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With increasing temperatures, Schwinger pair production changes from a quantum tunneling to a
classical, thermal process, determined by a worldline sphaleron. We show this and calculate the
corresponding rate of pair production for both spinor and scalar quantum electrodynamics, including
the semiclassical prefactor. For electron-positron pair production from a thermal bath of photons and in the
presence of an electric field, the rate we derive is faster than both perturbative photon fusion and the zero
temperature Schwinger process. We work to all-orders in the coupling and hence our results are also
relevant to the pair production of (strongly coupled) magnetic monopoles in heavy-ion collisions.
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I. INTRODUCTION

In non-Abelian gauge theories, sphaleron processes, or
thermal overbarrier transitions, have long been understood
to dominate over quantum tunneling transitions at high
enough temperatures [1–4].1 The same is true, for example,
in gravitational theories [5]. On the other hand, sphalerons
have been conspicuously absent from the study of Abelian
gauge theories. In this paper, we make partial amends for
this absence by finding a sphaleron in quantum electro-
dynamics (QED). We note that, unlike the corresponding
quantum tunnelling transition at zero temperature, this
sphaleron is not visible at any finite order in the loop
expansion, which may explain why it has been missed in
the past.
In the presence of an electric field, empty space is

nonperturbatively unstable to decay into electron-positron
pairs, called Schwinger pair production [6]. At zero
temperature, Schwinger pair production is determined by
a circular worldline instanton [7]. At nonzero temperatures
the rate of this process is enhanced by the energy of the
thermal bath, and the worldline instanton is deformed away
from circular [8–12]. At sufficiently high temperatures the

process becomes essentially thermal and is determined by
a worldline sphaleron (which, in Ref. [12], we referred to
as the S instanton). In this paper we briefly review the
derivation of the worldline sphaleron and then calculate the
sphaleron rate, including the fluctuation prefactor.
At zero temperature, Schwinger pair production is a

quantum tunnelling process visible at one loop. If we
denote symbolically the interaction between the dynamical
(as opposed to external) photon field and the charged
particles as J · A, then the loop expansion of the Schwinger
rate, ΓðE; TÞ, takes the form,

ΓðE; TÞ ¼
X∞
n¼0

cnhðJ · AÞni; ð1Þ

where E is the magnitude of the electric field and T is the
temperature. The leading term, c0, gives the one loop result,
that of Schwinger [6], at zero temperature. There has been
some disagreement in the literature about the thermal
corrections to c0. According to the worldline instanton
calculation, at low temperatures there are no thermal
corrections at one loop, so agreeing with Refs. [13–15]
using alternative approaches. However at high enough
temperatures, such that T > gE=ð2mÞ,2 where g is the
charge coupling and m is the mass of the (lightest) charged
particles, the worldline instanton calculation suggests that
the one loop calculation is no longer a consistent truncation
of the problem and thermal corrections are expected at
leading order [8,11,12,16]. See Refs. [17–19] for alter-
native conclusions regarding the thermal, one loop correc-
tion. The next order term, c1hJ · Ai, has also been
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1The word sphaleron was originally coined in Refs. [1,2]. It
denotes a static, localized, unstable field configuration, which is a
minimum of the energy functional in all directions in function
space except one, where it is a maximum.

2Except where noted, we use the natural units common in high
energy physics, where c ¼ ℏ ¼ kB ¼ ϵ0 ¼ 1.
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calculated, both at zero [20–23] and at nonzero but low
temperature [10,24]. Now, the presence of the worldline
sphaleron requires the dynamical photon interaction, J · A,
in the exponent of the semiclassical expansion. Hence, it
requires all orders in the loop expansion.
Despite this, the worldline sphaleron itself is rather

simple. The electric version consists of an electron and a
positron a finite distance apart, such that the attractive
Coulomb force between them is balanced by the force of
the external electric field pushing them apart (see Fig. 1).
Following the work in Ref. [12], our calculations in this

paper are carried out in both QED and scalar QED (SQED),
making no assumptions as regards the magnitude of the
charge coupling, g. We let g range from infinitesimal to
infinite. In SQED we will assume however that the scalar
self-coupling is weak, λ ≪ 1.3 We consider circumstances
when the calculation is semiclassical and hence the rate is
slow. In this regime the results are largely independent of
many properties of the charged particles.
We should add a quick note on what we mean by our

initial thermal state. We consider temperatures, T, much
less than the mass of any charged particles, m. In this case
there are no charged particles in the initial state, it is a
thermal bath of photons. Upon turning on the external field,
charged particles are produced by the thermal Schwinger
process. After an initial transitory period, which depends on
how quickly the electric field is turned on, and before the
backreaction of the charged particles becomes significant,
there is a period during which charged particles are
produced at a constant rate [25,26]. This rate is what we
calculate. The process is relevant only for the lightest
charged particle (either the electron or the lightest magnetic
monopole), because the lightest particles will be produced
exponentially more quickly than heavier particles and, once
produced, their presence will cause Debye screening.
The chief result of this paper is the following, the

sphaleron rate for thermal Schwinger pair production,

ΓðE; TÞ ≈ ð2sþ 1Þ2TWSðmTÞ3=2
ð4πÞ3=2 sinðπTWS

T Þsinh2ðπTWSffiffi
2

p
T
Þ e

−2m
T þ

ffiffiffiffiffiffiffi
g3E=π

p
T

×

�
1þO

�
gE
m2

;
g3E
m2

;
T
m
;
g2T
m

;
gT2

E

��
; ð2Þ

where s is the spin of the charged particles (either zero or
1=2) and the expression applies for temperatures satisfying

T > TWS ≈
�
4gE3

π3m2

�
1=4

: ð3Þ

Equations (2) and (3) are valid to all orders in the coupling
g, though only to leading order in the five different
dimensionless combinations of parameters within the big
O symbol in Eq. (2). Hence all of these parameters must be
small for our approximations to be good. This is naturally
satisfied, for all but the last of these parameters, if the
charged particles are sufficiently heavy.
Schwinger pair production of electrons and positrons has

yet to be experimentally observed, as inaccessibly strong
electric fields are required to generate an appreciable rate.
High intensity lasers have achieved electric field strengths
of Oð0.01%Þ of the Schwinger critical field strength, Ec ≔
πm2

e=g [27] and the next generation of high intensity lasers
aim to be able to reach electric field strengths of Oð1%Þ of
Ec [28–30]. Though this is not sufficient to observe the
original Schwinger process, it may be possible to observe
induced Schwinger processes, where the rate is enhanced
by some other ingredient. In particular, as we consider in
this paper, a thermal bath of photons in the initial state may
significantly increase the rate of pair production, and hence
one may observe pair production at lower field strengths.
One way to experimentally realize a thermal bath of
photons would be to use a laser-heated hohlraum, as has
been proposed to observe the Breit-Wheeler process,
γγ → eþe− [31,32].
Our initial interest in this calculation was for its relevance

tomagneticmonopole production in heavy-ion collisions. In
the fireball of a heavy-ion collision there are strongmagnetic
fields and high temperatures. Hence, magnetic monopoles
may be produced by the dual thermal Schwinger process
[33]. There is much promise for magnetic monopole
searches in current and future heavy-ion collisions, in
particular the MoEDAL experiment [34,35] at the LHC,
so spurring this work. Herewe extend the results of Ref. [12]
by calculating the prefactor of the rate, an important quantity
for making comparison to experiment.
Magnetic monopoles are strongly coupled to the photon.

The minimum magnetic charge squared, g2D ¼ ð2π=eÞ2 ≈
430, follows from the Dirac quantization condition [36].
Hence one must work to all orders in the coupling to
derive results applicable to magnetic monopoles. If one
does so and does not consider electric and magnetic
charges simultaneously, one can study magnetic monopole

FIG. 1. The simple worldline sphaleron, for the thermal
Schwinger process. The Coulomb attraction between electron,
e−, and positron, eþ, is balanced by the external electric field, E,
which pushes them apart. Pictured here in the Euclidean thermal
approach, where the solution lives is R3 × S1, the circumference
of the circle being the inverse temperature, 1=T.

3Of course photon loops will generate this term. However, the
term is a pointlike interaction between scalar loops (given no
external legs) and, in the dilute instanton approximation that we
will make, such loops are subdominant and are neglected.
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Schwinger pair production via its electromagnetic dual. In
this case the duality amounts simply to a relabelling of
electric degrees of freedom (d.o.f.) and charges as mag-
netic. As our calculation reduces to a semiclassical one, we
only rely on the classical electromagnetic duality. In the
regime considered here, our results are valid both for
elementary and ’t Hooft-Polyakov monopoles [37,38].
The paper is set out as follows. In Sec. II we define the

sphaleron rate and set up the calculation of it. In Sec. III we
find the sphaleron and the spectrum of fluctuations about it.
In Sec. IV we note that the spectrum of fluctuations
manifests the well-known self-force instability. In Sec. V
we specialize to a region of parameter space where this
instability does not arise. We then calculate the sphaleron
rate, including the prefactor, the main result of this paper,
which we extend to spin half charged particles in Sec. VI.
In Sec. VII we discuss the implications of our results for the
possible experimental observation of electron-positron pair
production from a purely photonic initial state. In Sec. VIII
we discuss the implications of our results for magnetic
monopole searches. In Sec. IX, we summarize our results.

II. GENERAL APPROACH

The thermal rate of decay of a metastable state has been
studied by many authors [39–42]. In regards to the thermal
Schwinger process, in Ref. [12] we calculated the logarithm
of the rate, the factor S in ΓðE; TÞ ∼ e−S. For the sphaleron
process, we found

ΓðE; TÞ ∼ exp

"
−
2m
T

 
1 −

ffiffiffiffiffiffiffiffiffiffiffi
g3E
4πm2

s !#
: ð4Þ

The difference from the expected Boltzmann suppression in
the absence of an external field, 2m=T, can be understood
as a field dependent mass renormalization. This accounts
for the Coulomb corrections to the rest mass of a particle-
antiparticle pair at the separation where the external field
and Coulomb force balance. The renormalized mass would
be m� ¼ mð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3E=ð4πm2Þ

p
Þ so that the exponential

suppression reads 2m�=T. The same kind of mass renorm-
alization arises in Schwinger pair production at zero
temperature [7,20,22].
To go beyond this, we need an explicit expression for the

rate, including the prefactor. As argued for in Refs. [39,40],

for high temperatures,4 where the process is dominated by a
static field configuration, a sphaleron, the rate is given by

ΓðE; TÞ ≈ −jω−j
πV

Im logðZÞ; ð5Þ

where V is the spatial volume, Z is the canonical partition
function excluding the states containing the decay products
and jω−j is the rate of growth with time of the unstable
mode, responsible for the imaginary part of logðZÞ. It is
assumed that the rate of decay is slow, so that the process is
out of equilibrium.
We first consider the thermal Schwinger process in

SQED, with the external field, E, pointing along the x3

direction. We write the finite temperature path integral
using the imaginary time formalism. The Euclidean
Lagrangian for this theory is,

LSQED ≔
1

4
FμνFμν þDμϕðDμϕÞ� þm2ϕϕ�; ð6Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength and Dμ ¼
∂μ þ igAext

μ þ igAμ is the covariant derivative, showing a
split of the photon field into external (or background) and
dynamical parts. We assume the scalar self-coupling, i.e.,
λðϕϕ�Þ2=4, is sufficiently small that we may ignore it, at
least in the range of energies considered3. Note that for
QED, which we consider later, no such term arises.
The finite temperature partition function for this theory is,

Z ¼
Z

DAμDϕe−
R
x
LSQED ; ð7Þ

where the Euclidean time direction has length 1=T and the
fields satisfy periodic boundary conditions in this direction.
We leave the gauge fixing implicit. Eq. (7) can be rewritten
exactly using the worldline formalism, by carrying out
purely formal manipulations [7,12,43]. Essentially a
change of integration variables, the usefulness of the
worldline representation is that it allows one to circumvent
the usual loop expansion, and obtain gauge invariant
resummations of (infinite) classes of Feynman diagrams.
In Ref. [12] we gave the following exact worldline
representation of the thermal partition function in SQED,

1

V
Im logðZÞ ¼ 1

V
Im log

�
1þ

X∞
n¼1

1

n!

Yn
j¼1

�Z
∞

0

dsj
sj

Z
Dxμje

−1
ϵS̃½xj;sj;κ;T̃�e

κ
ϵ

P
k<j

H H
dxμjdx

ν
kGμνðxj;xk;T̃Þ

��
; ð8Þ

4At lower temperatures the rate is given instead by a slightly different expression, related by replacing jω−j → 2πT in the prefactor.
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where ϵ ≔ gE=m2 will act as the semiclassical parameter,
akin to ℏ. The path integrals over the xμj are over closed
worldlines, with distance measured in units of m=gE. In
these units the effective coupling between worldlines is
κ ≔ g3E=m2 and the effective temperature is T̃ ≔ mT=gE.

We will refer to sj as Schwinger parameters. The free
thermal photon propagator is Gμν, where μ, ν run over
Euclidean indices 1,2,3,4. The scaled action, S̃, for a single
worldline, is5

S̃½x; s; κ; T̃� ≔ s
2
þ 1

2s

Z
1

0

dτ _xμ _xμ þ
Z

1

0

dτx3 _x4 −
κ

2

Z
1

0

dτ
Z

1

0

dτ0 _xμðτÞ_xνðτ0ÞGμνðxðτÞ; xðτ0Þ; T̃Þ:

ð9Þ

The interaction involving the photon propagator has a short distance divergence, corresponding to the electromagnetic
contribution to the self-energy of the charged particles. In this paper we regularize this divergence following Polyakov’s
seminal work [44]. We add to the distance squared between points a short distance cut off, a2. Up to gauge fixing terms
which vanish upon integration around a closed worldline, the regularized thermal photon propagator is

Gμνðxj; xk;T; aÞ ≔
X∞
n¼−∞

G

�
xj; xk þ

n
T
e4; a

�
δμν

¼
X∞
n¼−∞

−δμν
4π2ððxj − xk − n

T e4Þ2 þ a2Þ

¼
T sinh ð2πT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2jk þ a2

q
Þδμν

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2jk þ a2

q
ðcos ð2πTtjkÞ − cosh ð2πT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2jk þ a2

q
ÞÞ
; ð10Þ

where e4 is the unit vector in the Euclidean time
direction and we have defined tjk ≔ x4j − x4k and rjk≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1j −x1kÞ2þðx2j −x2kÞ2þðx3j −x3kÞ2

q
. For smooth world-

lines without self-intersections the only divergence as
a → 0 is the self-energy [44–47], which can be absorbed
by adding the following mass counterterm,

−
κ

8π2
π

a

Z
1

0

dτ
ffiffiffiffiffiffiffiffiffi
_xμ _xμ

q
: ð11Þ

We may then take the limit a → 0 in the final results. That
Eq. (11) is a mass counterterm can be seen by noting that
the first two terms in Eq. (9) are a reparametrization-fixed
form of the same term [48].
Parametrically, the usual loop expansion, given by

Eq. (1), is here mapped to a Taylor expansion in κ. As
mentioned in the introduction, to see the worldline spha-
leron requires all orders in the loop expansion, so we do not
Taylor expand in κ. Rather, we note that for ϵ ≪ 1 the
worldline action, S̃=ϵ, becomes large and a semiclassical
approximation should be valid.

In this context, one would expect the dominant contri-
butions to Eq. (8) to come from configurations consisting of
a small number of worldlines. This is because configura-
tions with more worldlines would be expected to have
larger actions. Thus, as in Ref. [12], we perform a cluster
expansion of Eq. (8),

ΓðE; TÞ ¼
X∞
n¼1

ΓðnÞðE; TÞ; ð12Þ

where ΓðnÞ is the contribution to Γ from clusters of n
worldlines. Within the semiclassical approximation, the
cluster expansion is a dilute instanton expansion. The
leading contribution to the thermal Schwinger rate is given
by the instanton with smallest action. This leading order
term is approximately equal to the density of these
instantons, and is exponentially small. Higher order terms
in the cluster expansion are expected to be suppressed by
powers of this density, or by subleading instanton densities.
At low temperatures, T̃ ≪ 1, the dominant instanton is

the circular worldline instanton [7,49] (leftmost in Fig. 2), a
saddle point of Γð1Þ. At higher temperatures, thermal
corrections deform this instanton, so increasing the rate
(second and third from left in Fig. 2). Above some
temperature, T̃CWðκÞ, where T̃CWð0Þ ¼ 1=2, a second
instanton with different topology dominates, called a W
instanton in Ref. [12]. It consists of a charged particle and

5There are two minor differences here with respect to Ref. [12].
We have rescaled s → s=2 and here we are treating negatively
charged particles as matter and positively charged particles as
antimatter, which amounts to a plus rather than minus sign for the
third term on the right-hand side.
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antiparticle oscillating back and forth, parallel to the
external field, and is a saddle point of Γð2Þ (second from
right in Fig. 2). At higher temperatures still, above T̃WSðκÞ,
this W instanton ceases to exist and the dominant instanton
is the static worldline sphaleron solution (rightmost in
Fig. 2), also a saddle point of Γð2Þ. The instanton phase
diagram outlined here has been established for 0 < κ ≤ 1
and may be subject to change at larger values of κ.

III. THE SPHALERON AND FLUCTUATIONS
ABOUT IT

Equation (9) gives the action for one worldline, xμðτÞ,
with Schwinger parameter s, and it gives the exponent of
the integrand of Γð1Þ, when divided by ϵ. In terms of the
action for one worldline, the action for two worldlines, the
scaled exponent of the integrand of Γð2Þ, is

S̃½x;y;sx;sy;κ; T̃�
≔ S̃½x;sx;κ; T̃�þ S̃½y;sy;κ; T̃�

− κ

Z
1

0

dτ
Z

1

0

dτ0 _xμðτÞ_yνðτ0ÞGμνðxðτÞ;yðτ0Þ; T̃Þ: ð13Þ

Due to the double integral terms in the action, the
corresponding equations of motion are integrodifferential
equations.
The sphaleron is a static solution to these equations of

motion. It consists of particle and antiparticle sitting a fixed
distance apart along the x3 axis (rightmost in Fig. 2). It is
given by

xðτÞ ¼ x0ðτÞ ≔
�
0; 0;

1

2

ffiffiffiffiffiffi
κ

4π

r
;−

1

2T̃
ð2τ − 1Þ

�
;

yðτÞ ¼ y0ðτÞ ≔
�
0; 0;−

1

2

ffiffiffiffiffiffi
κ

4π

r
;
1

2T̃
ð2τ − 1Þ

�
;

sx ¼ sy ¼ s0 ≔
1

T̃
ð14Þ

The action of the sphaleron is

S̃ðκ; T̃Þ ≔ S̃½x0; y0; s0; s0; κ; T̃� ¼
2

T̃

�
1 −

ffiffiffiffiffiffi
κ

4π

r �
: ð15Þ

Expanding the action to second order about this solution
gives a surprisingly large number of terms,Oð100Þ, most of
which are due to the nonlocal interactions. To proceed we
define ζμðτÞ ≔ xμðτÞ − yμðτÞ and ξμðτÞ ≔ xμðτÞ þ yμðτÞ.
The solution given in Eq. (14) can then be written as

ζðτÞ ¼ ζ0ðτÞ ≔
�
0; 0;

ffiffiffiffiffiffi
κ

4π

r
;−

1

T̃
ð2τ − 1Þ

�
;

ξðτÞ ¼ ξ0ðτÞ ≔ f0; 0; 0; 0g: ð16Þ

Due to the periodicity, we may expand the fluctuations
about the solution in a Fourier series,

ζμðτÞ− ζμ0ðτÞ

¼ aμ0 þ
X∞
n¼1

½aμn
ffiffiffi
2

p
cosð2πnτÞþbμn

ffiffiffi
2

p
sinð2πnτÞ�;

ξμðτÞ− ξμ0ðτÞ

¼ cμ0 þ
X∞
n¼1

½cμn
ffiffiffi
2

p
cosð2πnτÞþdμn

ffiffiffi
2

p
sinð2πnτÞ�: ð17Þ

The second order action is diagonal in these Fourier
coefficients. It can thus be expressed as

S̃ð2Þ ¼ 1

2
T̃ðsx − s0Þ2 þ

1

2
T̃ðsy − s0Þ2

þ 1

2

X∞
n¼0

X4
μ¼1

ðαμnaμnaμn þ γμnc
μ
nc

μ
nÞ

þ 1

2

X∞
n¼1

X4
μ¼1

ðβμnbμnbμn þ δμnd
μ
nd

μ
nÞ;

¼ 1

2
T̃ðsx − s0Þ2 þ

1

2
T̃ðsy − s0Þ2 þ

1

2

X
i

λiχiχi; ð18Þ

where on the last line we have defined χi to run over
all the different fluctuations of the worldline, fχig ≔
faμn; bμn; cμn; dμng, and λi to run over all the corresponding
eigenvalues, fλig ≔ fαμn; βμn; γμn; δμng. The eigenvalues for
n ¼ 0 are

α0 ¼
�

2πffiffiffiffiffi
πκ

p
T̃
;

2πffiffiffiffiffi
πκ

p
T̃
;−

4πffiffiffiffiffi
πκ

p
T̃
; 0

�
;

γ0 ¼ f0; 0; 0; 0g: ð19Þ

The four zero modes of γ0 correspond to translations of the
instanton. The fifth, α40, corresponds to translation in the

FIG. 2. Worldline instantons relevant for the thermal Schwinger
process. Each column represents a different instanton, each
relevant for a given temperature. The rightmost instanton is
the worldline sphaleron, which dominates the rate at the highest
temperatures. The external field points along the 3-direction and
the 4-direction is the Euclidean time direction.
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parameter τ. The negative eigenvalue corresponds to
increasing, or decreasing, the separation between the
particles. It is negative for all κ and T̃.
As regards the harmonic modes, by translational sym-

metry in the Euclidean time direction, one can see that
γn ¼ βn, and δn ¼ αn. Further, a nth harmonic at a given
temperature, T̃, can be seen as n copies of an n ¼ 1

harmonic at the higher temperature nT̃. Hence, the

eigenvalues for n > 1 are given in terms of the n ¼ 1
eigenvalues by

αnðκ; T̃Þ ¼ nα1ðκ; nT̃Þ; ð20Þ

and likewise for the others. Explicitly the harmonic
eigenvalues are found to be,

αn ¼
�
1

2
ð2πnÞ2T̃ −

2

3
π2κn3T̃2 þ

ffiffiffi
π

pffiffiffi
κ

p
T̃
þ π

� ffiffiffiffiffi
πκ

p
n2T̃ þ nþ 1ffiffiffiffiffi

πκ
p

T̃

�
e−
ffiffiffiffi
πκ

p
nT̃ ;

1

2
ð2πnÞ2T̃ −

2

3
π2κn3T̃2 þ

ffiffiffi
π

pffiffiffi
κ

p
T̃
þ π

� ffiffiffiffiffi
πκ

p
n2T̃ þ nþ 1ffiffiffiffiffi

πκ
p

T̃

�
e−
ffiffiffiffi
πκ

p
nT̃ ;

1

2
ð2πnÞ2T̃ −

2

3
π2κn3T̃2 −

2
ffiffiffi
π

pffiffiffi
κ

p
T̃
− 2π

�
nþ 1ffiffiffiffiffi

πκ
p

T̃

�
e−
ffiffiffiffi
πκ

p
nT̃ ;

1

2
ð2πnÞ2T̃

�
; ð21Þ

βn ¼
�
1

2
ð2πnÞ2T̃ −

2

3
π2κn3T̃2 þ

ffiffiffi
π

pffiffiffi
κ

p
T̃
− π

� ffiffiffiffiffi
πκ

p
n2T̃ þ nþ 1ffiffiffiffiffi

πκ
p

T̃

�
e−
ffiffiffiffi
πκ

p
nT̃ ;

1

2
ð2πnÞ2T̃ −

2

3
π2κn3T̃2 þ

ffiffiffi
π

pffiffiffi
κ

p
T̃
− π

� ffiffiffiffiffi
πκ

p
n2T̃ þ nþ 1ffiffiffiffiffi

πκ
p

T̃

�
e−
ffiffiffiffi
πκ

p
nT̃ ;

1

2
ð2πnÞ2T̃ −

2

3
π2κn3T̃2 −

2
ffiffiffi
π

pffiffiffi
κ

p
T̃
þ 2π

�
nþ 1ffiffiffiffiffi

πκ
p

T̃

�
e−
ffiffiffiffi
πκ

p
nT̃ ;

1

2
ð2πnÞ2T̃

�
: ð22Þ

IV. SELF-FORCE INSTABILITY

These higher harmonics lead to an instability. For suffi-
ciently large n, the negative self-force term, − 2

3
π2κT̃2n3,

dominates. Hence, there are an infinite number of negative
eigenvalues (see Fig. 3). Within the context of the semi-
classical approximationwemake, this appears to be a serious
problem. On general grounds, one expects any instanton (or
sphaleron) to only have a single negative eigenvalue [50].
However, following Refs. [51–53] we argue that the semi-
classical configuration should be a saddle point of the
effective action rather than the bare action, with fluctuations
above some finite energy scale μ already integrated out.
Then, only fluctuations up to μ should be included in the
fluctuation prefactor. Higher energy fluctuations contribute
instead to the renormalization of parameters. Althoughwedo
not explicitly carry out this procedure, we find a regime of
parameters where one can separate the scales between the
unstable UV modes and the rest of the fluctuations.
The self-force instability is well known in classical

electrodynamics [54–56] and in various approximations to
quantum electrodynamics [57–63]. Its existence in quantum

mechanical systems has been linked to the unboundedness of
the spectrum of the Hamiltonian [64–66].
In Refs. [59,60] it was found that a nonrelativistic

electron interacting with a quantized photon field does
not show the self-force instability, at least for e2=ð4πÞ≲ 1.

FIG. 3. For ðκ; T̃Þ ¼ ð0.1; 1.2Þ, the first 500 eigenvalues of
fluctuations about the sphaleron, ordered by n, showing the self-
force instability at n ¼ 30.
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Starting from an extended charge distribution, with finite
mass, they found that one could take the size of the charge
distribution to zero and the result was free of the self-force
instability. However, if they changed the orders of the limits
and first took the Compton wavelength to zero (or the mass
to infinity), the self-force instability was present. Taking the
mass to infinity amounts to dropping charged particle loop
corrections.
In the dilute instanton gas approximation, extra charged

particle loops with S̃ ≥ Oð1Þ are suppressed by the instan-
ton density, as argued in Sec. II, and Ref. [12], and hence
can justifiably be dropped. On the other hand, extra charged
particle loops with vanishing action, as ϵ → 0, are not
present in the semiclassical approximation and are not
necessarily suppressed. As ϵ → 0 there are nontrivial such
loops when there is a cancellation between the rest mass
and Coulomb interaction terms. These are virtual particles,
and they have a size ∼κ=ð8πÞ, or g2=ð8πmÞ in physical
units. When there is a separation of scales between the
virtual particle loop size, OðκÞ, and the instanton size,
Oð1=T̃Þ, i.e., when κT̃ ¼ g2T=m ≪ 1, the virtual particle
loops should simply renormalize the parameters of the
theory [7], in particular the charge. This is assumed in our
analysis. However, when κT̃ ¼ Oð1Þ, the saddle-point
approximation plus renormalization is not expected to
adequately take virtual charged particle loops into account.
The self-force instability may be symptomatic of this.
We define nSF such that the self-force turns those

harmonics negative with n ≥ nSF. For T̃ ¼ Oð1Þ and
κ ¼ Oð1Þ, we find that nSF ¼ Oð1Þ. Above κ ≈ 3.0653
and for all T̃, the instability is at nSF ¼ 1. For κT̃ ≪ 1,
instead we find that

nSF ¼ 3

κT̃

�
1 −

κ3=2

9π3=2
þOðκ3Þ

�
; ð23Þ

as can be seen in Fig. 3, where for ðκ; T̃Þ ¼ ð0.1; 1.2Þ we
can see that nSF ¼ 30. For κT̃ ≪ 1 the self-force problem is
moved to parametrically high harmonics, or short distances,
where the effects of virtual charged particle pairs are
significant and hence the naive semiclassical approxima-
tion is expected to break down. For the purposes of the
semiclassical calculation, one should cut off the higher
harmonics below Oð1=ðκT̃ÞÞ. The self-force instability is
thereby moved into the ultraviolet, where it can be
considered separately, and should contribute only to the
renormalization of couplings.
For electric charges the coupling is weak, g2 ≔ e2 ≪ 1.

In this case κ ≪ ϵ ≪ 1, and the self-force problem is not
present at leading order in ϵ, which is the approximation we
make. For magnetic charges, on the other hand, gM ≫ 1
and hence κ ≫ ϵ. Magnetic and electric charges, gM and e,
are related inversely via the Dirac quantization condition,
gMe ¼ 2πj, where j ∈ Z. This relationship is expected to
hold for the running couplings [67–69]. Hence, as one

probes shorter distances the effective magnetic charge
decreases; magnetic charge is antishielded. This has been
argued to be an effective spreading-out of magnetic charge
over scales Oðg2M=ð4πmÞÞ [58]. Classically, a charge
distribution spread out on these scales is stable [59,60],
hence, for magnetic monopoles, one would expect that the
ultraviolet physics does not suffer from the self-force
instability.

V. THE SCALAR PREFACTOR

In this section we consider the regime for which the
self-force instability is not present. Thus we assume that
κT̃ ≪ 1 as discussed in the previous section. We will
further assume that κT̃2 ≪ 1, in which case the eigenval-
ues, λi, of Eqs. (19), (21) and (22), simplify considerably.
They are given in Table I. We assume the running coupling
is known at the relevant energy scale.
The temperature, T̃WS, above which the worldline

sphaleron dominates the thermal Schwinger process sat-
isfies T̃WS ≳ 0.5, at least for κ ≤ 1. For small κ, it grows and
is given approximately by

T̃WS ≈
ffiffiffi
2

p

π3=4κ1=4
: ð24Þ

Given that T̃ > T̃WS and κT̃2 ≪ 1, we must have that κ ≪ 1

and T̃ must lie in the window

ffiffiffi
2

p

π3=4κ1=4
< T̃ ≪

1ffiffiffi
κ

p : ð25Þ

Above T̃WS, the rate is dominated by the sphaleron and
hence by the second term in the cluster expansion,

ΓðE; TÞ ≈ Γð2ÞðE; TÞ;

Γð2ÞðE; TÞ ¼ −
jω−j
πV

Im
1

2!

Z
∞

0

dsx
sx

Z
∞

0

dsy
sy

×
Z

Dxμ
Z

Dyμe−
1
ϵS̃½x;y;sx;sy;κ;T̃�: ð26Þ

TABLE I. Table of eigenvalues of the fluctuations about the
worldline sphaleron assuming κT̃2 ≪ 1. The first three lines are
for constant fluctuations and the last three are for harmonic ones.

λi Multiplicity

0 5ffiffiffiffi
4π

pffiffi
κ

p
T̃

2

− 2
ffiffiffiffi
4π

pffiffi
κ

p
T̃

1

1
2
ð2πnÞ2T̃ 10

1
2
ðð2πnÞ2T̃ þ 2

ffiffiffiffi
4π

pffiffi
κ

p
T̃
Þ 4

1
2
ðð2πnÞ2T̃ − 4

ffiffiffiffi
4π

pffiffi
κ

p
T̃
Þ 2
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We wish to evaluate this in the saddle point approximation
about the sphaleron. In this approximation, it is given by

ΓðE; TÞ ≈ −
jω−j
πV

T̃2e−
1
ϵS̃ðκ;T̃ÞIm

Z
∞

−∞
dsxe−

T̃
2ϵðsx−s0Þ2

×
Z

∞

−∞
dsye−

T̃
2ϵðsy−s0Þ2

Z
Dχie

− 1
2ϵ

P
i
λiχiχi ;

≈ −
2ϵT̃jω−j

V
e−

1
ϵS̃ðκ;T̃ÞIm

Z
Dχie

− 1
2ϵ

P
i
λiχiχi ; ð27Þ

where χi and λi are defined in Eq. (18).
We divide the integrations up into the constant fluctua-

tions, which correspond simply to translations of the
worldlines, and the harmonic fluctuations, which corre-
spond to sines and cosines. The final result involves a
product of the contribution from the constant fluctuations,
C, and the harmonic fluctuations, H,

Z
Dχie

− 1
2ϵ

P
i
λiχiχi ≕ CH: ð28Þ

We consider C first. From Table I, we can see that there are
eight constant fluctuations: five of these are zero modes,
one is a negative mode and the remaining two are positive.
Again, the result involves a product of the contribution
from these three groups,

C≕ CZCNCP: ð29Þ

To perform the integrations over the zero modes, we first
put the worldlines in a large box with spatial sides of length
L̃ (in units of m=gE), and then in the result drop terms
subdominant in L̃. Pairing up the spatial zero modes with
the nonzero constant modes, we make use of the following
elementary integral,

Z
L̃=2

−L̃=2
dx
Z

L̃=2

−L̃=2
dye−

λ
2ϵðx−yÞ2

¼ L̃
Z

∞

−∞
dζe−

λ
2ϵζ

2

�
1þO

� ffiffiffi
ϵ

pffiffiffi
λ

p
L̃

��
: ð30Þ

Using this, and doing the trivial integrals over the two zero
modes in the 4 direction, one can find that

CZ ¼ L̃3

T̃2
¼ m3ϵ3V

T̃2
; ð31Þ

where V is the spatial volume in standard dimensionful
units.
Defining the integration over the negative mode requires

an analytic continuation. This is done following the classic
work of Langer [70], resulting in an overall factor of 1=2 on
top of the naive result,

CN ¼ 1

2
ð2πÞ1=2

�
−
2
ffiffiffiffiffiffi
4π

p

ϵ
ffiffiffi
κ

p
T̃

�−1=2

¼ �i
1

2
ffiffiffi
2

p ðπκÞ1=4
ffiffiffiffiffiffi
T̃ϵ

p
: ð32Þ

The sign ambiguity arises in the process of analytic
continuation and we must choose the negative sign. The
integrations over the two positive modes are elementary,

CP ¼ ð2πÞ2=2
� ffiffiffiffiffiffi

4π
p

ϵ
ffiffiffi
κ

p
T̃

�−2=2
¼ ffiffiffiffiffi

πκ
p

T̃ϵ: ð33Þ

Thus we arrive at

C ¼ −iπ3=4κ3=4m3ϵ9=2V

2
ffiffiffi
2

p ffiffiffiffĩ
T

p : ð34Þ

To perform the infinite integrations over the harmonic
fluctuations requires regularization or, equivalently, nor-
malization. We normalize the path integral measure with
respect to the square of the equivalent free particle path
integral,

�Z
Dxμe−

T̃
2ϵ

R
1

0
_x2dτ
�

2

¼
Z

Dχie
− 1
2ϵ

P
i
λ0iχiχi ;

¼ L̃6

T̃2

Z
D0χie

− 1
2ϵ

P
i
0λ0iχiχi ; ð35Þ

¼ L̃6

T̃2

T̃4

ð2πϵÞ4 ; ð36Þ

where the λ0i are defined by this equation, and are given
in Table II. The final result is the usual one for (eight
powers of) the free particle path integral in 1D quantum
mechanics [71] with im=T → −T̃=ϵwhere T refers to time
elapsed and the boundary conditions on the path integrals
are periodic. In the second line we have factored off the
contribution from the constant modes. The 0 on the
summation symbol and in the integration measure denotes
that only the harmonic modes are included.
In the integrations over the harmonic modes we must

keep in mind that the change of variables, ðxμðτÞ; yμðτÞÞ →
ðζμðτÞ ¼ xμðτÞ − yμðτÞ; ξμðτÞ ¼ xμðτÞ þ yμðτÞÞ, was car-
ried out. The Jacobian of the transformation is 1=2 for

TABLE II. Table of eigenvalues of the square of the corre-
sponding free particle path integral. The first line is for constant
fluctuations and the second line is for harmonic ones.

λ0i Multiplicity

0 8
ð2πnÞ2T̃ 16
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each pair of d.o.f. or 1=
ffiffiffi
2

p
for each d.o.f. This can be seen

easily in the two dimensional transformation ðx; yÞ →
ðζ ¼ x − y; ξ ¼ xþ yÞ,

jJj ¼
						
∂x
∂ζ

∂x
∂ξ

∂y
∂ζ

∂y
∂ξ

						 ¼
					

1
2

1
2

− 1
2

1
2

					 ¼ 1

2
: ð37Þ

Multiplication by this Jacobian factor is equivalent to
multiplying the eigenvalues by 2.
Multiplying by Eq. (36) and dividing by Eq. (35),H then

takes the form

H ¼ T̃4

ð2πϵÞ4
Y0
i

�
2λi
λ0i

�
−1=2

; ð38Þ

where again the 0 on the product symbol denotes that only
the eigenvalues corresponding to harmonic modes are
included. The infinite products of the ratios of these
eigenvalues are well defined and can be evaluated using
the following identity,

Y∞
n¼1

�
1 −

c2

n2

�−1
¼ πc

sin ðπcÞ : ð39Þ

The result is

H ¼ T̃

8
ffiffiffi
2

p
π13=4κ3=4ϵ4 sin


 ffiffi
2

p
π1=4

κ1=4T̃

�
sinh2



π1=4

κ1=4T̃

� : ð40Þ

Putting it all together we find

1

V
Im logðZÞ ≈ −

m3ðT̃ϵÞ3=2e− 2
T̃ϵ
ð1−

ffiffiffi
κ
4π

p
Þ

16π3=2 sin


πT̃WS

T̃

�
sinh2



πT̃WSffiffi
2

p
T̃

� ; ð41Þ

where we have reintroduced T̃WS ≈
ffiffiffi
2

p
=ðπ3=4κ1=4Þ to

simplify the expression. Note that it is consistent to keep
the ∼

ffiffiffi
κ

p
term in the exponent, though such terms were

dropped in the eigenvalues, as the correction is multipli-
cative rather than additive, as well as coming with a
negative power of ϵ.
Equation (41) is divergent at T̃ ¼ T̃WS, where the

sphaleron develops another zero mode. Below this temper-
ature the sphaleron is unstable due to the existence of
another saddle point with lower action, the W instanton of
Ref. [12]. This may signal a parametric enhancement of the
dependence on the semiclassical parameter, ϵ [72]. This can
be investigated by expanding the action to higher than
second order in the harmonic fluctuation which becomes a
zero mode at T ¼ TWS. Then one may perform the non-
Gaussian integral over this mode to find the correction to
the prefactor (see for instance [9]). Whether or not there are

phenomenological consequences of this enhancement
depends on precise values in a given situation, though
the exponential dependence may well dominate over such
power law enhancements in the prefactor. The higher
harmonic divergences, at T̃ ¼ T̃WS=n, are not relevant as
they exist at lower temperatures where the sphaleron does
not dominate the rate.
The last ingredient required to construct the sphaleron

rate is jω−j, the rate of growth with time of the unstable
mode. This is

jω−j ¼ 2πTWS ≈ 2π

�
4gE3

π3m2

�
1=4

: ð42Þ

The rate of pair production of scalar charged particles is
thus given by

ΓðE; TÞ ≈ TWSðmTÞ3=2e−2m
T þ

ffiffiffiffiffiffiffi
g3E=π

p
T

ð4πÞ3=2 sin


πTWS
T

�
sinh2



πTWSffiffi
2

p
T

�
×

�
1þO

�
gE
m2

;
g3E
m2

;
T
m
;
g2T
m

;
gT2

E

��
; ð43Þ

where we have restored the dimensionful variables and the
result is valid for temperatures satisfying

T > TWS ≈ ð4gE3=π3m2Þ1=4: ð44Þ

The prefactor is plotted in Fig. 4.

VI. THE SPINOR PREFACTOR

For QED with (Dirac) spinor charged particles, just as
for SQED, one can formally represent the exact partition
function in terms of an infinite sum of integrals over
worldlines. Compared to SQED each worldline path
integral contains an additional spin-dependent factor.
This can be seen by starting from the following identities

FIG. 4. The sphaleron rate prefactor. The sharp rise at T ¼ TWS
is a divergence of the form c=ðT − TWSÞ, where c is a constant. It
is due to the presence of an extra zero mode.
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detðDþmÞ¼detð−DþmÞ;
¼detð−D2þm2Þ1=2;

¼det

�
−D2þm2−

i
2
gΣμνðFext

μν ðxÞþFμνðxÞÞ
�

1=2
;

ð45Þ
where the Σμν are proportional to the generators of
Lorentz transformations in the spin 1=2 representation,
i.e., Σμν ¼ ½γμ; γν�=2, where γμ are the Euclidean gamma
matrices (see Ref. [73] for a definition). Using the final line
of Eq. (45), one can see that the spin-1=2 functional trace
can be written in terms of the spin-0 trace and an additional
spin factor [74–76]

Trðe−ðDþmÞsÞ¼Tr


e−ð−D2þm2−i

2
gΣμνðFext

μν ðxÞþFμνðxÞÞs
�

¼
Z

Dxμe−S0½xμ;Aext
μ þAμ;s�Spin½xμ;Aext

μ þAμ;s�;

ð46Þ

where S0½xμ; Aext
μ þ Aμ; s� is what one would get for a spin

zero particle and the spin factor is given by

Spin½xμ; Aext
μ þ Aμ; s� ≔ TrγPe

ig
2

R
s

0
dτΣμνðFext

μν ðxÞþFμνðxÞÞ ð47Þ

where Trγ signifies the trace over spinorial indices and P is
the path ordering operator.
After scaling τ → τ=s, s → s=ðgEÞ and x → ðm=gEÞx,

and performing the Gaussian integrations over the dynami-
cal gauge field, one can show that the spin factor is
subleading in ϵ versus the spinless part of the action
(see Appendix A of Ref. [12]). The spin factor does
however modify the prefactor at leading order in ϵ. To
this order we need only to evaluate the spin factor on the
worldline sphaleron. This gives, for each worldline, x, a
multiplicative factor of

−
1

2
TrγxPx exp

�
s0Σ34

x þ κs0

Z
1

0

dτ
Z

1

0

dτ0Σμρ
x ð∂x0

ρ Gμνðx0; y00; T̃Þ _y00ν þ ∂x0
ρ Gμνðx0; x00; T̃Þ _x00νÞ�

¼ −
1

2
TrγxPx exp

�
Σ34
x

�
1

2T̃
−

1

2T̃

��
;

¼ −2; ð48Þ

where Trγx denotes a trace over spinor indices of the x
worldline, Px is the path ordering operator along the x
worldline, Σμν ≔ ½γμ; γν�=2, where γμ are the Euclidean
Dirac (gamma) matrices satisfying fγμ; γνg ¼ 2δμν and 0

denotes dependence on τ0 as opposed to τ. There is a second
factor, for the other worldline, y, which differs by inter-
change of x and y. The two factors are equal to each other.
Hence the worldline sphaleron rate for spinor charged
particles is

ΓspinorðE; TÞ ≈ 4ΓscalarðE; TÞ: ð49Þ

The 4 comes from a product of traces over gamma matrices
and hence can be seen as a factor of ð2sþ 1Þ2, where s is
the spin, to be compared with the single power of (2sþ 1)
which arises in Schwinger pair production at zero temper-
ature. Thus spin enters the rate of pair production essen-
tially trivially. The factor of ð2sþ 1Þ2 simply counts the
possible spins of the produced particles: up-up, up-down,
down-up and down-down. This result can be seen as a
natural extension of the factor (2sþ 1) which arises in
Schwinger pair production. In that case, in vacuum, the
produced pairs must have opposite spins so only up-down

and down-up are possible. However, in our case, angular
momentum can be exchanged with the thermal bath of
photons.
Note that the effects of spin and statistics should give

nontrivial corrections in stronger fields, at higher temper-
atures, or simply at later times, where the back reaction of
the produced charged particles cannot be ignored.
However, in the physical situation we consider neither
Pauli blocking nor Bose enhancement are relevant because
our initial state contains no charged particles and, in the
presence of the weak external field, particles are only
produced exponentially slowly.
Combining this result with that of the previous section,

we arrive at the chief result of this paper, Eq. (2).

VII. ELECTRONS AND POSITRONS

So, what do our calculations imply for the pair produc-
tion of the lightest electric particles in nature, the electron
and the positron? In this case, the theory is weakly coupled,
g2 ≔ e2 ≪ 1, where e is the charge of a positron, and hence
we may take the weak coupling limit of Eq. (2), in which
some of the approximations become redundant and the
equation becomes
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ΓðE; TÞ ≈ 4TWSðmeTÞ3=2e−
2me
T þ

ffiffiffiffiffiffiffi
e3E=π

p
T

ð4πÞ3=2 sin


πTWS
T

�
sinh2



πTWSffiffi
2

p
T

�
×
�
1þO

�
e2;

eE
m2

e
;
T
me

;
eT2

E

��
; ð50Þ

where me is the mass of the electron and TWS ≈
ð4eE3=π3m2

eÞ1=4. Note that there are now only four dimen-
sionless combinations of parameters in the big O, rather
than five. We describe as the region of validity of this
expression, where all of these dimensionless parameters are
small, and where T > TWS.
It is instructive to compare Eq. (50) to known results for

E ¼ 0 and for T ¼ 0. In the former case, in a thermal bath
of photons with zero electric field, to leading order,
electron-positron pair production proceeds via the collision
of pairs of photons, γγ → eþe−, the Breit-Wheeler
process [31]. Above the kinematic threshold this process
has cross section approximately equal to the classical size
of the electron, σBW ∼ e4=ð16π2m2

eÞ. Averaging this over
the distribution of energies present in a thermal bath of
photons one finds [77],

ΓBWðTÞ ≈
e4meT3

2ð2πÞ4 e−
2me
T

�
1þO

�
e2;

T
m

��
: ð51Þ

Adding a constant electric field does not change the rate of
this process, as the additional photons have infinite wave-
length and hence zero energy.
The exponential dependences of Eqs. (49) and (51) are

similar, though the prefactors differ markedly. In the
presence of an electric field and a thermal bath of photons
with T > TWS, both processes are possible. In this case the
ratio of the worldline sphaleron rate, ΓðE; TÞ, and the Breit-
Wheeler rate is

ΓðE; TÞ
ΓBWðTÞ

≈
π

4

�
4π

e2

�
−15=8

�
m2

e

eE

�
3=8

F

�
T

TWS

�
e

ffiffiffiffiffiffiffi
e3E=π

p
T ;

≳ 1754

�
m2

e

E

�
3=8

e

ffiffiffiffiffiffiffi
e3E=π

p
T ≫ 1; ð52Þ

where FðtÞ is defined by this equation and the second line
follows by evaluating FðtÞ at its minimum, at t ≈ 1.37.
Hence, in the domain of validity of both results, the
worldline sphaleron rate is faster than the (purely thermal)
Breit-Wheeler rate for all nonzero electric fields. In
practice, the most easily physically realizable regime, is
probably the regime of weakest fields, E ≪ πðm2T4=4eÞ1=3
(equivalent to T ≫ TWS), where the ratio of rates reduces to

ΓðE; TÞ
ΓBWðTÞ

≈
16πðmTÞ3=2
e9=2E3=2 e

ffiffiffiffiffiffiffi
e3E=π

p
T ≫ 1: ð53Þ

In the regime of validity this amounts to a factor Oð106Þ.
The surprising result is that for weak fields, E ≪ m2

e, the
worldline sphaleron rate is parametrically faster than
the Breit-Wheeler rate, despite the fact one would expect
the former to reduce to the latter as E → 0. However, one
cannot take the E → 0 limit at fixed T while staying in the
region of validity of our calculation, due to the requirement
E ≫ eT2 [see Eq. (50)].
We can also compare the worldline sphaleron rate with

that of the Schwinger rate at zero temperature [6],

ΓSchwingerðEÞ ≈
ðeEÞ2
4π3

e−
πm2

e
eE

�
1þO

�
e2;

eE
m2

��
: ð54Þ

In this case, in the regime T > TWS, and for weak fields,
E ≪ m2

e, using the same reasoning as for the comparison
with the Breit-Wheeler rate, we find,

ΓðE; TÞ
ΓSchwingerðEÞ

≳ 5.81
�
m2

E

�
1=8

e
πm2

e
eE −2me

T þ
ffiffiffiffiffiffiffi
e3E=π

p
T ≫ 1: ð55Þ

In the region of validity, the worldline sphaleron rate is
exponentially faster than the zero temperature Schwinger
rate. Numerically, one finds the enhancement to be in the
region of 1010

3

.

VIII. MAGNETIC MONOPOLES

As mentioned in the Introduction, our initial interest in
this calculation was for its relevance to magnetic monopole
pair production, and hence to searches for magnetic
monopoles. Due to the necessary strong coupling of
magnetic monopoles, g2M ≥ g2D ≔ ð2π=eÞ2 ≫ 1, perturba-
tive techniques for computing their production cross
sections, σab→MM, fail. As a consequence, these cross
sections are largely unknown and, in fact, nonrigorous
arguments for the order of magnitude of the cross section
differ by hundreds of orders of magnitude. This huge
discrepancy is due to the presence or absence of an
exponential suppression of the form expð−16π=e2Þ. For
monopole production in collisions of “small” particles,
such as pp → MM or eþe− → MM, this exponential
suppression has been argued to be present for ’t Hooft-
Polyakov monopoles [78,79] and may also be argued to be
present for elementary (Dirac) monopoles [58].
Experimental collider searches for magnetic monopoles

have largely focused on collisions of “small” particles, such
as protons or electrons [80]. The null results of these
searches have led to upper bounds on cross sections for the
pair production of magnetic monopoles. Unfortunately,
given the huge theoretical uncertainties on these cross
sections, such experimental bounds cannot be used to
derive bounds on the properties of any possible monopoles,
such as their mass, mM.
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This problem does not extend to heavy ion collisions. In
this case there are strong magnetic fields [81,82] and high
temperatures [83,84] and thus magnetic monopoles may be
produced by the dual of the thermal Schwinger process.
From a consideration of this, one can explicitly calculate
the cross section for magnetic monopole pair production.
This has led to the first (lower) bounds on the mass of
possible magnetic monopoles from any collider search
[33]. These are also the strongest reliable bounds on mM,
though they are surprisingly weak, being only OðGeVÞ.
One can expect to see significant improvements in the near
future, as the heavy-ion collisions which gave rise to that
bound [85] had a center of mass energy per nucleon of only
8.7 GeV, much lower than, for example, the last lead-lead
run at the LHC in 2015, which had a center of mass energy
per nucleon of 5020 GeV.
As briefly argued in the introduction, the rate of thermal

Schwinger pair production that we have calculated in QED
at arbitrary coupling, is directly applicable to magnetic
monopole production. This is due to classical electromag-
netic duality, a symmetry of Maxwell’s equations extended
to include magnetic charges,

Fμν → �Fμν; �Fμν → −Fμν;

jμE → jμM; jμM → −jμE; ð56Þ

where � denotes the Hodge dual, jμE denotes the electric
current and jM the magnetic current. In our result, Eq. (2),
this amounts simply to a relabelling of electric quantities as
magnetic. Under this duality our result is directly applicable
to elementary (Dirac) monopoles. For ’t Hooft-Polyakov
monopoles, which are composite, solitonic objects, our
worldline calculation is also applicable because their size is
Oðκ=4πÞ in our scaled units and hence is parametrically
smaller than the worldline sphaleron. Thus an effective
description of ’t Hooft-Polyakov monopoles as magneti-
cally-charged worldlines is applicable [12,49,86,87].
Considering that magnetic monopoles are necessarily

strongly coupled, we may take the strong coupling limit of
Eq. (2), in which some other of the approximations become
redundant and the equation becomes

ΓðB; TÞ ≈ ð2sþ 1Þ2TWSðmMTÞ3=2e−
2mM
T þ

ffiffiffiffiffiffiffiffi
g3
M
B=π

p
T

ð4πÞ3=2 sin


πTWS
T

�
sinh2



πTWSffiffi
2

p
T

�
×
�
1þO

�
1

g2M
;
g3MB
m2

M
;
g2MT
mM

;
gMT2

B

��
; ð57Þ

where s is the spin of the magnetic monopole. The
expression applies for temperatures satisfying T > TWS ≈
ð4gMB3=π3m2

MÞ1=4. Note again that there are now only four
dimensionless combinations of parameters in the big O,
rather than five.

What do our results mean for magnetic monopole
searches? If the magnetic field and temperature in a given
heavy ion collision vary slowly on the time and length
scales of the sphaleron, one may make the approximation
that the magnetic field and temperature are locally constant.
That is, locally, the rate of pair production is approximated
by the rate derived for a constant field and temperature. In
this case the cross section for pair production of magnetic
monopoles in heavy-ion collisions, σMM, is given by

dσMMð
ffiffiffi
s

p
;bÞ

db
≈
dσinelHI ð

ffiffiffi
s

p
;bÞ

db

×
Z

d4xΓðB̄ðx; ffiffiffi
s

p
;bÞ; T̄ðx; ffiffiffi

s
p

;bÞÞ; ð58Þ

where
ffiffiffi
s

p
is the center of mass energy, b is the impact

parameter, σinelHI is the total inelastic cross section for
the specific heavy-ion collision and B̄ðx; ffiffiffi

s
p

; bÞ and
T̄ðx; ffiffiffi

s
p

; bÞ are the event-averaged, local magnetic field
and temperature at a point x in the fireball for events with
centre of mass energy

ffiffiffi
s

p
and impact parameter b. The

integrals in Eq. (58) can all be done in the saddle point
approximation.
Due to the strong coupling of magnetic monopoles,

Eq. (57) is unfortunately valid only for parametrically low
temperatures, T=mM ≪ 1=g2M ∼ e2, and weak magnetic
fields, B=m2

M ≪ 1=g3M ∼ e3. This is due to the requirement
that the self-force instability be moved to much shorter
length scales than those of the sphaleron, a hierarchy which
breaks down when the rate, and consequently the cross
section, are still extremely exponentially suppressed,

σMM̄

σinelHI
∼ e−c=e

2

; ð59Þ

for some c > 0, with c ¼ Oð1Þ. This same factor has been
argued to suppress magnetic monopole pair production in
high energy particle collisions [78,79]. However, in our
case the arguments of Refs. [78,79] do not apply and we
have no reason to expect the same exponential suppression
at higher temperatures. Rather Eq. (59) results due to the
limitations of our approximation scheme as applied to
strongly coupled magnetic monopoles. Further theoretical
work is needed to go beyond this regime.
At higher temperatures than Oðe2mMÞ, the inverse

temperature becomes smaller than the classical radius of
a magnetic monopole, rc ∼ g2M=ð4πmMÞ, and in consider-
ing fluctuations of the sphaleron, the structure of the
magnetic monopoles cannot be ignored. However, as the
sphaleron is independent of the Euclidean time direction,
one might still expect the worldline sphaleron to capture the
exponential dependence of the rate.
For ’t Hooft-Polyakov monopoles this can be checked

explicitly. In this case, the temperature e2mM is a factor of e
smaller than the critical temperature, Tc ∼ emM, at which
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the symmetry of the vacuum is restored. Thus, if one were
to perform a semiclassical calculation of the thermal
Schwinger rate directly in the field theory, one should
be able to calculate the rate up to T ∼ Tc ∼ emM, so gaining
a factor of 1=e on the worldline calculation. In this case one
should be able to calculate the rate beyond the semiclassical
approximation following the approach of Refs. [88–90].
A classical, stochastic equation will govern the real-time
dynamics of the sphaleron, and hence determine the
prefactor [91,92].
Above Tc in a grand unified theory one can no longer

define a magnetic field and magnetic monopoles can no
longer be thought of as particles. However, if such a system
were to cool, magnetic monopoles would be produced via
the freezing out of thermal fluctuations [93].

IX. CONCLUSIONS

The worldline sphaleron describes thermal Schwinger
pair production at sufficiently high temperature (T > TWS)
in Abelian gauge theories, regardless of the strength of the
coupling. The rate of this process, Eq. (2), is the chief result
of this paper.
In order to work to all orders in g, we were forced to

restrict our calculation to sufficiently heavy charged par-
ticles. In this regime the rate is exponentially suppressed,
by the Boltzmann factor, 2m�=T ≈ 2m=T. For weakly
coupled electric particles, we must have m=T ≫ 1,
which is not too restrictive and leads to the exciting

possibility of an experimentally observable rate of pair
production. Further, in its region of validity, the worldline
sphaleron rate turns out to be much faster than both
perturbative photon fusion and the zero temperature
Schwinger rate. However, for magnetic monopoles, the
validity of our approximations require instead that
m=T ≫ g2 ≥ g2D ≈ 430, and hence the results derived in
this paper are unfortunately too suppressed to be directly
applicable to monopole searches in heavy-ion collisions.
For larger values of T=m or g3B=m2, the exponential

suppression of the rate, Eq. (4), is greatly reduced, leading
to predictions of a measurable rate of pair production. It
was a regime where g3B=m2 ¼ Oð1Þ that led to the mass
bounds in Ref. [33]. However, our calculation of the
prefactor breaks down in this case, due to the presence
of the self-force instability. One might hope that the
calculated exponential suppression still gives a good
approximation to the rate at Oð1Þ values of g3B=m2,
though the corrections to this cannot be calculated within
our approach.
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