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The renormalization-scheme and scale dependence of the truncated QCD perturbative expansions is one
of the main sources of theoretical error of the standard model predictions, especially at intermediate
energies. Recently, a class of renormalization schemes, parametrized by a single real number C, has been
defined and investigated in the frame of the standard perturbation expansions in powers of the coupling. In
the present paper we investigate the C-scheme variation of a Borel-improved QCD perturbation series,
which implements information about the large-order divergent character of perturbation theory by means of
an optimal conformal mapping of the Borel plane. In the new expansions, the powers of the strong coupling
are replaced by a set of expansion functions with properties which resemble those of the expanded
correlators, having in particular a singular behavior at the origin of the complex coupling plane. On the
other hand, the new expansions have a tamed increase at high orders, as demonstrated by previous studies
in the MS renormalization scheme. Using as examples the Adler function and the hadronic decay width
of the τ lepton, we investigate the properties of the Borel-improved expansions in the C-scheme, in
comparison with the standard expansions in the C-scheme and the expansions in MS. The variation with the
renormalization scale and the prescription for the choice of an optimal value of the parameter C are
discussed. The good large-order behavior of the Borel-improved expansions is proved also in the
C-scheme, which is a further argument in favor of using them in applications of perturbative QCD at
intermediate energies.
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I. INTRODUCTION

In the standard QCD perturbation theory, the finite-order
approximations of physical quantities are renormalization-
scale (μ) and renormalization-scheme (RS) dependent. For
a truncated expansion of order N, the scale and scheme
variations, being in principle OðαNþ1

s ðμÞÞ corrections, are
expected to be small at large scales due to asymptotic
freedom. However, since the perturbative expansion in
QCD is a divergent series, with coefficients growing
factorially at large orders, the scale and scheme variation
might be in practice quite large, especially at intermediate
energies where the strong coupling αs is not very small.
The quest for in some sense “optimal” scale and scheme

is important for meaningful applications. There are several
recipes [1–8] how to do that. The one proposed in [1] and
known as the “principle of minimal sensitivity” (PMS)
selects the scale and scheme by the condition of local scale

and scheme invariance. Therefore, the PMS selects the point
where the truncated approximant has locally the property
which the all-order summation must have globally. A
different, process-dependent recipe, known as “effective
charge method” or “fastest apparent convergence” (FAC)
criterion was proposed in [2], while the method advocated in
[5–8], denoted as “principle of maximum conformality,”
chooses the scale such as to absorb in the coupling all the
nonconformal dependence of the perturbative coefficients.
Since the problem is difficult and has so far no generally
accepted solution, perturbative computations are performed
mainly in convenient schemes like the modified minimal
subtraction MS [9].
Recently, a new class of process-independent renorm-

alization schemes depending on a single real parameter C
was defined in [10]. In Refs. [10–12], the properties of
these schemes have been discussed using the perturbation
expansion of the QCD Adler function and the τ hadronic
width, and in [13] the class of C schemes was investigated
from the point of view of the maximum conformality
principle [5–8].
In the present paper, we shall investigate theC-scheme in

connection with the fact that the perturbation expansions
in QCD are divergent series, the expansion coefficients of
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typical correlators growing factorially at large orders
[14–17]. This is related to the fact that the QCD correlators
as functions of αs are singular at the origin of the complex
αs plane [14], which implies that the radius of convergence
of the expansions in powers of the strong coupling αs
is zero.
Starting from the divergent character of the QCD

perturbation series, a modified perturbation expansion
was defined in [18] and was further investigated in
[19–25] (for a recent review see [26]). In this approach,
instead of the powers of the strong coupling, a new set of
expansion functions is used, defined by means of an
optimal (i.e., ensuring the best asymptotic rate of con-
vergence) conformal mapping of the Borel complex plane.
The properties of the new expansion functions resemble
those of the expanded correlators, by exhibiting in par-
ticular a singular behavior at the origin of the αs plane. On
the other hand, the new expansions have a tamed increase at
high orders. The good convergence properties of the new
expansions have been demonstrated in [21,23,25] in the
MS renormalization scheme on mathematical models that
simulate the physical Adler function.
The aim of the present work is to investigate the

properties of these modified perturbation expansions in
the class of renormalization schemes defined in [10]. As in
[10–12], we use for illustration the Adler function and the
hadronic width of the τ lepton. We start by recalling, in the
next section, a few facts about the calculation of these
quantities in perturbative QCD. In Sec. III we briefly
review, following [10], the C-scheme definition of the
QCD coupling. In Sec. IV we introduce the modified,
nonpower perturbative expansions based on the conformal
mapping of the Borel plane, and in Sec. V we rewrite them
in the C-scheme. In Sec. VI we investigate the C-scheme
variation of the modified perturbative expansions of the
Adler function and the hadronic τ decay width. We also
investigate the large-order behavior of the expansions,
using for generating the large-order perturbative coeffi-
cients a model of the Adler function proposed in [27],
which we present for completeness in the Appendix. The
last section contains a summary and our conclusions.

II. ADLER FUNCTION AND τ HADRONIC
WIDTH IN PERTURBATIVE QCD

We recall that the Adler function is the logarithmic
derivative of the invariant amplitude of the two-current
correlation tensor, DðsÞ ¼ −sdΠðsÞ=ds, where s is the
momentum squared. As in Ref. [10] we shall consider the
reduced function D̂ðsÞ defined as:

D̂ðsÞ≡ 4π2DðsÞ − 1: ð1Þ

From general principles of field theory, it is known that
D̂ðsÞ is an analytic function of real type [i.e., it satisfies the

Schwarz reflection property D̂ðs�Þ ¼ D̂�ðsÞ] in the com-
plex s plane cut along the timelike axis for s ≥ 4m2

π.
At large spacelike momenta s < 0, the function D̂ is

given by the QCD perturbative expansion [27]

D̂ðaμÞ ¼
X
n≥1

anμ
Xn
k¼1

kcn;kðlnð−s=μ2ÞÞk−1; ð2Þ

where aμ ≡ αsðμ2Þ=π is the renormalized strong coupling
in a certain RS at an arbitrary scale μ. As in [10], we
emphasize from now on the fact that D̂ is a function of the
QCD coupling aμ, the dependence on the momentum
squared s being implicit.
The leading coefficients cn;1 in (2) are obtained from the

calculation of Feynman diagrams, while the remaining ones,
cn;k with k > 1 are obtained in terms of cm;1 withm < n and
the coefficients βn of the β function, which governs the
variation of the QCD coupling with the scale in each RS:

−μ
daμ
dμ

≡ βðaμÞ ¼
X
n≥1

βnanþ1
μ : ð3Þ

We recall that in mass-independent renormalization schemes
the first two coefficients β1 and β2 are scheme invariant,
depending only on the number nf of active flavors, while βn
for n ≥ 3 depend on the renormalization scheme. In MS, the
known coefficients for nf ¼ 3 are (cf. [28] and references
therein):

β1 ¼
9

2
; β2 ¼ 8; β3 ¼ 20.12;

β4 ¼ 54.46; β5 ¼ 268.16. ð4Þ

The Adler function was calculated in MS to order α4s,
which makes it one of the most precisely known Green
functions in QCD. For nf ¼ 3 the leading coefficients cn;1
have the values (cf. [29] and references therein):

c1;1 ¼ 1; c2;1 ¼ 1.640;

c3;1 ¼ 6.371; c4;1 ¼ 49.076: ð5Þ

In the applications done in [10–12], an additional term was
included, c5;1 ¼ 283, based on the estimate made in [27],
and we shall adopt this value in the present work.
We shall consider also the perturbative expansion of the

total τ hadronic width. The central observable is the ratio Rτ

of the total hadronic branching fraction to the electron
branching fraction, which can be expressed as

Rτ ¼ 3SEWðjVudj2 þ jVusj2Þð1þ δð0Þ þ…Þ; ð6Þ

where SEW is an electroweak correction, Vud and Vus are
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements,
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and δð0Þ is the perturbative QCD contribution. As shown in
[30–33], δð0Þ can be expressed, using analyticity, by an
integral involving the values of the Adler function in the
complex s plane. In our normalization, this relation is [27]:

δð0Þ ¼ 1

2πi

I
jsj¼m2

τ

ds
s

�
1 −

s
m2

τ

�
3
�
1þ s

m2
τ

�
D̂ðaμÞ: ð7Þ

For the evaluation of δð0Þ one can either insert in the
integral (7) the expansion (2) at a fixed scale and perform
the integration of the coefficients with respect to s along the
circle, which gives in particular for μ ¼ mτ:

δð0ÞFO ¼ aμ þ 5.2a2μ þ 26.37a3μ þ 127.1a4μ þ 873.8a5μ…

ð8Þ

Alternatively, as proposed in [33], one can take the variable
scale μ2 ¼ −s in (2) and insert in the integral (7) the
renormalization-group improved expansion

D̂ðaμÞ ¼
X
n≥1

cn;1anμ; μ2 ¼ −s; ð9Þ

with the running coupling calculated by the numerical
integration of the renormalization-group equation (3) along
the circle jsj ¼ m2

τ , starting from the spacelike point
s ¼ −m2

τ . These alternatives1 are knows as “fixed-order
perturbation theory” (FOPT) and “contour-improved per-
turbation theory” (CIPT). As remarked first in [27],
contrary to the naive expectations, at the scale set by mτ

the difference between the predictions of these two sum-
mation procedures increased when an additional, five loop
term, calculated in [29], was included in the expansion of
the τ hadronic width.
The fixed-order series (2) is expected to have a poor

convergence for s near the timelike axis, where the
s-dependent expansion coefficients become quite large.
However, fortuitous cancellations of contributions to the
integral (7) and the suppressing effect of the weight
function in the integrand might favor the fixed-order series,
leading to better results for δð0Þ calculated in FOPT than in
CIPT. Many studies have been devoted to the difference
between FO and CI summations, including the analysis of
specific models for the Adler function and of the practical
implications on the extraction of αsðm2

τÞ from data on
hadronic τ decays (see [21–27,36–45] and the references
therein).

III. THE C-SCHEME QCD COUPLING

As discussed in [10], one can define a new coupling âμ
by using the relation

1

âμ
þ β2
β1

ln âμ − β1
C
2
≡ β1 ln

μ

Λ

¼ 1

aμ
þ β2
β1

ln aμ − β1

Z
aμ

0

da

β̄ðaÞ ð10Þ

where Λ is the scale-invariant QCD parameter and

1

β̄ðaÞ≡
1

βðaÞ −
1

β1a2
þ β2
β21a

: ð11Þ

From (10) it is seen that C incorporates the effects of all
scheme-dependent terms βn with n ≥ 3, contained in the
function β̄ðaÞ. This relation implies also that the scale
dependence of âμ is given by

−μ
dâμ
dμ

≡ β̂ðâμÞ ¼
β1â2μ

ð1 − β2
β1
âμÞ

; ð12Þ

and involves only the scheme-independent coefficients β1
and β2. Furthermore, as shown in [11,12], the C depend-
ence of the coupling âμ is governed by the same scheme-
independent function β̂.
Given the coupling aμ in a definite RS at a scale μ, one

can find from (10) the coupling âμ in the C-scheme at the
same scale and a definite value of C. In order to solve
numerically the equation, is convenient to write it as

1

âμ
þ β2
β1

ln âμ ¼ fðaμ; CÞ; ð13Þ

where fðaμ; CÞ is a calculable function depending on the
coupling aμ and the constantC. The left-hand side of (13) is
a convex function of âμ, exhibiting a single minimum
equal to 0.7549 at âμ ¼ 0.5625, a steep increase towards
small values of âμ and a slow logarithmic increase at
large âμ. Therefore, for values of aμ and C such that
fðaμ; CÞ > 0.7549, the equation (13) has a unique solution
of interest, given by the intersection of the left branch of the
function in the l.h.s. with the horizontal line at coordi-
nate fðaμ; CÞ.
As seen from Fig. 1 of [10], where the numerical solution

is displayed for the input μ ¼ mτ and aμ ¼ 0.316ð10Þ=π in
the MS scheme, the coupling âμ is a decreasing function
of C. For further illustration we present in Fig. 1 the
C-dependence of the coupling for the scale μ ¼ 0.61mτ, of
interest for the analysis performed in Sec. VI. The coupling
aμ ¼ 0.442ð20Þ=π in the MS scheme was obtained by
solving the RG equation with the input at μ ¼ mτ. In this

1Another approach, proposed in [34], includes all the terms
available from renormalization-group invariance and can be
expressed as an effective expansion in powers of the one loop
solution of Eq. (3). This summation was investigated in the case
of the Adler function in [24,35].
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case, solutions of Eq. (13) exist only for C > −1.293, and
one can see from Fig. 1 the large values of âμ near this limit
of the validity region.
From (10) one can obtain also the perturbative relations

between the coupling aμ in a certain RS and the coupling âμ
in the C-scheme:

âμðaμÞ ¼
X
n≥1

ξnðCÞanμ; aμðâμÞ ¼
X
n≥1

ξ̄nðCÞânμ: ð14Þ

The explicit forms of these expansions for the MS scheme
are given in Eqs. (7) and (8) of [10]. From the comparison
with the full solution, found numerically from (13), one can
establish the range of C where the perturbative expansions
(14) are valid. For instance, as shown in [10], for μ ¼ mτ,
when aμ ¼ 0.316=π, the perturbative expansion breaks
near C ¼ −2. For higher values of the scales, when the
coupling aμ is smaller, the region of validity of (14) is
extended to larger negative values of C, while for smaller
scales the perturbative expansion breaks at negative values
of C closer to the origin.
The perturbative expansions in the C-scheme of the

Adler function D̂ and of the τ hadronic width have been
investigated in [10–12]. For instance, the series (9) is
rewritten as a series in powers of the C-scheme coupling âμ
with C-dependent coefficients as

D̂ðâμÞ ¼
X
n≥1

ĉn;1ðCÞânμ; μ2 ¼ −s: ð15Þ

Using in (9) the coefficients (5) and the estimate c5;1¼283,
this expansion reads [10]

D̂ðâμÞ ¼ âμ þ ð1.64þ 2.25CÞâ2μ
þ ð7.68þ 11.38Cþ 5.06C2Þâ3μ
þ ð61.06þ 72.08Cþ 47.40C2 þ 11.4C3Þâ4μ
þ ð348.5þ 677.7Cþ 408.6C2 þ 162.5C3

þ 25.6C4Þâ5μ þ… ð16Þ

In the same way, from (8) it follows that the expansion of

δð0ÞFO in powers of the C-scheme coupling âμ at the scale
μ ¼ mτ is [10]

δð0ÞFOðâμÞ ¼ âμ þ ð5.20þ 2.25CÞâ2μ
þ ð27.7þ 27.4Cþ 5.1C2Þâ3μ
þ ð148.4þ 235.5Cþ 101.5C2 þ 11.4C3Þâ4μ
þ ð789.6þ 1754.4Cþ 1240.4C2 þ 324.8C3

þ 25.6C4Þâ5μ þ… ð17Þ
The studies performed in [10–12] showed that the

predictions of the perturbation expansions in the C-scheme
are comparable to those in the MS scheme. In particular, the
difference between the FOPT and CIPT predictions for δð0Þ
is not resolved by the C-scheme, and the higher-order
divergence of the expansions manifests itself to the same or
even to a larger extent.
The works quoted above investigated the scheme depend-

ence of the standard perturbation expansions of the QCD
correlators in powers of the strong coupling. In this work
we shall investigate the properties of the C-scheme using
a modified QCD perturbative expansion, defined in
[18,21,23], which we briefly review in the next section.

IV. PERTURBATION EXPANSIONS WITH
TAMED HIGH-ORDER BEHAVIOR

The starting point is the remark that the perturbation
expansion (9) of the Adler function has a zero radius of
convergence, the coefficients cn;1 increasing like n! at large
n. It is convenient to define the Borel transform by

BðuÞ ¼
X∞
n¼0

bnun; bn ¼
cnþ1;1

βn0n!
; ð18Þ

where we used the standard notation β0 ¼ β1=2.
From (18) one can derive the formal Laplace-Borel integral
representation

D̂ðaμÞ ¼
1

β0

Z∞

0

exp

�
−u
β0aμ

�
BðuÞdu: ð19Þ

As it is known [15,17], the large-order increase of the
coefficients of the perturbation series is encoded in the

-1 0 1 2
C

0.1

0.2

0.3

0.4

0.5
^ a(

0.
61

m
τ)

FIG. 1. The coupling âμ found by solving Eq. (13) for the scale
μ ¼ 0.61mτ and aμ ¼ 0.442ð20Þ=π in the MS scheme, as a
function of C. The yellow band corresponds to the αs uncertainty.
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singularities of the Borel transform BðuÞ in the complex
u plane. In the particular case of the Adler function, BðuÞ
has singularities on the semiaxis u ≥ 2, denoted as
infrared (IR) renormalons, and for u ≤ −1, denoted as
ultraviolet (UV) renormalons. The names indicate the
regions in the Feynman integrals responsible for the
appearance of the corresponding singularities. Other
singularities, at larger values on the positive real axis,
are due to specific field configurations known as instan-
tons. Apart from the two cuts along the lines u ≥ 2 and
u ≤ −1, it is assumed that no other singularities are
present in the complex u plane [15].
Due to the singularities of BðuÞ for u ≥ 2, the Laplace-

Borel integral (19) is not defined and requires a regu-
larization. Several prescriptions have been adopted for
various QCD correlators, in particular the principal value
(PV) prescription defined as [16,17]

1

β0
PV

Z∞

0

e−
u

β0aμBðuÞdu

≡ 1

2β0

�Z
Cþ

e−
u

β0aμBðuÞduþ
Z
C−

e−
u

β0aμBðuÞdu
�
; ð20Þ

where C� are lines parallel to the positive real axis,
slightly displaced above (below) it. As discussed in [46],
this prescription is suitable from the point of view of the
momentum-plane analyticity properties that must be
satisfied by QCD correlators like the Adler function.
In particular, it preserves Schwarz reflection principle
D̂ðs�Þ ¼ D̂�ðsÞ in the complex s plane and leads to
real values for the Adler function on the spacelike
axis s < 0.
Of course, even after choosing a proper regularization,

an uncertainty δren related to the renormalon treatment
still remains. A natural choice for this uncertainty is the
difference between two regularization prescriptions, which
can be taken as

1

β0
δren

�Z∞

0

e−
u

β0aμBðuÞdu
�

≡ 1

2iβ0

�Z
Cþ

e−
u

β0aμBðuÞdu −
Z
C−

e−
u

β0aμBðuÞdu
�
: ð21Þ

This prescription has been used for assessing the uncer-
tainty of the model for the Adler function proposed in [27]
and reviewed in the Appendix, and we shall use it for some
of the expansions investigated in this work.
The singularities of BðuÞ set a limitation on the con-

vergence region of the power expansion (18): this series
converges only inside the circle juj ¼ 1 which passes
through the nearest singularity, namely the first UV

renormalon. As it is known, the domain of convergence
of a power series can be increased by expanding in powers
of another variable, which performs the conformal mapping
of the complex plane of the original variable (or a part of it)
onto a disk.
The conformal mapping method was introduced in

particle physics in [47–49] for improving the convergence
of the power series used for the representation of scattering
amplitudes. The new series converges in a larger region,
well beyond the disk of convergence of the original
expansion, and also has an increased asymptotic conver-
gence rate at points lying inside this disk. An important
result proved in [47,49] is that the asymptotic convergence
rate is maximal if the new variable maps the entire
holomorphy domain of the expanded function onto the
unit disk (for a detailed proof see [23]). This particular
variable is known in the literature as the “optimal con-
formal mapping.”
For QCD, the method of conformal mapping is not

applicable to the formal perturbative series of D̂ in powers
of aμ, because D̂ is singular at the origin of the coupling
plane.2 However, the method can be applied in a straightfor-
ward way to the Borel transformBðuÞ, which is holomorphic
in a region containing the origin u ¼ 0 of the Borel complex
plane and can be expanded in powers of the Borel variable
as in (18).
The use of a conformal mapping of the Borel plane

was suggested in [16] in order to reduce or eliminate the
ambiguities (power corrections) due to the large momenta
in the Feynman integrals. This is achieved by a variable that
maps on a unit disk the u complex plane cut only along the
line u ≤ −1. As shown however in [18], the conformal
mapping proposed in [16] (and used further in [52,53]) is
not optimal in the sense defined above. The optimal
mapping, which ensures the convergence of the corre-
sponding power series in the entire doubly-cut Borel plane,
is given by the function [18]

w̃ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u=2

p
ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u=2

p : ð22Þ

One can check that the function w̃ðuÞ maps the complex
u plane cut along the real axis for u ≥ 2 and u ≤ −1 onto
the interior of the circle jwj ¼ 1 in the complex plane
w≡ w̃ðuÞ, such that the origin u ¼ 0 of the u plane
corresponds to the origin w ¼ 0 of the w plane, and the
upper (lower) edges of the cuts are mapped onto the upper
(lower) semicircles in the w plane. By the mapping (22),
all the singularities of the Borel transform, the UV and IR

2In the so-called “order-dependent” conformal mappings,
which have been used for expansions in powers of the coupling
[50,51], the singularity is shifted away from the origin by a
certain amount at each finite perturbative order, and tends to the
origin only when an infinite number of terms are considered.
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renormalons, are pushed on the boundary of the unit disk in
the w plane, all at equal distance from the origin. Therefore,
the expansion of BðuÞ in powers of the variable w≡ w̃ðuÞ:

BðuÞ ¼
X
n≥0

cnwn; w ¼ w̃ðuÞ; ð23Þ

converges in a larger domain that the original series (18).
The expansion can be further improved by exploiting

also the fact that the nature of the leading singularities of
BðuÞ in the Borel plane is known: near the first branch
points, u ¼ −1 and u ¼ 2, BðuÞ behaves like

BðuÞ ∼ r1
ð1þ uÞγ1 and BðuÞ ∼ r2

ð1 − u=2Þγ2 ; ð24Þ

respectively, where the residues r1 and r2 are not known,
but the exponents γ1 and γ2 have been calculated using
renormalization-group invariance [16,27,54]. For nf ¼ 3,
their values are

γ1 ¼ 1.21; γ2 ¼ 2.58: ð25Þ

The knowledge of the nature of the first IR renormalon
of the Adler function was exploited for the first time
in [53], where the Borel transform was multiplied by the
factor ð1 − u=2Þγ2 and the product was expanded as
a power series.3 But the multiplication with other factors
is possible. As discussed in [21,23], while the optimal
conformal mapping (22) is unique, there is no unique
prescription to implement the knowledge provided by (24).
For instance, using the fact that

ð1þ wÞ2γ1 ∼ ð1þ uÞγ1 ; ð1 − wÞ2γ2 ∼ ð1 − u=2Þγ2 ; ð26Þ

for u near −1 and 2, respectively, one can construct these
factors in terms of the variable w defined in (22).
It is easy to see that, although the product of BðuÞ with

these suitable factors is finite at u ¼ −1 and u ¼ 2, it still
has singularities (branch-points) at these points, generated
by the terms of BðuÞ which are holomorphic there. So, the
procedure does not eliminate the singularities, but only
makes them milder. This is why the procedure was denoted
in [53] as “singularity softening” and the factors used to
multiply the Borel function are referred to as “softening
factors.”
Since the product of BðuÞ with the softening factors

has still branch-points at u ¼ −1 and u ¼ 2, the optimal
conformal mapping for the expansion of the product is the
function w defined in (22). Using this remark, we shall
adopt the expansion

BðuÞ ¼ 1

ð1þ wÞ2γ1ð1 − wÞ2γ2
X
n≥0

dnwn; ð27Þ

proposed in [21] and shown in [23] on mathematical
models to have good convergence properties at high orders.
In order to estimate the effect of each softening factor in
(27), it is instructive to consider also the alternative
expansions

BðuÞ ¼ 1

ð1 − wÞ2γ2
X
n≥0

d0nwn; ð28Þ

BðuÞ ¼ 1

ð1þ wÞ2γ1
X
n≥0

d00nwn; ð29Þ

in which only the first IR/UV renormalon has been
softened, respectively.
Actually, since the softening factors remove the diver-

gencies at u ¼ −1 and u ¼ 2, leaving only mild singular-
ities at these points, one can expand the product in powers
of other conformal variables, which take into account only
the position of the more distant singularities of BðuÞ. Such
mappings have been considered in [23,57]. Moreover,
in [23] a detailed study of various softening factors and
conformal mappings has been performed.
As an extreme case, an expansion in powers of the

original variable u can be used after “softening” the first
singularities. To assess in more detail the importance of
various factors, we shall consider the expansions

BðuÞ ¼ 1

ð1 − u=2Þγ2
X
n≥0

b0nun; ð30Þ

BðuÞ ¼ 1

ð1þ uÞγ1
X
n≥0

b00nun; ð31Þ

and

BðuÞ ¼ 1

ð1 − u=2Þγ2ð1þ uÞγ1
X
n≥0

b000n un; ð32Þ

where only the first IR/UV renormalons and both are
taken into account, respectively. One can expect that at low
orders the effect of including the known behavior near the
first renormalons is important, while at high orders the
singularities which remain in the product, even if they are
mild, will deteriorate the convergence unless a conformal
mapping is used.
By inserting the expansions (23), (27), (28), (29), (30)

and (31) in the Borel-Laplace integral (19), we can define
new perturbative series for the Adler function. When the
expansion of BðuÞ contains a singularity along the inte-
gration range, as in (23), (27), (28) and (30), we shall adopt

3A similar procedure to account for the first IR renormalon was
used in [55,56] for other QCD correlators.
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the PV prescription defined in (20). Thus, for instance, the
expansion (27) leads to

D̂ðaμÞ ¼
X
n≥0

dnWnðaμÞ; ð33Þ

where the expansion functions are

WnðaμÞ ¼
1

β0
PV

Z
∞

0

e−
u

β0aμðw̃ðuÞÞn
ð1þ w̃ðuÞÞ2γ1ð1 − w̃ðuÞÞ2γ2 du:

ð34Þ

We emphasize that the definition (33) implies the permu-
tation of the summation and the integration, which is not a
trivial step, therefore (33) represents a genuinely new
perturbation expansion in QCD.
The properties of the new expansions like (33) have been

investigated in detail in [19,20,23], and we briefly sum-
marize them here. By construction, when reexpanded in
powers of aμ, the series (33) reproduces the expansion (9)
with the coefficients cn;1 known from Feynman diagrams.
The expansion functionsWnðaμÞ are singular at aμ ¼ 0 and
have divergent expansions when expanded in powers of aμ,
resembling the expanded function D̂ðaμÞ itself. On the
other hand, the expansion (33) has a tamed behavior at high
orders, and, under certain conditions, it may even converge
in a domain of the s-plane.
Since the expansion functions WnðaμÞ defined in (34)

are no longer powers of the coupling aμ, the new expansion
(33) can be viewed as a “nonpower perturbation theory”
(NPPT) [23]. We shall also refer to it as “Borel-improved”
expansion, to emphasize the fact that (33) is defined by the
analytic continuation of the Borel series (18) outside the
original convergence disk juj < 1, to the whole Borel plane
up to its cuts.
We presented above the steps leading to the new

expansion (33) starting from the renormalization-group
improved expansion (9), but similar steps can be followed
starting from the fixed-order expansion (2), when the scale
μ2 is different from the energy squared −s. The explicit
formulas are given in [23]. By inserting in (19) the
expansions (23), (28), (29), (30) and (31) of the Borel
transform, we obtain also the alternative expansions of D̂
which will be investigated in our study.

V. BOREL-IMPROVED EXPANSIONS
IN THE C-SCHEME

The nonpower expansions defined above have been
investigated up to now in the MS renormalization scheme.
However, the construction presented in the previous section
is general and can be performed in any renormalization
scheme. Starting from the expansion (15) of the Adler

function in powers of the C-scheme coupling âμ, we define
the corresponding Borel transform as

B̂ðu; CÞ ¼
X∞
n¼0

b̂nðCÞun; b̂n ¼
ĉnþ1;1ðCÞ
βn0n!

; ð35Þ

and obtain the formal Laplace-Borel integral representation

D̂ðâμÞ ¼
1

β0

Z∞

0

exp

�
−u
β0âμ

�
B̂ðu; CÞdu: ð36Þ

A useful remark is that the position and the nature of the
first singularities of the Borel transform in the u plane
depend only on the first two coefficients, β1 and β2, of the β
function, which are scheme-independent [16,27,54]. It
follows that, for every C, the first singularities of the
function B̂ðu; CÞ are situated at u ¼ −1 and u ¼ 2, and the
nature of the singularities is given by (24). Therefore, we
can use for B̂ðu; CÞ the expansions similar to those written
in (23) and (27)–(32) in the MS scheme. In particular, we
write the expansion

B̂ðu; CÞ ¼ 1

ð1þ wÞ2γ1ð1 − wÞ2γ2
X
n≥0

d̂nðCÞwn; ð37Þ

similar to (27), the only difference being that now the
coefficients d̂n depend on C. By inserting this expansion
into (36), we define the Borel-improved expansion of the
Adler function in the C-scheme by

D̂ðâμÞ ¼
X
n≥0

d̂nðCÞŴnðâμÞ; ð38Þ

where the expansions functions ŴnðâμÞ are obtained
from (34) by formally replacing aμ with the C-dependent
coupling âμ.
For illustration, we list the first coefficients d̂nðCÞ

appearing in (38):

d̂0¼1;

d̂1¼−0.80þ2.67C;

d̂2¼1.33þ2.46Cþ3.56C2;

d̂3¼10.69þ2.31Cþ8.15C2þ3.16C3;

d̂4¼1.15þ23.44Cþ8.37C2þ11.02C3þ2.11C4: ð39Þ

In a similar way, starting from the expansion (17) of δð0ÞFO in
the C-scheme, we can define the improved series in terms
of the same set of functions ŴnðâμÞ, since from the
definition (8) it follows that the position and the nature
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of the first singularities of the Borel transform of δð0ÞFO are the
same as those of the Adler function, So, we can write

δð0ÞFOðâμÞ ¼
X
n≥0

δ̂nðCÞŴnðâμÞ; ð40Þ

where μ ¼ mτ and the first coefficients δ̂nðCÞ are

δ̂0 ¼ 1;

δ̂1 ¼ 3.42þ 2.67C;

δ̂2 ¼ 6.62þ 13.72Cþ 3.56C2;

δ̂3 ¼ 4.96þ 31.82Cþ 23.16C2 þ 3.16C3;

δ̂4 ¼ −14.22þ 29.32Cþ 65.63C2 þ 24.36C3 þ 2.11C4:

ð41Þ

In CIPT, the calculation involves the numerical integra-
tion (7) of the expansion (38), written as:

δð0ÞCI ðâmτ
Þ ¼

X
n≥0

d̂nðCÞ

×
1

2πi

I
jsj¼m2

τ

ds
s

�
1 −

s
m2

τ

�
3
�
1þ s

m2
τ

�
ŴnðâμÞ;

ð42Þ

where the coefficients d̂n are given in (39) and the
expansion functions Ŵn, defined below (38), depend on
the running coupling âμ at the scale μ2¼m2

τ expðiðϕ−πÞÞ,
ϕ ∈ ð0; 2πÞ, which is calculated along the circle by
integrating the renormalization-group equation (12) in
the C-scheme, starting from a given value at the scale
μ ¼ mτ. Therefore, the whole expansion depends only on
the C-scheme coupling âμ at the scale μ ¼ mτ.

VI. RESULTS

A. Adler function

As a first application, we calculate the Adler function (1)
at the spacelike point s ¼ −m2

τ using the Borel-improved
expansion in the C-scheme. Following Ref. [10], we take
first the scale μ ¼ mτ, when the perturbative expansion (2)
writes as the renormalization-group improved series (9).
Other scales will be also considered below. We use the
value αsðm2

τÞ ¼ 0.316� 0.010 in the MS scheme, which
follows from the PDG value of the strong coupling at the
scale μ ¼ mZ [58]. The corresponding C-dependent value
of the coupling âmτ

was obtained by numerically solving
Eq. (13), as explained in Sec. III.
In Fig. 2, we show the variation with C of the Borel-

improved expansions in the C-scheme, given in Eqs. (38)
and (39), for C in the range ð−2; 2Þ: the central black line

represents the expansion to order α5s, and the lines delimit-
ing the yellow region are obtained by either removing or
doubling the coefficient d̂4 given in (39).
The three curves exhibit a plateau where the expansions

are stable with respect to the variation of C. There are two
points, represented in red, where the three expansions
coincide: the rightmost point, C0 ¼ −0.05, is the only real
solution of the equation d̂4 ¼ 0 in the range ð−2; 2Þ. At the
other point, C0

0 ¼ −0.56, the expansion function Ŵ4 itself
vanishes, a phenomenon which can take place since the
expansion functions are no longer simple powers of the
coupling âμ. At these points we indicate the magnitude of
the previous nonvanishing term, d̂3Ŵ3.
In Ref. [10], the point where the three expansions

coincide has been selected as the optimal value of the
parameterC. If there are more values of Cwhich satisfy this
condition, the optimal one was taken such as to lead to a
minimal value for the last nonvanishing term, which was
interpreted as a truncation error.4 In the present work, we
shall consider for the beginning the same prescription,
which is in the spirit of the “fastest apparent convergence”
[2] and “minimum sensitivity” [1] principles. In our case
this point is C0 ¼ −0.05, which leads to the central value
D̂ ¼ 0.1364. For comparison, we note that the Borel-
improved expansion to Oðα5sÞ in the MS scheme gives
the close value 0.1360, while the standard expansions in the
C-scheme and in MS lead to the values 0.1343 and 0.1316,
respectively [10].

-2 -1 0 1 2
C

0.1

0.12

0.14

0.16

0.18

0.2
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(^ a)

FIG. 2. Borel-improved expansions in the C-scheme of the
Adler function D̂ at s ¼ −m2

τ . The central line is the expansion to
order α5s. The yellow band is obtained by either removing or
doubling the last term. Marked in red are the points where the last
term of the expansion vanishes and the magnitude of the last
nonvanishing term is shown.

4A bit surprising is the fact (discussed in the last section), that
the optimal C and the error prescription proposed in Ref. [10]
only work at 5 loops. In fact, the 5th order has not been computed
analytically, and a numerical estimate is used.
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The main sources of theoretical errors to be attached to
these values are the uncertainty of the strong coupling
αsðm2

τÞ, the effect of truncating the perturbative series at a
finite order and the variation of the renormalization scale.
The first error can be easily calculated in each case. The
truncation error was taken in [10] as the magnitude of the last
nonvanishing term kept in the expansion. For the Borel-
improved expansions the last nonvanishing terms turn out to
be equal to 0.0080 and 0.0030 in the C and MS schemes,
respectively, while for the standard expansions the corre-
sponding values are 0.0070 and 0.0029. Actually, no definite
way for assessing the effect of the unknown higher-order
terms in the perturbative expansion exists. The choice made
in [10], in the spirit of asymptotic expansions, may be
affected by numerical accidental cancellations leading to
values too small for the last coefficient.
Following [10], we adopted in the above calculation the

scale μ ¼ mτ, when all the logarithms in the expansion (2)
are summed leading to the renormalization-group improved
series (9). However, it is instructive to investigate also other
scales. Following [36], we parametrized the scale depend-
ence by writing μ2 ¼ −ξs with ξ ¼ 1� 0.63. A similar
range of μ has been adopted in [42]. In particular, for the
point s ¼ −m2

τ used in the calculation of the Adler
function, the scale is written as μ ¼ ffiffiffi

ξ
p

mτ, and varies
between 0.61mτ and 1.28mτ.
By comparing the perturbative expansion (14) with the

full solution determined numerically from (13), one can see
that for scales μ larger than mτ, when the coupling αs is
smaller, the perturbative expansion is valid on a larger
interval, extending to the left ofC ¼ −2. On the other hand,
as seen from Fig. 1, for smaller μ the coupling is larger and
the validity of the perturbative expansion (14) breaks down
at values of C closer to 0.
In Fig. 3 we show the Borel-improved expansions in

the C-scheme of the Adler function D̂ at s ¼ −m2
τ , for the

scale μ ¼ mτ and for the extreme values μ ¼ 0.61mτ and
μ ¼ 1.28mτ of the range considered. We show also in each
case the points where the last term of the expansion
vanishes and the magnitude of the last nonvanishing term.
For μ ¼ mτ the curve and the optimal point coincide with
those given in Fig. 2.
In order to quantify the variation with the scale, we can

compare the results for different scales at a fixed value of C,
namely the optimal C determined for μ ¼ mτ (the point
marked in red). A different prescription would be to
compare the optimal values for each scale, obtained with
the corresponding optimal values of C. As seen from
Fig. 3, for the Adler function the first definition appears
to give reasonable estimates of the errors, while with the
second prescription the errors appear to be underestimated.
Therefore, for the Borel-improved expansion in the
C-scheme we adopt the first prescription for the error.
On the other hand, for the standard expansions in the

C-scheme, where the optimal value of C for μ ¼ mτ is

C0 ¼ −0.78 [10], the perturbative expansion for μ towards
the lower end of the range is not well behaved. In this
case, one can either use for low values of μ the second
prescription mentioned above, or reduce the interval of
scale variation. This ambiguity may induce some distor-
tions in the error estimate, which must be taken with
caution in these cases.5

By including all sources of error, we obtain the result of
the Borel-improved expansion in C-scheme as

D̂ ¼ 0.1364� 0.0080þ0.0078
−0.0012 � 0.0061; ð43Þ

where the first error is the magnitude of the last non-
vanishing term in the expansion, the second is the uncer-
tainty due to scale variation and the third is due to the
uncertainty in αsðm2

τÞ.
For comparison we note that to the same order the Borel-

improved expansion in the MS scheme gives

D̂ ¼ 0.1360� 0.0030þ0.0034
−0.0010 � 0.0061; ð44Þ

where the significance of the uncertainties is the same. The
standard expansion in the C-scheme gives

D̂ ¼ 0.1343� 0.0070þ0.0001
−0.0016 � 0.0067; ð45Þ

where the error due to the scale variation has been estimated
from the differences of the optimal values at different
scales, and might be underestimated. For the standard
expansion in MS the result is

-1 -0.5 0 0.5 1 1.5 2
C

0.12

0.14

0.16

0.18

^ D
(^ a)

μ = mτ

μ = 0.61mτ

μ = 1.28mτ

FIG. 3. Borel-improved expansions to order α5s in the C-scheme
of the Adler function D̂ at s ¼ −m2

τ , for the scales μ ¼ mτ, μ ¼
0.61mτ and μ ¼ 1.28mτ, as functions of C. We show in each case
the optimal points where the last term of the expansion vanishes
and the magnitude of the last nonvanishing term.

5The problems encountered when varying the scale indicate
that a more elaborate prescription for the optimal C than that
proposed in [10] may be necessary. We will make some com-
ments on this in the final section.
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D̂ ¼ 0.1316� 0.0029þ0.0029
−0.0030 � 0.0060: ð46Þ

We note finally that, due to the conformal mapping (22)
and the softening factors (when present), the definition of
the Borel-improved expansions requires a regularization
prescription of the Borel-Laplace integral. For calculating
the central values we adopted the PV prescription (20),
which has the advantage of preserving Schwarz reflection
principle and leads to real values for the Adler function on
the spacelike axis. Since the PV prescription is part of the
definition of the Borel-improved expansions, we do not
include the regularization ambiguity as an additional error.
For completeness, we mention that the definition (21) leads
to similar values, equal to 0.0098 and 0.0089, respectively,
for the prescription ambiguity of the Borel-improved
expansions in the C and MS schemes.

B. τ hadronic width

We consider now the calculation of the QCD correction
δð0Þ to the τ hadronic width (6). As discussed in Sec. II, there
are two standard summation methods, CIPT and FOPT,
which differ essentially by the choice of the renormalization
scale in performing the integral (7) along the circle in the s
plane. The difference between FOPT and CIPT in the MS
scheme is the main source of uncertainty in the extraction of
the strong coupling from hadronic τ decays. As discussed in
Ref. [10], this difference persists also in the C scheme. In the
present subsection we investigate the problem using the
Borel-improved FO and CI expansions of δð0Þ in the C
scheme, discussed in Sec. V.
The Borel-improved FO expansion of δð0Þ in the

C-scheme is given in Eqs. (40) and (41). According to
standard practice in the perturbative calculations of τ
hadronic width, the scale was first fixed at μ ¼ mτ.
As in the previous subsection, one explored also other
scales, taking μ2 ¼ −ξs with ξ ¼ 1� 0.63 [36].
In Fig. 4 we show the Borel-improved FO expansion of

δð0Þ in the C scheme to order α5s as central line, and the
curves obtained by either doubling or removing the last
term in the expansion, which delimit the yellow band. As
seen from the figure, there are three points where the curves
coincide: the leftmost and the rightmost ones are the
solutions of the equation δ̂4 ¼ 0, while the middle point
is the solution of the equation Ŵ4 ¼ 0, encountered already
in Fig. 2. It turns out that the magnitude of the last
nonvanishing term, δ̂3Ŵ3, is minimal for the leftmost
point, C0 ¼ −1, which we adopt as optimal. This leads
to the prediction

δð0ÞFO ¼ 0.2207� 0.0039þ0.0003
−0.0082 � 0.0195; ð47Þ

where the first error is the magnitude of the last non-
vanishing term in the expansion, the second one is obtained
from the scale variation and the third accounts for the

uncertainty in the coupling. We note that we encountered
the situation mentioned above for the Adler function in the
standard C-scheme, i.e., the optimal C0 for μ ¼ mτ is close
to −1, where the expansions at low scales μ are not well-
behaved. Therefore, the errors due to scale variation quoted
in (47), calculated by taking the differences of the optimal
values for each scale, might be underestimated.
For comparison, the Borel-improved expansion in the

MS scheme to Oðα5sÞ gives

δð0ÞFO ¼ 0.2104� 0.0031þ0.0108
−0.0020 � 0.0136; ð48Þ

where the significance of the terms is the same, while the
standard expansion in the C-scheme predicts

δð0ÞFO ¼ 0.2047� 0.0034þ0.0002
−0.0059 � 0.0133; ð49Þ

and the standard expansion in the MS scheme gives

δð0ÞFO ¼ 0.1991� 0.0061þ0.0042
−0.0073 � 0.0119: ð50Þ

We note that for the standard expansion in the C-scheme,
where the optimal C for the central scale is close to −1 [10],
the errors due to scale variations have been calculated
with the second prescription discussed above, and may be
underestimated. We mention finally that for the Borel-
improved expansions the uncertainty (21) due to the
regularization prescription turns out to be 0.0157 for the
C scheme and 0.0080 for MS.
For the calculation in CIPT, we use Eq. (42) and the

numerical procedure described at the end of Sec. V. In
Fig. 5 we show the variation with C of the Borel-improved

expansion of δð0ÞCI calculated to order α5s in the C scheme,
and also the curves obtained by either removing or
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FIG. 4. Borel-improved expansion of δð0ÞFO to order Oðα5sÞ in the
C scheme as a function of C. The yellow band arises from either
removing or doubling the last term in the expansion. In red are
marked the points where the last term in the expansion vanishes,
and the magnitude of the previous one is indicated.
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doubling the last coefficient d̂4ðCÞ. For the scale μ2 ¼ −s
these curves intersect each other at C0 ¼ −0.05, where
d̂4ðCÞ vanishes. By varying also the scale as μ2 ¼ −ξs, we
obtain:

δð0ÞCI ¼ 0.2018� 0.0211þ0.0008
−0.0139 � 0.0123; ð51Þ

where, as above, the first error is the magnitude of the last
nonvanishing term kept in the expansion, the second is due
to scale variation and the third accounts for the uncertainty
in the coupling. For comparison, the Borel-improved
expansion in the MS scheme gives

δð0ÞCI ¼ 0.1997� 0.0018þ0.0007
−0.0054 � 0.0119; ð52Þ

while the standard expansion in the C-scheme predicts

δð0ÞCI ¼ 0.1840� 0.0062þ0.0002
−0.0044 � 0.0084; ð53Þ

and the standard expansion in the MS scheme gives:

δð0ÞCI ¼ 0.1826� 0.0032þ0.0004
−0.0029 � 0.0082: ð54Þ

We note that for the standard expansion in the C-scheme,
where the optimal C for the central scale is large and
negative [10], the errors due to scale variations have been
calculated with the second prescription discussed above,
and may be underestimated. The prescription ambiguity for
the Borel-improved expansions turns out to be very small in
this case, below 0.0011 for both C and MS schemes.
From (47) and (51) it is seen that the difference between

the FOPT and CIPT predictions for δð0Þ persists also for the
Borel-improved expansions in the C-scheme. On the other
hand, one can notice the close results obtained with the

Borel-improved CI expansions and the standard FO expan-
sions, for both renormalization schemes: for the C-scheme
this can be seen by comparing the central values of (49) and
(51), and for MS by comparing the central values of (50)
and (52). Note that the standard FOPT in the C-scheme
and the Borel-improved CIPT in the C-scheme lead to
results very close to the value obtained with the math-
ematical model [27] presented in the Appendix, which
is δð0Þ ¼ 0.2047� 0.0029� 0.0130.
One can understand these results by a closer examination

of the two expansions (a detailed discussion is given in
[23]). The good predictions of the standard FOPT are
actually due to some fortuitous cancellations between the
contributions of large terms in the integral (7) along the
circle. By the conformal mapping of the Borel plane, which
improves the series convergence, the large coefficients
of the FO series near the timelike axis are no longer
compensated to the same extent. Therefore, the Borel-
improved FO expansion is expected to give poorer results.
By contrast, in the Borel-improved CI summation, the
improvement of the series convergence is combined with
the exact renormalization group summation of the running
coupling along the circle jsj ¼ m2

τ , ensuring a good
convergence of the series (9) along the whole integration
contour. Therefore, FOPTappears to be the good choice for
the standard expansions, while CIPT is the preferred choice
for the Borel-improved expansions in both MS and C
schemes. With these options, the results of the FO and CI
predictions for the τ decay width are compatible within
errors.

C. High-order behavior

The high-order behavior of the standard QCD perturba-
tion expansions in the C-scheme has been investigated in
[11,12], where a realistic renormalon-based model of the
Adler function, proposed in [27], was adopted for generat-
ing the higher-order perturbative coefficients. We use the
same model (presented for completeness in the Appendix)
for assessing the quality of the Borel-improved expansions
in the C-scheme. We mention that the high-order behavior
of the Borel-improved expansions in the MS scheme has
been discussed in [18,21,23].
In Fig. 6 we present the variation with C of the Borel-

improved expansions in the C-scheme of the Adler function
D̂ at the spacelike point s ¼ −m2

τ , for increasing orders of
perturbation theory (N denotes the number of terms kept in
the expansion). In this calculation we used the expansion
(27) of the Borel transform, based on the optimal conformal
mapping (22) and the softening factors expressed in the
variable w. The scale was fixed at μ ¼ mτ and the
perturbative coefficients of the model in MS scheme, given
in Eq. (A6), have been used as input.
The curves shown in Fig. 6 exhibit a common region of

stability with respect to C and a remarkable convergence of
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FIG. 5. Borel-improved expansion of δð0ÞCI to Oðα5sÞ in the C
scheme as a function of C. The yellow band arises from either
removing or doubling the fifth-order term. In red is marked the
point where the last term in the expansion vanishes, and the
magnitude of the previous term is indicated.
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the truncated expansions in this region. The bigger varia-
tions which appear when C is decreased towards the lower
limit of the chosen range are due to the fact that in this
range the perturbative connection between the QCD cou-
pling in the MS and C schemes breaks down, so the use of
perturbation theory is not legitimate.
For a detailed numerical comparison, we present in

Table I the values of the Adler function calculated at s ¼
−m2

τ with the scale μ ¼ mτ, using several perturbative
expansions in the C-scheme discussed in Sec. IV. The aim
was to assess the relative effect of the renormalon softening
and the conformal mapping in improving the convergence.
Thus, besides the standard perturbative expansion and
the optimal expansion based on both conformal mapping

and renormalon softening, we investigated expansions of
BðuÞ in powers of the Borel variable u, with the first UV
renormalon removed, the first IR renormalon removed and
both UV and IR renormalons removed, as well as the
expansion in the optimal conformal variable w with no
renormalon softening. The equations specifying these
expansions are indicated for each column of Table I.
An open problem in the analysis is the choice of the

value of C to be used in the expansions. Several values have
been considered in Refs. [11,12] for the calculation of the
Adler function and the quantity δð0Þ using the standard
expansions in the C-scheme, which exhibit a divergent
behavior.
In the present work we used, for each expansion, the

value of C determined in subsection VI A as the optimal C
for the corresponding expansion truncated at N ¼ 5, which
means that the last term of the expansion with N ¼ 5 was
set to zero. This explains why in Table I the expansions
with N ¼ 4 and N ¼ 5 coincide (except for columns 4 and
8, where no solution of this condition was found, and the
value of C minimizing the fifth term was adopted instead).
As shown in Fig. 6, the Borel-improved expansions

exhibit a common region of stability for all orders N, so the
choice of a single C in this region is reasonable at least for
these expansions. Of course, an optimalC can be calculated
for each truncation order N (provided the condition has
acceptable solutions), and an order-dependent C can be
used in practical applications. We recall that, while in the
standard expansion the condition can be achieved only by
the vanishing of the coefficient d̂N , in the expansions based
on the Borel transform the expansion function ŴN itself
can vanish. In our numerical study, it turned out that the
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FIG. 6. Variation with C of the Borel-improved expansions in
the C-scheme of the Adler function D̂ at s ¼ −m2

τ , for various
truncation orders N.

TABLE I. Adler function D̂ of the model [27] calculated at s ¼ −m2
τ with perturbative expansions in the

C-scheme truncated at order N. Second column: standard expansion. Next three columns: expansions of Borel
transform in powers of u with first renormalons accounted for. Last four columns: expansions of the Borel transform
in the optimal variable w, without and with renormalon softening. Exact value of the model: D̂ ¼ 0.1354.

N Eq. (15) Eq. (30) Eq. (31) Eq. (32) Eq. (23) Eq. (28) Eq. (29) Eq. (27)

3 0.1273 0.1329 0.1247 0.1266 0.1256 0.1401 0.1232 0.1280
4 0.1343 0.1379 0.1293 0.1358 0.1441 0.1372 0.1280 0.1360
5 0.1343 0.1379 0.1331 0.1358 0.1441 0.1372 0.1324 0.1360
6 0.1414 0.1268 0.1359 0.1371 0.1435 0.1337 0.1361 0.1360
7 0.1377 0.1560 0.1388 0.1344 0.1439 0.1371 0.1391 0.1357
8 0.1567 0.0949 0.1421 0.1359 0.1363 0.1338 0.1412 0.1351
9 0.1283 0.1998 0.1462 0.1348 0.1253 0.1352 0.1418 0.1350
10 0.2279 0.0652 0.1515 0.1362 0.1181 0.1354 0.1405 0.1352
11 −0.0195 0.1176 0.1599 0.1355 0.1177 0.1347 0.1378 0.1351
12 0.8446 0.5601 0.1724 0.1340 0.1192 0.1355 0.1347 0.1351
13 −2.004 −1.607 0.1962 0.1413 0.1238 0.1353 0.1326 0.1352
14 8.982 5.581 0.2347 0.1413 0.1300 0.1353 0.1321 0.1353
15 − 34.61 −14.86 0.3288 0.1706 0.1305 0.1355 0.1332 0.1353
16 154.94 38.25 0.4724 0.0594 0.1273 0.1353 0.1351 0.1353
17 −711.57 −90.63 0.9929 0.2902 0.1247 0.1354 0.1367 0.1353
18 3522.7 202.12 1.4979 −0.1629 0.1229 0.1354 0.1372 0.1353
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condition was achieved in most cases through the vanishing
of the expansion function.
From Table I one can remark the divergent behavior of

the standard expansion in the C-scheme, given in column 2.
Column 3 shows that by softening the first IR renormalon at
u ¼ 2, the low perturbative orders are improved, but the
series is badly divergent at large orders. This is expected
actually, because the first UV renormalon, which is closest
to the origin of the Borel plane, limits to juj < 1 the
convergence region of the expansion (30). From column 4
it is seen that the effect of softening the first UV renormalon
is slightly weaker at low orders, but the divergent character
at larger orders is considerably tamed, while by softening
both renormalons good results are obtained up to relatively
high orders. The expansion is however divergent, although
this starts to be visible only at larger orders. Finally, from
columns 6–9 it is seen that the effect of the conformal
mapping is to ensure convergent expansions at high orders.
The additional softening factors improve the description at
low orders, the softening of the first IR renormalon having a
more visible effect than that of the first UV renormalon. We
note that by using order-dependent optimal values of C,
determined from the optimum condition at each order N,
the convergence of the expansions based on the conformal
mapping towards the exact result of the model is even more
precise than shown in columns 6–9 of Table I.
The large-order behavior of the expansions of the τ

hadronic width has been also investigated, in the MS
scheme in [21,23,27], and in the C-scheme in [11,12].
As discussed in Sec. II, the quantity δð0Þ, which involves the
values of the Adler function in the complex s plane, allows
one to extract only indirect information about the pertur-
bation expansion of the Adler function itself along the
circle.
In order to assess in a straightforward way the quality

of the expansions in the complex plane, we compare in
Fig. 7 the values of the Adler function calculated with the
model presented in the Appendix for complex values
s ¼ m2

τ expðiϕÞ, and its Borel-improved approximants in

the C-scheme given by (38), with the running coupling âμ
calculated for μ2 ¼ −s by integrating the renormalization-
group equation in the C-scheme, as explained at the end of
Sec. V. We restricted ϕ to the range ϕ ∈ ð0; πÞ, the values
on the semicircle in the lower half-plane being obtained by
using the Schwarz reflection property D̂ðs�Þ ¼ D̂�ðsÞ. The
calculations have been done with the value C ¼ −0.05,
which is the optimal choice for the evaluation of the Adler
function at s ¼ −m2

τ with N ¼ 5 terms in the expansion.
One can remark the impressive convergence along the
whole circle jsj ¼ m2

τ of the Borel-improved expansions in
the C-scheme, up to high perturbative orders. By inserting
these expansions into the definition (7) of δð0Þ, one obtains
good predictions for this quantitity in CIPT, which, as
discussed in the previous subsection, is the preferred
choice of summation for the Borel-improved expansions.
As shown in [21,23], a similar behavior is obtained for
the Borel-improved expansions in MS scheme, while the
standard expansions show big oscillations far from the true
values.

VII. DISCUSSION AND CONCLUSIONS

In the present paper we investigated the renormalization
scheme variation of an improved perturbation expansion in
QCD, with tamed behavior at large orders, defined by
means of the optimal conformal mapping of the Borel
plane. Detailed studies performed in previous works
[21–25] demonstrated the good properties of these
Borel-improved expansions in the MS scheme. The analy-
sis was extended now to a new renormalization scheme,
denoted as C-scheme, proposed in [10] and investigated in
the frame of standard QCD expansions in [10–12]. Our
purpose was not to advocate the advantage of a particular
scheme, but to study the variation with the renormalization
scheme of a quantity known to be renormalization-scheme
invariant. We performed our study using as examples the
perturbation expansions of the Adler function and of the τ
hadronic width.
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FIG. 7. Real part (left) and imaginary part (right) of the Adler function in the model [27] and its truncated Borel-improved expansions
in the C-scheme along the circle jsj ¼ m2

τ expðiϕÞ.
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For the expansions to order α5s and higher, we found a
range of stability of the results with respect to the variation of
the C parameter defining the RS, shown in Figs. 2–6. In
Ref. [10], the optimal value of C was defined by requiring
that the highest term in the expansion vanishes. Moreover, in
Ref. [10], an additional assumption was made, namely the
last nonzero term in the expansion was taken as the
truncation error to be attached to the central prediction.
We adopted in the present work the same prescriptions, but
found that they might be too rigid in some situations.
Therefore, the values quoted as uncertainties in Sec. VI
for the predictions of the Adler function and the phenom-
enological parameter δð0Þ in the C-scheme must be taken
with some caution.
One problem is the danger of a distorted truncation

uncertainty, due to accidentally large or small values of
the last nonzero term. Another problem was revealed when
studying the dependence of the results on the renormaliza-
tion scaleμ: namely, if the optimalC for the central value ofμ
is negative and large, it may not be suitable for lower values
of μ, for which the coupling is too large (as seen fromFig. 1),
and the perturbation expansion breaks down. We note also
that the optimum prescription proposed in [10] cannot be
applied to expansions at lower orders,N ¼ 3 andN ¼ 4. For
the standard expansions in the C-scheme, no solution of the
condition exists, as the three curves corresponding to Fig. 2
do not intersect each other. For the Borel-improved expan-
sion in theC-scheme, a common intersectionpoint exists, but
it is situated in a region of large negative C, where the
variation with respect to C is not stable.
These problems suggest that a more elaborate definition

of the optimal C and of the theoretical error might be
necessary. It would be reasonable, for instance, to require
the simultaneous fulfillment of several conditions: small-
ness of the last term in the expansion (instead of requiring
an exact zero), stability with respect to the variation of C,
and stability with respect to the variation of the scale. Such
a study, necessary for phenomenological applications, in
particular for a precise determination of αs from hadronic τ
decays, is beyond the scope of the present paper, whose
main aim was to investigate the behavior of the Borel-
improved expansions in the C-scheme.
For the parameter δð0Þ, we found in the C-scheme a

property already noticed in MS scheme, namely the close
results given by the CIPT Borel-improved expansions and
the FOPT standard expansions. Therefore, FOPTappears to
be the good choice for the standard expansions, while CIPT
is the preferred choice for the Borel-improved expansions
in both MS and C schemes.
The good properties of the Borel-improved expansions

manifest themselves in an impressive way at large orders. In
our study, for generating the higher perturbative coefficients
we used as in [10–12] a theoretical model for the Adler
function, proposed in [27]. The results shown in Figs. 6
and 7 prove the remarkable convergence of the Borel-

improved expansions in the C-scheme of the Adler function
evaluated on the Euclidian axis and in the complex s plane.
In order to assess the relative effects of the singularity-

softening factors and of the conformal mapping of the
Borel plane, we investigated also several other expansions,
in which only the singularity softening is incorporated, with
no conformal mapping in the power expansion, or only the
conformal mapping without singularity softening is used.
The results given in Table I show that the proper treatment
of lowest renormalons improves the low-orders but cannot
cure the divergence at high orders, while the use of the
optimal conformal mapping without softening factors
ensures the convergence at high orders, but may give
poorer results at low orders. Finally, the Borel-improved
expansion based on singularity-softening factors and the
optimal conformal mapping of the Borel plane gives good
results at low orders and converges towards the true values
at large orders.
As discussed in Sec. VI, an open problem for the

expansions in the C-scheme is the proper choice of the
parameter C which defines a particular RS. We argued that
an order-dependent optimalC appears to be the best choice,
and emphasized that in the Borel-improved expansion the
optimum condition can be achieved also by imposing the
vanishing of the last expansion function, a possibility that
does not exist for the standard expansion.
We emphasize finally that the model used in the present

study for generating higher-order perturbative coefficients
was constructed in [27] from a renormalon analysis in MS
scheme. Moreover, the free parameters of the model are
determined such as to generate the lowest perturbative
coefficients (5) known in MS scheme. However, we proved
that the Borel-improved expansions converge to the exact
result even if the expansions are defined in the C-scheme.
This provides a nice illustration of the renormalization-
scheme independence of the QCD perturbation theory,
once the large-order divergence is properly treated.
The results of the present analysis are a further argument

in favor of the nonpower expansions based on the optimal
conformal mapping of the Borel plane, which prove to be a
useful tool for applications of perturbative QCD at inter-
mediate energies.
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APPENDIX: MODEL OF THE ADLER FUNCTION

For testing the convergence of the various expansions,
we considered the model proposed in [27], which expresses
the Adler function by means of the PV-regulated Laplace-
Borel integral:
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D̂ðaμÞ ¼
1

β0
PV

Z
∞

0

e−
u

β0aμBðuÞdu; ðA1Þ

with a Borel transform BðuÞ parametrized in terms of a few
UV and IR renormalons. Specifically, in the model pro-
posed in [27], the function BðuÞ is expressed as

BðuÞ ¼ BUV
1 ðuÞ þ BIR

2 ðuÞ þ BIR
3 ðuÞ þ dPO0 þ dPO1 u; ðA2Þ

where

BIR
p ðuÞ ¼ dIRp

ðp − uÞγp ½1þ b̃1ðp − uÞ þ…�; ðA3Þ

BUV
p ðuÞ ¼ dUVp

ðpþ uÞγ̄p ½1þ b̄1ðpþ uÞ þ…�: ðA4Þ

The free parameters of the models are the residues dUV1 ,
dIR2 and dIR3 of the first renormalons and the coefficients
dPO0 , dPO1 of the polynomial in (A2), determined in [27] as

dUV1 ¼ −1.56 × 10−2; dIR2 ¼ 3.16; dIR3 ¼ −13.5;

dPO0 ¼ 0.781; dPO1 ¼ 7.66 × 10−3; ðA5Þ

by the requirement to reproduce the perturbative coeffi-
cients cn;1 in MS scheme for n ≤ 4, given in (5), and the
estimate c5;1 ¼ 283.
Once the parameters are fixed, the model predicts all

the higher order perturbative coefficients cn;1 for n > 5.
We give below the values of the coefficients used in the
calculations presented in Sec. VI: singularity-softening
factors and of the conformal mapping of the Borel plane

c6;1 ¼ 3275.45; c7;1 ¼ 18758.4; c8;1 ¼ 388446;

c9;1 ¼ 919119; c10;1 ¼ 8.36 × 107;

c11;1 ¼ −5.19 × 108; c12;1 ¼ 3.38 × 1010;

c13;1 ¼ −6.04 × 1011; c14;1 ¼ 2.34 × 1013;

c15;1 ¼ −6.52 × 1014; c16;1 ¼ 2.42 × 1016;

c17;1 ¼ −8.46 × 1017; c18;1 ¼ 3.36 × 1019: ðA6Þ
One can note the dramatic increase of the coefficients,
which implies that the perturbation series of the Adler
function in this model is divergent.
For αsðm2

τÞ ¼ 0.316� 0.010, the Adler function at s ¼
−m2

τ and μ ¼ mτ given by this model has the value [10]:
D̂ðamτ

Þ ¼ 0.1354� 0.0127� 0.0058, where the first error
comes from renormalon ambiguity, evaluated using the
prescription (21) and the second from the uncertainty of the
coupling.
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