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We extend the use of configurational information measures (CIMs) to instantons and vacuum decay in
arbitrary spatial dimensions. We find that both the complexity and the information content in the shape of
instanton solutions have distinct regions of behavior in parameter space, discriminating between qualitative
thin- and thick-wall profiles. For Euclidean spaces of dimension D, we show that for D ≥ 6 instantons
undergo a qualitative change of behavior from their lower-dimensional counterparts, indicating that D ¼ 6

is a critical dimension. We also find a scaling law relating the different CIMs to the rate of vacuum decay,
thus connecting the stability of the vacuum to the informational complexity stored in the shape of the
related critical bounce.
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I. INTRODUCTION

Information theory made its debut in 1948 with Claude
Shannon’s revolutionary A Mathematical Theory of
Communication [1]. In it Shannon was able to quantify
information, and, in particular, how it can be transferred
from source to receiver through a generalized communi-
cation channel. In so doing, he proved the celebrated
noiseless and noisy coding theorems. Central to his analysis
was entropy: a measure of how much information is hidden
in a random process. His insights form the foundation of
modern compression technology, but the generality of his
work has allowed similar techniques to be brought to bear
on a wide array of problems [2]. Its usefulness in explaining
the complexity of neural firing patterns in vertebrate retina,
Supreme Court voting patterns, and even natural flocks of
birds only begins to address possible applications in very
different research fields [3–5]. Generalizations of Shannon
entropy abound in the literature, the most familiar probably
being those of Renyi and Tsallis [6,7]. Permutation entropy
has been developed to study time series, finding uses in
quantifying the complexity of plasma turbulence [8,9].
Transfer entropy captures the dynamics of information
flow and has found uses in chemical networks within cells
[10–12]. Parallel to these initiatives, recent work has

brought Shannon’s information narrative into the context
of field theory. This approach is the focus of this paper.
Configurational information measures (CIMs) have

grown out of the desire to quantify the informational
content and complexity contained in the shape of physical
structures naturally occurring in field theories. Constructed
in momentum space, configurational entropy (CE) and
configurational complexity (CC), and their continuum
differential variants, DCE and DCC, are at the core of
CIMs [13]. CE quantifies the number of bits necessary to
construct a field configuration out of wave modes, while
CC quantifies the complexity of that construction. There
has been quite a bit of confusion within the literature
between these two, which we hope to remedy in the present
work with more precise definitions and renamings.
CCwas originally proposed byGleiser and Stamatopolous

as a diagnostic tool to compare exact and approximate
soliton-like solutions by breaking the degeneracy of equal-
energy Ansätze in models with a single scalar field [13], and
was soon extended to models with two fields [14], as well as
applied to predicting atomic decay rates in hydrogenic
atoms [15].
At the same time, the measure’s ability to serve as a

pattern discriminator has been used to detect the formation
of localized structures during inflationary preheating [16],
as well as to predict the existence and lifetimes of scalar
field configurations known as oscillons [17]. CC also
serves as a tool for parameter estimation, putting bounds
on Lorentz and CPT violation, Abelian string vortices,
fðRÞ models, and Gauss-Bonnet braneworlds [18–22].
The discovery by Gleiser and Sowinski [23] that CC
correlates with the Chandrasekhar limit of white dwarfs
hinted at its ability to diagnose instability. This ability was
corroborated in other settings, including Q-balls [23] and,
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in astrophysics, for neutron and boson stars [24], as well as
anti–de Sitter black holes [25].
Meanwhile, CE was shown to play a key role in

understanding the information dynamics of phase transi-
tions [26]. Quantifying the flow of information between
scales, CE shed light on criticality in 2d Landau-Ginzburg
models [26], leading to the concept of information turbu-
lence near criticality [27]. The same methodology identi-
fied a phase transition in thick brane models of gravity [28].
An introduction to CE’s relationship to other information
measures, and its interpretation as an epistemic tool for the
study of structural and dynamical information can be found
in Refs. [29,30].
In this paper, we will add to the phenomenology of CIMs

by elucidating the informational narrative of false-vacuum
decay via instanton tunneling. Instantons are the key
ingredient in understanding vacuum decay in field theory,
and have been thoroughly examined since they were first
introduced by Belavin, Polyakov, Schwartz, and Tyupkin in
1975 [31]. Soon after, Coleman showed how, in a semi-
classical approach, spherically symmetric instantons domi-
nate the path integral describing the matrix element
connecting distinct potential minima at zero temperature,
calculating both the classical and quantum contributions to
the false-vacuum decay rate [32,33].
The idea that the vacuum could spontaneously decay into

a lower energy state, or that it might have done so in the
early Universe, suggests that instantons are relevant in a
cosmological context [34]. Indeed, this was the original
motivation of Guth’s first model of inflation [35], and many
that followed. Instantons, in particular of the Fubini-
Lipatov type [36], may also play a role in the stability
of our own vacuum: within the Standard Model, the value
of the Higgs mass implies that the Universe is in a
metastable vacuum, deeming them important for under-
standing the fate of our Universe [37,38]. Fortunately,
within our current understanding of the Standard Model,
any such doomsday scenarios are in the incomprehensibly
distant future. Calculations suggest no transition for
1059 years at the 95% confidence level [39]. There exists
a sizable literature reviewing these objects, and the decay of
the Standard Model vacuum [37,40–44].
In this paper, we examine how the informational content

stored in instanton configurations is related to their physical
properties in an arbitrary number of spatial dimensions. We
will show that both measures of configurational informa-
tion can shed light into fundamental aspects of instantons
and false vacuum decay, including the longevity of the false
vacuum. In particular, we obtain a scaling law relating the
two which is independent of spacetime dimensionality (for
D ≤ 5, as we will see).
This paper is organized as follows. Section II reviews the

basics of information theory, and clarifies some previous
confusion in the current literature about the different CIMs
and their definitions. We formalize the difference between

entropy and complexity, and elucidate the extension of
these measures to the continuum. Section III introduces the
representative scalar field model used in this paper and the
conventions we adhere to. We also review the construction
of an instanton in relation to vacuum decay, and describe
the numerical scheme we use in our investigation.
Section IV describes our main results, covering both the
physical and informational narratives to vacuum decay, and
describes how we connect the two through a series of
scaling laws. Section V summarizes our results and dis-
cusses future directions. In the Appendix we present the
calculation of the instanton action in D Euclidean dimen-
sions in the thin-wall limit.

II. CONFIGURATIONAL INFORMATION
MEASURES

A. Entropy, information, and complexity

Central to proving the noisy and noiseless coding
theorems in information theory is a quantity called
Shannon entropy:

S ¼ −
X
a∈A

pa logpa: ð1Þ

Here, A is an alphabet of symbols, X is a random symbol
drawn from that alphabet, and pa ¼ pðX ¼ ajLÞ is the
probability of that symbol given a language L. The base of
the logarithm is a matter of preference: computer scientists
tend to use base 2 and measure entropy in bits, while
information theorists and physicists prefer base e and
measure entropy in nats. Note that S is bounded from
above by log jAj, the case when each symbol is equiprob-
able, and from below by 0, when a single symbol is certain.
The latter lends itself to the S interpretation of entropy as
surprise: an event that is certain is not surprising. Another
viewpoint is the Q interpretation, in bits, where entropy
represents the average number of yes-no questions one
must ask to determine a random letter. Random here means
the letter is drawn from some distribution, p, the analogue
to a language. A good example is English, where one
imagines a letter is drawn from the corpus of English
literature. The entropy is a little over 4 bits, meaning that it
will take on average a little over four guesses to determine
the identity of the letter [45,46].
Shannon’s theorems prove that entropy provides a

lower bound on how compressible an alphabet is in a
given language; it can thus be interpreted as the amount of
information needed to encode a random phenomenon.
The information contained in a particular occurrence of a

letter of the alphabet is IðaÞ ¼ − logpa. Improbable letters
carry a lot of information. If this seems a bit abstract, try to
place it in the context of a game of Scrabble. Revealing an
“e” does not pin down the possible words you could make
since there are a great many possibilities for incorporating
that “e” into your next move. Revealing an “x,” however, is
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a completely different story. Future moves are constrained
much more by this event. It is this constraining of possibility
that the notion of information attempts to capture.
Entropy and information are related in that the former is

the expected value of the latter:

hIi ¼
X
a∈A

paIðaÞ ¼ −
X
a∈A

pa logpa ¼ S: ð2Þ

The information content of a letter turns out to be the
optimal number of bits needed to encode it in order to
optimize the transmission of information through a com-
munication channel, thus saturating the bound revealed
by entropy.
The formal study of complexity had its infancy in a series

of papers published by Andrey Kolmogorov in the 1960s
[47–49]. Closely related to entropy, complexity is defined
as the minimal description of an object in all possible
languages. Both low-entropy processes and high-entropy
ones (close to the logA limit) have low complexity. A good
picture to keep in mind is of the standard Ising model well
below or above the critical temperature, as in Fig. 1. In the
former case, the system is dominated by a single phase,
while in the latter it has the appearance of white noise. Both
of these descriptions are short and to the point. At
criticality, however, long-range correlations generate
scale-invariant structures that are hard to describe in few
words. This is a generic feature of complexity measures:
they attain a maximum somewhere between minimal and
maximal entropy.

B. The continuum limit

What if we now allow our alphabet to grow so that we
have before us a language with an infinitude of letters? If
the alphabet is countably infinite, jAj ¼ ℵ0 then the upper

bound on the entropy diverges, but otherwise there are no
complications in interpretation.
A direct generalization to the continuum by the intro-

duction of a probability density, pa ¼ ρðaÞda, results in a
breakdown of the Q and S interpretations of entropy: the
degrees of freedom in the continuum create a divergence.
To see this, simply rewrite Eq. (1) as

S ¼ − lim
da→0

X
a∈A

ρðaÞda log ρðaÞda

¼ −
Z

daρðaÞ log ρðaÞ þ lim
da→0

log
1

da
: ð3Þ

The second term introduces a logarithmic divergence,
compromising the continuum generalization. However, this
divergence may not be an issue: in physical applications,
there are often natural cutoff scales that would take care
of it. For example, there may be a maximum length
scale (minimum momentum scale), or an effective coarse-
graining scale.
Indeed, differential entropy (“differential” is added in the

literature to identify continuum measures) simply ignores
this infinite shift, and uses the first term in Eq. (3),

S ¼
Z

daρðaÞ log ρðaÞ: ð4Þ

Though finite, care must be taken in its interpretation. Since
it is not invariant under a change of coordinates, it is
relative to a given coordinate system. This is clear once one
recalls that the probability density transforms as a scalar
density under coordinate transformations: when x → x̄,
the density transforms as ρðxÞ → j ∂x̄∂x jρ̄ðx̄Þ. Also, it is not
positive definite, making both Q and S interpretations
problematic.

FIG. 1. The Ising model at different temperatures as an example of complexity. To the left the model is at a temperature T ≪ Tc, while
to the right T ≫ Tc. In both cases the description of the system is short, signifying a low complexity. In the central picture the model is
close to criticality, T ≈ Tc, and the scale-invariant structure due to long-range correlations makes the description of the image longer: this
is the hallmark of greater complexity.
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One way around these pitfalls is through the introduction
of a reference distribution as in the Kullback-Leibler
divergence in information theory [50]. CIMs, however,
follow a different approach, viewing both issues—
coordinate-dependence and nonpositivity—as features.
Configurational entropy is indeed dependent on the coor-
dinate system being used to describe a given physical
object. Recalling the language analogy, phonemes requir-
ing one symbol in one alphabet may require two symbols in
another: information is measured relative to a fixed alpha-
bet. Likewise, even if the shape of a field configuration is
invariant, its description in different coordinate systems
will entail a different amount of information. This is
why we instinctively seek the most symmetric coordinate
system in a given physical situation: to minimize the
information needed for its description.
A nonpositive differential entropy within the context of

CIMs is more a statement about the physical properties of
the model under study than an issue with the formalism.
Indeed, negative values of configurational entropy are
indicative of some length scale in the problem being
“too large.” A large spatial configuration will have a small
resolution in momentum space, making it hard to distin-
guish from, e.g., a noisy background.

C. Configurational information

Configurational information measures are concerned
with the shape complexity of objects. In the context of
field theories, a localized object such as a soliton or a
topological defect can be thought of as the solution of a
single or of a set of coupled nonlinear partial differential
equations with specific boundary conditions. This is true
for time-dependent solutions as well, as in the case of
oscillons. Thus, the specific shape of the object is a direct
manifestation of the dynamical properties of the system: its
interactions and boundary conditions. For this reason,
CIMs are conjectured to capture dynamical information.
The shape of a structure can be described through its

two-point correlation function. Fourier transforming this,
the power spectrum carries an equivalent description in
terms of momentum modes. CIMs are constructed from the
modal description of an object. Let us first derive the CE in
the discrete case, and then use that to define an analogous
CC. We will then move on to their differential (continuous)
counterparts.

1. CE and CC

Consider a scalar field configuration, φðrÞ, within a
finite volume, V, and periodic boundary conditions. The
field can be decomposed into a countable sum of Fourier
modes,

φðrÞ ¼
X
k

φ̃keik·r: ð5Þ

As mentioned above, the two-point correlation function
contains information about the shape of the field. Its
Fourier transform—the power spectrum—encapsulates
the strength of all the modes that go into generating the
configuration,

1

V

Z
ddr0φðr0Þφðr0 þ rÞ ¼

X
k

jφ̃kj2eik·r: ð6Þ

Given observers (human or idealized) that can measure
the length scales inherent in the field configuration, the
probability that they measure a particular scale is propor-
tional to that scale’s power,

pk ¼ jφ̃kj2P
k0 jφ̃k0 j2 : ð7Þ

With this in hand, the CE is defined as the Shannon entropy
of this distribution,

SC½φ� ¼ −
X
k

pk logpk: ð8Þ

This measure vanishes for a single plane wave. As the
number of plane waves increases, so does the CE. In the
limit that the configuration is localized to such an extent
that the power spectrum becomes uniform, the CE
approaches its maximal value. By “counting” the number
of modes, the CE represents the information necessary in
the construction of a configuration.
In the same way that a codex filled with random letters

has a high entropy but low complexity, a configuration that
is built of many modes need not be complex. For example,
a delta function has a uniform modal fraction; its complex-
ity, as measured by the length of its description, is very
small. Now consider another configuration, with a certain
power at wavelengths at the scale of the volume, half as
much power at wavelengths half that size, half as much
again at wavelengths a quarter size, and so on. The
description of this configuration is certainly longer than
the first, so it has a larger complexity. This implies that if
the power in nonzero modes is uniform, there is little
complexity, whereas if the power is distributed nonuni-
formly among these modes the complexity increases. Given
a specific power spectrum, the relative contribution of
different modes is quantified by the modal fraction

fk ¼ jφkj2
max jφk0 j2 ; ð9Þ

which satisfies 0 ≤ fk ≤ 1. The normalization with the
maximum mode guarantees the positivity of the CC,
defined as
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CC½φ� ¼ −
X
k

fk ln fk: ð10Þ

This measure vanishes if all of the nonzero modes con-
tributing to a configuration have a uniform modal fraction
(i.e., carry the same weight). Uncorrelated noise, e.g., has a
uniform power spectrum. This means that it has maximal
CE, but vanishing CC. A plane wave, on the other hand, has
both vanishing CE and CC. Somewhere in between utter
monotony and utter randomness is where CC maximizes,
lending weight to the interpretation of CC as a measure of
shape complexity. This justifies our use of “entropy” and
“complexity” for CE and CC, respectively [51].

2. DCE and DCC

We now generalize our previous approach to nonperiodic
square-integrable functions, taking into account the
increase in the number of degrees of freedom in momentum
space as the limits of integration (the spatial boundaries
where the function is defined) grow larger. At spatial
infinity we have a continuum in momentum space.
The Fourier transform of the field in d spatial

dimensions is

φ̃ðkÞ ¼ ð2πÞ−d
2

Z
ddrφðrÞe−ik·r: ð11Þ

The probability of detecting a scale centered at mode k and
within a volume ddk is proportional to the power in the
mode,

pðk; ddkÞ ¼ jφ̃ðkÞj2R
ddk0jφ̃ðk0Þj2 d

dk

¼ ρðkÞddk; ð12Þ

where we have introduced the probability density, ρ. The
DCE is computed from this density as

SC½φ� ¼ −
Z

ddkρðkÞ log ρðkÞ: ð13Þ

We need not worry about negative values of DCE: they are
associated with unphysical distributions.
For the DCC, we must first specify the modal fraction,

normalized by the maximum mode contribution,

fðkÞ ¼ jρðkÞj2
maxk0 jρðk0Þj2 : ð14Þ

As before, the DCC is defined as

CC½φ� ¼ −
Z

ddkfðkÞ ln fðkÞ: ð15Þ

Unlike the DCE, this quantity is guaranteed to be positive
due to the fact that the modal fraction fðkÞ ≤ 1.
For completeness, we compute the DCC for the case of

spherical symmetry, where some care must be taken. The
hyperspherical Fourier transform reads

ρ̃ðkÞ ¼ k1−
d
2

Z
∞

0

drr
d
2ρðrÞJd

2
−1ðkrÞ; ð16Þ

where Jν are Bessel functions. A detector sensitive to scale
will measure modes with probability jρ̃ðkÞj2ddk. The
modal fraction is given by

fðkÞ ¼ jρ̃ðkÞj2
maxk0 jρ̃ðk0Þj2

; ð17Þ

and the DCC is then

CC½ρ� ¼
2πd=2

Γðd
2
Þ
Z

∞

0

dkkd−1fðkÞ log fðkÞ: ð18Þ

III. VACUUM DECAY AND INSTANTONS

We consider a real scalar field ϕ in a flat spacetime of
dimension D ¼ dþ 1. We write the Minkowski metric as
ημν ¼ diagð−;þ;þ � � �Þ. The action for our model is

S½ϕ� ¼
Z
M

dV
�
−
1

2
ημν∂μϕ∂νϕ − VðϕÞ

�
; ð19Þ

where dV is the invariant volume element on the spacetime
region M, and VðϕÞ is a potential with two minima.
Quantum corrections, if important, are incorporated in the
potential parameters. Since we will examine both degen-
erate and nondegenerate vacua, we parametrize our poten-
tial with the triplet ðλ;ϕ0; ϵÞ as

VðϕÞ ¼ λ

4
ϕ2ðϕ − ϕ0Þ2 − ϵ

λ

2
ϕ0ϕ

3: ð20Þ

The first term is a Z2-symmetric potential with vacua at
ϕ ¼ 0 and ϕ0. The second introduces an asymmetry,
parametrized by the dimensionless quantity ϵ, that shifts
the latter of these vacua to a lower energy, thereby making
the minimum at ϕ ¼ 0 metastable.

A. Dimensionalization convention

The triplet of parameters can be reduced to two by
choosing an appropriate scale. To see this, let ϕðxÞ ¼
ðϕ0=vÞϕ̄ðx̄Þ and r ¼ ðv=

ffiffiffiffiffiffiffiffi
λϕ2

0

p
Þr̄, where v is an arbitrary

dimensionless parameter. The action of Eq. (19) divided by
λ
2−D
2 ϕ4−D

0 vD−2 can be written in dimensionless form as
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S̄½ϕ̄� ¼
Z

dV̄

�
−
1

2
η̄μν∂̄μϕ̄∂̄νϕ̄ −

1

4
ϕ̄2ðϕ̄ − vÞ2 þ 1

2
ϵvϕ̄3

�
:

ð21Þ

Henceforth we drop the bars, and it is understood that we
work with the dimensionless variables. We note that the
value of the dimensionless parameter v, which specifies the
spacing between vacua of the potential, is a matter of
choice. Gleiser [52,53] and Honda [54], e.g., chose v ¼ 2,
and shifted the field ϕ → ϕ − 1. Kolb and Turner, whom
we follow here, chose v ¼ ffiffiffi

2
p

[40].

B. Vacuum decay

To find the probability of false vacuum decay one must
compute the Wick-rotated matrix element between the false
vacuum at past infinity and the true vacuum at future
infinity, resulting in a Euclidean path integral,

MF→T ¼ hϕ0;þi∞j0;−i∞i ¼
Z

Dϕ e−SE½ϕ�=ℏ: ð22Þ

In the semiclassical approximation, one uses the saddle-
point approximation to show that the path integral is
dominated by a single field configuration which minimizes
the action, which we denote as the critical instanton or
instanton, ϕB. Configurations that are sufficiently far
from the instanton are exponentially suppressed and do
not contribute significantly to the path integral. This
assumption allows us to expand the action as

SE½ϕ� ¼ SE½ϕB� þ
1

2

δ2SE
δϕ2

ðϕ − ϕBÞ2 þ � � � : ð23Þ

This reduces the matrix integral to a Gaussian approxima-
tion (with δϕ ¼ ϕ − ϕB),

MF→T ≈ e−SE½ϕB�=ℏ
Z

Dδϕe−
1
2ℏ

R
dDxδϕð□þV 00ðϕBÞÞδϕ: ð24Þ

The perturbative solution to this integral is known to order
ℏ, and represents a quantum correction to the decay rate. It
appears as a subdominant prefactor multiplying the expo-
nential decay [32,33]. The semiclassical decay rate of the
false vacuum is the ratio of the transition F → T to F → F,

Γ ∼
MF→T

MF→F
∼ e−SE=ℏ: ð25Þ

The instanton ϕB has OðDÞ symmetry, being a function
solely of ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ r2

p
, where τ is the Wick-rotated time,

and r is the spatial radius. We therefore seek solutions of

d2ϕ
dξ2

þD − 1

ξ

dϕ
dξ

¼ ϕ −
3ffiffiffi
2

p ð1þ ϵÞϕ2 þ ϕ3; ð26Þ

with ϕ0ð0Þ ¼ 0 to ensure regularity at the origin, and
ϕðξ → ∞Þ ¼ 0 to match the false vacuum at past and
future infinity. Solutions for varying ϵ are found numeri-
cally using the shooting method. As is well known, one can
interpret Eq. (26) by treating ξ as time. The equation then
describes a particle moving in a potential −VðϕÞ, with a
time-dependent friction force. The boundary condition at
infinity demands that the particle end its journey on the hill
corresponding to the ϕ ¼ 0 vacuum. Without friction, the
particle would have to be released from the classical turning
point, but the presence of friction requires that its journey
starts at a higher value. That higher value is the core of the
instanton ϕc—the field at ξ ¼ 0.

C. Numerical implementation

Solutions are found by applying a binary search between
the classical turning point and the true vacuum to pinpoint
the core value of the instanton. This is done in dimensions
D ¼ dþ 1 ∈ ½2; 8�, and across 2 orders of magnitude for
the asymmetry parameter ϵ ∈ ½:05; 2� using step sizes
Δϵ¼4.875×10−4 and ϵ∈ ð2;10� using Δϵ ¼ 1.3 × 10−3.
Numerical integration is performed using a fourth-order
Runge-Kutta method on the domain ξ ∈ ½0; 80� using up
to N ¼ 4000 lattice points. We use 64-bit floats, so for
instantons with larger asymmetries numerical convergence
is achieved at less than N ¼ 4000 grid points, with each
case being treated individually. Numerical results for the
computed core values are plotted in Fig. 2. For D ≥ 6 we
see a qualitative change in behavior, suggesting that D ¼ 6
is a critical dimension for vacuum decay. (We will say more
about this later.)

FIG. 2. The core value of critical instantons lays between the
classical turning point and the true vacuum. For small asymmetry
the instanton core tracks true vacuum. As asymmetry increases,
the core value becomes noticeably smaller than the true vacuum
and tracks the turning point. This effect is suppressed at
dimensions D ≥ 6 as the friction term in the equation of motion
increases, resulting in a qualitative change of behavior.
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Fits are done to extract the power-law behavior of
different regimes of physical parameters. In order to not
be biased towards large magnitudes, our fitting routine is
performed in log-log space. To get the error bars, boot-
strapping is done with one hundred subsets of data points of
random size in said region. Means and standard deviations
on the resulting distribution of measured parameters are
then reported.

D. Instantons

The stability of the false vacuum is encapsulated in the
decay rate: the greater the rate, the more likely the false
vacuum will nucleate a critical instanton that induces a
phase transition. The decay rate is suppressed exponentially
by the Euclidean action of the instanton. We plot the
Euclidean action versus asymmetry in Fig. 3. At small ϵ, the
instantons are in the thin-wall limit, and SE ∼ ϵ−d. The case
for D ¼ 4 was covered in Ref. [40]. We derive the general
relationship in the Appendix.
For large ϵ, localized configurations are described as

thick-wall instantons. The dependence of the action on
asymmetry is close to a power law, with some variation
over decades. We note that for D ≤ 5 the thick-wall power-
law exponent appears to converge in a dimensionally
independent way (see bottom panel). For larger dimen-
sions, this behavior changes qualitatively, again indicating
the existence of a critical dimension at D ¼ 6. We con-
jecture that this is related to the well-known observation
that the volume and surface area of a hypersphere of unit
radius reach a maximum at D ¼ 5 and D ¼ 7, respectively.

Numerical results indicate that there exists a critical
dimension in this range.

E. Size scaling and the critical dimension

The volume of instantons is dominated by negative
potential energy, while the wall is dominated by positive
gradient energy. The former acts to create an outward
pressure on the instanton, while the latter gives the
instanton boundary an effective tension which generates
an inward compression. The Euclidean action is dominated
by the contribution coming from the wall, where the
magnitude of the derivative of the field attains a maximum.
It is numerically verified that soon after this maximum the
field plummets to its false vacuum value. We use this
behavior to define an effective radius for the instanton,

R ¼ argmin
r

���� ϕ
0ðrÞ

minϕ0 − :01

����: ð27Þ

We plot the effective radius versus asymmetry in Fig. 4. We
note the same distinction between instantons in D ≤ 5 and
in higher dimensions: in the thick-wall limit and for D ≤ 5,
the effective radii become independent of ϵ. We will focus
for now on instantons for D ≤ 5, as we plan to present a
thorough analysis of effects associated with the critical
dimension in future work. In this range of dimensions,
the asymptotic radius decreases linearly with dimension,
reaching a minimum value

lim
ϵ→∞

Rmin ¼ 4.767�:084 − ðD − 1Þ0.777�:025: ð28Þ

This trend cannot persist since it becomes negative at
around D ¼ 7, once again pointing to the existence of a
critical dimension below that.

FIG. 3. The Euclidean action as a function of asymmetry. The
lower panel is the power-law dependence on asymmetry.

FIG. 4. The effective radius as a function of asymmetry. Note
how low-dimensional and high-dimensional instanton radii differ
in the thick-wall limit.
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IV. THE INFORMATIONAL NARRATIVE

We now investigate how the different information-
entropic measures introduced in Sec. II C can inform the
physics of false vacuum decay. In what follows, we will
compute the DCC and DCE for various profiles describing
instantons.

A. Instanton profiles

Instanton solutions have a rather simple shape. In the
thin-wall regime, at small asymmetries, the field through-
out most of the instanton takes on a constant value at
ϕ ≃ ϕc. Within a small range of the radial variable ξ, the
field quickly transitions into the false vacuum value. As
ϵ → 0, the instanton radius grows without bound (see the
Appendix). In configuration space this means that the
modal fraction becomes more and more selective. This
decrease in uncertainty about which momentum modes are
generating the instanton translates into a decrease in
configurational entropy. On the opposite end—the thick-
wall regime—instantons become highly localized in space.
One might imagine that they become progressively smaller
with increasing asymmetry, but the DCE indicates other-
wise by plateauing. This means that the modal fraction is
not changing, and hence that the shape of the solutions is
insensitive to asymmetry. This becomes apparent in Fig. 5,
where we plot the DCE versus radial deviation from the
minimum value of Eq. (28).
The DCC paints a similar story, summarized in Fig. 6.

When the modes contributing to the shape of the instanton
all contribute nearly equally, its configurational complexity
decreases. Conversely, when different modes making up
the configuration carry different weights its configurational
complexity grows.
One can understand the plateaus in both the DCE and

DCC in the thick-wall limit using a simple scaling argu-
ment. Consider the equation of motion (26), and perform a

rescaling of the field ϕ → ϕ=ϵ. Since, in the large-ϵ limit
(both ϕc ≪ 1 and ϵ−1 ≪ 1) one of the quadratic terms and
the cubic term are subdominant, we can write

d2ϕ
dρ2

þD − 1

ρ

dϕ
dρ

≃ ϕ −
3ffiffiffi
2

p ϕ2: ð29Þ

We see then that in the thick-wall limit, the effective
equation determining the shape of the instantons becomes
independent of the asymmetry. There is still dependence on
the spacetime dimensionality, but, for a given dimensionD,
there is only a single instanton at high asymmetry.

B. Relating CIMs to the vacuum decay rate

Given that the vacuum decay rate is dominated by the
instanton’s Euclidean action, and, in turn, that the
Euclidean action is determined by the instanton shape, it
must be possible to extract information about the vacuum
decay time scale from CIMs. In Fig. 7 we plot the DCC
versus Euclidean action forD ≤ 5. From the plateaus in the

FIG. 5. The differential configurational entropy as a function of
deviation from minimum radius. The plateaus at small deviation
indicate an insensitivity to asymmetry in the thick-wall regime.

FIG. 6. The differential configurational complexity as a func-
tion of deviation from minimum radius. As the instantons get
larger, the modal fraction becomes less complex since a single
mode begins to dominate.

FIG. 7. The log-log plot of the differential configurational
complexity versus Euclidean action for D ≤ 5.
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thick-wall limit observed in Figs. 5 and 6, it is not
surprising that we see similar behavior here for small
Euclidean actions: there is little change in shape complexity
for large ϵ. More interestingly, one can detect a self-similar
behavior across the different dimensions, which we can
match to a functional relation approximately modeled by a
Lorentzian-like function,

CC ¼ Cmax
C

1þ bð SE
Smin
E

− 1Þc ; ð30Þ

where SminE is the action of the instanton with minimum
radius Rmin of Eq. (28) (see Fig. 4) and Cmax

C is the maximum
configurational complexity (see Fig. 6). For large Euclidean
actions typical of the thin-wall limit, there is a clear decrease
in the DCC, as discussed above. We thus expect the
exponent c to be positive. Below, we obtain analytical
estimates for the scaling between the DCC and SE in the
thin- and thick-wall limits and extract the value of c.
First, we note on dimensional grounds that the DCC

should scale with spacetime dimension as CC ∼ R−D. This
can be seen, e.g., for aD-dimensional Gaussian [13], where
CC ¼ D=2ð2π=R2ÞD=2. We verified numerically that this is
the case in the thin-wall limit, with a best fit of
CC ∼ ðR=Rmin − 1Þ−1.07�:10ðD−1Þþ:42�:09

, or CC ∼ R−Dþ3=2.
The thin-wall limit corresponds simply to SE ≫ Smin

E
(R ≫ Rmin), or, from the Lorentzian-like fit of Eq. (30),
C̃C ∼ S̃−cE , where we introduced C̃C ≡ CC=Cmax

C , and
S̃E ≡ SE=Smin

E . In Fig. 8, we plot the Euclidean action
as a function of the effective radius as defined in
Eq. (27). For large R, we note a natural trend which
can be fitted as SE ∼ RðD−3=2Þ or, more precisely,
SE ∼ ðR=Rmin − 1Þ1.059�0.011ðD−1Þ−:492�0.006

. This result
ensures that SE is only defined for D ≥ 2, as it should be.
Comparing the results for CC and SE in the thin-wall

limit, we should expect the scaling to go as CC ∼ S−1E ,
independent of spacetime dimensions. This scaling is

suggested in Fig. 7, for large SE. In Fig. 9, we plot the
product of S̃EC̃C versus radius, showing that the scaling
holds quite well in the thin-wall limit, with a best fit leading
to C̃CS̃E ∼ ðR=Rmin − 1Þ0.052�0.005ðD−1Þþ0.256�0.019

, implying a
very weak dimensional dependence. Also, note the clear
change of behavior between thick- and thin-wall instantons,
denoted by the dots in the figure. As expected, the DCC can
be used a shape discriminator.
In the thick-wall limit, SE=Smin

E ≳ 1, by expanding
Eq. (30) we get C̃C ≃ ½1 − bðS̃E − 1Þc�, or C̃C ∼ 1. The
trend to a constant value for small R ∼ Rmin is clear in
Fig. 6. Instantons with minimal action are the most unstable
and thus have maximum configurational complexity, illus-
trating the connection between configurational complexity
and instability, as observed before in the context of stars
[23], oscillons [17], and other configurations [14]. These
two limits allow us to estimate the power law in the
Lorentzian fit as c ≃ 1. The best-fit value is found numeri-
cally to be c ¼ 1.002�:112 − :05�:0006ðD − 1Þ, and thus
exhibits a very weak dimensional dependence.

V. CONCLUSIONS AND OUTLOOK

In this paper we have applied the framework of CIMs to
instantons in a scalar field theory in D spacetime dimen-
sions with an asymmetric double-well potential. We have
focused on the DCC of these profiles in order to understand
the informational complexity inherent to their shapes. We
have a found a clear relation between the stability of the
vacuum (related to the Euclidean action of the instanton)
and the instanton’s DCC. We have obtained a new power-
law behavior of the DCC in the thin-wall limit, and an
asymptotic complexity in the thick-wall limit, independent
of the instanton’s action. We have also shown that the
Euclidean action of instanton solutions is related to the

FIG. 8. The Euclidean bounce action as a function of radius for
spacetimes of dimension less than the critical value.

FIG. 9. The product of the Euclidean action and the configu-
rational complexity versus radius. The maxima, denoted by black
dots, discriminate between the thin- and thick-wall regimes. The
near scale invariance of the thin-wall regime confirms the
numerical estimates of the scaling laws.
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DCC in such a way as to serve as a pattern discriminator
between thin- and thick-wall configurations. There is a
clear inverse relation between the instanton stability—
related to the lifetime of the vacuum—and its correspond-
ing DCC for all D ≤ 5: the longest-lived vacua have
instantons with the largest Euclidean action and smallest
DCC, expressed as a Lorentzian fit. Finally, we have found
a scaling relation between the Euclidean instanton action
and the DCC, which is nearly independent of the spacetime
dimensionality.
Possible extensions of this work would include the

application of CIMs to the evolution of bubbles post
nucleation, as well as different types instantons. The former
would help characterize the informational properties of
first-order vacuum phase transitions. The latter would help
elucidate the informational properties of Fubini-Lipatov
and Coleman–de Luccia instantons, although we expect
similar qualitative behavior to what we have found here.
Extensions to thermal phase transitions should be straight-
forward. Relating CIMs to standard thermodynamic entro-
pies is crucial for understanding the role that shape
information plays in the evolution of systems out of
equilibrium. It would also be interesting to explore gen-
eralizations of CIMs away from Shannon-like measures,
something that could be accomplished by using extensions
of both Renyi- and Tsallis-like measures to field theories.
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APPENDIX: THIN-WALL ACTION

Here we derive the Euclidean action for the thin-wall
instantons. In the thin-wall approximation we treat the
vacua as almost degenerate. The field profile stays close to
the core value for a long time, and then abruptly drops to
the false vacuum value. This allows us to ignore the second
term of Eq. (26),

d2ϕ
dξ2

≈
dV
dϕ

: ðA1Þ

This equation of motion has a first integral,

1

2

�
dϕ
dξ

�
2

− VðϕÞ ¼ 0; ðA2Þ

where the rhs is set by the behavior of the solution as
ξ → ∞: the gradient vanishes, as does the potential in the

false vacuum. This gives us a nice relationship between
differentials,

dϕ
dξ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞ

p
: ðA3Þ

Note that we chose the negative root because the field
decays from the core value to the false vacuum. With this in
hand, we can simplify the Euclidean action coming from
Eq. (21) to

SE ¼ 2

Z
dDξVðϕðξÞÞ: ðA4Þ

Now we break up the volume integral into three regions:
radii smaller than the instanton wall, radii in the instanton
wall, and radii outside. The latter has a vanishing con-
tribution since the false vacuum has a vanishing potential.
Since the field drops sharply in the wall, we define the
radius of the instanton ξ̄ implicitly as where the field value
drops to half the core value:

v
2
¼

Z
ξ̄

0

dξ
ffiffiffiffiffiffi
2V

p
: ðA5Þ

Recalling the solid angle of a D-sphere, ΩD ¼ 2π
D
2

ΓðD
2
Þ, the

Euclidean action can now be written as

SE ¼ 2VðvÞΩD

Z
ξ̄

0

dξξD−1 þ 2ΩDξ̄
D−1

Z
wall

dξVðϕÞ

¼ −
1

D
ϵv4ΩDξ̄

D þ ΩDξ̄
D−1σ; ðA6Þ

where we have introduced the wall energy density

σ ¼
Z
wall

dξVðϕÞ ¼
Z

v

0

dϕ
ffiffiffiffiffiffi
2V

p
: ðA7Þ

The action is an extremum with respect to ξ̄, which relates
the instanton radius to the energy density,

ξ̄ ¼ ðD − 1Þ σ

ϵv4
: ðA8Þ

With this in hand, the dimensionless Euclidean action reads

SE ¼ ðD − 1ÞD−1ΩD

Dv4ðD−1Þ
σD

ϵD−1 ; ðA9Þ

from which we find the relationship to the asymmetry
parameter, SE ∼ ϵ−d.
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