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Neutrino-matter interactions play an important role in the postmerger evolution of neutron star-neutron
star and black hole-neutron star mergers. Most notably, they determine the properties of the bright optical/
infrared transients observable after a merger. Unfortunately, Boltzmann’s equations of radiation transport
remain too costly to be evolved directly in merger simulations. Simulations rely instead on approximate
transport algorithms with unquantified modeling errors. In this paper, we use for the first time a time-
dependent general relativistic Monte Carlo (MC) algorithm to solve Boltzmann’s equations and estimate
important properties of the neutrino distribution function ∼10 ms after a neutron star merger that resulted in
the formation of a massive neutron star surrounded by an accretion disk. We do not fully couple the MC
algorithm to the fluid evolution, but use a short evolution of the merger remnant to critically assess errors in
our approximate gray two-moment transport scheme. We demonstrate that the analytical closure used by
the moment scheme is highly inaccurate in the polar regions, but performs well elsewhere. While the
average energy of polar neutrinos is reasonably well captured by the two-moment scheme, estimates for the
neutrino energy become less accurate at lower latitudes. The two-moment formalism also overestimates
the density of neutrinos in the polar regions by ∼50%, and underestimates the neutrino pair-annihilation
rate at the poles by factors of 2–3. Although the latter is significantly more accurate than one might have
expected before this study, our results indicate that predictions for the properties of polar outflows and for
the creation of a baryon-free region at the poles are likely to be affected by errors in the two-moment
scheme, thus limiting our ability to reliably model kilonovae and gamma-ray bursts.
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I. INTRODUCTION

The recent detection by the LIGO-Virgo Collaboration of
gravitational waves (GWs) powered by a pair of merging
neutron stars (GW170817 [1]), followed by electromagnetic
(EM) observations of the same system by a wide range of
ground-based and space-based telescopes [2], represents a
major breakthrough for multimessenger astronomy. This
event also shows the current limits of our ability to reliably
extract information about merging compact objects using
EMobservations. For example, GW170817was followed by
a bright kilonova [3–15], an optical/infrared transient pow-
ered by radioactive decays in the neutron-rich ejecta pro-
duced by the merger [16–20]. EM observations of that
kilonova have been used to infer plausible properties of
the ejecta, and the outcome of r-process nucleosynthesis in

the outflows. Determining the properties of the merging
objects from those of the ejecta, however, remains difficult.
To better constrain the properties of the merging objects

from kilonova observations, we require numerical simu-
lations of neutron star mergers capable of accurately pre-
dicting the properties of the ejected material. Unfortunately,
despite rapid improvements in the accuracy and physical
realism of these simulations, a few important issues are still
limiting our ability to make such predictions.
A first problem is that outflows are produced both during

the merger (dynamical ejecta), and over the much slower
evolution of the postmerger accretion disk (disk outflows),
thus requiring simulations covering a wide range of time-
scales and length scales. Only a few simulations so far have
attempted to self-consistently include both phases of the
evolution [21–23].
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Another issue is that magnetic fields play a critical role in
driving disk outflows, and in the postmerger evolution of
the system [24–26]. Yet these fields grow from very small
scale instabilities that current simulations do not properly
resolve [24]. So far, these effects have only been approx-
imately captured through the use of subgrid models
[27–29], or of unphysically large initial magnetic fields
(see e.g., [30,31] for reviews of the field).
Finally, neutrino-matter interactions play a critical role in

the evolution of the composition of the outflows [32,33], are
the main source of cooling in the postmerger remnant, can
drive disk winds [22,34], and deposit a large amount
of energy in the polar regions through pair annihilation
[35–40]. As Boltzmann’s equations of radiation transport
remain too costly to include in 3D simulations, however, we
rely on approximate transportmethods to estimate the impact
of neutrino-matter interactions in merger remnants.
Here, we focus on the latter issue. In particular, we note

that approximate transport algorithms currently used in
merger simulations come with potentially significant and,
more importantly, so far unquantified errors. To work
towards a more rigorous determination of error budgets
in simulations, we use our recently developed general
relativistic MC radiation transport code [41] to evolve over
a small time interval the remnant of a binary neutron star
merger. We do not fully couple the MC evolution to the
fluid evolution: neutrino-matter interactions are still
handled using our approximate, gray two-moment scheme
[42–44] with Minerbo closure [45]. Instead, we use the MC
evolution to obtain more accurate estimates of the neutrino
distribution function. This allowsus to constrain the accuracy
of simulations that use approximate two-moment transport
schemes. Such error estimates are critical to our ability to
assess the robustness of kilonova models, as simulations
using the two-moment scheme are being used to model
merger outflows and to interpret kilonova observations.
This MC simulation also provides us with an opportunity

to study more carefully the properties of neutrinos emitted
by the remnant of neutron star mergers. For the first time,
we have at our disposal an estimate of the 7-dimensional
neutrino distribution function, fðνiÞðt; xi; piÞ (with t the
time, xi the spatial coordinates, and pi the spatial compo-
nents of the 4-momentum of the neutrinos) for each
neutrino species νi, obtained from a time-dependent evo-
lution of Boltzmann’s equations, in general relativity and
with a realistic background for the metric and fluid
properties. Knowing fðνiÞ, rather than its lowest moments
in momentum space, is important for accurate estimates of
the rate of νν̄ annihilations [35,38], and for studies of more
complex neutrino processes currently not included in
merger simulations (e.g., neutrino oscillations [46–49]).
We illustrate this advantage of the MC scheme by providing
the energy spectrum of neutrinos, their angular distribution
at selected points in the simulation, and the heating rate of
the fluid due to νν̄ annihilation in the polar regions.

II. METHODS

A. Evolution algorithm

In this work, we evolve the remnant of a binary neutron
star merger with our general relativistic radiation hydro-
dynamics code, SpEC [50]. SpEC evolves Einstein’s
equations of general relativity on a pseudospectral grid,
using the generalized harmonic formalism [51]. The gen-
eral relativistic equations of hydrodynamics are evolved on
a separate numerical grid using high-order shock capturing
finite volume methods [52]. A more detailed description of
our latest methods to evolve the metric and fluid in SpEC
can be found in [53].
We also evolve the general relativistic equations of

neutrino radiation transport using a gray (i.e., energy-
integrated) two-moment formalism [54,55]. We only
use 3 distinct species of neutrinos: electron neutrinos νe,
electron antineutrinos ν̄e, and heavy-lepton neutrinos νx.
The latter class includes muon and tau (anti)neutrinos,
(νμ; ν̄μ; ντ; ν̄τ). At the densities and temperatures encoun-
tered in neutron star mergers, the fraction of heavy leptons
(μ, τ) in the fluid is much smaller than the fraction of
electrons/positrons, and we thus make the assumption that
the 4 species gathered in νx are largely interchangeable.1 A
detailed description of our implementation of the moment
formalism is provided in [43,44]. Here, we limit ourselves
to a discussion of the most important aspects of the
algorithm for the purpose of estimating errors in the
two-moment formalism.
In the moment formalism, we evolve the lowest moments

of the neutrino distribution function fðνiÞðt; xi; piÞ in
momentum space. In a coordinate system comoving with
the fluid, the 0th, 1st, and 2nd moments are the energy
density J, momentum density Hμ, and pressure tensor Sμν.
These moments can be explicitly written as the momentum-
space integrals

JðνiÞ ¼
Z

dνν3
Z

dΩfðνiÞ; ð1Þ

Hμ
ðνiÞ ¼

Z
dνν3

Z
dΩfðνiÞl

μ; ð2Þ

SμνðνiÞ ¼
Z

dνν3
Z

dΩfðνiÞl
μlν; ð3Þ

with ν the neutrino energy in the fluid frame,
R
dΩ an

integral over the solid angle on a unit sphere in momentum
space, and

pμ ¼ νðuμ þ lμÞ ð4Þ

1Muon production may, however, impact the equation of state
of neutron star matter, and indirectly affect the properties of the
emitted neutrinos [56].
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the 4-momentum of neutrinos, with uμ the 4-velocity of the
fluid and lμuμ ¼ 0. The stress-energy tensor of the neu-
trinos is then, for species νi,

Tμν
ðνiÞ ¼ JðνiÞu

μuν þHμ
ðνiÞu

ν þHν
ðνiÞu

μ þ SμνðνiÞ: ð5Þ

In simulations, we also define the energy density EðνiÞ,
momentum density FðνiÞ;μ, and pressure tensor PðνiÞ;μν
measured by an observer whose worldline is tangent to
nμ, the unit normal to a t ¼ constant hypersurface (inertial
observer). The stress-energy tensor is then

Tμν
ðνiÞ ¼ EðνiÞn

μnν þ Fμ
ðνiÞn

ν þ Fν
ðνiÞn

μ þ Pμν
ðνiÞ; ð6Þ

with Fμ
ðνiÞnμ ¼ Pμν

ðνiÞnμ ¼ Pμν
ðνiÞnν ¼ 0. For convenience, in

the rest of this paper we drop the subscript ðνiÞ when
referring to moments of fðνiÞ, but moments should always
be understood as referring to a specific neutrino species.
The moment formalism provides us with evolution equa-
tions for E and Fi, the spatial components of Fμ. They can
be expressed in the familiar form

∇μT
μν
ðνiÞ ¼ Qν

ðνiÞ ð7Þ

for some source terms Qν
ðνiÞ capturing interactions between

neutrinos of species ðνiÞ and the fluid, as well as inter-
actions with other neutrino species. We also evolve the
number density of neutrinos as measured by an inertial
observer, N (see [44]). This allows us to locally compute
the average energy of the neutrinos as measured by an
inertial observer,

hϵi ¼ E
N
: ð8Þ

We note that, unless specified otherwise, average energy in
this paper refers to the number-density weighted average of
the neutrino energy, in a frame to be specified. Finally, the
evolution of the fluid is given by the equations

∇μT
μν
fl ¼ −

X
ðνiÞ

Qν
ðνiÞ; ð9Þ

∇μðρ
ffiffiffiffiffiffi
−g

p
uμÞ ¼ 0; ð10Þ

with Tμν
fl the stress-energy tensor of the fluid, ρ the baryon

density, and g the determinant of the 4-metric.
Equation (7) is exact, but depends on the unknown

pressure tensor of the neutrinos, Pij. In SpEC, we close the
system of equations using the Minerbo closure [45].
Effectively, Pij is estimated by interpolating between its
analytically known value in optically thick regions (iso-
tropic pressure in thermal equilibrium with the fluid) and its
value for a single beam of neutrinos propagating in

vacuum. This is expected to be very accurate in regions
of high optical depth, qualitatively correct in semitrans-
parent regions, and completely wrong in optically thin
regions if neutrinos come from more than one direction.
Once we have chosen a closure PijðE;FiÞ, Eq. (7) is a
system of 4 equations for the 4 unknown ðE;FiÞ, for each
neutrino species.
Besides a choice of closure, the gray two-moment scheme

relies on significant approximations in the computation of
Qν

ðνiÞ. We include in Qν
ðνiÞ charged-current reactions

pþ e− ↔ nþ νe ð11Þ

nþ eþ ↔ pþ ν̄e; ð12Þ

νν̄ pair annihilation/creation

eþ þ e− ↔ νþ ν̄; ð13Þ

plasmon decays

γ ↔ νþ ν̄; ð14Þ

and, for heavy-lepton neutrinos, nucleon-nucleon
Bremsstrahlung (note that ν̄x ¼ νx in SpEC)

N þ N ↔ N þ N þ νx þ ν̄x: ð15Þ

All of the emissivities and absorption opacities are computed
following [57], except for nucleon-nucleon Bremsstrahlung
[58]. We compute the neutrino absorption opacities κa;ðνiÞ
due to charged-current reactions and theneutrino emissivities
ηðνiÞ due to other processes. The emissivities due to charged-
current reactions and absorption opacities due to other
processes are computed by imposing Kirchoff’s law,
η ¼ Bκa, with B the energy density of neutrinos in equilib-
rium with the fluid. Using Kirchoff’s law guarantees that we
recover the correct neutrino energy density in optically thick
regions. We also compute the scattering opacities κs;ðνiÞ due
to elastic scattering of neutrinos on neutrons, protons, and
heavy nuclei [57], and estimate

Qν
ðνiÞ ¼ ηðνiÞu

ν − κa;ðνiÞJu
ν − ðκa;ðνiÞ þ κs;ðνiÞÞHν: ð16Þ

We ignore inelastic scatterings, as well as all processes not
explicitly mentioned here.
An important issue when computing Qν

ðνiÞ is that the
cross sections for the above reactions depend on the energy
spectrum of the neutrinos. In a gray scheme, we can only
guess what that spectrum is. To compute opacities, we thus
first assume that the neutrinos are in thermal equilibrium
with the fluid. We then compute the average energy of the
neutrinos from their moments ðE;Fi; NÞ, and rely on a
fairly complex and somewhat arbitrary procedure to
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estimate the shape of the neutrino spectrum in optically thin
regions. We then correct the absorption and scattering
opacities, assuming a ν2 dependence for the dominant
neutrino-matter interactions (see [44]).
The situation is even worse in simulations that do not

evolve the number density N. Then, even finding a good
estimate of the average energy of neutrinos can be difficult.
For neutron star mergers, this leads to large errors in the
absorption rate of neutrinos in optically thin regions as well
as in the composition of polar outflows [44].
Another problem with the two-moment scheme is that

the rate of νν̄ pair annihilation in optically thin regions is
highly dependent on the momentum distribution of neu-
trinos, as the pair annihilation cross section grows rapidly
with the angle between the direction of propagation of the
neutrino and the antineutrino. The pair annihilation rate is
also very poorly approximated by Kirchoff’s law in regions
where the number density of electrons or positrons is low.
We discuss below an approximate treatment of these
annihilation processes, proposed by Fujibayashi et al.
[38]. Within the framework of a gray two-moment scheme,
however, any estimate of νν̄ pair annihilation has poten-
tially large errors.
To quantify these errors in the two-moment scheme, we

rely on a newly developed MC scheme, described in detail
in [41]. The MC algorithm implemented in SpEC is largely
inspired by earlier work on MC evolution of neutrinos in
special relativity [59] and on general relativistic photon
transport [60]. In particular, we evolve packets of neutrinos,
each representing Nk neutrinos of 4-momentum pμ

k at
position xik. The MC representation of the neutrino dis-
tribution function is then

fðνÞ;MC ¼
X
k

Nkδ
3ðxi − xikÞδ3ðpi − pk

i Þ ð17Þ

while the stress-energy tensor of the neutrinos can be
estimated as [60]

Tμν;MC ¼
X
k

Nk
pμ
kp

ν
kffiffiffi

γ
p

αpt
k
δ3ðxi − xikÞ: ð18Þ

In practice, we can estimate these functions by replacing
δ3ðxi − xikÞ by a function fðxiÞ of unit norm (and, for fðνÞ,
by binning in momentum space). This is the procedure that
we follow in this paper, with either fðxiÞ ¼ V−1 within a
volume V, or fðxiÞ a normalized Gaussian of width σ. The
stress-energy tensor can also be time-averaged to allow for
the accumulation of more packets, as proposed in [41].
The MC scheme can theoretically be used as a closure

for the two-moment algorithm. Doing this leads to a
scheme that evolves Boltzmann’s equations to numerical
accuracy. For this first use in merger simulations, however,
we consider a simpler, cheaper, and possibly more stable

setup (the stability of the coupled M1-MC system has
not been demonstrated). We evolve the equations of
radiation-hydrodynamics using the two-moment scheme
with Minerbo closure (we refer to this as the M1 scheme in
the rest of this paper). The resulting time-dependent fluid
quantities are used as background for the MC evolution.
The MC evolution does not feed back onto either the fluid
or the two-moment evolution. Each MC packet is created
with a fluid frame energy of 10−11 M⊙c2.
The MC algorithm implemented in SpEC is currently

capable of handling isotropic emission of neutrinos in the
fluid frame, transport of neutrinos along geodesics, neu-
trino absorption, and elastic scattering. We use the publicly
available NuLib library [61] to generate a table of neutrino
emissivities and absorption/scattering opacities as a func-
tion of fluid-frame neutrino energy ν, fluid density ρ, fluid
temperature T, and fluid electron fraction Ye. The table has
12 energy bins spanning ν ∈ ½0; 150� MeV, with a loga-
rithmic spacing between bins (except that the first 2 bins
have a width of 4 MeV). We also use 51 equally spaced
bins for Ye ∈ ½0.035; 0.55�, 82 logarithmically spaced bins
for ρ ∈ ½106; 3.16 × 1015� g=cm3, and 65 logarithmically
spaced bins for T ∈ ½0.05; 150� MeV. In between tabulated
points, we interpolate the logarithm of the energy-dependent
opacities ðκa; κsÞ linearly in Ye and logarithmically in the
other variables. FollowingRichers et al. [59], we always emit
particles with a fluid-frame energy at the center of an energy
bin. The NuLib table uses the same set of reactions as the
moment scheme, except that it neglects all pair processes
for νeν̄e. The effective gray opacities derived from the MC
evolution could, however, be very different from those in the
moment scheme, as the MC algorithm is fully energy
dependent while the moment scheme arbitrarily assumes a
given neutrino spectrum at each point.
An important property of our MC algorithm is that it

ignores regions of high optical depth, where the two-moment
scheme is reliable and the neutrino distribution function is
well approximated by a thermal distribution in equilibrium
with the fluid. TheMC algorithm only evolves regions of the
postmerger remnant where κaðκa þ κsÞ ≲ κ2crit. In any cell
that does not satisfy this condition, but with a neighboring
cell that does, MC particles are erased at the end of each time
step and redrawn from an equilibrium distribution. This
provides a boundary condition for our MC algorithm. We
note thatwe evaluate opacities separately for each energybin,
and that “neighbors" are determined in a 4D space (3 spatial
dimensions, plus ν).
We choose κcrit so that in any region where the character-

istic length scale for variation of the opacities is at least a few
grid cells, the assumption of an equilibrium distribution of
neutrinos in these “high-opacity” cells is reasonably accu-
rate. For example, for an optically thick sphere of constant
opacity κ0, the relative difference between the energy density
of neutrinos and the equilibrium density of neutrinos at
distances Δx from the surface is ∼ð0.08; 0.02; 0.005Þ for
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optical depth τ ¼ κ0Δx ¼ ð1; 2; 3Þ.2 For this first simulation,
we take κcritΔx ∼ 1.2. Regions where the opacities vary
rapidly on the scale of a grid cell or less may be poorly
approximated by our boundary condition, but are also
underresolved in the two-moment scheme. A full MC
evolution within these cells would not help much either,
as our MC scheme assumes constant opacities and emissiv-
ities within any given cell. On the other hand, if the opacity
varies on a length scale of more than 3 grid cells, our
boundary condition should be accurate to better than 1%.
To gain more confidence in this choice, we perform a

shorter simulation with κcritΔx ∼ 12, and look at the
neutrino distribution function above the neutron star
(z ¼ 45 km). We choose this point because the polar cap
of the neutron star has the steepest opacity gradients, and
we thus expect polar regions to be particularly sensitive to a
bad choice of κcrit. We find that differences between the two
simulations for the flux of neutrinos, their energy spectrum,
and their momentum distribution are close to the expected
statistical noise, indicating that our boundary condition is
not a dominant source of error at the accuracy currently
reached by our code. Figure 1, for example, shows
deviations in the pitch-angle and energy distribution of
the neutrinos, normalized to the expected Poisson noise
of one of the simulations (both simulations have similar
Poisson noise). For an absolute error scale, we note that this
figure was generated using∼ð4300; 7400; 2200Þ packets per
simulation for ðνe; ν̄e; νxÞ. We also measured differences
in the average energy of the neutrinos of Δhϵi ¼
ð0.15; 0.01; 0.7Þ MeV between the two simulations.

Our analysis of the MC results relies on two types of
data. First, we have at our disposal the individual packets
evolved by the MC scheme, and we log information about
all MC packets leaving the computational domain. This
allows us to obtain a MC estimate of the distribution
function at any given point, as long as we compute it on-
the-fly, and to post-process at will information about the
neutrinos leaving the grid. Second, we compute time
averages of moments of the neutrino distribution function.
These are meant to be used, eventually, to provide a better
closure to the two-moment scheme [41]. In this paper, they
allow us to compare the M1 and MC results, and they also
serve in the computation of the νν̄ pair-annihilation rate. We
use time-averaged moments so that a lower number of MC
packets can be used in the simulation. This significantly
reduces computational costs: in this study, the MC evolu-
tion is actually cheaper than the M1 evolution. With
κcritΔx ∼ 1.2 and each MC packet having an energy of
10−11 M⊙c2, we have roughly as many MC packets on the
grid as we have finite volume grid cells. All moments are
computed by averaging over 100 MC packets (or one time
step if more than 100 packets are present in a cell),3 leading
to expected relative errors from Poisson noise of ≲10%.

B. Postmerger initial conditions

We choose as initial conditions the result of one of our
existing simulations of merging neutron stars [44]. The
initial binary is an equal mass, nonspinning system. Each
neutron star has an ADM mass of 1.2 M⊙ in isolation. The
neutron star matter is described by the equation of state of
Lattimer and Swesty [63] with nuclear incompressibility
parameter K0 ¼ 220 MeV (LS220). We use the publicly
available NuLib table providing the fluid properties as a
function of density (ρ), temperature (T), and electron
fraction (Ye) for this equation of state [64]. In this work,
we begin from a snapshot of the simulation 10 ms after
merger, and evolve the postmerger remnant for 4.5 ms. This
is longer than the dynamical timescale of the remnant
neutron star, but shorter than the cooling timescale of the
remnant.
The fluid properties within poloidal and equatorial slices

through the remnant are shown in Fig. 2. The central object
is a hot, differentially rotating, massive neutron star. It is
surrounded by a thick accretion disk with temperature T ∼
5–10 MeV and electron fraction Ye ∼ 0.1–0.3. Shocked
spiral arms driven by the rotation of the distorted neutron
star are visible in the disk. Low-density outflows are
observed in the polar regions. Neutrino emission and
absorption make these outflows relatively proton rich
(Ye ∼ 0.3–0.5). In previous work, we demonstrated that
the composition of these outflows is quite sensitive to the
method used to compute the average energy of the

FIG. 1. Difference in the pitch-angle distribution and energy
spectrum of neutrinos between two simulations placing the
boundary of the MC evolution at different optical depth. We
look at neutrinos within a 3 km radius of a point on the polar axis
(z ¼ 45 km), about 5 ms after the beginning of the simulation.
Errors are normalized by the expected Poisson error in our
reference simulation. Both simulations have near-identical Pois-
son noise.

2We can also compute the ratio jFj=E, a measure of the
anisotropy in the neutrino distribution function. For the same
values of κ0Δx, we have jFj=E ∼ ð0.056; 0.015; 0.005Þ. These
numbers are computed from the known analytical solution for
this problem [62].

3The exact procedure to compute time-averaged moments is
described in [41].
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neutrinos [44]. The starting point of this study is a simulation
using our best energy estimate so far for neutrino energies,
i.e., the estimate obtained by evolving both the neutrino
number density and the neutrino energy density.
Our existing simulation provides us with initial conditions

for the metric, the properties of the fluid, and themoments of
the neutrino distribution function evolved by theM1 scheme.
These have to be complemented with initial conditions for
the MC evolution. At the initial time, we randomly draw
particles from a thermal distribution in equilibrium with the
fluid.While this is a fairly reasonable assumption in themost
optically thick regions evolved by the MC algorithm, this is
clearly inexact in semitransparent and optically thin regions.
The duration of the simulation is chosen to allowMCpackets
to diffuse from the surface of moderate optical depth below
which we do not use the MC algorithm (discussed in the
previous section), and then travel to the boundary of the
domain. In the rest of this paper, we largely ignore the first
∼3 ms of evolution, and focus solely on times when we
expect that the properties of the MC packets are no longer
influenced by our choice of initial conditions.

C. Numerical grids

We set our numerical grids as in [44]. The pseudospectral
grid on which we evolve Einstein’s equations is constructed

from a small filled sphere centered on the neutron star
remnant, surrounded by 59 spherical shells. The number of
basis functions within each subdomain is chosen so that the
truncation error in the metric and in its spatial derivatives is
less than 5 × 10−4. Given the near-spherical symmetry of
the high-density regions of the postmerger remnant, this
requires only ∼140k grid points.
The finite volume grid on which we evolve the equations

of hydrodynamics and the moments of the neutrino dis-
tribution function is constructed from 4 levels of refine-
ment. The finest level has a grid spacing Δx ∼ 300 m. At
each subsequent level, the grid spacing ismultiplied by 2.All
levels have the same number of grid cells, 200 × 200 × 100,
and are centered on the neutron star remnant. Each level is
further subdivided into 144 patches, for parallelization. Each
patch is then extended by 3 ghost cells in each direction, for
reconstruction of the fluid variables from grid centers to
faces. Overall, the grid has 576 patches and a total of ∼28
million cells. As we aim to estimate differences between the
MC and M1 schemes for a fixed setup and at a limited
computational cost, we do not attempt to vary the grid
spacing or test the convergence of the fluid evolution. Our
grid spacing is fairly typical for neutron star merger simu-
lations with SpEC, and can capture the dynamics of the
postmerger remnant [44]. Our grid would, on the other hand,

FIG. 2. Poloidal (top) and equatorial (bottom) slices through the merger remnant. In each figure, solid lines show density contours of
log10ðρ=½1 g=cm3�Þ ¼ ð8; 9; 10; 11; 12; 13; 14Þ. Color scales show the fluid temperature (left) and electron fraction (right).

F. FOUCART et al. PHYS. REV. D 98, 063007 (2018)

063007-6



be far too coarse to study the effects of magnetic fields [65],
which are entirely ignored in this work.

III. NEUTRINO MOMENTS
AND DISTRIBUTION FUNCTION

A. Overview: Polar and equatorial moments

Before beginning our detailed analysis of the M1 and
MC results, it is useful to examine the global properties and
spatial distribution of the neutrinos in our simulations.
Table I lists important overall properties of the neutrinos
leaving the grid. We see, in particular, that ν̄e is the
dominant type of neutrino emitted by the remnant, both
in terms of energy and number emission (note that νx values
should be divided by 4 to get per-species results). We also
observe the usual hierarchy of temperatures, with νx being
hotter than ν̄e neutrinos, which are themselves hotter than
νe. Global quantities show relative differences of (10–20)%
between the M1 and MC results, which could be due either
to the approximations made in the M1 scheme or to the
slightly different microphysics implemented in each algo-
rithm. We also note that the net flux of lepton number in the
two schemes (i.e., number of νe minus number of ν̄e
leaving the grid) would likely be in closer agreement if
the MC scheme was coupled to the fluid, as the fluid would
evolve towards a new, slightly modified equilibrium
composition.

Figure 3 shows the energy density, average radial
velocity, and radial component of the pressure tensor along
the vertical z axis and along the x axis, at the end of our
simulation. The neutrino energy density is largest in the
optically thick regions at the center of the star for ν̄e and νx,
while νe are suppressed in the neutron star core: νe are
immediately absorbed by the neutrons in the hot, proto-
nizing core. Along the vertical direction, a secondary peak
in the neutrino energy density is observed on the hot
surface of the neutron star, while in the equatorial plane,
peaks in the neutrino distribution function are associated
with the hot, shocked tidal arms in the disk. At large
distances, the energy density falls as r−2, as expected. The
neutrino density far from the remnant is about 3 times as
large at the poles as on the equator, and dominated by ν̄e
everywhere. Note that ν̄e are the most abundant species
because the equilibrium composition of the remnant is at a
higher Ye than its initial composition. The agreement
between M1 and MC appears to be quite good for νe
and ν̄e, and for νx everywhere but at the poles, where the
M1 code overestimates the neutrino energy density by a
factor of 2.
The average radial velocity of the neutrinos (Fk=E)

vanishes in the optically thick, rotating core, then rapidly
grows as the neutrinos decouple from the fluid. This
decoupling occurs over a short range of radii in the vertical
direction. Differences between species are more noticeable
in the horizontal plane: νx decouple closer to the core, then
ν̄e, and finally νe. In optically thin regions, Fk=E is an
indicator of the width of the distribution of neutrino pitch
angle (the angle between the direction of propagation of the
neutrinos and the radial direction). Here, Fk=E ∼ 1 indi-
cates that all neutrinos propagate along the radial direction,
while lower values indicate less forward-peaked distribu-
tions. We see that Fk=E grows to the speed of light as the
distance to the source increases, and the remnant effectively
becomes a point source. While qualitative agreement
between the MC and M1 results is still observed, the
growth of Fk=E in the vertical direction is faster in the M1
code—i.e., the M1 code expects the distribution of neu-
trinos to be more forward-peaked than in the MC code.
Differences between the M1 and MC results are more

apparent in the pressure tensor, particularly in the polar
regions. Just above/below the remnant, the MC code finds
Pk=E ∼ 0.6–0.8, while the M1 code finds Pk=E ∼ 1. We
argue in the next sections that these differences are due to
the inability of the M1 code to handle converging streams
of neutrinos, even though converging neutrinos are an
expected feature of the polar regions. In optically thick
regions, the M1 and MC codes agree, but that should not be
a surprise: there, both codes are constructed to enforce
equilibrium between neutrinos and the fluid.
Figure 4 continues our description of the neutrinos along

the x axis and z axis, by showing the average energy of the
neutrinos as measured by an inertial observer, hϵi ¼ E=N.

TABLE I. Global properties of the neutrino emission 14 ms
after merger, according to the M1 and MC algorithms. The
average energy is weighted by the number of neutrinos. The
effective temperature and spectral index are defined by Eq. (19),
and cannot be computed in the (gray) M1 algorithm. Note that νx
values are for all 4 heavy-lepton species combined. The M1 and
MC schemes use slightly different definitions of global quan-
tities: the M1 scheme measures the total energy leaving the grid
and computes average energies as observed by an inertial
observer at the domain boundary, while the MC scheme measures
the total number of particles leaving the grid and estimate the
average energy of particles in a packet to be pt, an estimate of the
energy of the packets at infinity. These differences could explain
mismatches of order j1 − αj ∼ ð2 − 3Þ% between the M1 and MC
results, but not the observed (10–20)% mismatches.

νe ν̄e νx

M1 scheme
Luminosity [1052 erg=s] 5.8 11 11
Number flux [1057=s] 3.4 5.1 2.6
Average energy [MeV] 10.6 13.4 26.4

MC scheme
Luminosity [1052 erg=s] 5.0 10 11
Number flux [1057=s] 2.7 4.0 2.9
Average energy [MeV] 11.3 15.5 23.0
Effective temperature TðνÞ [MeV] 1.9 2.7 9.0
Spectral index α 4.8 4.6 1.5
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Neutrino energies are naturally large in the hot neutron star
core (50–100MeV), and in other optically thick hot regions
(e.g., shocked tidal arms). However, lower-energy neutri-
nos have a higher probability to escape the remnant, and the
average energy of the escaping neutrinos is ∼10–30 MeV
(with νx hotter than ν̄e, which are themselves hotter than
νe). While the M1 and MC codes agree on the general
hierarchy of temperatures, pointwise estimates of the
neutrino energies can differ by up to ∼30% between the
two algorithms. We will show later that agreement is a little
better when considering time-averaged or spatially aver-
aged hϵi. In particular, large oscillations in the average
energies computed using the M1 code may be a sign of
other undesirable effects of approximate transport.

Finally, Fig. 5 shows the energy density of neutrinos
along a line 25° from the polar axis (in the Oxz plane). As
along other directions, agreement between the M1 and MC
codes is good in optically thick regions. However, we now
see significant disagreement in optically thin regions, with
up to a factor of ∼2 more neutrinos measured in the M1
code than the MC code. We thus see that the agreement
observed along the polar axis and the x axis is in no way
universal. We discuss these differences in more detail in the
following sections.

B. Eddington tensor

We now consider the impact of one of the main
assumptions of the two-moment scheme: the Minerbo

FIG. 3. One-dimensional profiles of the neutrino moments in the MC (solid lines) and M1 (dashed lines) code for each species of
neutrinos (νx values are for all heavy-lepton neutrinos combined), 14 ms after merger. We show the energy density (top), the parallel
(radial) component of the normalized transport flux (average velocity of the neutrinos, middle), and the parallel component of the
Eddington tensor (bottom) along the z axis (left) and x axis (right). M1 values are computed by interpolation, while MC moments are
computed using all packets within a ball of radius of 300 mþ 0.05 � R centered on the desired point, with R the distance to the center of
the remnant. All values are computed in the inertial frame, without projection into an orthonormal frame (hence the few points
where Pk > E).
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analytical closure. In Figs. 6 and 7, we show equatorial and
poloidal slices through the merger remnant, as for the fluid
quantities plotted in Fig. 2. The figures show various
components of the Eddington tensor fij ¼ Pij=E, in an
orthonormal frame constructed by an inertial observer
applying the Gram-Schmidt algorithm to vectors tangent
to spatial coordinate lines. For each component we plot the
MC results, and the difference between MC and M1 results.
Here, the MC moments are calculated as they would be if
we coupled the MC and M1 schemes, i.e., by time
averaging over all packets passing through a given grid
cell. From the MC results, we see that statistical errors,
roughly approximated as the noise in the MC predictions,
are at the level of a few percent, slightly better than
expected.
The difference between MC and M1 is largest in the

polar regions, and for fzz. Errors of 0.1–0.3 are the norm
within a few neutron star radii of the surface of the remnant,
with the Minerbo closure consistently returning larger
values of fzz than the MC closure. That the Minerbo
closure is particularly inaccurate in polar regions is no

surprise: neutrinos emitted by the hot neutron star and the
accretion disk cross paths there, and will create artificial
radiation shocks when the Minerbo closure is used.
With this simulation, we can quantify this long-standing
assumption. We find that errors in the polar regions are very
significant: the MC results indicate that fzz ∼ 0.5–0.7 at
points where the difference between MC and M1 is
jΔfzzj ∼ 0.1–0.3. Outside of the polar regions, we observe
differences jΔfijj≲ 0.1. In some of these regions, the
difference between the MC and M1 results is consistently
of the same sign, and thus does not appear due to statistical
noise in the MC results. Regions with rapid variations in the
error measurements (with typically Δfij ≲ 0.03), on the
other hand, most likely have larger MC errors than M1
errors. This is the case in most of the accretion disk, at least
at radii r≲ 70 km.
Overall, the Minerbo closure appears to do quite well in

the optically thick and semitransparent regions where most
of the neutrinos are emitted, but has some clear issues
farther from the remnant, where we pay for the inaccuracies
of the optically thin analytical closure. Large errors for the
closure in the polar regions have a couple of potentially
important consequences for neutrino-matter interactions in
these systems. One is that the spatial distribution of
neutrinos in optically thin regions is inaccurate when using
a M1 scheme. This impacts the resulting rate of absorption
of νe and ν̄e, and thus the evolution of the composition of
polar outflows. We study the spatial distribution of neu-
trinos in more detail in Sec. III D. Another consequence is
that the inferred energy deposition from νν̄ annihilations in
polar regions may be difficult to accurately estimate when
using the M1 scheme. We consider that problem in Sec. IV.

C. Pointwise distribution function of neutrinos

To better understand the momentum-space distribution
of neutrinos, we now look at their direction of propagation
and their energy spectrum at individual points. As opposed
to our computation of the Eddington tensor, we do not
perform any time averaging here. Instead, we study the

FIG. 4. Same as Fig. 3, but for the average energy of the neutrinos in the inertial frame.

FIG. 5. Energy density of neutrinos for all species in the M1
and MC codes, along a line 25° from the polar axis.
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properties of all MC packets within a distanceΔd of a point
xi at a fixed time ti, following the procedure outlined after
Eq. (17). We also limit ourselves to optically thin regions,
where differences between the M1 and MC results are
significant. As the distribution function of neutrinos at a
given time is 6 dimensional, and different physical proc-
esses will require the visualization of that distribution
function in different ways, we do not attempt to provide
a complete view of the distribution function. We limit
ourselves to some notable properties of the distribution
function, provided as examples of what information can be
gleaned from our MC results.
At each point, the momentum of neutrinos is charac-

terized by the parameters (ϵ; θ;ϕ), where ϵ is the energy of
the neutrinos measured by an inertial observer, θ the angle
between the momentum of the neutrinos and the radial
coordinate in an orthonormal tetrad constructed by an

inertial observer (pitch angle), and ϕ an azimuthal angle
for rotation around that same radial axis. We first consider
points along the polar axis, at z ¼ ð45; 90; 135Þ km. At all
3 points, we find a flat distribution in ϕ (see Fig. 8), within
statistical errors and after marginalizing over ðϵ; θÞ. This
indicates that deviations from axisymmetry in the hot
neutron star and in the surrounding accretion disk do not
have a significant impact on the neutrino distribution
function at the poles. This result is particularly interesting
if we aim to use time-averaged MC moments to close the
two-moment evolution equations. It may be sufficient for
the averaging timescale to be short compared to the thermal
evolution timescale of the remnant, rather than its orbital
timescale.
Figure 9 shows the probability distribution of neutrinos

with respect to θ. As expected, it becomes more forward-
peaked as we move away from the remnant. We can

FIG. 6. Poloidal slice through the merger remnant. The left column shows the diagonal and off-diagonal components of the Eddington
tensor fzz and fxz as measured with the MC code. Solid lines are contours of fzz; fxz separated by 0.1 (alternating red and black lines).
This provides an order-of-magnitude estimate of the statistical noise, withΔfstat < 0.05. The right column shows the difference between
the MC and M1 Eddington tensors. In the massive neutron star, the difference is negligible. In the disk, it is dominated by statistical MC
noise. Outside of the remnant, large errors in the Minerbo closure dominate. In particular,Δfzz ∼ 0.1–0.3 in the polar regions. All results
are for νe neutrinos.
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also see clear differences between neutrino species.
The pitch-angle distribution is narrower for the heavy-
lepton neutrinos, and wider for ν̄e. For νe, the distribution
function peaks at θ ∼ 45° rather than θ ∼ 0°. This is due to
the relative contribution of the neutron star and accretion
disk to the neutrino fluxes. Nearly all νx are coming from
the neutron star, while the disk contributes significantly to
the production of ν̄e and νe. The broad distribution of fðθÞ
does not match the assumptions made by the M1 scheme in
these regions.
Finally, the energy spectrum of neutrinos is shown in

Fig. 10. The shift in the spectrum as we move away from
the remnant is too large to be due to gravitational redshift
alone. We expect a ∼6% shift in the average energy of the
neutrinos between z ¼ 45 km and z ¼ 135 km, but
observe a 20% change between those points. The cooler
spectrum at large radii is a geometrical effect, accounting
for a larger fraction of the polar neutrinos coming from the
disk rather than the hotter neutron star as we move away
from the remnant along the polar axis. The spectra also

FIG. 7. Same as Fig. 6, but for an equatorial slice through the remnant, and showing components fxx; fxy of the Eddington tensor. The
Minerbo closure is significantly more accurate here than in the polar regions, although some regions of the shocked spiral arms show
consistent biases in the Minerbo closure at a level Δfij ∼ 0.1.

FIG. 8. Distribution probability of neutrinos as a function of the
azimuthal angle ϕ of their 4-momentum, at different points on the
polar axis. We sample all packets within Δd ¼ 0.1z of the target
point. We have 400–2000 packets within each region and for each
type of neutrino.
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show that the assumption of a blackbody (or softer)
spectrum made in the gray moment scheme [44] is not
accurate. We fit the normalized spectra at z ¼ 135 km to
the function

fðϵ; TðνÞ; αÞ ¼
ϵα

Tαþ1
ðνÞ Γðα − 1Þ e

−ϵ=TðνÞ : ð19Þ

For a blackbody spectrum, and approximating the Fermi-
Dirac distribution of neutrinos by a Boltzmann distribution,
we would expect α ¼ 2, and TðνÞ would be the temperature
of the neutrinos. Instead, for ðνe; ν̄e; νxÞ we find α ¼
ð4.2; 4.3; 1.7Þ and TðνÞ ¼ ð2.5; 3.3; 9Þ MeV. The neutrino
spectrum is thus significantly harder than expected for νe
and ν̄e, and closer to a blackbody for heavy-lepton

neutrinos. The average energy of polar neutrinos evaluated
from the gray moments ðE; Fi; NÞ, on the other hand, is
quite close to the average energy measured in the MC code:
the average energy of neutrinos leaving the grid with a
momentum misaligned by less than 30° with respect to the
polar axis, as measured in the moment scheme, is within
10% of the MC results.
Given the expected dependence of the absorption and

scattering opacities of neutrinos in the square of the
neutrino energies, we can estimate that these different
spectral shapes would lead us to underestimate reaction
rates for νe and ν̄e by up to ∼15%, if the average energy of
neutrinos was accurately estimated. As the average energy
of the polar neutrinos is within 10% of the MC results in the
M1 scheme, absorption and scattering opacities in the polar
regions will be accurate within ∼30%. We note that this is
only true because we evolve the neutrino number density
in the M1 scheme, thus obtaining a reasonably accurate
local estimate of the average neutrino energy. If we had
approximated the neutrino energy spectrum by a blackbody
distribution at the fluid temperature [TðνÞ ∼ ð2 − 3Þ MeV,
α ¼ 2], the average neutrino energies would have been off
by factors of 2–5.
We also study the properties of the neutrino distribution

function at points farther away from the polar axis, in the
y ¼ 0 plane (i.e., the poloidal slice shown in Fig. 2). We
consider the points

ðx; zÞ ¼ ½ð45; 135Þ; ð90; 135Þ; ð135; 135Þ; ð135; 90Þ;
ð135; 45Þ; ð135; 0Þ� km: ð20Þ

While at those points the probability distribution with
respect to the angle ϕ is no longer isotropic, the only
asymmetries observed in the neutrino distribution function
are the expected preference for neutrinos to come from the
equatorial plane of the remnant, and a more forward-
peaked distribution function at larger distances. This is
consistent with what we observed in the polar regions, and
with our assumption that the neutrino distribution function
does not vary significantly over the rotation period of the
remnant. The spectrum of the neutrinos remains well fitted
with the same function as in the polar regions, with a hard
spectrum (α ∈ ½4; 5�) for νe and ν̄e and a near blackbody
spectrum for νx. The accuracy of the M1 results for ϵ
decreases significantly as we move away from the polar
axis. We find relative errors of (10–30)% in the average
neutrino energies, which could lead us to use absorption/
scattering opacities that are wrong by about of a factor of 2.
In these regions, however, the composition of the fluid is
not as sensitive to estimates of ϵ as closer to the poles [44].
The impact of this error on EM observables is thus likely to
be reasonably small, compared to other existing simulation
errors.
Overall, we estimate that the errors in the scattering and

absorption opacities computed in the two-moment scheme

FIG. 9. Same as Fig. 8, but for the distribution probability with
respect to cosðθÞ, with θ the neutrino pitch angle. We show
multiple species for the closest point to the remnant, as the
angular distribution is more sensitive to the finite size of the
emitting region close to the remnant.

FIG. 10. Same as Fig. 8, but for the distribution probability with
respect to the neutrino energy ϵ. We use 12 energy bins to
generate this figure, identical to the bins of the NuLib table.
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are likely ≲30% in the polar regions, where they impact
EM observables the most. Errors are larger farther away
from the poles, but this may not matter as much for
modeling EM signals. However, computing the opacities
is only one part of the problem. The energy density of
neutrinos also impacts the reaction rate for neutrino-matter
interactions. We show in Sec. III D that this is a more
significant issue.

D. Properties of escaping neutrinos

We now consider the properties of the neutrinos leaving
the computational domain, starting with their energy
spectrum. This illustrates differences between the energy
of the neutrinos in the M1 and MC schemes, already
discussed in the previous section. The spectrum of escaping
neutrinos 14 ms after merger is shown on the left panel of
Fig. 11, for all three types of neutrinos. We bin the spectrum
using the same 12 energy bins as in the NuLib table. It is
worth noting, however, that our ability to resolve the energy
distribution of neutrinos is understated in this plot. All MC

packets are emitted with the energy of the center of a bin,
but their energies can then be shifted due to gravitational
and velocity redshift as well as scattering events, so that, for
example, a global shift of the spectrum by a fraction of an
MeV would be captured by the MC code.
As for the pointwise data, the energy spectrum of νe

and ν̄e is well fitted by Eq. (19) with a hard spectral
index (α ¼ 4.8 and TðνÞ ¼ 1.9 MeV for νe; α ¼ 4.6 and
TðνÞ ¼ 2.7 MeV for ν̄e). The spectrum of heavy lepton
neutrinos is slightly softer than a blackbody (α ¼ 1.5,
TðνÞ ¼ 9.0 MeV). The average energy of escaping neutri-
nos is reasonably well estimated in the moment scheme for
νe and ν̄e (1–2MeVerrors), while larger errors are observed
for νx (4 MeV).
The right panel of Fig. 11 shows starker differences

between the M1 and MC results. There, we show the
probability distribution of neutrinos as a function of their
latitude in a spherical polar coordinate system with axis
aligned with the angular momentum of the remnant.
Artificial shocks cause neutrinos to accumulate close to

FIG. 11. Left: Energy distribution of the neutrinos leaving the computational domain (measured on the surface of a parallelepiped 6
grid spacings from the subdomain boundary, i.e., approximately a parallelepiped of size ½480 × 480 × 240� km centered on the origin),
for all 3 species of neutrinos. In each plot, the dashed vertical line shows the average neutrino energy estimated by the M1 scheme, and
the solid vertical line the same quantity estimated by the MC scheme. The solid grey line shows our best fit to the spectrum. Right:
Angular distribution of the neutrinos leaving the grid. Here, θ is the usual spherical-polar coordinate, not the pitch angle of the neutrinos.
Grey histograms show the MC results, and red histograms the M1 results. Errors in the Minerbo closure lead to a large overestimate of
the neutrino density in the polar regions. In all plots, we integrate the neutrino fluxes over a 50 μs interval 14 ms after merger.
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the polar axis in the M1 code, an effect that is avoided in the
MC code. This results in an excess of neutrinos in the polar
regions (θ ≲ 35°), by ∼50% for νe and ν̄e and by nearly a
factor of 2 for νx. This excess is likely to have a more
important impact on the evolution of the polar outflows
than the other sources of errors considered so far. The
absorption rate of all flavors of neutrinos is significantly
boosted in M1 simulations, causing excess heating of the
outflows. The effect of this error on the composition of the
outflows is hard to determine with certainty. Generally
speaking, overestimated neutrino-matter reaction rates and
fluid temperatures are likely to lead us to overestimate the
electron fraction of the outflows in the M1 code.
Quantifying this error will require simulations in which
the MC scheme is fully coupled to the moment evolution
(or directly to the fluid).

IV. νν̄ PAIR ANNIHILATION

So far, we have discussed aspects of neutrino transport
and neutrino-matter interactions that are approximately
modeled in M1 simulations. We now move to a potentially
important physical effect that is entirely ignored in our
existing M1 simulations: νν̄ → eþe− pair annihilation in
low-density polar regions. Existing estimates indicate that
pair annihilation can deposit enough energy in the polar
regions to drive mildly relativistic outflows, and clear the
poles of most baryons—although on their own they are
probably not sufficient to power anything but the weakest
short gamma-ray bursts [35–38,40]. Pair annihilation has
been included in 2D postmerger simulations using the two-
moment approximation [37,39], and by post-processing
late-time snapshots of a postmerger remnant [40], but not in
self-consistent 3D simulations of these systems. One reason
is that energy deposition due to pair annihilation is strongly
dependent on moments of the neutrino distribution function
that are not evolved by the M1 scheme, mainly because
counterpropagating neutrinos have a much higher annihi-
lation cross section than neutrinos propagating in the same
direction.
To study this effect, let us follow Fujibayashi et al. [38]

and assume that the phase-space blocking factors and
masses of electrons and positrons are negligible. This is
nearly certainly a good approximation in the low-density
polar regions where pair annihilation plays an important
role. The heating rate QðþÞ

pair;νi
due to the neutrino species νi

can then be computed as a function of the moments of the
neutrino distribution function through an integral over the
phase space of neutrinos and antineutrinos (see [35,38]). If
the energy in the fluid frame ωðνiÞ can be factored from this
integral and approximated by the average energy hωðνiÞipair
of neutrinos νi, then

QðþÞ
pair;νi

¼ Cpair
νiνi

G2
F

3πh̄4c3
hωðνiÞipairðJJ̄ − 2HμH̄μ þ SμνS̄μνÞ ð21Þ

withGF≈4.5438ðh̄cÞ3 erg−2 theFermi constant, (J̄; H̄μ; S̄μνÞ
fluid-frame moments of antineutrinos,

Cpair ¼ 1� 4 sin2ðθWÞ þ 8 sin4ðθWÞ ð22Þ

(with the plus sign for electron neutrinos and the minus signs
for heavy-lepton neutrinos), and sin2 θW ≈ 0.2319. The total
heating rate due to pair annihilation is then

QðþÞ
pair;tot ¼ QðþÞ

pair;νe
þQðþÞ

pair;ν̄e
þ 4QðþÞ

pair;νx
; ð23Þ

where the only difference betweenQðþÞ
pair;νe

andQðþÞ
pair;ν̄e

due to
different average energies hωðνiÞipair for νe and ν̄e. The
neutrino annihilation number rate is naturally the same for
νe and ν̄e. Equation (21) can be seen as a definition for the
average energy hωðνiÞipair, yet computing that average energy
from information available in theM1 scheme is not possible.
Even in the MC algorithm if we want to compute the
annihilation rate from the stored moments of the neutrino
distribution function rather than by direct interaction
between every pair of neutrino packets, we do not currently
store enough information to exactly compute hωðνiÞipair. If
neutrinos of different energies all have the same angular
distribution, hωðνiÞipair is the energy-weighted average
energy of neutrinos (rather than the number-weighted
average energy hϵi used in earlier sections). If neutrinos
of different energies have different angular distributions,
however, there is no simple way to compute hωðνiÞipair.
Considering that low-energy neutrinos are more likely to
come from the accretion disk and thus have a higher
annihilation cross section, it is quite likely that using the
energy-weighted average energy slightly overestimates anni-
hilation rates. Yet, this is probably a small contribution to the

error in the computation ofQðþÞ
pair;νi

in a moment scheme, and
for this study at least, we approximate hωðνiÞipair by the
energy-weighted average energy (in the M1 scheme, con-
verting from hϵi to hωðνiÞipair is done by assuming a thermal
distribution of neutrinos).
The main issues with the computation of Eq. (21) in the

two-moment formalism are that it relies on M1 estimates of
the neutrino pressure tensor, and that it is significantly
affected by the overdensity of polar neutrinos in the M1
scheme. To study these effects, we rewrite Eq. (21) as

QðþÞ
pair;νi

¼ Cpair
νiν̄i

G2
F

3πh̄4c3
hωðνiÞipairκðνiÞEĒ; ð24Þ

with κðνiÞ a dimensionless factor capturing the angular

distribution of (anti)neutrinos. As QðþÞ
pair;νi

∝ EĒ, Fig. 11

provides us with an estimate of the impact on QðþÞ
pair;νi

of the
M1 code’s inaccurate values for the neutrino energy
density. The M1 code would overestimate annihilation of
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electron neutrinos by a factor of ∼2, and of heavy-lepton
neutrinos by a factor of ∼3. The geometric factor κ has the
opposite effect. In the M1 approximation, the assumed
distribution function of polar neutrinos is more forward-
peaked than what we find with the MC code. As a result, κ
is significantly underestimated when using M1. This last
effect is shown on Fig. 12: in most of the polar regions, κ is
larger by factors of 3–5 in the MC code than in the M1
code, with peak ratios of ∼100. Accounting for both
effects, we estimate that, given a good estimate of
hωðνiÞipair, the two-moment code captures the impact of
pair annihilations within a factor of 2–3.
To help with future computations of the νν̄ annihilation

rate in two-moment simulations, we also provide direct
measurements of the geometric factor κ in the MC code
(Fig. 12). We note that, in the polar regions, κ is largely

independent of latitude, and mostly depends on the distance
to the remnant. In Fig. 13, we show that κ is reasonably well
fitted by the expression

κðrÞ ¼ minðκ0; Ae−r=WÞ ð25Þ

with r the radius and, for electron neutrinos, κ0 ¼ 0.53,
W ¼ 37 km, while for heavy-lepton neutrinos, κ0 ¼ 0.45,
W ¼ 43 km. In theory, it may be interesting to use these fits
in simulations performed with the M1 code. However, we
should note that this will not get rid of errors caused by
inaccurate neutrino energy densities in M1 simulations.
At the very least, we can use our results to estimate the

accuracy of existing approximations used to compute the
neutrino pair annihilation rate. For example, Fujibayashi
et al. [38] use two different methods to compute that rate in

FIG. 12. Vertical slices through the merger remnant. Top: The specific energy deposition rate due to νν̄ pair annihilation using the
neutrino moments and average energy predicted by the MC code (right), and the ratio of the geometric factor κ obtained from the MC
and M1 codes (left). The latter provides an estimate of the error due solely to the use of the Minerbo closure in the computation of
Eq. (24). Bottom: The geometric factor κ in Eq. (24), for νxν̄x annihilation (left) and νeν̄e annihilation (right). Note that as the MC code
only stores moments normalized to the energy density E (i.e., Fi=E, Pij=E), the computation of QMC still uses the energy density
evolved by the M1 code.
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their simulations: one using the pressure provided by the
Minerbo closure, and one assuming an isotropic distribu-
tion of neutrinos (κ ∼ 1.1). Our results indicate that the
second is a slightly more accurate approximation of κ than
the first within 50 km of the remnant, where most of the
pair annihilation energy is deposited. However, even there
it is a factor of ∼2 too high, and this error on κ acts in the
same direction as the error due to the overestimated energy
density at the poles. Once both sources of errors are taken
into account, it appears that consistently using the Minerbo
closure during all calculations is in fact more accurate.
Finally, we can provide an estimate of the heating rate

due to pair annihilation in our simulation. In Fig. 12, we
show the heating rate per unit mass. Fujibayashi et al. [38]
estimate that the terminal Lorentz factor of the outflows is

Γf ∼ 1.1
ðQ=ρÞ

1024 erg=g=s
τheat
1 ms

; ð26Þ

with τheat the time during which the outflows are heated at a
constant rate Q=ρ. The observed heating rate would make
the polar outflows mildly relativistic, as observed in [38].
We can also look at the total energy deposition rate in the
polar outflows, i.e., in regions with θ < 30° and ρ <
1010 g=cm3 (the exact value is not very sensitive to changes
of the limiting density, even by an order of magnitude). We
find an energy deposition Qpair;tot ∼ 3 × 1050 erg=s. If we
assume that the neutrino luminosity decreases on a time-
scale of ∼50 ms, as in [38], we find a total energy
deposition ∼1.5 × 1049 erg, close to the kinetic energy
of the polar ejecta measured in [38] (∼1049 erg in their
simulation using the Minerbo closure to compute the
annihilation rate). This qualitative agreement is not overly

surprising. Using our MC code, we have just argued that an
M1 estimate of the annihilation rate should be correct
within a factor of ∼2–3. Pair annihilation is thus likely to
play an important role in the dynamics of polar outflows.
Whether this would really result in mildly relativistic
outflows is not, however, obvious. Both our simulations
and those in [38] neglect the impact of magnetic fields, and
in particular of viscous heating driven by magnetic turbu-
lence. Viscous radiation-hydrodynamics simulations in
axisymmetry [39] find polar outflows energized by a
combination of viscous heating and pair annihilation.
Whether these outflows can be driven to mildly relativistic
speeds will presumably depend on the unknown strength
of the viscous heating and the baryon loading of the polar
regions.
Overall, we find that multiple approximations made in

the M1 scheme create errors of factors of a few in the
computation of the νν̄ annihilation rate. Yet, these errors
partially cancel, and we find that a two-moment scheme
using the Minerbo closure and informed by a reasonable
estimate of the average neutrino energy can capture the
neutrino pair annihilation rate within a factor of ∼2–3.
While probably insufficient for detailed studies of the
impact of neutrino pair-annihilation on the dynamics of
polar outflows, such accuracy is a much more favorable
result for the two-moment scheme than one might have
assumed before comparison with MC results.

V. CONCLUSIONS

We perform the first time-dependent, general relativistic,
Monte Carlo radiation transport simulation of neutrinos in
the remnant of a binary neutron star merger. The premerger
system was a 1.2 M⊙ − 1.2 M⊙ system with the neutron
star matter described using the LS220 equation of state.
That system forms a massive neutron star—accretion disk
remnant, with bright neutrino emission from both the disk
and the hot neutron star. While we do not couple the MC
evolution to the fluid evolution, we use our results to
estimate important sources of errors in more approximate
transport algorithms currently used in merger simulations.
In particular, we focus on the limitations of the gray two-
moment scheme with analytical Minerbo closure, as
implemented in the SpEC code.
We find that the Minerbo closure providing us with an

analytical estimate of the neutrino pressure tensor is very
inaccurate in the low-density polar regions. These regions
are of great importance for EM counterparts to neutron star
mergers. It is there that the hot, high Ye material powering
optical kilonovae is most likely ejected. Neutrinos in polar
regions are also likely to impact the production of short
gamma-ray bursts. An important consequence of this
inexact closure is that the energy density of neutrinos in
the polar regions is strongly overestimated when using the
M1 scheme, by ∼50% for electron-type neutrinos and
100% for heavy-lepton neutrinos.

FIG. 13. Geometric factor κ in Eq. (24), along the polar axis.
We show results for electron and heavy-lepton neutrinos, as well
as best-fit curves using Eq. (25). The fits ignore the high-density
regions inside the remnant neutron star, where pair annihilation is
a subdominant process.

F. FOUCART et al. PHYS. REV. D 98, 063007 (2018)

063007-16



The average energy of the neutrinos, on the other hand, is
relatively well approximated in the polar regions by two-
moment schemes that evolve both the energy and number
density of neutrinos (within ∼10%), but inexact closer to
the equatorial plane. We also show that the energy spectrum
of electron-type neutrinos is harder than the blackbody
spectrum usually assumed in the gray M1 scheme.
Combining these various sources of errors, we can

estimate that the absorption rates for charged-current
reactions responsible for the evolution of the composition
of the outflows may be off by factors of ∼1.5–2 in M1
simulations, potentially a fairly significant limitation to our
ability to model the composition of the outflows, and thus
kilonovae. The practical impact of these errors in the M1
scheme on kilonova models remains, however, an open
question. We already know that including neutrino absorp-
tion in simulations radically changes the composition of the
outflows [33], while errors in the estimated neutrino energy
leading to factor of a few changes in the absorption rate can
modify the composition of the polar outflows by ΔYe ∼
0.05–0.1 [44]. Considering our estimate of the error in the
neutrino absorption rate obtained using our most up-to-date
M1 scheme, it may be reasonable to assume that the change
in Ye due to the remaining approximations in the M1
scheme will be slightly smaller than the errors observed in
[44]: important for accurate kilonova modeling, but not
for our qualitative understanding of merger outflows.
Considering that neutron star mergers are complex non-
linear systems, however, this cannot be rigorously demon-
strated at this point. A more accurate statement will have to
wait for simulations with a full coupling of the MC scheme
(or another improved neutrino transport method) to the
fluid evolution.
We also consider the impact of the M1 approximation on

estimates of the νν̄ → eþe− annihilation rate. While two
different issues in M1 simulations each induce errors of
factors ≳2, these errors partially cancel. An M1 scheme
with a good estimate of the average energy of the neutrinos
is likely capable of predicting the neutrino annihilation rate
within factors of 2–3. While certainly significant, these
errors are smaller than one might have guessed prior to this
study. Including pair-annihilation effects within a two-
moment scheme probably leads to at least qualitatively
correct behavior of the polar outflows.
Another important objective of this simulation is to

assess the feasibility of using time-averaged moments
computed from a low-resolution MC evolution as closure
for the two-moment scheme, thus removing the need to use
the approximate Minerbo closure or to assume a given
energy spectrum [41]. We find that the time dependence of
the neutrino distribution function over the orbital timescale

of the remnant is relatively weak, partially justifying the use
of moments averaged over timescales comparable to the
dynamical timescale of the system. Additionally, our choice
to avoid performing MC evolutions in high-optical depth
regions (where κΔx≳ 1) and to instead simply provide
boundary conditions approximating a thermal distribution
of neutrinos in these regions does not appear to create
significant errors, at least when compared with a simulation
placing that boundary deeper in the remnant (κΔx≳ 10).
We thus estimate that we can provide moments of the

neutrino distribution function with statistical noise at the
level of a few percent with as little as ∼2.5 × 107 MC
packets (for a simulation with 2.8 × 107 finite volume
cells). This indicates that the two-moment scheme with MC
closure that we recently proposed [41] is computationally
affordable in simulations of postmerger remnants, and if
stable may provide a convenient way to improve upon the
standard two-moment algorithm with Minerbo closure. At
the current accuracy of the MC scheme, and considering
current errors in the M1 scheme of up to a factor of 2 in the
local energy density and expected neutrino absorption rate,
and ∼10% − 20% in the average energy of the neutrinos,
such a coupled algorithm could, in principle, reduce
relative errors in the two-moment scheme by an order of
magnitude.
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