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Gauge theory/string theory holographic correspondence for N ¼ 4 supersymmetric Yang-Mills
(SYM) theory is well under control in the planar limit, and for large (infinitely large) ’t Hooft coupling,
λ → ∞. Certain aspects of the correspondence can be extended including Oðλ−3=2Þ corrections. There
are no reliable first principle computations of the N ¼ 4 plasma nonequilibrium properties beyond the
stated order. We show extreme sensitivity of the nonhydrodynamic spectra of holographic N ¼ 4 SYM
plasma to Oðλ−3Þ corrections, challenging any conclusions reached from “resummation” of Oðλ−3=2Þ
corrections.
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I. INTRODUCTION AND SUMMARY

The most studied example of the holographic correspon-
dence relating gauge theories and string theory is for the
maximally supersymmetric SUðNÞ N ¼ 4 Yang-Mills
theory (SYM) and type IIB string theory in AdS5 × S5

[1]. The number of colors N of the SYM is related to the
5-form flux on the string theory side. Furthermore, the
asymptotic AdS5 (or S5) radius L in units of the string
length α0 ¼ l2

s along with the asymptotic value of the string
coupling gs establishes a correspondence to the ’t Hooft
coupling λ on the SYM side:

L4

α02
¼ 4πgsN ¼ g2YMN ≡ λ: ð1:1Þ

While there has been tremendous progress over the years in
developing the correspondence (e.g., see [2]), understand-
ing the full parameter space fN; λg is elusive. How much
is exactly known depends on what questions one asks.
Thermal or nonequilibrium states of SYM plasma at strong
coupling are under control in the planar limit, gYM → 0

N → ∞ with λ kept fixed, and (in addition) for large
’t Hooft coupling λ ≫ 1. Only first subleading corrections
∝ Oðλ−3=2Þ are computationally accessible [3]. Here is a
sample of SYM plasma results including first subleading
corrections in the limit λ → ∞:

(i) The thermal equilibrium free energy density of the
SYM plasma is [4,5]

F ¼ −
π2

8
N2T4ð1þ 15γ þ � � �Þ: ð1:2Þ

(ii) The shear viscosity to the entropy density ratio is
[6–8]

η

s
¼ 1

4π
ð1þ 120γ þ � � �Þ: ð1:3Þ

(iii) The speed of the sound waves and the bulk viscosity
is [9]

c2s ¼
1

3
þ 0 · γ þ � � � ; ζ

s
¼ 0 · γ þ � � � : ð1:4Þ

(iv) A sample of the second-order transport coefficients
(see [10,11] for further details) is [12,13]

τΠT ¼ 2 − ln 2
2π

þ 375

4π
γ þ � � � ;

κ ¼ η

πT
ð1 − 145γ þ � � �Þ;

λ1T
η

¼ 1

2π
ð1þ 215γ þ � � �Þ: ð1:5Þ

(v) The plasma conductivity is [14]1

σ ¼ σ∞ð1þ 125γ þ � � �Þ; ð1:6Þ
where σ∞ is the plasma conductivity at infinite
’t Hooft coupling.
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In expressions (1.2)–(1.6) we introduced

γ ¼ 1

8
ζð3Þðα0Þ3: ð1:7Þ

Notice that as one proceeds from the corrections to the
equilibrium quantities (1.2) to the first-order (1.3),
the second-order (1.5) transport, the conductivity (1.6),
the relative “strength” of the corrections grow. The correc-
tion strength is even more dramatic, ∝ ð104–105Þ ·γ to the
spectra of the nonhydrodynamic plasma excitations [the
quasinormal modes (QNMs) of the dual gravitational
background] [16,17]. This observation led the authors of
[18] to propose the idea of an effective resummation of
γ-corrections. In a nutshell, on α0-corrected gravity side
of the holographic correspondence one typically gets
higher-derivative bulk equations of motion. One can use the
smallness of γ to eliminated the higher derivatives, reducing
the equations to the second-order ones, where γ corrections
affect the first-order derivatives at the most—this is precisely
what was done for example in computation of the shear
viscosity in [6]. The next (new) step is to “forget” that γ must
be small in transformed equations and instead treat the
equations nonperturbatively in γ. There are two effects of
such a resummation at finite γ:

(i) It is possible to compute finite-γ corrections to SYM
observables at infinitely large ’t Hooft coupling;

(ii) one can discover new phenomena, which are absent
in an infinite ’t Hooft coupling limit.

It is the latter aspect of the resummation that should
be subject to additional scrutiny in drawing physical con-
clusions. In particular, following the resummation approach of
[18], in [19] a new branch of the QNMs was found—these
are (purported) SYMplasma excitations withℜðwÞ ¼ 0. The
physics of these new excitations was crucial to draw con-
clusions regarding properties of N ¼ 4 spectral function at
intermediate ’t Hooft coupling [20].
To our knowledge, there is no discussion in the literature,

even at a phenomenological level, on how robust is the
resummation approach of [18]. In this note we address
this question focusing on ℜðwÞ ¼ 0 branch of the QNMs
identified in [19]. In the absence of the reliable corrections
to type IIB supergravity we proceed as follows. Recall the
tree level type IIB low-energy effective action in ten
dimensions taking into account the leading-order string
corrections [21,22]

S ¼ 1

2κ210

Z
d10x

ffiffiffi
g

p �
R −

1

2
ð∂ϕÞ2 − 1

4 · 5!
ðF5Þ2

þ � � � þ γe−
3
2
ϕW þ � � �

�
; ð1:8Þ

where W in a certain scheme is proportional to the fourth
power of the Weyl tensor

W ¼ ChmnkCpmnqCh
rspCq

rsk þ
1

2
ChkmnCpqmnCh

rspCq
rsk:

ð1:9Þ

A consistent (for the purpose of QNM spectra computation)
Kaluza-Klein reduction of (1.8) on S5 results in

S5 ¼
1

2κ25

Z
d5x

ffiffiffi
g

p �
Rþ 12

L2
þ γW

�
; ð1:10Þ

where W is a five-dimensional equivalent of (1.9). We
would like to stress that an effective action (1.10) includes
all the terms at order γ arising from string theory that are
relevant for physics of homogeneous and isotropic thermal
equilibrium states of N ¼ 4 SYM plasma and (non)hydro-
dynamic fluctuations about them. As it stands, results
extracted from this action are valid only up to OðγÞ, i.e.,
for infinitesimal γ, and thus do not provide information
about finite-γ (finite ’t Hooft coupling) corrections to
N ¼ 4 SYM observables. The resummation procedure
advocated in [18] follows the steps:
(a) Derive relevant equations of motion from (1.10) to

order OðγÞ inclusive.
(b) These equations contain higher (than the second order)

space-time derivatives. Using equations of motion at
orderOðγ0Þ, all the space-time derivatives (higher than
the first order) at order OðγÞ can be eliminated; e.g.,
see [6]. The resulting equations contain at most second
space-time derivatives and the space of perturbative in
γ solutions of these equations agrees [up toOðγÞ] with
the space of solutions of perturbative equations in (a).

(c) The proposal of [18] is to treat equations in (b) as exact
in γ.

Clearly, there is no physical justification of step (c) where
one extends, without any modifications, equations of
motion (EOMs) valid at OðγÞ only. On can easily invent
infinitely many resummation schemes in the spirit of [18].
Here is one of them:
(A) Derive relevant equations of motion from (1.10) to

order OðγkÞ inclusive, where k ≥ 1 is an arbitrary
integer.

(B) These equations contain higher (than the second
order) space-time derivatives. Using equations of
motion at orders OðγmÞ, m < k, all the space-time
derivatives (higher than the first order) at orders
OðγmÞ, 1 ≤ m ≤ k can be eliminated; e.g., see
Sec. II. The resulting equations contain at most
second space-time derivatives and the space of
perturbative in γ solutions of these equations agrees
[up to OðγkÞ] with the space of solutions of
perturbative equations in (A).

(C) The new resummation is to treat equations in (B) as
exact in γ.

The new truncation and resummation procedure of
γ-corrections is as good (or as bad) as the one proposed
in [18]. The purpose of our paper is precisely to test the
robustness of the different k resummation schemes.
Specifically, we consider the simplest extension of the
five-dimensional effective action (1.10):
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S̃5 ¼
1

2κ25

Z
d5x

ffiffiffi
g

p �
Rþ 12

L2
þ γW þ αγ2W2 þOðγ3Þ

�
;

ð1:11Þ

where we study a family of a constant α such that jαγj≲ 1.
Notice that the (phenomenological) action (1.11) is
assumed to be exact up to order γ2. At α ¼ 0 the effective
action (1.11) is just k ¼ 2 representative of the new
resummation scheme explained above. The order OðαÞ
term is one of the potential terms that could arise from real
string theory computations—we do not claim that it is a
dominant one (there could be other terms at this order);
neither do we know the precise value of α. The purpose of
introducing this α term is to illustrate that physical
observables does not necessarily have to be monotonic
in γ. Given (1.11), the corrections at order γ2 arise from the
second-order perturbation due to γW term, and directly due
to the first-order term in α. In the next section we present
results of the computations. In both cases,

(i) setting α ¼ 0 but treating (1.10) as (1.11),
(ii) fixing γ ¼ 10−3 and exploring jαj ≲ 100,

we find a dramatic variation in the spectrum of QNMs on
the branch with ℜðwÞ ¼ 0. Thus, we conclude that physics
extracted from (1.10) beyond the leading order in γ [in the
absence of explicit and reliable computations of Oðγ2Þ
string theory corrections] have to be treated with caution.

We explicitly demonstrated this fact for some branches of
the spectra of QNMs; however, this is also true for the
relation between the black brane temperature T and the
location of its horizon r0 in the holographic dual to N ¼ 4

SYM plasma: From (2.3) the Oðγ2Þ term (at α ¼ 0) enters
with coefficient over 1400 larger than theOðγÞ term. While
we believe that a similar fate awaits other observables, the
η=s ratio in particular, this remains to be corroborated with
explicit computations. On a positive note, it is conceivable
that some quantities inN ¼ 4 plasma exhibitOðγÞ features
that remain qualitatively robust upon inclusion of higher-
order corrections.

II. TECHNICAL DETAILS

To facilitate comparison and readability, we follow
notations of [19].
To orderOðγ2Þ, the black brane solution to the equations

of motion following from (1.11) is given by

ds2 ¼ r20
u
ð−fðuÞZtdt2 þ dx2 þ dy2 þ dz2Þ þ Zu

du2

4u2f
;

ð2:1Þ

where fðuÞ ¼ 1 − u2, r0 is the parameter of nonextremality
of the black brane geometry, and

Zt ¼ 1 − 15γð5u2 þ 5u4 − 3u6Þ þ γ2
�
161100

7
u14αþ 30

7
ð−6630αþ 69720Þu12

þ 36

7
ð−5525α − 119560Þu10 þ 45

7
ð−4420α − 11872Þu8 þ 60

7
ð−3315α − 7329Þu6

þ 90

7
ð−2210α − 6986Þu4 þ 180

7
ð−1105α − 3493Þu2

�
;

Zu ¼ 1þ 15γð5u2 þ 5u4 − 19u6Þ þ γ2
��

198900

7
αþ 89820

�
u2 þ

�
198900

7
αþ 95445

�
u4

þ
�
198900

7
αþ 20070

�
u6 þ

�
198900

7
αþ 57195

�
u8 þ

�
198900

7
αþ 2744370

�
u10

þ
�
198900

7
α − 3680775

�
u12 −

2321100

7
u14α

�
: ð2:2Þ

The γ-corrected Hawking temperature corresponding to the solution (2.1) is

T ¼ r0
π

�
1þ 15γ þ γ2

�
21420þ 47700

7
α

��
: ð2:3Þ

Scalar channel.—The QNM equation takes the form

∂2
uZ1 −

1þ u2

uð1 − u2Þ ∂uZ1 þ
w2 − q2ð1 − u2Þ

uð1 − u2Þ2 Z1 ¼ γG1½Z1� þ γ2G1;2½Z1�; ð2:4Þ

where Z1 is a radial profile of the hxy metric fluctuations. The explicit expression for G1½Z1; ∂uZ1� can be found in [19], and
we compute
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G1;2 ¼ −
2

7
ð3144960αq2u11 þ 8052660αu12 − 1075200q4u8 þ 7878600αu10

þ 40025216q2u9 þ 75735891u10 − 994500αu8 − 29659392q2u7 þ 1741824u7w2

þ 15490125u8 − 795600αu6 − 40675194u6 − 596700αu4 þ 604800q2u3 − 1040445u4

− 397800αu2 − 843255u2 − 198900α − 628740Þu∂uZ1 þ
1

7uðu2 − 1Þ ð483840αq
4u13

− 17476020αq2u14 − 258048q6u10 þ 17945100αq2u12 − 15661800αu12w2

þ 14363328q4u11 − 135086623q2u12 − 198900αq2u10 þ 2084400αu10w2 − 12425280q4u9

þ 5246976q2u9w2 þ 213413970q2u10 − 104522733u10w2 − 198900αq2u8

þ 1686600αu8w2 þ 100800q4u7 − 77651133q2u8 þ 81113193u8w2 − 198900αq2u6

þ 1288800αu6w2 þ 282240q4u5 − 1654800q2u6 þ 3212370u6w2 − 198900αq2u4

þ 891000αu4w2 þ 404775q2u4 þ 1908900u4w2 − 198900αq2u2 þ 493200αu2w2

− 644490q2u2 þ 1590435u2w2 − 95400αq2 þ 95400αw2 − 301455q2 þ 301455w2ÞZ1: ð2:5Þ

Note that the EOM for Z1 directly obtained from (1.11)
involves terms ∝ γ or ∝ γ2 with (up to) fourth-
order derivatives in u. Following [6], higher-derivative
“source” terms with γ dependence can be eliminated
using EOM at lower order. We implemented two different
schemes:

(i) All the higher derivatives in γ-dependent source terms
are eliminated using the Oðγ0Þ EOM from (2.4):

∂2
uZ1 ¼

1þ u2

uð1 − u2Þ ∂uZ1 −
w2 − q2ð1 − u2Þ

uð1 − u2Þ2 Z1;

(ii) the functionals G1 and G1;2 (dependent on Z1 and
∂uZ1 only) are adjusted in such a way that the
perturbative solutions to (2.4) agree with the per-
turbative solutions of the higher-derivative order
direct EOM for Z1 to order Oðγ2Þ inclusive.

The two reduction procedures are not equivalent:
Specifically, G1;2 differs.2 Expression (2.5) represents
the result of the latter of the two reduction schemes.3

As in [19],

w ¼ ω

2πT
; q ¼ q

2πT
; ð2:6Þ

with the temperature given by (2.3), and fω; qg begin
the frequency and the momentum of the nonhydro SYM
plasma excitation.
We focus on QNMs with ℜðwÞ ¼ 0 at q ¼ 0. Thus, we

need to solve (numerically) (2.4) for z1, defined as

Z1 ¼ ð1 − uÞ−iw=2u2z1ðuÞ; ð2:7Þ

0.001 0.002 0.003 0.004 0.005
γ

γ γ

1
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3

4

–Im ω

ω ω

[1]

0.001 0.002 0.003 0.004 0.005
γ

–15

–10

–5

ln O( 2 )
[1] [1]/ O( )

FIG. 1. Left panel: The lowest QNM frequencies w½1�
OðγÞ computed with (1.10) (solid blue curve) and the lowest QNM frequencies

w½1�
Oðγ2Þ computed with (1.11) with α ¼ 0 (dashed red curve). Right panel: Log-comparison of the lowest QNM frequencies for different

orders of the approximation of the gravitational effective action.

2Nonetheless, we find that the QNM spectra computed within
these two schemes over the parameter range reported in Figs. 1
and 2 differ by less than 5%.

3I would like to thank the authors of [20] for independent
confirmation of the technical details reported.
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subject to a regular boundary conditions both as u → 0þ
(the asymptotic AdS5 boundary) and u → 1− (the black
brane horizon):

lim
u→1−

z1 ¼ 1; lim
u→0þ

z1 ¼ const ≠ 0: ð2:8Þ

Notice that (2.7) automatically accounts for an incoming-
wave boundary conditions for Z1 at the black brane
horizon. Results of the numerical computations are pre-
sented in Figs. 1 and 2.

(i) We confirm the computations of the QNM frequen-
cies determined in [19] and presented in Fig. 5 there.

(ii) The left panel of Fig. 1 presents the lowest QNM
frequencies w½1�

OðγÞ computed with (1.10) (solid blue

curve) and the lowest QNM frequencies w½1�
Oðγ2Þ

computed with (1.11) with α ¼ 0 (dashed red curve)
for a range of γ ∈ ½10−5; 5 × 10−3�. At γ ¼ 10−5, the
two approximations produce frequencies that differ
by ∼13%. As γ increases, the difference becomes
dramatic: At γ ¼ 0.005 the two frequencies differ by
a factor of ∼5 × 107.

(iii) Figure 2 presents results for w½1�
Oðγ2Þ at γ ¼ 10−3 as

parameter α varies within ½−3.21; 100�. The value of
the frequencies varies by a factor of ∼1011. Notice
that the presented QNM spectrum has a linear
sensitivity to α about α ¼ 0. This implies that,
lacking the precise knowledge of higher-derivative
γ-corrections, observables in N ¼ 4 SYM plasma
do not have to be monotonic in γ.

ACKNOWLEDGMENTS

I would like to thanks the organizers of HoloQuark2018
for an inspiring conference in the culinary heart of Spain.
I would like to acknowledge a clear and interesting talk by
Jorge Casalderrey-Solana at the conference, which led to
this note. Research at Perimeter Institute is supported by the
Government of Canada through Industry Canada and by the
Province of Ontario through the Ministry of Research and
Innovation. This work was further supported by NSERC
through the Discovery Grants program.

[1] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Adv. Theor. Math. Phys. 2, 231
(1998); Int. J. Theor. Phys. 38, 1113 (1999).

[2] N. Beisert et al., Review of AdS=CFT integrability: An
overview, Lett. Math. Phys. 99, 3 (2012).

[3] M. F. Paulos, Higher derivative terms including the
Ramond-Ramond five-form, J. High Energy Phys. 10
(2008) 047.

[4] S. S. Gubser, I. R. Klebanov, and A. A. Tseytlin, Coupling
constant dependence in the thermodynamics of N ¼ 4

supersymmetric Yang-Mills theory, Nucl. Phys. B534,
202 (1998).

[5] J. Pawelczyk and S. Theisen, AdS5 × S5 black hole metric at
Oðα03Þ, J. High Energy Phys. 09 (1998) 010.

[6] A. Buchel, J. T. Liu, and A. O. Starinets, Coupling constant
dependence of the shear viscosity in N ¼ 4 supersymmetric
Yang-Mills theory, Nucl. Phys. B707, 56 (2005).

[7] A. Buchel, Shear viscosity of boost invariant plasma at
finite coupling, Nucl. Phys. B802, 281 (2008).

[8] A. Buchel, Resolving disagreement for eta/s in a CFT
plasma at finite coupling, Nucl. Phys. B803, 166 (2008).

[9] P. Benincasa and A. Buchel, Transport properties of
N ¼ 4 supersymmetric Yang-Mills theory at finite coupling,
J. High Energy Phys. 01 (2006) 103.

[10] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and
M. A. Stephanov, Relativistic viscous hydrodynamics, con-
formal invariance, and holography, J. High Energy Phys. 04
(2008) 100.

[11] S. Grozdanov and A. O. Starinets, On the universal identity
in second order hydrodynamics, J. High Energy Phys. 03
(2015) 007.

[12] A. Buchel and M. Paulos, Relaxation time of a CFT plasma
at finite coupling, Nucl. Phys. B805, 59 (2008).

[13] A. Buchel and M. Paulos, Second order hydrodynamics of a
CFT plasma from boost invariant expansion, Nucl. Phys.
B810, 40 (2009).

[14] S. Waeber and A. Schfer, Studying a charged quark gluon
plasma via holography and higher derivative corrections,
J. High Energy Phys. 07 (2018) 069.

[15] B. Hassanain and M. Schvellinger, Plasma conductivity
at finite coupling, J. High Energy Phys. 01 (2012)
114.

20 40 60 80 100
α

ω

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-Im [1]

FIG. 2. The lowest QNM frequencies w½1�
Oðγ2Þ computed

with (1.11) at γ ¼ 10−3 as a function of the phenomenological
parameter α.

SENSITIVITY OF HOLOGRAPHIC N ¼ 4 SYM … PHYS. REV. D 98, 061901 (2018)

061901-5

https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1007/s11005-011-0529-2
https://doi.org/10.1088/1126-6708/2008/10/047
https://doi.org/10.1088/1126-6708/2008/10/047
https://doi.org/10.1016/S0550-3213(98)00514-8
https://doi.org/10.1016/S0550-3213(98)00514-8
https://doi.org/10.1088/1126-6708/1998/09/010
https://doi.org/10.1016/j.nuclphysb.2004.11.055
https://doi.org/10.1016/j.nuclphysb.2008.03.009
https://doi.org/10.1016/j.nuclphysb.2008.05.024
https://doi.org/10.1088/1126-6708/2006/01/103
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1007/JHEP03(2015)007
https://doi.org/10.1007/JHEP03(2015)007
https://doi.org/10.1016/j.nuclphysb.2008.07.002
https://doi.org/10.1016/j.nuclphysb.2008.10.012
https://doi.org/10.1016/j.nuclphysb.2008.10.012
https://doi.org/10.1007/JHEP07(2018)069
https://doi.org/10.1007/JHEP01(2012)114
https://doi.org/10.1007/JHEP01(2012)114


[16] S. A. Stricker, Holographic thermalization in N ¼ 4 Super
Yang-Mills theory at finite coupling, Eur. Phys. J. C 74,
2727 (2014).

[17] D. Steineder, S. A. Stricker, and A. Vuorinen, Probing the
pattern of holographic thermalization with photons, J. High
Energy Phys. 07 (2013) 014.

[18] S. Waeber, A. Schfer, A. Vuorinen, and L. G. Yaffe, Finite
coupling corrections to holographic predictions for hot
QCD, J. High Energy Phys. 11 (2015) 087.

[19] S. Grozdanov, N. Kaplis, and A. O. Starinets, From strong to
weak coupling in holographic models of thermalization,
J. High Energy Phys. 07 (2016) 151.

[20] J. C. Solana, S. Grozdanov, and A. O. Starinets, Transport
peak in thermal spectral function of N ¼ 4 supersymmetric

Yang-Mills plasma at intermediate coupling, arXiv:1806
.10997.

[21] M. T. Grisaru and D. Zanon, Sigma model superstring
corrections to the Einstein-Hilbert action, Phys. Lett. B
177, 347 (1986); M. D. Freeman, C. N. Pope, M. F.
Sohnius, and K. S. Stelle, Higher order sigma model
counterterms and the effective action for superstrings,
Phys. Lett. B 178, 199 (1986); Q. H. Park and D.
Zanon, More on sigma model beta functions and
low-energy effective actions, Phys. Rev. D 35, 4038
(1987).

[22] D. J. Gross and E. Witten, Superstring modifications of
Einstein’s equations, Nucl. Phys. B277, 1 (1986).

ALEX BUCHEL PHYS. REV. D 98, 061901 (2018)

061901-6

https://doi.org/10.1140/epjc/s10052-014-2727-4
https://doi.org/10.1140/epjc/s10052-014-2727-4
https://doi.org/10.1007/JHEP07(2013)014
https://doi.org/10.1007/JHEP07(2013)014
https://doi.org/10.1007/JHEP11(2015)087
https://doi.org/10.1007/JHEP07(2016)151
http://arXiv.org/abs/1806.10997
http://arXiv.org/abs/1806.10997
https://doi.org/10.1016/0370-2693(86)90765-3
https://doi.org/10.1016/0370-2693(86)90765-3
https://doi.org/10.1016/0370-2693(86)91495-4
https://doi.org/10.1103/PhysRevD.35.4038
https://doi.org/10.1103/PhysRevD.35.4038
https://doi.org/10.1016/0550-3213(86)90429-3

