A increases
with xp as well, so the crossover between the London and
Pippard regimes occurs at lower nB for the EOS with higher
proton fraction. Specifically, results are illustrated for two
EOSs, HHJ and BSk21, and as before, the proton effective
mass m�

p ¼ 0.8mu is used. (The effect of effective mass
variation is discussed separately below.) For completeness,
all results discussed in this section employ exact solution of
the system of transport equations taking into account all
kinematical corrections as discussed in Secs. III C–III D.
Figure 7 shows the total lepton thermal conductivity κeμ

as a function of nB for the HHJ EOS [panel (a)] and the
BSk21 EOS [panel (b)], T ¼ 108 K and three values of
Tcp ¼ 1010 K, 3 × 109 K, and 109 K. Remember, that the
lepton thermal conductivity in a superconducting NS core
scales as κeμ ∝ T−1 as in the normal Fermi liquid. Solid
lines give the results of the present paper with the corrected
description of the transverse screening. Dash-dotted lines
are calculated taking the screening in the Pippard limit, as
in Ref. [7]. According to Eq. (29), in this limit κeμ is
approximately proportional to Δ. Clearly, these results
strongly overestimate κeμ, especially at lower densities
and higher values of Tcp, which correspond to low values
of the A parameter. The dashed lines in Fig. 7 show κeμ
calculated employing the transverse screening in the
London limit. In this limit, κeμ is independent of Δ, see
Eq. (29), so only the single dashed line is present in Fig. 7.
Thermal conductivity calculated in this limit also over-
estimates κeμ. For low densities and/or high Tcp, this
overestimation is small. For instance, for Tcp ¼ 1010 K,
dashed lines give rather good approximation for κeμ
(compare with the solid lines) for all shown densities
and for both EOSs. In contrast, for high densities and
Tcp ¼ 109 K, the Pippard limit gives much better approxi-
mation than the London one. Comparing left and right
panels of Fig. 7, one can see that the difference between κeμ
calculated in the Pippard limit and the correct value is
smaller for the BSk21 EOS than for the HHJ EOS.
Similarly, the difference between the London-limit calcu-
lations and exact ones (solid lines) is larger for the BSk21
EOS than for the HHJ EOS. This is a consequence of the
larger value of the A parameter for the BSk21 EOS (see
Fig. 3). For comparison, with dotted lines in Fig. 7, κNeμ
calculated for the nonsuperconducting case is plotted.
Again, all terms in the interaction are included, although
the leading-order Eq. (15) gives a good approximation
(notice, that correction to the variational solution is
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negligible in this case [7]). Since κNeμ in leading order does
not depend on temperature (see Sec. II), the difference
between κeμ and κNeμ increases with lowering T [7]. Taking
this in mind and looking at the lower-density region in the
left panel of Fig. 7 one can naively suggest that with
increase of temperature, the normal-matter κNeμ would
become larger than κeμ for superconducting matter. This
is not so, since in these conditions the assumption of the
dominance of the proton contribution to the transverse
screening will break down. In this case, one needs to
include the dynamical contribution from the normal con-
stituents of matter (leptons) to the transverse screening, see

below. The presence of the normal matter contribution to
screening effectively limits the collision frequencies from
above, making them lower than in the normal case.
Similar calculations for the shear viscosity ηeμ are shown

in Fig. 8. Qualitatively, the situation is the same as for the
thermal conductivity, although the differences between
results in various approximations are less dramatic. This
is a consequence of, first, the weaker dependence of the
transverse collision frequencies νηci on the screening than
found for νκci and, second, of the larger contribution of the
longitudinal part of the interaction to ηeμ than to κeμ. For
instance, the older results of Ref. [8] calculated in the

(a) (b)

FIG. 8. Lepton shear viscosity (a) for the HHJ EOS and (b) for the BSk21 EOS as a function of nB. The parameters of calculations and
notations are the same as in Fig. 7. Notice, that the linear scale is used in this plot. Insets enlarge the region of nB up to 2n0, where the
logarithmic scale for ηeμ is used.

(a) (b)

FIG. 7. Lepton thermal conductivity κeμ as a function of nB (a) for the HHJ EOS and (b) for the BSk21 EOS, T ¼ 108 K, and for three
values of Tcp ¼ 1010, 3 × 109, and 109 K as indicated in the plot. Solid lines show the results of the present paper, dash-dotted lines
correspond to the Pippard limit, and dashed lines to the London limit of transverse screening. Dotted lines show the calculations for
normal (not superconducting) matter.
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Pippard limit (dash-dotted lines in Fig. 8) are acceptable for
Tcp < 3 × 109 K, especially at higher densities. At most,
the use of the Pippard limit results in an overestimation of
ηeμ by a factor of 2.5 for T ¼ 109 K and lowest densities.
This is not seen in Fig. 8 because of the linear scale, and is
illustrated in the insets that show ηeμ up to nB ¼ 2n0 with
the logarithmic scale. In the inset plots, due to a low
density, the difference between ηeμ calculated for various
Tcp and those calculated in London limit is barely seen. On
the other hand, the overestimation that results from using
the Pippard expression becomes visible. ηNeμ calculated for
nonsuperconducting matter is shown in Fig. 8 with dotted
lines. Notice again, that the relation ηNeμ ∝ T−5=3 given by
Eq. (16) works well only at low temperatures, where the
transverse part of the interaction starts to dominate [8].
Both the shear viscosity and the thermal conductivity for
the BSk21 EOS are larger than those for the HHJ EOS. This
is a consequence of different particle number fractions in
these models.
In the previous discussion the constant (density-inde-

pendent) proton effective mass was employed. It is
instructive to look how the results depend on m�

p. This
is illustrated in Fig. 9 where the thermal conductivity
[panel (a)] and shear viscosity [panel (b)] are plotted as a
function ofm�

p for the density nB ¼ 4n0 and proton fraction
xp ¼ 0.15. These are some typical values and do not
correspond to a specific EOS. The line types and notations
are similar to those in Figs. 7–8. The asymptotic expression
in the Pippard limit in the leading order, Eqs. (29) and (30)
do not depend on the proton effective mass. Some depend-
ence on m�

p demonstrated by the dash-dotted lines in Fig. 9
is due to the corrections beyond the leading order. This
dependence is more pronounced for the shear viscosity than
for the thermal conductivity, in accordance with the

discussion in Sec. III C. Similar arguments apply for the
transport coefficients of the normal matter shown with
dotted lines in Fig. 9. In contrast, the asymptotic expres-
sions in the London limit, Eqs. (27) and (28) explicitly
depend on the proton effective mass through the Meissner
momentum qM. According to Eq. (19), an increase in m�

p

leads to decrease in qM and hence to decrease of κeμ and
ηeμ. As seen in Fig. 9, this decrease is larger for κeμ than for
ηeμ because of the weaker qM-dependence of the latter, see
Eqs. (27) and (28). The dependence of the results of the full
calculations on the effective mass is in between the
discussed limiting cases. Since the parameter A decreases
with m�

p [see Eq. (21)], London limiting expressions
work better for larger m�

p. Figure 9 shows that the use
of the variable proton effective mass instead of the constant
m�

p approximation can change the results illustrated in
Figs. 7–8 quantitatively, but not qualitatively. In principle
one should use the density dependence of m�

p consistent
with the chosen EOS, but this is rarely provided.
The proton critical temperature in the NS core is not

constant but is actually density-dependent. It is instructive
to illustrate the results by considering “realistic” profiles
TcpðnBÞ in the NS core. This is done in Figs. 10 and 11 for
the HHJ and the BSk21 EOSs, respectively.3 There exists a
variety of calculations of the critical density profiles in a
literature, each of which is based on a specific microscopic
model. The results of these calculations generally do not
agree with each other. In these circumstances it is instruc-
tive to rely on the phenomenological profiles TcpðnBÞ
instead of trying to handle EOS and superconductivity
properties self-consistently [41,42]. It is, however, reason-
able to make these phenomenological models to resemble

(a) (b)

FIG. 9. Lepton thermal conductivity (a) and shear viscosity (b) calculated for T ¼ 108 K, nB ¼ 4n0, and proton fraction xp ¼ 0.15 as
functions of the proton effective mass m�

p. The notations are the same as in Fig. 7.

3Note that again m�
p ¼ 0.8mu.
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the extreme cases available on the market. Taking this in
mind, following Glampedakis et al. [43], I take two profiles
of TcpðnBÞ denoted by “e” and “f” in Ref. [42]. These
models are constructed by applying the phenomenological
parametrization suggested by Kaminker et al. [41] to the
results of microscopic calculations of the proton 1S0 gaps
[42]. The critical temperature profiles for these models are
shown in Fig. 10 for the HHJ EOS and in Fig. 11 for the
BSk21 EOS with right vertical scales. The model “f”
describes weaker proton superconductivity based on the
calculations in Ref. [44]. The corresponding panels in
Figs. 10 and 11 are marked “weak SC.” Panels (b) and
(d) in the same Figs., marked “strong SC,” show results for
stronger proton superconductivity model “e” that is fitted to

the results of Ref. [45], see Ref. [42] for details. With the
same right vertical scale in each panel the corresponding
density-dependence of the parameter A is shown. Vertical
dashed lines divide the regions of the superconductivity of
the first and second types, according to the criterion A >ffiffiffi
2

p
π (ϰ < 1=

ffiffiffi
2

p
). Notice that the critical temperature

profiles for the same superconductivity models are different
for different EOSs because they actually depend on the
proton Fermi momentum pFp which differs in the HHJ and
BSk21 EOSs at the same nB.
The results for the shear viscosity ηeμ for the models “f”

and “e” are shown in the panes (a) and (b), respectively, in
Figs. 10 and 11. The thermal conductivity calculations are

(a) (b)

(c) (d)

FIG. 10. Shear viscosity (a)–(b) and thermal conductivity (c)–(d) in the HHJ NS core for weak proton superconductivity model [panels
(a) and (c)] and strong superconductivity model [panels (b) and (d)] discussed in the text. The temperature is set to T ¼ 107 K. As in
previous figures, solid lines give full results of the present work, dash-dotted lines correspond to calculations in the Pippard limit, and
dashed lines—to calculations in the London limit. Dotted lines show the transports coefficients in normal matter. Lower hatched strips
marked “n, pnorm” and upper filled strips marked “n, pSC” give the uncertainty bands for neutron transport coefficients in normal and
superconducting matter, respectively. Thin solid lines and the right scales in each panel show the values of Tcp;9 ¼ Tcp=109 K and A for

each model. Vertical dashed lines (A ¼ ffiffiffi
2

p
π) divide type-II and type-I superconductivity regions. See text for details.
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shown in panels (c) and (d) of the same figures. All
calculations employ now T ¼ 107 K in order to meet the
zero-temperature approximation in a whole density region
shown (the low-temperature approximation can break down
near the walls of the critical density profile, where Tcp is
low). All of the values can be scaled by T2 for shear
viscosity (by T for thermal conductivity) provided the
condition T < 0.35Tcp is fulfilled in the density region of
interest. As in Figs. 7–8, solid lines in Figs. 10–11 show the
results of the full calculations, while dashed and dot-dashed
lines are calculated in the London and Pippard limits,
respectively. Dotted lines represent the lepton transport
coefficients in normal matter. The results in Figs. 10–11
follow the same pattern as discussed above. The use of any
of the limiting expressions, London or Pippard, for the
transverse screening leads to an overestimation of the
transport coefficients. The London limit is appropriate in
the case of type-II superconductivity, while in the case of
type-I superconductivity, the London limit is inappropriate

and the Pippard limit can be a better approximation. In the
intermediate case full calculations should be used. As seen
from Figs. 10–11, in the real situation, both types of
superconductivity can be simultaneously present in the
NS cores [43].
For comparison, in Figs. 10–11 I also show the neutron

shear viscosity ηn and thermal conductivity κn calculated
following Refs. [12,39]. In these Refs., the in-medium
nucleon-nucleon interaction is treated in the Brueckner-
Hartree-Fock framework with the inclusion of the effective
three-body forces. The hatched strips in Figs. 10–11
show the results for normal (nonsuperconducting) beta-
equilibrated matter, and the widths of the strips illustrate the
uncertainty in calculations related to the different models of
the nuclear interactions as considered inRef. [39]. The lower
boundaries correspond to the nuclear interaction described
by theArgonnev18 potential with addition of the three-body
forces in the phenomenological Urbana IX model. The
upper boundaries correspond to the same potential, but

(a) (b)

(c) (d)

FIG. 11. Same as Fig. 10 but for the BSk21 EOS. Notations are the same as in Fig. 10.
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another model for the three-body interaction based on the
meson-nucleon model of the nucleon interactions. More
details can be found in Refs. [39,46]. The filled strips in
Figs. 10–11 represent calculations of κn and ηn for the
proton-superconducting matter. As in the case of the lepton
transport coefficients, these results are obtained by neglect-
ing the collisions with protons (they are damped exponen-
tially in the considered limit). Then the neutron contribution
to transport coefficients is mediated by the neutron-neutron
collisions only. Notice, that the results for the neutron
transport coefficients shown in Figs. 10–11 include the
corrections to variational solution [12,39]. Since κn and ηn
are calculated within specific models of the nucleon inter-
action, the obtained results are not self-consistent with EOSs
used elsewhere in the present paper. However, one expects
that the results shown here give plausible estimates for the
nucleon contribution (see Refs. [12] and [4] for more
discussion).
Since neutron-proton collisions are damped in the super-

conducting matter, respective κn and ηn values are larger
than those in normal matter (see, e.g., [8,47]). However this
increase is much smaller than the increase in lepton
transport coefficients, which are additionally boosted by
the change of the screening behavior. According to
Figs. 10–11, the relation between lepton and neutron
transport coefficients remains qualitatively the same as
in the nonsuperfluid matter. Namely, κn > κeμ, while
ηn < ηeμ. Remember (Sec. II) that the neutron transport
coefficients obey the standard Fermi-liquid behavior
κn ∝ T−1, ηn ∝ T−2 as do the lepton transport coefficients
in proton-superconducting matter.
All calculations above rely on the zero-temperature

approximation T=Δ≲ 0.2. In this limit, it is enough to
use the expressions Eqs. (18)–(20) for the proton part of the
transverse screening. Since this screening is static, the
lepton dynamical screening, which in the leading order is
proportional to ω, see Eq. (14), was neglected. In the
Pippard limit this is possible when ω ≪ πΔ=r, where
r ¼ ðp2

Fe þ p2
FμÞ=p2

Fp ≈ 1. Since typically ω ∼ T, this is
always justified in our approximation. In the London limit,
the similar comparison requires ω ∼ T ≪ 4=ð3πÞqMvFp=r.
This requirement becomes stronger with lowering density,
and transforms to T ≪ 109 K for the BSk21 and HHJ
EOSs at nB ≈ 0.5n0.
When the temperature starts to increase, the superfluid

density of protons nsp decreases and the Meissner momen-

tum qM ∝ n1=2sp also decreases. The screening becomes
temperature-dependent. However, at low q it is approx-
imately constant, moreover the change of the screening
behavior from the London one to the Pippard one occurs at
the temperature-independent value q ∼ ξ−10 , where ξ0 ≡
ξðT ¼ 0Þ [28]. Therefore, qualitatively, the results of the
above analysis hold if one takes A ¼ πqMðTÞξ0 (now A is
not related to ϰ which is independent of T). At a given

density, A decreases with increase of temperature making
London limiting expressions more appropriate. Transport
coefficients start to decrease, and in the leading order their
temperature behavior is given by Eqs. (27) and (28),
providing temperature-dependent qMðTÞ is used in this
case. Such approach is possible until the dynamical part
of the proton polarization function and the lepton contri-
bution (14) start to be important. Thus, at the intermediate
temperature theω dependence of the transverse polarization
function needs to be taken into account, that complicates the
calculations [7,8]. In the same region, the lepton-proton
collisions start to be important that additionally decrease the
transport coefficients. The consideration of the lepton-
proton collisions is less straightforward since in the region
of small momenta qvFp ∼ Δ the renormalization of the
proton current is necessary (e.g., [27,48]). In addition,
because of the gap in the proton spectrum, typical transferred
energy is of the order of Δ and the limiting approximation
qvFp ≫ ω is not justified in the London limit. Fortunately,
due to the exponential suppression of the lepton-proton
collision frequencies, these effects need to be taken into
account relatively close to the critical temperature where
ΔðTÞ ∼ T. Then the approximation qvFp ≫ ω is valid since
ω ∼ Δ ∼ T. Clearly, the calculations of the transport coef-
ficients in the transition region 0.35Tcp ≲ T ≲ Tcp are more
involved than in the simple zero-temperature case. However,
it seems sufficient in applications to construct the smooth
interpolation between the results of the present paper at
T < 0.35Tcp and the normal matter results at T > Tcp.

V. CONCLUSIONS

I have calculated the electron and muon shear
viscosity ηeμ and thermal conductivity κeμ in the proton-
superconducting core of the NS based on the transport
theory of the Fermi systems. The present results are
applicable at the low temperatures, T ≲ 0.35Tcp, and differ
from available calculations [7,8] by the corrected account
of the screening of the electromagnetic interaction when the
protons are in the paired state.
The variational results for the thermal conductivity and

for the shear viscosity are obtained from Eqs. (1) and (2)
using the appropriate collision frequencies. According to
Secs. III B–III C, Eq. (23) with Eq. (A3) can be used for
thermal conductivity calculations. For the shear viscosity, it
is enough to use the leading-order contributions in q in
Eqs. (35)–(38). The explicit expressions for these contri-
butions are given by Eqs. (A5)–(A7). Finally, the simplest
variational solution works well for ηeμ, while for κeμ
additional factor Cκ ¼ 1.2 should be used in Eq. (1) to
correct the variational result.
The main conclusions of the present study are as follows:
(i) In the superconducting NS cores, lepton transport

coefficients obey the standard Fermi-liquid temper-
ature dependence κeμ ∝ T−1, ηeμ ∝ T−2 in contrast
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to the situation in normal NS cores where
κeμ ≈ constðTÞ, ηeμ ∝ T−5=3. This is a consequence
of the static regime of the screening of electromag-
netic interactions. The screening in the transverse
channel is dominated by the proton contribution.

(ii) At a given density, κeμ and ηeμ increase with increase
of the proton critical temperature Tcp (increase of the
gap Δ). At large densities, where the typical trans-
ferred momentum q is large so that the Pippard limit
for the transverse screening is applicable, one finds
κeμ ∝ Δ and ηeμ ∝ Δ1=3. In the opposite limit of low
densities, where the transverse electromagnetic in-
teraction is screened by the Meissner momentum
(the London limit), κeμ and ηeμ are independent ofΔ.

(iii) In the general situation relevant for the NS cores, the
whole range of momentum transfer is important,
both limiting expressions overestimate transport
coefficients, and the complete results developed
here shall be used. However, in the case of the
superconductivity of the second kind it is enough to
take the London limit for transverse screening and
use corresponding limiting expressions for the trans-
verse part of the collision frequencies. In the case of
the type-I superconductivity, the Pippard limit is
more appropriate, although it is recommended to
rely on the complete result in this limit.

(iv) Both limiting expressions can be used to estimate the
transport coefficients from above. In this respect, the
expression in London limit is more interesting since
it gives the gap-independent boundary.

(v) As in the case of the normal matter [4,12], leptons
give dominant contribution to the shear viscosity
while neutrons dominate the thermal conductivity.

Since the consideration of the lepton transport coeffi-
cients presented here does not rely of the specific EOS
properties, the conclusions (i)–(iv) are universal in a sense
that they are valid for any npeμ EOS of the dense matter in
NS cores. In contrast, the conclusion (v) is model-depen-
dent and need to be taken with caution. The neutron
transport coefficients shown in Figs. 10–11 are calculated
for different nucleon interactions, but within the single
many-body approach, namely the Brueckner-Hartree-Fock
scheme. Thus it is in principle not excluded that the
conclusion (v) can fail for a specific microscopic model
that produces significantly different values of κn and ηn
than used here. Ideally, the neutron transport coefficients
need to be calculated from the same microscopic model of
the nucleon interaction as the EOS which is not a
straightforward task. The detailed discussion of the neutron
transport coefficients is outside the scope of the present
paper, see Refs. [4,12] for more details.
The results obtained in the present paper can be improved

by considering the finite temperature effects in order to study
in detail the transition from the superconducting to the
normal matter. This can be done following the same lines as

described here, but considering the full temperature-depen-
dent polarization functions. In this case, however, one needs
to account for the dynamical part of the screeningmaking the
interaction ω-dependent. In this case the integration over ω
in Eqs. (3)–(6) cannot be performed analytically. Additional
care must be taken when lepton collisions with the protonic
excitations are considered. Anyway, it seems enough to
interpolate through the transition region for practical appli-
cations, however the detailed investigation of the transition
region remains to future studies.
In this paper I used polarization functions calculated in a

pure BCS framework, neglecting Fermi-liquid effects. In
the Pippard limit this is a good approximation [26].
However, the static screening in the London limit is
affected [26]. The consideration of these effects requires
separate study. Moreover, it was proposed that the coupling
between neutrons and protons in NS cores induces the
effective electron-neutron interaction [49] that modifies the
screening properties of matter [50] and can affect the lepton
collision frequencies. The effect of this interaction on the
transport coefficients can be expected both in the normal
and superconducting matter and is under investigation [50].
In the inner cores of NSs, hyperons can also appear [1]. If

they are normal (unpaired), the results of the present paper
for lepton transport coefficients can be easily generalized by
treating charged hyperons as passive scatterers. It is thought,
however, that hyperons like the protons can be paired in the
1S0 channel (since their number density is low), see e.g.,
review in Ref. [19]. In this case, their contribution to the
transverse plasma screening should be considered in the
same way as the proton one, although the situation will be
more cumbersome since more than one gap is involved.
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APPENDIX: FITTING EXPRESSIONS
FOR INTEGRALS

The transverse integrals (22) can be normalized as

In ¼ q3−nM Ĩnðxt; AÞ; ðA1Þ
where xt ¼ qM=qm and

Ĩnðxt; AÞ ¼
Z1=xt
0

xndx
ðx2 þ JðAxÞÞ2 : ðA2Þ

The integrals Ĩnðxt; AÞ were calculated on the dense grid
and fitted by analytical expressions that take into account
the correct asymptotic behavior in the limiting cases.
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For n ¼ 0 the result is

p1A1.5 þ p2A2 þ π=4 − x3t =3þ p3x4t þ Aðp4 − p5x3t Þ
1þ p6A

;

ðA3Þ

where p1¼0.0119, p2 ¼ 0.0063, p3 ¼ 0.202, p4 ¼ 0.108,
p5 ¼ 0.454, and p6 ¼ 0.14. The fit rms error is 0.4% and
the maximal fitting error is 3% at A ¼ 5 and xt ¼ 0.76.
Similarly, for n ¼ 2.

ð1þ p6AÞ−1
�
p1A4=3 þ π

4
− xt − p2Axt þ p3x2t

þA2=3ðp4 þ p5xtÞ þ A1=3ðp7 − p8xt þ p9x2t Þ
�
; ðA4Þ

where p1 ¼ 0.094, p2 ¼ 0.234, p3 ¼ 0.356, p4 ¼ 0.1859,
p5 ¼ 0.0496, p6 ¼ 0.227, p7 ¼ −0.0537, p8 ¼ −0.2345,
and p9 ¼ 0.239. The fit rms error is ∼1% and the maximal
fitting error is 7% at A ¼ 0.5 and xt ¼ 0.14.
The leading-order contributions to the collision frequen-

cies relevant for the shear viscosity problem (36)–(38) can
be given as

νη;tci ¼ 2πα2fT
2p2

Fi

m�
cpFc

It2; ðA5Þ

νη;lci ¼ 2πα2fT
2m�

cm�2
i

p3
FcqTF

�
arctan

qm
qTF

þ qTFqm
q2TF þ q2m

�
; ðA6Þ

ν0ηci ¼
4πα2fT

2m�
i pFi

p2
FcqTF

arctan
qm
qTF

: ðA7Þ
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