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Motivated by the possibility that the laws of physics could be different in other regions of space-time, we
consider nuclear processes in universes where the weak interaction is either stronger or weaker than
observed. We focus on the physics of both big bang nucleosynthesis (BBN) and stellar evolution. For
sufficiently ineffective weak interactions, neutrons do not decay during BBN, and the baryon-to-photon
ratio ηmust be smaller in order for protons to survive without becoming incorporated into larger nuclei. For
stronger weak interactions, neutrons decay before the onset of BBN, and the early Universe is left with
nearly a pure hydrogen composition. We then consider stellar structure and evolution for the different
nuclear compositions resulting from BBN, a wide range of weak force strengths, and the full range of stellar
masses for a given universe. We delineate the range of this parameter space that supports working stars,
along with a determination of the dominant nuclear reactions over the different regimes. Deuterium burning
dominates the energy generation in stars when the weak force is sufficiently weak, whereas proton-proton
burning into helium-3 dominates for the regime where the weak force is much stronger than in our
Universe. Although stars in these universes are somewhat different, they have comparable surface
temperatures, luminosities, radii, and lifetimes so that a wide range of such universes remain potentially
habitable.
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I. INTRODUCTION

The laws of physics include a number of fundamental
constants with particular values that must be specified but
cannot be derived from currently known theoretical con-
siderations. At the same time, many cosmological models
allow for the existence of other universes—regions of
space-time that trace through independent evolutionary
trajectories and are disconnected from our own [1–5].
Moreover, the values of the fundamental constants could,
in principle, be different in these other universes. This
scenario thus posits a vast ensemble of universes, often
called the multiverse, where the various subregions sample
the different possible versions of the laws of physics
[1,6,7]. Many authors have suggested that sufficiently large
variations in the laws of physics would result in a lifeless
universe, so that only small changes to the fundamental
constants are allowed [8–10]. The goal of this paper is to
consider the effects of changing the strength of the weak
nuclear force and assess the potential habitability of such
scenarios.

Previous work has shown that universes where the weak
force is absent entirely could still be habitable for a range of
values of the other cosmological parameters and funda-
mental constants [11,12]. These papers considered particle
physics models and cosmological issues [12], as well as
numerical simulations of big bang nucleosynthesis (BBN)
and stellar evolution [11]. However, previous treatments
have not addressed the full implications for universes in
which the weak force is weaker than in the Standard
Model of particle physics, but still present, or cases where
the weak force is stronger. This present paper addresses
these more general cases by allowing the strength of the
weak nuclear force to vary across the full range of possible
values. We focus on nuclear processes, specifically,
BBN and stellar evolution, and find the strengths of the
weak force that allow for universes to be potentially
habitable.
The strength of the weak interaction is a fundamental

feature of the Standard Model of particle physics (for
a textbook treatment, see [13]). The weak interaction
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determines the rate of beta decay of free neutrons as well as
those bound in nuclei. It also controls the rate of helium
production in the pp chain for low-mass stars because the
weak force must act to convert two of the protons into
neutrons. Finally, the weak force determines the cross
sections for neutrino interactions, which provide an energy
drain from stellar interiors and play an important role in the
successful detonation of supernova explosions. If the weak
force is even weaker than in our Universe, neutron decay
will be slower and neutrino interactions will be less
effective. In the opposite case with stronger weak inter-
actions, neutrons decay rapidly and neutrinos interact with
larger cross sections. These processes affect the yields of
light elements emerging from BBN and nuclear reactions in
stellar interiors. Both of these processes are important for
determining the potential habitability of a universe.
For the case of the weakless universe, BBN and stellar

evolution play out as follows: The epoch of BBN deter-
mines the chemical composition of the Universe for the first
generation of stars and has implications for further gen-
erations. If nuclear reactions are too effective during BBN,
then a universe could process essentially all of its protons
and neutrons into heavier elements, leaving no hydrogen
behind to make water. In conventional BBN, neutrons start
to decay before the onset of BBN so that protons out-
number the neutrons by a factor of 6–7 (depending on when
the accounting is done). After essentially all of the neutrons
are incorporated into nuclei, mostly helium, this mismatch
leads to leftover protons [14]. In the absence of the weak
force, however, neutrons do not decay. With equal numbers
of protons and neutrons, the Universe faces the danger of
burning all of its baryons into helium and heavier nuclei.
This fate can be avoided if the nuclear reactions cannot
proceed to completion during the brief window of time
when nucleosynthesis takes place. In particular, lower
baryon abundances lead to lower reaction rates so that
even a weakless universe can retain protons. Previous work
shows that if the baryon-to-photon ratio η is smaller by a
factor of ∼100, the helium and hydrogen abundances are
the same as in our Universe [11,12]. Other chemical
abundances are not the same, as more deuterium and
helium-3 are produced and free neutrons remain. Later
in cosmic history, these nuclear species play an important
role in stellar evolution, which is primarily powered by
deuterium burning in weakless universes.
With scenarios for both the conventional universe and

the weakless universe worked out, this paper considers both
the intermediate realm where the weak force is weaker than
in our Universe and the opposite case where it is more
effective. The weak force has both a strength set by the
Fermi constant GF ≃ 1.16 × 10−5 GeV−2 ≃ ð293 GeVÞ−2,
and a range determined by the mass scale of intermediate
vector bosons MW ∼ 80 GeV. In this treatment, we keep
the masses of all particles the same as in our Universe,
but we allow the coupling strength and equivalently the

Fermi constant to vary, as outlined in Sec. II. One important
quantity in the problem is the neutron lifetime τn, which is
mediated by the weak force, and can be written in the form

τ−1n ¼ G2
F

2π3
ð1þ g2AÞm5

eλ0; ð1Þ

where gA ≈ 1.26 is the axial-vector coupling for nucleons
and where λ0 ≈ 1.636 is a dimensionless parameter. Here
we specify variations in the weak interaction strength in
terms of the neutron lifetime. The limit τn → ∞ corre-
sponds to the weakless universe.
This paper is organized as follows. We first discuss the

physical implications of changing the Fermi constant,
equivalently, the neutron lifetime, in Sec. II. Using a
state-of-the-art numerical code [15], Sec. III considers
the effects of changing τn on the output from BBN. In
this context, we allow the baryon-to-photon ratio η to vary
also. Again using a state-of-the-art numerical treatment
[16], we consider the effects of changing τn on stellar
evolution. In this context, stars of different masses are
affected differently, and even the allowed range of stellar
masses can vary. Section IV thus considers stellar evolution
over the full ðτn;M�Þ parameter space and finds the regions
that allow for working stars, as well as the dominant
nuclear-reaction chains in each regime. In Sec. V, we
examine the later stages of stellar evolution and the
chemical evolution and potential habitability of the resulting
universes. The paper concludes in Sec. VI with a summary
of our results and a discussion of their implications.

II. CONSIDERATIONS FROM
FUNDAMENTAL PHYSICS

It is not clear what effect a stronger weak interaction
would have on nuclear structure. Clearly, if the weak force
approaches the strength of the strong force, it ceases to be
perturbative, and our models of nuclear structure are no
longer viable. In addition, the nonlinear behavior is
complicated by the fact that the relative strength of the
strong and weak forces varies with the energy scale in
question. We can write the weak coupling constant in the
low-energy limit in the form

αw ¼ GFm2
P ∼ 10−5; ð2Þ

where the neutron lifetime τn ∝ G−2
F as given by Eq. (1).

Under the conditions in stellar interiors where nuclear
reactions take place, the weak force is less effective than the
strong force by ∼13 orders of magnitude. As a result, the
neutron lifetime could, in principle, be as short as τn ∼
10−22 s before nuclear reactions are changed significantly.
As an example, consider the last step in the pp chain where
two 3He nuclei come together. The resulting compound
nucleus is beryllium-6, which in our Universe disintegrates
into 4He and two free protons via the strong interaction.
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If the neutron lifetime is on the order of the strong-
interaction timescale, beryllium-6 would decay into lith-
ium-6 at a rate competitive with the strong branch. Such a
scenario would have profound implications for main-
sequence stars.
Note that at less extreme values of τn (equivalently,

GF), beta decay ((β) decay) will occur more readily
inside nuclei than in our Universe. For all radioactive
nuclei subject to (β) decay, the half-lives will be much
shorter. For sufficiently small values of τn, only the stable
isotope for a given mass number A will have an
appreciable abundance. In standard BBN, for example,
the A ¼ 3 isobar has contributions from both tritium T
and 3He. Much of the A ¼ 3 material is eventually
synthesized to 4He through strong and electromagnetic
reactions. T only has a single proton and so will
correspondingly have a smaller Coulomb barrier than
the Z ¼ 2 nucleus of 3He. If the weak interaction
immediately transmutes T into 3He, the rates for 4He
synthesis will decrease, which may result in a smaller
abundance of 4He than the abundance inferred from the
neutron-to-proton ratio. Those “missing” neutrons would
be in 3He nuclei which could affect stellar nucleosyn-
thesis at later epochs. However, a weak interaction strong
enough to transmute T into 3He on BBN timescales
would also hold the neutron-to-proton ratio at equilibrium
until late times. As a result, there may be few neutrons
that survive the BBN epoch, and so the relative abun-
dances of 3He and 4He could be unimportant to the first
generation of nearly-pure-hydrogen stars.
These factors related to weak versus strong nuclear

reactions may be moot, however, if the strength of the
weak force approaches that of the electromagnetic force. If
the two forces remain unified in an electroweak force, then
the photon and Z0 bosons convert to the W3 and B0

eigenstates, and again, nucleosynthesis will not operate
normally, particularly the Dðp; γÞ3He reaction in the pp
chain. At the scale of nuclear reactions in stars, this
unification occurs at τn ∼ 10−15 s. It is not clear what form
nuclear physics will take in such weakful universes.
The next problem with a weakful universe is that

neutrino interaction cross sections will be nontrivial at
stellar and BBN conditions. Neutrinos will behave more
like photons in these environments and will significantly
affect nuclear processes. In our Universe, the cumulative
optical depth of neutrinos through the period of BBN
is ∼10−12. The neutrino interaction cross section scales
inversely with the neutron lifetime, so if we set τn ≲ 10−9 s,
then neutrino interactions will exert a significant effect
on BBN. Weak nuclear reactions will maintain nuclear
statistical equilibrium (NSE) well into the BBN epoch, and
additional charged-current reactions will be involved, e.g.,

pþ p → Dþ eþ þ νe; ð3Þ

nþ n → Dþ e− þ ν̄e: ð4Þ

Conversely, high-energy neutrino spallation can dissociate
deuterons through neutral or charged-current interactions

νþ D → nþ pþ ν; ð5Þ

νe þ D → pþ pþ e−; ð6Þ

ν̄e þ D → nþ nþ eþ: ð7Þ

With these reactions occurring, we cannot take our zeroth-
order estimate of a BBN yield of 100% hydrogen for very
weakful universes.
For stars, the neutrino opacity limit is even more

stringent. The optical depth of the Sun to neutrinos is
10−9 [17]. A 1 M⊙ star in a weakful universe would become
optically thick to neutrinos at τn ∼ 10−6 s. Strong and
electromagnetic interactions will still function normally
under such circumstances, but the neutrino bath in the
stellar core will change the progression of stellar evolution,
and we can no longer accurately simulate such objects using
stellar evolution codes such as MESA, as neutrino inter-
actions would need to be included in its equation of state
and nuclear-reaction network. (It is possible to include the
effects of neutrino scattering in MESA, but this is beyond the
scope of the present paper.) Nonetheless, it is entirely
possible that long-lived stars and life-supporting planets
could exist in such a universe.
In addition to neutrino interactions, changes in the weak

interaction cross section will lead to corresponding changes
in the abundance of dark matter and its self-interactions
within dark matter halos. Under the usual assumptions for
the thermal production of weakly interacting dark matter
particles (WIMPs), the predicted abundance scales as [14]
ΩX ∝ hσvi−1 ∝ G−2

F m−2
X , where mX is the mass of the dark

matter particle, and GF is the Fermi constant. The usual
WIMP miracle is that we expect new particles (dark matter)
to have masses roughly comparable to the weak scale
(100 GeV to 1 TeV), which gives usΩX of order unity. Here
we are changing the value of GF, which would change the
expected inventory of dark matter. Since the nature of dark
matter remains unknown, further discussion is beyond the
scope of this paper.
Our analysis so far has focused on weakful universes

with shorter neutron lifetimes. For longer neutron lifetimes,
we maintain the assumption that only the strong and
electromagnetic forces determine binding energies and
stability. A longer neutron lifetime will decrease weak
interaction rates at all energy scales, and we expect
convergence to the class of weakless universes in the limit
τn → ∞. In this paper, we will take two ranges of τn
for BBN and stars. For BBN, we take τn to be in the
range between 1 and 108 s. If τn > 108 s, then the weak
interaction would fall out of equilibrium during the
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quark-hadron transition in the early Universe, which we do
not consider quantitatively. For τn < 1 s, we expect the
primordial mass fraction of hydrogen to be nearly equal to
unity as long as nuclear structure remains similar to that for
our Universe. We expand the range of τn for our stellar
calculations to be between 10−6 and 107 s, where the lower
limit ensures we can still approximate neutrinos as free-
streaming for a 1 M⊙ star. If τn > 107 s, the main sequen-
ces are virtually identical until a point where the CNO cycle
ceases to be able to power stars.

III. BIG BANG NUCLEOSYNTHESIS
WITH DIFFERENT STRENGTH OF

THE WEAK INTERACTION

A. Model

The weak interaction plays a role in multiple aspects of
BBN. Our motivation is to investigate how changes to GF
will impact BBN, but there exist other alternative methods
for this pursuit. Reference [18] considers what limits
primordial and stellar nucleosynthesis can place on the
Higgs mass scale, whereas Refs. [19,20] consider the weak
scale in BBN by changing the Higgs vacuum expectation
value (VEV). Changing the Higgs VEV will change GF
and the fermion masses of the Standard Model, assuming
that the Yukawa couplings are preserved while changing
the Higgs VEV. Both Refs. [19,20] consider how the
nuclear binding energies would change with different quark
masses by using results from lattice QCD (see references in
Ref. [19]). In this work, we will only change GF in our
calculations. In other words, we preserve the fermion
masses and binding energies by changing the Yukawa
couplings to correspond to changes in GF.
We base our BBN calculations on Refs. [15,21,22]. The

standard code from Ref. [21] assumes that the neutrinos are
decoupled from the electromagnetic plasma at all times
encompassed by the code (see, in particular, Ref. [23]).
If we change the strength of the weak interaction by
changing GF, the neutrinos will decouple at either earlier
(GF < GF;0) or later (GF > GF;0) times where GF;0 is the
value of the Fermi constant in our Universe. We can
approximate neutrino decoupling by comparing the rate
of scattering to that of the Hubble expansion rate.
Equations (3) and (5) in Ref. [24] give expressions for
the annihilation of neutrinos into charged leptons Γ and
also that of the Hubble expansion rate H,

Γ ¼ 16G2
F

π3
ðg2L þ g2RÞT5; ð8Þ

H ¼ 1.66g1=2⋆
T2

mpl
; ð9Þ

where (g2L þ g2R) is the coupling of neutrinos to charged
leptons (dependent on neutrino flavor), g⋆ is the effective

spin statistic [14], mpl is the Planck mass, and T is the
plasma temperature. If we take g⋆ ¼ 43=4 and equate
Eqs. (8) and (9), we can solve for the temperature TD,
at which neutrinos decouple from the electromagnetic
plasma. Reference [24] finds TDðνeÞ ≃ 2.4 MeV for elec-
tron-flavor neutrinos and TDðνμ; ντÞ ≃ 3.7 MeV for μ and τ
flavor. For our purposes, it is adequate to use the same value
for all three flavors, which we pick to be TD;0 ¼ 3.0 MeV,
where the 0 subscript denotes the value in our Universe. We
can determine the scaling of TD with GF or the neutron
lifetime τn from Eqs. (8) and (9),

TD ¼ TD;0

�
GF;0

GF

�
2=3

ð10Þ

¼ TD;0

�
τn
τn;0

�
1=3

: ð11Þ

Two problems arise with our scaling law in Eq. (11). First,
TD;0 is a function of g⋆ from Eq. (9). If we increase τn to
large values, neutrinos will decouple when there are non-
negligible amounts of μ and μ̄ particles in the electromag-
netic plasma. This complication would increase g⋆ which
we did not take into account in Eq. (11). Second, and
related to the first point, if there are μ particles around, that
would provide more scattering targets for neutrinos. The
result would be an increase in the (g2L þ g2R) factor in a
flavor-dependent manner for all three flavors. The temper-
ature TD;0 ∼ ½g⋆=ðg2L þ g2RÞ�1=3, so the changes in the two
quantities act to offset one another, although the ratio would
not be exactly preserved. A proper calculation of the ratio is
nontrivial as μ and μ̄ do not fully contribute to either g⋆ or
the coupling constants in the temperature range where TD;0

may reside. For simplicity, we will use the scaling in
Eq. (11) to set the decoupling temperature in our BBN
calculations.
Another complication arises if we take a long neutron

lifetime. Neutrons and protons are formed during the
quark-hadron transition of ∼170 MeV [25]. Using the
scaling in Eq. (11), the decoupling temperature and
the quark-hadron transition coincide for τn ∼ 108 s. At
this point, neutrinos would decouple before neutrons and
protons exist and would not directly influence the
neutron-to-proton ratio (denoted n=p ). The resulting
primordial nucleosynthesis is much like that of the
weakless universe [11] with neutrinos acting like dark
radiation [26]. Therefore, we limit our BBN calculations
to τn < 108 s.
The presence of μ particles and the modified neutrino

decoupling epoch present two challenges. First, μ particles
must be added to the electromagnetic plasma which will
change the equation of state. Equation (D28) in Ref. [23]
gives the time derivative of the plasma temperature during
BBN,
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dT
dt

¼ −3H
�
dρpl
dT

�
−1
�
ρpl þ Ppl þ

1

3H
dQ
dt

����
T

�
; ð12Þ

where ρpl is the energy density of the plasma (less baryons),
Ppl is the pressure exerted by all plasma components,
dQ=dtjT is the heat lost from the plasma due to nucleo-
synthesis, and dρpl=dT is the temperature derivative of the
plasma components (including baryons). In Ref. [23], the
plasma components are assumed to be photons, electrons,
positrons, and baryons. We must start our calculation when
there are μ and μ̄ present, so we must add these terms
to the energy density, pressure, and temperature derivative
of energy density. We assume that the μ particles are in
thermal equilibrium with zero chemical potential. By the
time we reach nuclear freeze-out (T ∼ 100 keV), the
equilibrium abundance of μ particles is Yμ ∼ e−mμ=T , which
is negligible compared to the electron and positron
abundances.
Second, neutrinos also need to be included in the

electroweak plasma equation of state if they do not
decouple until late times. For temperatures larger than
TD, neutrinos are included in all three plasma terms in
Eq. (12). For temperatures lower than TD, they are
decoupled and their effective temperature redshifts with
increasing scale factor. We call this temperaturelike quan-
tity the comoving temperature parameter and denote it Tcm
[see Eq. (1) in Ref. [27]].
The standard nuclear-reaction network of Ref. [23]

contains two sets of weak rates: the neutron-to-proton rates
(denoted n ↔ p rates) and the nuclear β-decay rates. The
six processes which interconvert neutrons to protons are
given schematically as

νe þ n ↔ pþ e−; ð13Þ

eþ þ n ↔ pþ ν̄e; ð14Þ

n ↔ pþ ν̄e þ e−; ð15Þ

where the forward arrow indicates proton creation, and
the reverse arrow indicates neutron creation. Each one of
the six n ↔ p rates [corresponding to a process in
Eqs. (13)–(15)] scale the same way with GF [28]

λ ∝
G2

Fð1þ 3g2AÞ
2π3

I; ð16Þ

where gA is the axial-vector coupling, and I is a phase-
space integral with units of [MeV5] and depends on the
specific process in Eqs. (13)–(15). Equation (16) for free-
neutron decay [the forward process in Eq. (15)] is con-
sistent with Eq. (1) if we take I ¼ m5

eλ0 at zero temperature.
To wit, we equate the free-neutron decay rate at zero
temperature with the vacuum decay rate, namely, 1=τn, to
give a quantitative relationship betweenGF and the neutron

lifetime [see Eq. (26) in Ref. [28]]. Once we have a value
of GF from an input value of τn, we can calculate all
six n ↔ p rates at all temperatures. Figure 1 is a plot
from Ref. [28] and gives the six n ↔ p rates of standard
BBN as a function of decreasing comoving temperature
parameter Tcm.
If neutrinos decouple from the electromagnetic plasma

at high temperatures, it is possible for there to be other
charged-current interactions involving μ particles, namely,

νμ þ n ↔ pþ μ−; ð17Þ

μþ þ n ↔ pþ ν̄μ: ð18Þ

Processes (17) and (18) are the μ-flavor analogs of (13)
and (14), respectively. We do not include a three-body
process with μ leptons in analogy with the reverse reaction
in process (15), and there is no free-neutron-decay process
into a state with muons. To calculate the forward and
reverse rates for Eqs. (17) and (18), we use the same form
of the scattering amplitude as we did for Eqs. (13)–(15)
[29]. Furthermore, we use the same Coulomb and zero-
temperature corrections for both the μ flavor and e flavor
[30,31]. The key difference between the μ-flavor and e-
flavor rates are the mass thresholds. The neutron-proton
mass difference δmnp is approximately 1.3 MeV, whereas
the electron mass is me ∼ 0.5 MeV. As δmnp > me, there
are no energy thresholds for the three forward rates in
Eqs. (13)–(15), while there are thresholds for the three
reverse rates. The muon mass is mμ ∼ 106 MeV and so is
larger than δmnp. Therefore, the forward process of
Eq. (17) does have a threshold, while the reverse process
does not. For Eq. (18), there is a threshold for the reverse

FIG. 1. The n ↔ p rates in standard BBN versus decreasing
comoving temperature parameter (equivalent to increasing time)
from Ref. [28]. Plotted for comparison is the Hubble expansion
rate H as a dotted black line.
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process and no threshold for the forward process, similar to
the e-flavor analog of Eq. (14).
The nuclear β-decay rates of the light nuclei are similar

to the n ↔ p rates. Beta decay is a charged-current process
with an amplitude which depends on G2

F. A difficulty in
calculating expressions for (β) decay is that there exists an
amplitude for nuclear transitions which do not have
analytic forms. We will assume that whatever form the
nuclear matrix element takes, it is independent of GF for
the range of values we explore here. Therefore, we scale the
β-decay rates the same way we scale the n ↔ p rates,
namely, G2

F ∝ 1=τn. In practice, our nuclear-reaction
network employs only one light-nuclei β-decay rate, that
of tritium decaying to 3He. In our Universe, τT ≃ 10 yr,
which is much longer than BBN timescales. For the tritium
decay rate to be important during primordial nucleosyn-
thesis, τn would need to be smaller by roughly 6 orders
of magnitude.
The final BBN ingredient where neutrinos play a role is

in the total energy density. The Hubble expansion rate is
proportional to the square root of the total energy density ρ.
All of the light-nuclide yields are functions of the nuclear-
reaction rates and the Hubble expansion rate. Helium-4 is
especially sensitive with a faster expansion rate increasing
the primordial mass fraction denoted YP. We adopt the
notation of the cosmological observableNeff to characterize
the neutrino energy density [32]

ρrad ¼
�
2þ 7

4

�
4

11

�
4=3

Neff

�
π2

30
T4; ð19Þ

where ρrad is the radiation energy density, and T is the
plasma temperature. We can relate the neutrino energy
density directly to Neff by taking the radiation energy
density as the sum of the neutrino and photon energy
densities

ρrad ¼ ργ þ ρν ⇒ ρν ¼
7

4

�
4

11

�
4=3

Neff
π2

30
T4; ð20Þ

⇒ Neff ¼
4

7

�
11

4

�
4=3 ρν

π2

30
T4

: ð21Þ

In this paper, we always assume the neutrinos have Fermi-
Dirac distributions with temperature parameters equal to
the comoving temperature parameter Tcm. Therefore, we
can write ρν as a function of Tcm and solve for Neff in terms
of the ratio Tcm=T,

ρν ¼ 6
7

8

π2

30
Tcm

4 ⇒ Neff ¼ 3

��
11

4

�
1=3 Tcm

T

�
4

: ð22Þ

To calculate the freeze-out ratio of Tcm=T, we use entropy
arguments [14]

Tcm

T

����
f:o:

¼
�
g⋆S;f:o:
g⋆S;dec

�
1=3

; ð23Þ

where g⋆S is the entropic degrees of freedom at a particular
epoch. The f.o. subscript denotes the electromagntic freeze-
out epoch when photons are the only plasma particles
remaining. The dec subscript denotes the neutrino decou-
pling epoch. We well consider two limits of neutrino
decoupling to obtain analytic values of the freeze-out ratio
of the temperaturelike quantities: early decoupling with
muons present and late decoupling with no electrons
present. In both limits, only photons remain at freeze-
out so g⋆S;f:o: ¼ 2. If muons annihilate after neutrino
decoupling

g⋆S;dec ¼ 9 ⇒
Tcm

T

����
f:o:

¼
�
2

9

�
1=3

⇒ Neff ≃ 1.56; ð24Þ

and if electrons annihilate before decoupling

g⋆S;dec ¼ 2 ⇒
Tcm

T

����
f:o:

¼ 1 ⇒ Neff ≃ 11.56: ð25Þ

If the neutrinos decouple during either μ� or e� annihi-
lation, then Neff will be between the two values calculated
above. Neff is close to 3.0 if neutrinos decouple in the
interlude between the two annihilation epochs.

B. Results

Standard BBN requires the baryon content of the
Universe as input. We adopt the nomenclature of
Ref. [21] and use the baryon-to-photon ratio η given as
a ratio of baryon and photon number densities

η≡ nb
nγ

: ð26Þ

We do not consider how varying the weak interaction
would modify the baryon content of the Universe.
Thermal leptogenesis of Ref. [33] has a dependence
on the mass scale in the seesaw mechanism, and so
it is unknown if a different weak scale would change
this particular model of leptogenesis. The Akhmedov-
Rubakov-Smirnov (ARS) model of leptogenesis [34] is
dependent on the Higgs VEV, but it also has dependences
on many other parameters, e.g., Yukawa couplings. The
resulting baryon asymmetry from ARS leptogenesis may
still be unchanged in a large section of its parameter
space. (See Refs. [35,36] for reviews on different lepto-
genesis scenarios.) Our calculations assume that η and
GF are independent of one another, and we will vary both
to explore the parameter space. For completeness, note
also that changing the Higgs VEV can result in instability
of the vacuum and could thus affect the potential viability
of the Universe [37].
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We first compare the neutron-to-proton rates for e and μ
flavor at large τn. Figure 2 shows various n ↔ p rates
plotted against Tcm. We choose 108 s for the neutron
lifetime, and a baryon-to-photon ratio the same as in
our Universe, namely, η ≃ 6 × 10−10 [38]. The baryon-to-
photon ratio has little effect on the shape of the curves in
Fig. 2 for η ≪ 1. The blue curves correspond to rates which
involve e-type leptons, namely, νen ↔ pe−. The solid
curve is the forward rate (neutron destruction), and the
dashed curve is the reverse rate (neutron production). The
green curves correspond to rates which involve μ-type
leptons, namely, νμn ↔ pμ−, with the same nomenclature
for solid versus dashed line style. Plotted for comparison is
the Hubble expansion rateH as a solid black line. Although
the n ↔ p rates fall below H, n=p still evolves on long
timescales, and so the muon contribution to n=p is non-
negligible. Decreasing the neutron lifetime would increase
all four n ↔ p rates (equivalent to shifting the blue and
green curves upwards in Fig. 2) while preserving H.
Freeze-out would occur later, and the contribution from
Eqs. (17) and (18) to n=p would be less significant. Notice
the general trend that all of the n ↔ p rates are roughly
equal at high temperature. At high enough temperature, the
three mass scales of interest (electron, muon, and neutron-
proton difference) are either small or comparable to the
temperature. Therefore, the charged leptons and neutrinos
are relativistic, and the amount of available phase space is
the same for all four rates. At lower temperatures, the muon

mass is important, and the rates involving muon-type
leptons become negligible.
We did not plot the rates from Eq. (18) on Fig. 2. As the

muon mass is much larger than the neutron-proton mass
difference, the forward rate of Eq. (18), namely,
μþn → pν̄μ, is nearly equal to μ−p → nνμ. The two curves
are coincident if they had both been plotted on Fig. 2. The
reverse rate of (18) suffers from a large threshold in creating
the muon mass, so it is always subsidiary to that of the
forward rate.
The mass thresholds in the n ↔ p rates of Eqs. (13)–

(15), (17), and (18) manifest differently for larger τn than
the value in our Universe. The mass hierarchy is
mμ > δmnp > me. When a neutron becomes a proton,
there is enough energy to make an electron. Conversely,
a muon incident upon a proton has enough energy to create
the neutron. As a result, there are thresholds in the reverse
rate of Eq. (13) of the e type. For the μ type, there is a
threshold in the forward rate of Eq. (17). Figure 2 shows
that the dashed green line (no threshold) has a larger rate
than the solid green line (threshold of mμ − δmnp). What is
interesting is that the blue dashed line (threshold of
δmnp −me) is larger than the blue solid line (no threshold)
over multiple Hubble times—opposite to the behavior of
the μ-type rates and different than our Universe (see Fig. 1).
This is primarily due to the fact that the neutrinos thermally
decoupled from the e�, μ� plasma at a temperature
TD ∼ 100 MeV. As the μ� annihilate, they produce e�
pairs and photons which heat the electromagnetic plasma
but not the neutrino seas. The νe are at a lower temperature,
and so the forward rate of νen ↔ pe− is smaller than the
reverse rate. Figure 2 shows that the trend eventually
reverses at low enough temperature once the threshold
for the reverse rate becomes significant.
Figure 3 gives Neff as a function of τn for η ¼ 6 × 10−10.

The curve for Neff versus τn is independent of the specific
value of η for η ≪ 1. For large τn, neutrinos decouple
before the epoch of μ� annihilation, and so Neff is smaller
than 3.0. Neff plateaus to a value of ≃1.5 for large τn,
congruent with the value in Eq. (24). The plateau would not
be an asymptote as even larger τn would imply earlier
decoupling periods when free quarks and τ particles are still
present. Our Universe sits on the plateau of Neff ≳ 3.0
in the domain 10s < τn < 105 s. We have assumed that
the charged leptons are always given by equilibrium
distributions

nl=nγ ∝
�
ml

T

�
3=2

e−ml=T; ð27Þ

where nl is the number density and ml the mass of the
charged lepton, and we have assumed that we can describe
the charged leptons with Maxwell-Boltzmann statistics—
appropriate for late times when the charged leptons are
annihilating. The decrease inNeff at τn ∼ 105 s corresponds

FIG. 2. Various n ↔ p rates and the Hubble expansion rate
plotted against the comoving temperature parameter, Tcm. The
neutron lifetime for this case is τn ¼ 108 s, and the baryon-to-
photon ratio is η ¼ 6 × 10−10. Blue curves correspond to rates
within the e-type leptons. Green curves correspond to rates within
the μ-type leptons. The solid blue (green) curves correspond to
the forward rates of Eq. (13) [(17)], whereas the dashed blue
(green) curve corresponds to the reverse rate of Eq. (13) [(17)].
Plotted for comparison is the Hubble expansion rate as a dotted
black line.
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to the end of μ� annihilation, whereas the increase inNeff at
τn ∼ 10 s corresponds to the beginning of e� annihilation.
Therefore, the length of this range is a function of the
difference in the electron and muon rest masses, although
there is no simple scaling as we must compare the end of μ�

annihilation with the beginning of e� annihilation, and both
epochs span multiple Hubble times. The location of our
Universe on the plateau informs us that the energy scale of
neutrino decoupling falls between the electron and muon
rest masses, as indicated by the ml=T scaling in the
exponential of Eq. (27). The final point to make for
Fig. 3 is that for small τn, Neff steadily increases above
3.0. Had we gone to even smaller values of τn, we would
have seen another plateau at Neff ≃ 11.5, consistent with
Eq. (25). Specifically, τn ≲ 3 × 10−6 s would put neutrino
decoupling after e� annihilation. In the case of small τn, the
plateau at Neff ≃ 11.5 would also be an asymptote, as there
are no other particles left to annihilate before photon
decoupling.
Figures 2 and 3 both depict neutrino physics in the early

Universe. The neutrinos change n=p, which eventually
affects the primordial abundances. Figure 4 shows τn versus
η at contours of constant single-proton hydrogen mass
fraction, X1H. The value of η is the final baryon-to-photon
ratio after e� annihilation, consistent with what an observer
would measure in the cosmic microwave background. We
place a red star at the value of η and τn which correspond to
our Universe. The red star falls on the 75% contour, in line
with standard BBN calculations. For small τn, the contours
steadily approach an asymptote of unity as few neutrons
survive the BBN epoch. There exist two general trends:
increasing η gives fewer free protons, and increasing τn also

gives fewer free protons. The latter trend is consistent with
the scaling that a weaker weak force allows n=p to go out
of equilibrium at earlier times and, hence, larger values.
Fewer total protons implies fewer free protons survive
nuclear freeze-out. A larger η implies faster nuclear
reactions and delays nuclear freeze-out to later times.
This trend is present for small to intermediate values of
η in Fig. 4. For larger values of η, the nuclear reactions
incorporate the free neutrons into heavier nuclides, and the
free-proton mass fraction is stagnant with increasing η.
For large η, we can make a stronger statement than a

constant X1H and say n=p is constant with large η. Figure 5
shows contours of a constant 4He mass fraction in the η
versus τn parameter space. The contours in the top right of
the parameter space (at large η and large τn) are equal to
1 − X1H to high precision. In addition, for small τn there are
very few neutrons which survive weak freeze-out and little
helium is produced. The red star in Fig. 5 denotes the values
of η and τn in our Universe and lies on the 25% contour. We
can see that in both Figs. 4 and 5, the contours are flat
horizontally and regularly spaced vertically in the local area
of each red star. The standard formula [14] relating n=p to
helium and hydrogen holds in this local vicinity

YP ¼ 2n=p
1þ n=p

; ð28Þ

X1H ¼ 1 − YP; ð29Þ

where n=p is a function of τn and independent of η.

FIG. 4. Contours of constant mass fraction of single-proton
hydrogen in the ðη; τnÞ plane, where η is the baryon-to-photon ratio
and τn is the mean neutron lifetime (in seconds). The red star
indicates the location of our Universe in the diagram. The mass
fraction of hydrogen approaches unity in the limit of small τn in the
bottom part of the figure, where BBN produces few nuclei.
Universes can be rendered sterile in the upper right part of the
diagram (large η and τn), where most of the protons are processed
into other nuclei and few are left to supply the Universe with water.

FIG. 3. Number of effective degrees of freedom Neff [defined in
Eq. (20)] as a function of the mean neutron lifetime τn. The
baryon-to-photon ratio is taken to be η ¼ 6 × 10−10 for all cases
shown here. The black line indicates our Universe. Note that Neff
is nearly constant over a wide range of τn so that our Universe is
not fine-tuned in this regard.
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In fact, the relationships in Eqs. (28) and (29) hold over
the entire parameter space shown in each figure except for
the small-η and large-τn quadrant. The n=p ratio is large in
this area, but the reaction rates are slow, and so YP is
underproduced with respect to the relation in Eq. (28).
Figure 6 shows contours of constant deuterium mass
fraction in the τn versus η plane. In the upper left quadrant,
we see that XD reaches the 10% level, roughly 4 orders of

magnitude larger than the calculation using the values of η
and τn from our Universe. n=p is still largely preserved, as
a deuteron has the same ratio of neutrons to protons as a 4He
nucleus. One issue regarding deuterium, which may be
relevant for habitability, is the abundance of water. We do
not know the minimum hydrogen abundance for life-
sustaining water or if there is such a nonzero minimum.
Reference [11] argues that a weakless universe with a low
value of η and n=p ≃ 1 does not preclude abundant water
due to a relatively large abundance of deuterium. In the
weaker universes in the upper left quadrant of Fig. 6, X1H is
larger than XD, so there is no problem with a lack of
hydrogen in this area of the parameter space. Figure 4
shows that the upper right quadrant of the parameter space
suffers from a small X1H, which is coincident with small XD

in Fig. 6. Therefore, deuterium is not a solution to the
problem of a lack of hydrogen for water in a weaker
universe.
We have only included the β-decay rates and n ↔ p

rates in the weak sector of our nuclear-reaction network, but
we can give a qualitative description of what could occur in
the presence of other weak interaction rates. In a weakful
universe, neutrinos can interact with nuclei through neutral
and charged-current processes which could yield rates
comparable to the strong and electromagnetic nuclear
interactions. (These are not included in the current code.)
We included examples of weak interactions with deuterons
in Eqs. (3)–(7). Nuclear excited states begin a few MeV
above the ground. At temperatures comparable to the
nuclear excited states, the strong and electromagnetic
nuclear rates are fast enough to keep the lightest nuclei
in NSE. We would expect that enhanced weak interactions
would keep the nuclear abundances in NSE to lower
temperatures. This would not necessarily cause a decrease
in the total n=p ratio, as nuclear reactions would supple-
ment the n ↔ p rates in keeping n=p in equilibrium. For
example, the neutrino charged-current interaction with
deuterons, Eq. (6), gives a secular abundance of

YD ∼ Y2
p

nb
ðmTÞ3=2 e

ð2mp−mDÞ=T ð30Þ

∼ Y2
pη

�
T
m

�
3=2

eð2mp−mDÞ=T; ð31Þ

where Yp is the free-proton abundance and m is the baryon
mass. If we assume Yp is still of order unity, we see that we
can have a significant deuterium abundance at low temper-
ature as 2mp > mD. If this is the case, then BBN would
result in significant production of deuterium and perhaps
heavier nuclei at small τn rather than resulting in nearly all
1H. We stress that this is a NSE expression and, therefore, a
rough approximate, as under these conditions, the Universe
will not be in NSE.

FIG. 6. Contours of constant mass fraction of deuterium in the
ðη; τnÞ plane, where η is the baryon-to-photon ratio, and τn is
the mean neutron lifetime (in seconds). The red star indicates the
location of our Universe in the diagram. Only trace amounts of
deuterium are produced by BBN over the entire plane, except for
the upper left part of the figure where τn is large and η is small.

FIG. 5. Contours of constant mass fraction of helium-4 in the
ðη; τnÞ plane, where η is the baryon-to-photon ratio, and τn is
the mean neutron lifetime (in seconds). The red star indicates the
location of our Universe in the diagram. Little helium is produced
during BBN for the lower left part of the diagram (small η and τn).
In contrast, the mass fraction of helium becomes large (and,
hence, problematic) in the upper right part of the figure (large η
and τn).
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IV. WEAKER AND WEAKFUL STARS

We computed evolutionary models of weaker and
weakful stars with the stellar evolution code MESA. We
created nuclear-reaction networks that reflected a different
strength of the weak force by multiplying the pp and pep
reaction rates by the inverse of the ratio of the neutron
lifetime to that in our Universe (τn;0=τn). Even at the
smallest value of τn we consider, the Dðp; γÞ3He reaction is
fast compared with the pðp; eþνÞD reaction (seconds
versus days), so we retain MESA’s treatment of the two
as a single reaction where every pp reaction is immediately
followed by a D-p reaction to produce 3He. For sufficiently
large τn, we make an additional change to reflect the fact
that beta decays in the nuclear-reaction chains will be
longer than the lifetime of the star. In this situation, we
delete the CNO reactions and the beta decays of 7Be and 8B
from the nuclear-reaction network. The nuclear reactions in
later stages of stellar evolution are all strong reactions, so
they do not need to be changed.
In the results of our simulations, weaker and weakful

stars can be characterized by the dominant energy-produc-
ing process powering them. This process varies with the
neutron lifetime, stellar mass, and composition but follows
some general patterns. In this section, we consider four
general cases: first, zero metallicity (population III) and
solar metallicity (population I) stars at constant η holding
the cosmological parameters constant. Then, we consider
zero metallicity and solar metallicity at a constant 4He
fraction, effectively adjusting η to keep the 4He fraction
produced by BBN as nearly constant as possible. A
constant YP combined with a small τn requires a value
of η larger than the range we explore, and for a sufficiently
small τn, it may be unphysical. Nonetheless, we examine
this scenario as a useful point of reference to give a fuller
picture of the nuclear processes at work. Stars in small-τn
universes would likely form with a near 100% 1H compo-
sition and would have a lifetime ∼33% longer than the ones
we model. We consider a range of τn ranging from the age
of the Universe (at which point, free neutrons survive to the
epoch of star formation, and the scenario is functionally
equivalent to the weakless universe) down to the limit of
10−8 to 10−4 s, at which our models of stellar evolution
break down. We also note the point at which our models of
BBN break down.
Figure 7 shows the main sequence for stars over the

range of τn we study from 10−6 to 107 s. The latter is
virtually identical to the main sequence at long τn out to the
point where the CNO cycle shuts down because this is the
dominant process in this range (see Sec. IVA). In this
figure, we plot only population I stars in the constant-η
case, because the main sequence does not look significantly
different in the other cases, except for being bluer for
population III, as expected. In other words, stars look fairly
similar over a wide range of η and τn as long as they

actually attain core hydrogen burning, which is the longest
stage of their life cycle and, thus, comprises the main
sequence over most of the parameter space we study. A
longer neutron lifetime (and a weaker weak force) makes
the main sequence bluer but with a similar shape. A shorter
neutron lifetime makes the main sequence both redder and
steeper, approaching the Hayashi track, where more effi-
cient strong-burning stars fall [11]. A detailed study of the
effects of varying the strength of the weak force is given in
the following subsections.

A. Dominant nuclear processes

This parameter study also requires a clear definition of
what a star is. In some parts of the parameter space, “stars”
will form with a large fraction of deuterium. This means
that deuterium burning will be much more important than
in our Universe, and long-lived deuterium-burn objects
could exist. This raises the question of how to distinguish a
star from a brown dwarf in such a case. For the purpose of
this paper, we define a deuterium-burning object to be a star
if it has a composition of at least 2% deuterium by mass,
for two reasons. First, it is approximately the minimum
deuterium fraction required for a minimum-mass star to
have a main-sequence lifetime of 1 Gyr, and, thus, it is
the lowest deuterium fraction that is important for habit-
ability purposes. Second, as τn increases to infinity with η

FIG. 7. H-R diagram showing the stellar main sequence for
universes with different strengths of the weak interaction. The
curves show the main sequence for universes with neutron
lifetimes ranging from 10−6 s (blue) to 107 s (red). The stellar
masses range from 100 M⊙ down to the minimum mass
appropriate for the given universe (as indicated in Fig. 9).
Universes with neutron lifetimes longer than 107 s have essen-
tially identical main sequences, which are that of the weakless
limit. Universes with lifetimes shorter than 106 s involve new
nuclear processes relating to neutrino interactions and cannot be
modeled with existing stellar evolution codes. All stellar models
use the starting composition for population I stars in universes
with η ¼ 10−9 (see text).
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remaining the same as in our Universe, the limiting fraction
of light hydrogen is also ∼2%, which provides a nice
symmetry with our deuterium fraction limit. A deuterium
fraction of ≥ 2% never occurs in either of our constant-η
cases (see Fig. 6), but it occurs in both of our constant-YP
cases for τn ≥ 3000 s.
Stars can be classified into distinct domains in M − τn

space according to the most important nuclear process that
powers them. Perhaps surprisingly, a large part of the
parameter space allows long-lived stars to form, although
the nuclear processes may vary greatly. We map out these
domains in all four of our cases in Figs. 8–11.

A few of the domains are nearly identical in all four
cases. If the neutron lifetime is shorter than in our Universe,
the pp chain will be more rapid, and main-sequence stars
will run more efficiently, although nuclear-burning rates
will not be significantly faster. Stars will reach an equi-
librium sooner by switching on earlier in the collapse
process, resulting in slightly cooler but brighter stars,
analogous to strong-burning stars. The effect on the
minimum stellar mass appears to be statistically insignifi-
cant and obscured by the limitations of MESA in calculating
models for stars so far from those in our Universe.
However, one notable effect is that with the pp chain

FIG. 8. Regions denoting dominant nuclear processes in population III stars in the space of stellar mass and neutron lifetime. We
define the dominant process as the process that powers the star for the longest fraction of its lifetime, so some adjacent regions may
undergo the same series of stages of nuclear burning but for different periods of time. For this plot, the baryon-to-photon ratio η of our
Universe is maintained, such that regions with high neutron lifetimes are extremely 4He rich. The gray region denotes parts of the
parameter space where long-lived nuclear-powered stars cannot exist. In the white region, the optical depth of stars (and BBN at the far
left) to neutrinos is greater than unity, and we cannot simulate nuclear processes with the new neutrino interactions that this introduces.

FIG. 9. Same as Fig. 8 but for population I stars, resulting in a more prominent CNO cycle and more neutron decay by the time of star
formation.
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being more efficient, it dominates over the CNO cycle at
much higher masses. For population I stars, the pp chain
dominates up to ∼20 M⊙.
We note that in MESA there can be a considerable margin

of error in the boundaries of the domains, most notably in
the minimum stellar mass. For example, for stars in our
Universe, the smallest mass that MESA correctly simulates
with hydrogen fusion is 0.12 M⊙ compared with 0.08 M⊙
for real stars. Thus, the jagged edges seen in a few of
the boundaries are probably artifacts of the code and not
statistically significant.
Another effect of a stronger weak force is that if

τn < 30 s, then BBN will process nearly all baryons into
free protons because neutrons will decay before nuclei can

form. However, this will only have the effect of causing the
first generation of stars to be made of 100% hydrogen. (For
this range, we must set YP ¼ 0 in all four cases.)
For even shorter neutron lifetimes, the pðp; eþÞD step of

the pp chain will be faster than the 3Heð3He; 2pÞ4He step,
and hydrogen burning will occur in two stages: first, the pp
and D-p reactions to produce 3He, and second, 3He burning
to produce 4He. The point at which this occurs varies with
mass from τn ∼ 1 s for the smallest stars to τn ∼ 10−6 s for
the largest, as the reaction rates vary differently with the
temperature.
Interestingly, the 3He-burning stage is fairly consistent in

timescale regardless of τn; for a 1 M⊙ star, it consistently
lasts about 500 Myr. Thus, in some parts of the parameter

FIG. 10. Same as Fig. 8 but with η allowed to vary so that the helium fraction from BBN, YP, is held constant. In this scenario, if
τn > 3000 s, brown dwarfs will form with enough deuterium to become long-lived nuclear-burning objects defined as stars for the
purposes of this paper.

FIG. 11. Same as Fig. 10 but for population I stars, resulting in a more prominent CNO cycle and more neutron decay by the time of
star formation.

ALEX R. HOWE, EVAN GROHS, and FRED C. ADAMS PHYS. REV. D 98, 063014 (2018)

063014-12



space (specifically, low mass and a short neutron lifetime),
the 3He-burning stage of a star’s life cycle will last longer,
while in other parts, the pp-burning stage will last longer.
Because we are addressing the phenomenological aspect of
how stars appear in a weakful universe for the largest
portion of their lives, we color these two cases as separate
regions.
At the opposite end of the scale, if the neutron lifetime is

longer than the age of the Universe (for which we have
adopted the somewhat short 1015 s for population III stars
and the present age of the Universe for population I stars),
stars will form with a majority of their hydrogen in the form
of deuterium and will be powered by D-D fusion. Such
universes will approach the appearance of the weakless
universe discussed in Ref. [11].
The most important difference between the population

III (Z ¼ 0) and population I (Z ¼ 0.02) cases is that the
CNO cycle is more dominant in population I stars. The
CNO cycle can still operate in metal-free stars, however.
This occurs if the pp chain is weak enough that the star’s
core reaches a temperature of 100 MK before pp burning
begins. At this temperature, the 3-α process rate will be
sufficient to produce a trace (∼10−9) of CNO material. This
3-α rate is not sufficient to support the star on its own, but at
this temperature, the CNO rate is high enough to do so even
for trace amounts [39]. The other major difference in the
young Universe where population III stars form is that
stars can form with large amounts of deuterium with shorter
neutron lifetimes (and, thus, fewer neutrons to form
deuterium) than population I stars.
There are two major differences between the constant-η

and constant-YP cases. First, in the constant-η case, the
deuterium fraction produced by BBN never exceeds 2%, so
we do not count any low-mass deuterium-burning stars in
these cases. The other difference is that over much of the
parameter space, constant-η stars are denser than in our
Universe. This is because stars in universes with a longer
neutron lifetime and the same baryon abundance will form
with a greater amount of helium. This higher density results
in smaller minimum masses for all nuclear processes
including, for example, allowing even low-mass stars to
undergo CNO burning.
Generally, as the weak force is made weaker, stars will

transition from the pp chain to the CNO cycle as their main
power source, with the crossover point (which is 1.3 M⊙ in
our Universe) occurring at lower masses. At the same time,
the minimummass for pp burning increases until it reaches
the minimum mass for CNO burning. The minimum CNO-
burning mass is lower than in our Universe even for a
similar composition (for which it falls at 0.23 M⊙) because
with a weaker pp chain, the core is able to contract further
and reach a higher temperature before reaching an equi-
librium state. In the constant-η cases, the minimum CNO-
burning mass for the denser stars that occurs there is even
lower, at 0.06 − 0.09 M⊙.

The rate of the CNO cycle normally depends on the
strong-burning rates of proton capture reactions. However,
it also involves two weak decays that are very fast on stellar
timescales: 13N and 15O, both of which have lifetimes of
minutes in our Universe. As long as these decays remain
fast relative to the lifetime of the star, the CNO cycle is not
affected by the strength of the weak force. However, if these
decays are longer than the CNO timescale, then the CNO
cycle will be suppressed.
At solar metallicities, stars have on the order of 1 CNO

nucleus for every ∼100 4He nuclei produced. In stars where
the CNO cycle dominates, this necessarily means that the
CNO timescale is on the order of 1% of the main-sequence
lifetime. For the most massive stars, the CNO timescale is,
thus, on the order of 10 000 years. The 13N and 15O decay
times will be comparable to the CNO timescale for massive
stars at τn ∼ 3 × 1011 s and longer for less massive stars. If
the weak force is weaker than this, the CNO cycle shuts off,
and the pp chain is very weak, leaving the 3-α process as
the dominant energy source for massive stars in this region
of the parameter space.
For population III stars, the CNO abundance will be

much smaller at ∼10−9, and the CNO timescale will be
proportionately shorter: as little as 3 × 104 s for the most
massive stars. The 3-α process will dominate at signifi-
cantly shorter τn in this case.
The minimum mass for helium burning also depends on

the stellar density. For the constant-η case, in the helium-
rich high-τn region where it is most important, the mini-
mum mass is 0.35 M⊙, similar to our Universe. For the
constant-YP case, which is more hydrogen rich, the mini-
mum mass is 1.2 M⊙. If the neutron lifetime is sufficiently
long, stars smaller than this mass will form with the CNO
cycle switched off.
These combined factors allow a potential gap in the

stellar mass function for certain neutron lifetimes, where no
significant nuclear processes are available to them. These
are stars for which the neutron lifetime is too long for the
CNO cycle to function but too short for significant
deuterium to remain to produce deuterium-powered stars,
and are too small to fuse helium. This gap appears in the
population I region plot for the constant-η case (Fig. 9).
However, this applies differently to the constant-YP case.

Here, for τn > 3000 s, stars form with significant amounts
of deuterium approaching 10%, and deuterium fusion
becomes an important stellar process. Brown dwarf-mass
objects will be low-mass D-p burning stars by our
definition. More massive stars larger than ∼0.1 M⊙ will
undergo a second stage of fusion, burning 3He to 4He. This
process produces surplus protons, which can only be
incorporated into 4He by being converted to neutrons by
weak reactions, so still more massive stars will undergo
a third CNO-burning stage, converting the remaining
hydrogen to helium. This mass limit varies from 0.23 to
0.9 M⊙ depending on metallicity. For these objects, the
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CNO-burning phase is the longest and produces the most
energy. In the upper right region where the 3-α process
dominates for deuterium-poor stars, 3He burning is again
the dominant process for these deuterium-rich stars.

B. Evolutionary tracks

We examine the evolutionary tracks of stars in universes
with a range of neutron lifetimes in Figs. 12 and 13. These
figures show the evolution of a 1 M⊙ star in the constant-η
case and the constant-YP case, respectively, both at solar
metallicity. The zero-metallicity cases do not look dramati-
cally different, except for being somewhat hotter and less
luminous, as expected for zero-metallicity stars.
In the constant-η case, the most significant change when

varying the neutron lifetime is in the stellar lifetime. As
described above, a longer neutron lifetime leads to a lower
hydrogen fraction, which shortens the stellar lifetime.
These low-hydrogen stars are also denser, causing them
to be hotter and more compact, which further shortens the

stellar lifetime. The main sequences approach a limit at
τn > 107 s, where a 1 M⊙ star has a lifetime of ∼10 Myr, a
luminosity of ∼100 L⊙, and a surface temperature of
∼17; 000 K. Longer neutron lifetimes result in main
sequences nearly identical to τn ∼ 107 s.
As the neutron lifetime is decreased and hydrogen fusion

becomes more efficient along with hydrogen becoming
more abundant, stars are longer lived, cooler, and fainter.
In particular, the luminosity reaches a minimum at
τn ¼ 1 − 100 s, where the initial hydrogen fraction is
100%. Beyond this point, as the ignition temperature of
hydrogen becomes still lower, fusion begins and the stars
reach equilibrium earlier in the collapse process, resulting
in stars that are larger, brighter, and cooler than in our
Universe, approaching the properties of red giantlike
strong-burning stars like those in a weakless universe.
In the constant-YP case, on the other hand, stellar

lifetime does not vary greatly with τn, all falling in the
range of 1.5–20 Gyr, because the initial composition is not
radically different except for the deuterium abundance. For
universes more weakful than our own, we see the same
progression of larger, redder stars as the neutron lifetime

FIG. 12. Evolution of the effective temperature, luminosity, and
radius of a 1 M⊙ star in universes with constant η and a neutron
lifetime ranging from 10−6 to 107 s. Neutron lifetimes longer than
107 s do not have a significant influence on stellar evolution.
Most of the differences in stellar evolution between models are
due to the helium fraction of the star.

FIG. 13. Same as Fig. 12 but for universes with constant YP.
Two distinct types of evolutionary tracks are seen: those for stars
with τn > 3000 s, which form with significant amounts of
deuterium, and those for stars with τn < 3000 s, which do not.

ALEX R. HOWE, EVAN GROHS, and FRED C. ADAMS PHYS. REV. D 98, 063014 (2018)

063014-14



decreases. However, for less weakful universes, we see a
single, distinctive evolutionary track for all of the models
we plot. At constant YP, 1 M⊙ stars have very similar
compositions and the same nuclear processes operating for
τn ranging from 104 to 1015 s. These stars show the three
phases of nuclear burning described above.
For these high-deuterium stars, deuterium burning

ignites early in the contraction process, resulting in a large,
cool, red giantlike star for the first ∼100 Myr of its life.
Once the deuterium is exhausted, the star rapidly contracts
to a near-main-sequence state in which 3He burning occurs,
lasting 2–3 Gyr. (This is the most analogous stage to the
main sequence in our Universe.) This is followed by a
miniature giantlike expansion phase in which the star
brightens by a factor of ∼20 before core hydrogen burning
begins (in this case, the CNO cycle), and the star falls back
to the main sequence for the longest stage of its life cycle
lasting 4–5 Gyr. After this, post-main-sequence evolution
occurs similarly to our Universe, since this stage is powered
by strong-burning reactions.
To give a clearer picture of the evolution of these

deuterium-rich stars, in Fig. 14 we plot the evolutionary
track for a representative 1 M⊙ deuterium-rich star on the
H-R diagram compared with the evolutionary track for our
Sun up to the end of the main sequence. The deuterium-rich
star descends the Hayashi track only after the end of
deuterium burning to land on the main sequences during

3He burning. The star then expands along a small giantlike
branch before contracting again to land higher on the main
sequence during core hydrogen burning.

V. CHEMICAL EVOLUTION AND HABITABILITY

For most of the parameter space considered in this study,
chemical evolution proceeds similarly to that in our
Universe. The same nuclear reactions provide power in
stellar cores, especially during post-main-sequence evolu-
tion, although they proceed at different rates. As a result,
only the abundances of the lightest isotopes are signifi-
cantly affected by the strength of the weak force. A stronger
weak force results in a lower helium fraction due to much
lower helium production during BBN. Such universes
could also have a dramatically higher cosmic 3He abun-
dance because in a large region of the parameter space, 3He
production occurs separately from 4He production. Mean-
while, a weaker weak force, on the other hand, can result in
a lower light hydrogen (proton) abundance and a higher
deuterium abundance from BBN.
A stronger weak force would result in core-collapse

supernovae being more efficient and dispersing more
oxygen and other α elements because the neutrinos that
power them would interact more strongly. However, this
trend may reverse for an even stronger weak force as
neutrinos would become trapped in the core and, thus,
unable to impart sufficient momentum to the overlying gas
layers to eject them, which would then cause the supernova
to fail [6]. If core-collapse supernovae do function, a
stronger weak force would also cause r-process yields
from neutron star mergers to decrease as (β) decay becomes
faster, and the r process comes to more closely resemble the
s process. Since the r-process timescale is ∼100 ms [40]
and typical β-decay times on the neutron-rich side of the
line of stability are on the order of 10 to 104 s, the r process
will closely resemble the s process at τn ≲ 10−2 s.
For a sufficiently weaker weak force, one important

change occurs to chemical evolution in the CNO cycle. If
the lifetimes of 13N and 15O are similar to the CNO
timescale, it will both slow the CNO cycle as described
above and also open up new reaction pathways in the
various branches of the cycle:

13Nþ p → 14O;
14O → 14Nþ eþ þ νe;

17Fþ p → 18Ne;
18Ne → 16Oþ 2p;

18Fþ p → 19Ne;
19Ne → 19Fþ eþ þ νe; ð32Þ

and so on. With more possibilities to continue adding more
protons, it is unclear where the CNO cycle will halt under

FIG. 14. The two general types of evolutionary tracks for a
1 M⊙ star in universes with constant YP plotted on the H-R
diagram. The black curve is the evolutionary track for our Sun,
more generally representing stars with τn < 3000 s. The red
curve is the evolutionary track for τn ¼ 108 s and more generally
represents stars with τn > 3000 s.
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typical stellar conditions by ejecting an alpha particle as in
the 15Nþ p → 12Cþ 4He step of the CNO-I branch. It may
halt at fluorine, as in the hot CNO cycle in our Universe, or
it may continue further under cooler conditions. It is
plausible that this would result in significantly higher
fluorine and neon abundances and less carbon than in
our Universe.
Another effect of a weaker weak force is that weaker

neutrino interactions are likely to cause core-collapse
supernovae to fail, as in the weakless universe. In the
weakless universe, elements heavier than oxygen are dis-
persed essentially only by type Ia supernovae. The core-
collapse supernovae needed to produce the α elements and
the neutron stars needed to enact the r process will not
occur in a significantly weaker universe. However, with the
weak force still included, the s process would remain in
operation, allowing an additional pathway for heavy
elements, although its yields may be lower. The s process
will also come to resemble the r process if the neutron
capture timescale is shorter than typical β-decay times. The
s-process timescale is 5–100 yr [41], so this will occur
for τn ≳ 1012 s.
Another important consideration to habitability in a

universe with a different weak force is stellar lifetime. In
the majority of the parameter space, long-lived stars can
exist with similar chemical evolution to our Universe, and
this presents no significant barrier to habitability. However,
in a large minority of the parameter space with large η and
large τn, stars are not long-lived enough for life as we know
it to develop due to their low-hydrogen fractions. As in the
weakless universe, a low value of η is needed to allow a
large hydrogen abundance to survive BBN. However, in
this case, with the weak force still operating, stars in these
universes are more hostile to life with a long, early
deuterium-burning stage with high luminosity, along with
the period that would be the main-sequence lifetime of stars
in our Universe interrupted by an expansion phase between
3He burning and core hydrogen burning. With such a
variability in stellar brightness, it is not clear whether a
planet orbiting such a star could acquire and retain a large
volatile reservoir long enough for life as we know it to
develop. It is possible, then, that life in such a universe
would be relegated to low-mass stars with deuterium-
burning times longer than 1 Gyr that can provide a
relatively stable environment, as in the weakless universe.

VI. CONCLUSION

This paper has considered a class of universes for which
the strength of the weak force is vastly different from that in
our own region of space-time. We have performed numeri-
cal simulations for both big bang nucleosynthesis and
stellar evolution using a wide range of possible strengths
for the weak force. The overall finding of this study is that
universes are remarkably robust to changes in the strength
of the weak force, in that a wide range of universes remain

viable. Here we have provided a summary of our specific
results (Sec. VI A) along with a discussion of their
implications (Sec. VI B).

A. Summary of results

For the sake of definiteness, we parametrize the
strength of the weak force in terms of the neutron lifetime
(where τn ≃ 885 s for our Universe). The limit where
τn → ∞ corresponds to the weakless universe, as would a
neutron lifetime longer than the age of the Universe,
τn > 1018 s. At the opposite end of the scale, τn ≤ 10−9 s
leads to substantial changes to nuclear structure. Overall,
we consider a range of τn spanning more than 25 orders of
magnitude.
We have studied the epoch of big bang nucleosynthesis

in detail using the code BURST. In the limit of large τn,
neutrons do not decay during the epoch of BBN, and the
Universe tends to produce a large amount of helium. In
order to allow some protons to survive, which is necessary
for the Universe to have nuclear fuel and produce water, the
baryon-to-photon ratio must be smaller than that of our
Universe. For small η and large τn, BBN allows for
substantial amounts of protons, deuterium, and helium.
In the limit of small τn ≲ 10 s, neutrons decay so quickly
that the Universe emerges from the BBN epoch with an
almost pure hydrogen composition.
We have studied stellar structure and evolution using

the state-of-the-art code MESA. Here, the parameter space
for stars is broken into four regimes characterized by
two variables. The first variable is metallicity, for which
we consider both Z ¼ 0 (population III) and Z ¼ 0.02
(population I) metallicities. The second variable determines
the starting stellar composition. Here we consider the
abundances produced by BBN for constant η, as well
as composition characterized by constant helium mass
fraction.
Over the allowed range of strengths of the weak force,

equivalently varying values of τn, energy generation in
stellar interiors is dominated by a variety of different
nuclear reactions (see Figs. 2–5). In the limit of large τn,
universes tend to produce large abundances of deuterium,
and stellar energy generation is dominated by deuterium
burning. As the weak force becomes stronger, so that τn is
shorter, the pp chain becomes more effective than the CNO
cycle and comes to dominate even at high stellar masses.
For sufficiently small values of τn, the pp reaction is fast
enough (relative to subsequent reactions in the standard pp
chain) that stars experience a new nuclear-burning phase
that produces helium-3 as its end product (which is only
later burned into helium-4). The boundaries between the
different regimes of nuclear burning depend on stellar
mass, as expected.
The allowed range of stellar masses is largely insensitive

to the strength of the weak force. The upper mass limit
taken here to be Mmax ¼ 100 M⊙ is set by radiation
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pressure and other considerations and does not depend on
τn. The lower mass limit (near 0.1 M⊙) is nearly constant
for the case of fixed η. For constant helium abundance,
universes with larger τn produce substantial deuterium
abundances, which allow small stars to operate through
deuterium fusion (D-p burning). As a result, a window
opens up for small stars with masses 0.01 − 0.1 M⊙ in
universes with τn ≳ 3000 sec. These deuterium-rich stars
become larger, brighter, and redder at all masses and, thus,
resemble red giants in our Universe. For universes with
constant η, a large fraction of the hydrogen fuel is already
processed into helium during the epoch of BBN so that
stars are hotter, brighter, and shorter lived.
In the opposite limit with small τn, stars operate by

burning protons into helium-3 at moderately lower tem-
peratures. Their radii and luminosities are comparable
to, but somewhat larger than, those of stars in our
Universe, whereas their surface temperatures are rela-
tively unchanged. Consistent with this insensitivity of
stellar properties, the main sequences at constant η in the
H-R diagram are much like those observed in our
Universe. Stellar lifetimes in such universes will be
modestly shorter than in our Universe by as much as a
factor of a few, although this will be partially mitigated by
the higher 1H content.

B. Discussion

The results of this paper show that universes can remain
potentially habitable over a wide range of strengths for the
weak force. Given the resilient nature of universes subject
to these variations, it is useful to consider the range of
properties that could render the universe sterile.
In Fig. 3, we have noted that our Universe exists in

the middle of a plateau where Neff ≃ 3. The neutron
lifetime must change by roughly 2 orders of magnitude
in either direction for Neff to deviate from 3.0. The plateau
is a result from the fact that neutrino decoupling occurs
before e� annihilation and after μ� annihilation. As we
always assume the charged lepton seas are in thermal
and chemical equilibrium with the plasma, the mass of
the respective particles defines the relevant energy scale
for the two epochs. This location of our Universe on
the plateau is partly apparent from the relation that
ðG2

FmplÞ−1=3 ∼ 1 MeV, an energy scale between the two
lepton mass scales (this is similar to the decoupling energy
scale which we took to be 3.0 MeV in Sec. III A). For our
Universe, interesting consequences could arise if there exist
additional interactions that affect the temperature scale
where neutrinos begin to decouple. Neutrino magnetic
moments [42] or hidden interactions [43] could lower
the decoupling temperature. Figure 3 shows that such an
interaction would have to overwhelm the weak interaction
by 2 orders of magnitude to produce changes in Neff ,

although secret interactions solely within the neutrino seas
could have other ramifications on the cosmic microwave
background and large-scale structure [44,45]. A changing
Neff would change the epoch of matter-radiation equality,
which would have ramifications for the onset of galaxy
formation [46] and large-scale structure [47]. However,
neither the low nor high bounds of Neff in Eqs. (24)
and (25) will dramatically shift the matter-radiation equal-
ity before habitability becomes an issue. In light of these
facts, we conclude that there does not exist a fine-tuning
argument for how GF affects the expansion history of the
Universe. What is more sensitive to the weak interaction is
the primordial abundances, specifically, the ratio of hydro-
gen to helium. An increase in τn of 2 orders of magnitude
will flip the Universe from hydrogen dominated to helium
dominated. We would presume that life requires a nonzero
primordial hydrogen component, although we do not know
what the strict lower bound may be. Nevertheless, if τn is
large enough, a dearth of hydrogen could be problematic
for life.
One way to inhibit life is for the Universe to emerge from

BBN with few unbound protons. In the limit of τn → ∞,
this occurs at and even somewhat below the value η0 in our
Universe. Specifically, for η ¼ η0 ¼ 6 × 10−10, only ∼1%
of the mass of the Universe remains in protons [11].
However, universes with η < η0 remain viable even for
τn → ∞. We find that it is relatively difficult for BBN
processes to compromise the Universe, consistent with
previous results [47].
The opposite limit of stronger weak forces is more

problematic. Stars cease to operate normally if the neu-
trinos produced by nuclear reactions become optically
thick. This limit depends on stellar mass but requires τn ≳
10−6 s for solar-type stars. Even smaller values of τn
corresponding to an even stronger weak force lead to
substantial contributions to the energy budget of nuclei.
The strength of the weak interaction required to compro-
mise nuclear structure remains unknown, but the periodic
table is likely to be quite different for the regime where
τn ≪ 10−10 s. In this regime, neutrinos are also optically
thick during BBN, so the output of BBN is equally
uncertain.
As outlined above, universes continue to be viable when

the strength of the weak force is varied over many orders of
magnitude. In addition to its ramifications for fine-tuning,
these results also provide us with a deeper understanding of
how BBN and stellar evolution operate in our Universe.
One general trend emerging from this study is that stars are
more robust than nuclei. If the laws of physics—in this
context, the strength of the weak force—allow for complex
nuclei to exist, then stellar interiors are likely to produce
them. The reason for this flexibility is that stars can operate
using a wide range of different nuclear processes, from the
pp reaction through the weak interaction to deuterium
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burning through the strong interaction (and many addi-
tional chains in between). Moreover, stars span a wide
range of mass (a factor of ∼1000) and can produce an even
wider range of densities and temperatures in their cores.
This enormous range of available parameter space coupled
with the exponential temperature sensitivity of nuclear-
reaction rates allows for stars to operate over a wide range
of realizations of the laws of physics (see, also, [39,48]).
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