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We study a gauged CPð2Þ model with the Chern-Simons term, focusing our attention on those time-
independent radially symmetric configurations with a nontopological profile. We proceed with the
minimization of the effective energy in order to introduce the corresponding first-order framework, from
which we define a legitimate self-dual scenario. We solve the resulting first-order equations numerically by
means of the finite-difference scheme, from which we depict the nontopological solutions. We also identify
a special kind of solution which can be partially described by an analytical treatment.
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I. INTRODUCTION

In the context of classical field models, vortices are
those time-independent radially symmetric solutions aris-
ing from a planar gauged theory in the presence of a
symmetry breaking potential describing the scalar-matter
self-interaction [1]. However, due to the high nonlinearity
inherent in symmetry breaking potentials, the correspond-
ing Euler-Lagrange equations of motion can be quite hard
to solve (even numerically).
On the other hand, under very special circumstances,

time-independent vortices can also be obtained by solving a
particular set of coupled first-order differential equations
(instead of the second-order Euler-Lagrange ones). These
equations are usually obtained via the minimization of the
effective energy, with the resulting solutions saturating a
well-defined lower bound for the energy itself [2].
In this sense, first-order vortices were first obtained in the

context of the Maxwell-Higgs electrodynamics in which the
corresponding vacuum manifold exhibits asymmetric states
only (the resulting vortices presenting the typical topological
behavior) [3]. In addition, first-order vorticeswereverified to
occur in the Chern-Simons-Higgs theory, with the vacuum
structure now presenting both symmetric and asymmetric
states (the corresponding configurations being topological or
nontopological, respectively) [4].
Furthermore, legitimate vortex solutions satisfying first-

order differential equations were also investigated in

connection to the noncanonical gauge theories [5]. The
resulting structures were applied in the study of some
interesting cosmological problems [6].
In such a context, an interesting issue is the search for the

first-order vortices inherent in a gauged CPðN − 1Þ model,
mainly due to the phenomenological connection between
such a theory and the four-dimensional Yang-Mills-Higgs
one [7].
In this sense, in a recent work, the time-independent

solutions with radial symmetry arising from a gauged
CPð2Þ model in the presence of the Maxwell term were
studied, focusing on how some relevant quantities (such as
the total energy and the magnetic field) depend on the
parameters defining the model [8]. In that work, however,
these configurations were obtained directly from the
second-order Euler-Lagrange equations of motion.
In the sequence, some of us have developed a particular

first-order framework consistent with the very same theo-
retical scenario described above. Indeed, we have pro-
ceeded with the minimization of the resulting energy, from
which we have introduced the corresponding first-order
equations and a well-defined lower bound for the energy
itself. The potential supporting self-duality presented only
asymmetric vacua, which we have used to study time-
independent vortices with a topological profile [9].
We have also studied the radially symmetric solitons

inherent in a planar CPð2Þmodel endowed by the Maxwell
term multiplied by a nontrivial dielectric function, our main
conclusion being that the potential (and the vacuum
manifold it defines) supporting self-duality depends on
the dieletric function itself [10]. We have then chosen such
a function in order to change the original vacuum manifold
into a dot surrounded by a circle (the centered dot
representing a symmetric vacuum), from which we have
obtained nontopological vortices with no electric charge.
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Furthermore, we have recently considered a CPð2Þ
theory in the presence of the Chern-Simons term (instead
of the Maxwell one), via which we have verified the
existence of first-order vortices with a nonvanishing electric
field, with the resulting configurations presenting the well-
known topological profile [11].
Now, we delve deeper into this investigation by studying

those nontopological vortices satisfying the first-order
framework consistent with the gauged CPð2Þ model
endowed by the Chern-Simons action.
In order to present our results, this work is organized as

follows: In Sec. II, we introduce the overall model and the
conventions inherent in it, focusing our attention on the
radially symmetric time-independent configurations. In
Sec. III, we split our investigation into two different
branches based on our choices for an additional profile
function which appears in the radially symmetric ansatz.
We then proceed with the minimization of the effective
energy, from which we introduce the corresponding first-
order framework (i.e., the first-order equations themselves
and a well-defined lower bound for the total energy), the
starting point being a differential constraint whose solution
is the particular potential supporting self-duality. In the
sequel, we use these expressions in order to define a
coherent first-order scenario. We solve the first-order
equations numerically by means of the finite-difference
scheme, from which we depict the solutions to the relevant
fields. We also implement a convenient assumption, from
which we get an approximate analytical description of
those numerical solutions, therefore explaining in detail
their main properties. In addition, we identify a second type
of numerical solution that cannot be predicted by any
analytical treatment. Finally, in Sec. IV, we present our
main conclusions and perspectives regarding future
investigations.
In what follows, we use ημν ¼ ðþ − −Þ as the metric

signature for the flat spacetime, together with the natural
unit system, for the sake of convenience.

II. THE MODEL

We begin by reviewing the first-order formalism pre-
sented in [11], the starting point being the planar Lagrange
density describing the interaction between the electromag-
netic field (introduced via the Chern-Simons term) and the
complex CPðN − 1Þ one, i.e., (here, ϵ012 ¼ þ1),

L ¼ −
κ

4
ϵαμνAαFμν þ ðPabDμϕbÞ�PacDμϕc − VðϕÞ; ð1Þ

the CPðN − 1Þ sector itself being constrained to satisfy
ϕ�
aϕa ¼ h. Here,

Fμν ¼ ∂μAν − ∂νAμ ð2Þ

is the electromagnetic field strength tensor and

Dμϕa ¼ ∂μϕa − igAμQabϕb ð3Þ

stands for the usual covariant derivative (in which Qab is a
diagonal real matrix). Also, Pab ¼ δab − h−1ϕaϕ

�
b is a

projection operator.
It is instructive to point out that the theory in (1) is

manifestly invariant under the global SUðNÞ transforma-
tion [beyond the usual local Uð1Þ one]. In this sense, given
that regular solitons are known to occur during a symmetry
breaking phase transition, the first-order scenario we study
in this work is expected to contain a self-interaction
potential depending on only one component of the original
CPðN − 1Þ scalar sector [therefore giving rise to a sponta-
neous breaking of the original SUðNÞ symmetry]; see the
discussion in Ref. [11].
The Euler-Lagrange equation for the Abelian gauge field

coming from (1) is

κ

2
ϵλμνFμν ¼ Jλ; ð4Þ

where

Jλ ¼ ig½PacDλϕcðPabQbfϕfÞ�
−ðPabDλϕbÞ�PacQcbϕb� ð5Þ

is the current 4-vector.
It follows from Eq. (4) that the Gauss law for time-

independent configurations reads

κB ¼ ρ; ð6Þ
where B ¼ F21 stands for the magnetic field and

ρ ¼ g2A0½ðPabQabϕbÞ�PacQcdϕd

−ðPabQabϕbÞðPacQcdϕdÞ�� ð7Þ
represents the stationary charge density. Here, given that
A0 ¼ 0 does not solve (6) identically, we conclude that the
time-independent structures arising from (1) are electrically
charged. In addition, in view of the Gauss law (6), it is
possible to point out that the total magnetic flux is
proportional to the total electric charge and vice versa.
In what follows, we focus our attention on those time-

independent radially symmetric solutions defined by the
usual vortex map

Ai ¼ −
1

gr
ϵijnjAðrÞ; ð8Þ

0
BB@

ϕ1

ϕ2

ϕ3

1
CCA ¼ h

1
2

0
BB@

eim1θ sin ðαðrÞÞ cos ðβðrÞÞ
eim2θ sin ðαðrÞÞ sin ðβðrÞÞ

eim3θ cos ðαðrÞÞ

1
CCA; ð9Þ

where m1, m2, and m3 are positive integers defining the
vorticity of the resulting configurations. Also, ϵij is the
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planar Levi-Civita symbol (ϵ12 ¼ þ1) and nj ¼
ðcos θ; sin θÞ stands for the unit vector. In this case, the
magnetic field can be verified to be given by

BðrÞ ¼ −
1

gr
dA
dr

; ð10Þ

which is a function of the radial coordinate r only.
Here, we point out that regular solutions presenting no

divergences are attained via those profile functions αðrÞ
and AðrÞ satisfying the conditions

αðr → 0Þ → 0 and Aðr → 0Þ → 0; ð11Þ
which will be used later. Moreover, given that we are
interested in those first-order solitons with a nontopological
profile, the asymptotic behavior of αðrÞ and AðrÞ can be

αðr → ∞Þ → 0 and
dA
dr

ðr → ∞Þ → 0; ð12Þ

with A∞ ≡ Aðr → ∞Þ finite.
Now, it is important to highlight that, regarding the

combination of the winding numbers m1, m2, and m3 and
the charge matrix Qab, there are two different choices
supporting the existence of topologically nontrivial con-
figurations (both with m3 ¼ 0): (i) m1 ¼ −m2 ¼ m and
Q ¼ λ3=2 [with λ3 ¼ diagð1;−1; 0Þ] and (ii)m1 ¼ m2 ¼ m
and Q ¼ λ8=2 [

ffiffiffi
3

p
λ8 ¼ diagð1; 1;−2Þ]. However, it is

known that these two scenarios simply mimic each other
since they are phenomenologically equivalent. Therefore,
we consider only the first choice, i.e.,

Q ¼ 1

2
diagð1;−1; 0Þ; ð13Þ

with m1 ¼ −m2 ¼ m and m3 ¼ 0.
In this case, the radially symmetric Euler-Lagrange

equation for the additional profile function βðrÞ reads
d2β
dr2

þ
�
1

r
þ 2 cot α

dα
dr

�
dβ
dr

¼ H sin2 α sin ð4βÞ; ð14Þ

where

HðrÞ ¼ 1

r2

�
m −

A
2

�
2

−
g2ðA0Þ2

4
sin2 α ð15Þ

is an auxiliary function, with the solutions for βðrÞ being
(k ∈ Z)

βðrÞ ¼ β1 ¼
π

4
þ π

2
k or βðrÞ ¼ β2 ¼

π

2
k; ð16Þ

thus defining two a priori different scenarios. However,
concerning the first-order configurations, the results for
βðrÞ ¼ β2 can be obtained directly from those for βðrÞ ¼
β1 via the redefinitions α → 2α and h → h=4, from which it
is possible to conclude that there is only one effective
scenario.

We look for the first-order differential equations by
proceeding with the minimization of the energy according
to the Bogomol’nyi prescription, with the starting point
being the energy-momentum tensor itself, i.e.,

Tλρ ¼ 2ðPabDλϕbÞ�PacDρϕc − ηλρLntop; ð17Þ

where

Lntop ¼ ðPabDμϕbÞ�PacDμϕc − VðjϕjÞ ð18Þ

stands for the nontopological sector of the original
Lagrange density (1).
The radially symmetric expression for the energy density

coming from (17) reads

εðrÞ ¼ κ2B2

g2hW
þ h

��
dα
dr

�
2

þW
r2

�
A
2
−m

�
2
�
þ V; ð19Þ

where we have used the Gauss law (6),

A0 ¼ −
2κB
g2hW

; ð20Þ

in order to rewrite the contribution coming from A0 in terms
of the magnetic field B. Here, we have also introduced the
auxiliary function

Wðα; βÞ ¼ ð1 − sin2 α cos2 ð2βÞÞ sin2 α: ð21Þ

It is important to emphasize that, once the function β is
assumed to be a constant [according to the values appearing
in Eq. (16)], the potential V depends on the field α only,
i.e., V ¼ VðαÞ.
We also highlight the fact that the developments we

introduce from now on effectively describe the particular
scenario defined by the choices which we have specified in
the previous paragraphs, with the solutions for βðrÞ
necessarily being one of those in (16).

III. THE SOLUTIONS

A. BPS formalism for βðrÞ= β1
In view of the discussion right after Eq. (16), we proceed

with a detailed implementation of the first-order BPS
formalism for the case

βðrÞ ¼ β1 ¼
π

4
þ π

2
k; ð22Þ

from which one gets cos2 ð2β1Þ ¼ 0 andWðα; β1Þ ¼ sin2 α.
In this case, the total energy provided by the expression in
(19) then reads
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E ¼ 2π

Z
∞

0

εðrÞrdr

¼ 2πh
Z

∞

0

��
dα
dr

�
2

þ sin2α
r2

�
A
2
−m

�
2
�
rdr

þ 2π

Z
∞

0

�
κ2B2

g2hsin2α
þ V

�
rdr; ð23Þ

which, after some algebraic manipulations, can be written
in the form

E¼2πh
Z

∞

0

�
dα
dr

∓ sinα
r

�
A
2
−m

��
2

rdr

þ2π

Z
∞

0

�
κB

g
ffiffiffi
h

p
sinα

∓ ffiffiffiffi
V

p �
2

rdr

�2π

Z
∞

0

�
ðA−2mÞhsinα

r
dα
dr

þB
2κ

ffiffiffiffi
V

p

g
ffiffiffi
h

p
sinα

�
rdr; ð24Þ

or

E ¼ 2πh
Z

∞

0

�
dα
dr

∓ sin α
r

�
A
2
−m

��
2

rdr

þ 2π

Z
∞

0

�
κB

g
ffiffiffi
h

p
sin α

∓ ffiffiffiffi
V

p �
2

rdr

∓ 2π

Z
∞

0

�
ðA − 2mÞh d cos α

dr

þ dðA − 2mÞ
dr

2κ
ffiffiffiffi
V

p

g2
ffiffiffi
h

p
sin α

�
dr; ð25Þ

where we have used the expression (10) for the
magnetic field in order to write the third row in a convenient
form.
Now, in order to complete the implementation of the first-

order BPS formalism, we need to transform the integrand in
the third row to a total derivative. In this work, we attain such
a goal by means of the following relation:

2κ

g2
ffiffiffi
h

p d
dα

� ffiffiffiffi
V

p

sin α

�
¼ h

d
dα

cos α; ð26Þ

which also provides the functional form of the self-
interacting potential engendering first-order configurations,
i.e.,

VðαÞ ¼ g4h3

16κ2
sin2 ð2αÞ; ð27Þ

from which the total energy (25) reduces to

E ¼ 2πh
Z

∞

0

�
dα
dr

∓ sin α
r

�
A
2
−m

��
2

rdr

þ 2π

Z
∞

0

�
κB

g
ffiffiffi
h

p
sin α

∓ g2h3=2

4κ
sin ð2αÞ

�
2

rdr

∓ 2πh
Z

∞

0

d
dr

½ðA − 2mÞ cosα�dr: ð28Þ

It is instructive to point out that the boundary conditions
(11) and (12) allow us to calculate the integral appearing in
the third row explicitly. In this sense, one gets the energy

E¼Ebpsþ2πh
Z

∞

0

�
dα
dr

∓ sinα
r

�
A
2
−m

��
2

rdr

þ2π

Z
∞

0

�
κB

g
ffiffiffi
h

p
sinα

∓ g2h3=2

4κ
sinð2αÞ

�
2

rdr; ð29Þ

where

Ebps ¼ 2π

Z
rεbpsdr ¼∓ 2πhA∞ ð30Þ

is the lower bound for the energy itself (the Bogomol’nyi
bound), with the BPS energy density εbps being

εbps ¼∓ h
r
d
dr

½ðA − 2mÞ cos α�: ð31Þ

In such a scenario, Eq. (29) shows us that the
Bogomol’nyi bound is saturated when the profile functions
satisfy the first-order differential equations

dα
dr

¼ � sin α
r

�
A
2
−m

�
; ð32Þ

B ¼ −
1

gr
dA
dr

¼ � g3h2

4κ2
sin α sin ð2αÞ; ð33Þ

where the upper (lower) sign holds for negative (positive)
values of the vorticity m.
In addition, via the above BPS equations, it is possible to

rewrite the corresponding energy density as

εbps ¼ 2VðαÞ þ 2h

�
dα
dr

�
2

; ð34Þ

with VðαÞ being given by Eq. (27).
It is interesting to point out that the potential (27) can be

written in the form

Vðjϕ3jÞ ¼
g4h
4k2

jϕ3j2ðh − jϕ3j2Þ; ð35Þ

which spontaneously breaks the original SUð3Þ symmetry
into the SUð2Þ one, as expected (see the discussion in the
beginning of Sec. II).
We summarize the overall scenario as follows: Once the

potential VðαÞ in (27) is determined, the profile functions
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αðrÞ and AðrÞ can be obtained by solving the differential
equations (32) and (33), with the resulting radially sym-
metric configurations possessing the lowest energy pos-
sible, i.e., the Bogomol’nyi bound given by Eq. (30).
It is also worthwhile to point out that, concerning the

nontopological configurations we study in this work, the
asymptotic contribution appearing in the energy bound (30)
will not necessarily be quantized in terms of the winding
number m; this is an essential difference in comparison to
the topological case considered in [11].
Beyond the BPS energy, another important quantity to be

considered is the flux ΦB of the magnetic field through the
planar space,

ΦB ¼ 2π

Z
rBðrÞdr ¼ −

2π

g
A∞; ð36Þ

from which one concludes that the energy bound (30) is
indeed proportional to the magnetic flux (36), with both
quantities not necessarily being quantized, as expected for
nontopological solitons.

1. First-order solutions: Approximate analytical case

It is interesting to point out that, due to the conditions
αðr → 0Þ → 0 and αðr → ∞Þ → 0, the first-order equa-
tions (32) and (33) can be verified to support approximate
analytical solutions. In order to calculate them, we suppose
that αðrÞ ≪ 1 for all r, from which those equations can be
approximated, respectively, by

dα
dr

¼ � α

r

�
A
2
−m

�
; ð37Þ

1

r
dA
dr

¼∓ g4

2κ2
h2α2; ð38Þ

therefore giving rise to Liouville’s equation (here,
λ2 ¼ g4h2=κ2)

d2

dr2
ln α2 þ 1

r
d
dr

ln α2 þ λ2

2
α2 ¼ 0; ð39Þ

with its solution standing for

αðrÞ ¼ 4C1

λr0

ð rr0ÞC1−1

1þ ð rr0Þ2C1
; ð40Þ

where r0 and C1 are integration constants. Here, it is
worthwhile to highlight that, in order to fulfill the asymp-
totic condition αðr → ∞Þ → 0, we must choose C1 > 1.
In addition, given (37) and (40), the solution to AðrÞ

reads

AðrÞ ¼ 2ðmþ 1 − C1Þ þ
4C1ð rr0Þ2C1

1þ ð rr0Þ2C1
; ð41Þ

which satisfies the condition Aðr→0Þ→0 for C1¼
mþ1 only.
The approximate solutions can then be summarized as

αmðrÞ ¼
4ðmþ 1Þ

λr0

ð rr0Þm
1þ ð rr0Þ2ðmþ1Þ ; ð42Þ

AmðrÞ ¼ 4ðmþ 1Þ
ð rr0Þ2ðmþ1Þ

1þ ð rr0Þ2ðmþ1Þ ; ð43Þ

with the last one giving rise to

Am;∞ ≡ Amðr → ∞Þ ¼ 4ðmþ 1Þ; ð44Þ

which stands for the (approximate) asymptotic condition to
be imposed on AðrÞ.
It is interesting to note that the approximate solution to

αmðrÞ stands for a well-defined ring, with its radius being
given by

rmax ¼ r0

�
m

mþ 2

� 1
2ðmþ1Þ ð45Þ

(rmax approaching r0 in the limit m → ∞), from which one
gets

αmðr ¼ rmaxÞ ¼
2ðmþ 2Þ

λr0

�
m

mþ 2

� m
2ðmþ1Þ

; ð46Þ

i.e., the amplitude of the ring, with our previous assumption
αðrÞ ≪ 1 holding for

λr0 ≫ 2ðmþ 2Þ
�

m
mþ 2

� m
2ðmþ1Þ

; ð47Þ

i.e., for a fixed m; there are only a few values to be chosen
for λ and r0 and vice versa.
We have also solved the first-order equations (32) and

(33) numerically in order to understand the behavior of the
profile fields. In this sense, we have obtained the solutions
for m ¼ h ¼ g ¼ κ ¼ 1 and r0 ¼ 10 (solid black line),
r0 ¼ 15 (dashed blue line), and r0 ¼ 20 (dash-dotted red
line), from which we have plotted the resulting profiles in
Figs. 1–6. We have also depicted the approximate solutions
for m ¼ h ¼ g ¼ κ ¼ 1 and r0 ¼ 10 (dotted orange line),
for comparison.
The solutions to the profile function αðrÞ appear in

Fig. 1. These profiles are well-defined rings centered at the
origin, their radii and amplitudes being given, respectively,
by (45) and (46), with the first (second) one increasing
(decreasing) as r0 itself increases.
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Figure 2 shows the numerical results of the profile function
AðrÞ. Here, it is interesting to note theway the solutions try to
reach the approximate value Amðr → ∞Þ ¼ 4ðmþ 1Þ, with
the true numerical values reading A1ðr → ∞Þ ≈ 8.20526
for r0 ¼ 10, A1ðr → ∞Þ ≈ 8.10268 for r0 ¼ 15, and
A1ðr → ∞Þ ≈ 8.06025 for r0 ¼ 20, where the overall sol-
utions are monotonic, as expected.
In Fig. 3, we depict the profiles of the magnetic field

BðrÞ, with the resulting structures also standing for defined
rings centered at r ¼ 0 [here, both Bðr ¼ 0Þ and Bðr → ∞Þ
vanish]. In particular, the approximate analytical solution to
BmðrÞ arising from (42) and (43) reads

BmðrÞ ¼ � g3h2

2κ2
α2m; ð48Þ

via which one concludes that the radii of the corresponding
rings are also given by (45), the amplitudes being

Bmðr ¼ rmaxÞ ¼ � 2g3h2ðmþ 2Þ2
ðλr0Þ2κ2

�
m

mþ 2

� m
mþ1

; ð49Þ

which decrease as r0 itself increases.
The numerical solutions to the energy density εbpsðrÞ are

plotted in Fig. 4. In this case, it is worthwhile to point out
that all the solutions fulfill the finite-energy requirement,
i.e., εbpsðr → ∞Þ → 0; the approximate expression for the
energy distribution according to (34) is

FIG. 1. Numerical solutions to αðrÞ coming from the first-order
equations (32) and (33) in the presence of the boundary
conditions (11) and (12). Here, we have chosen m ¼ h ¼ g ¼
k ¼ 1 and r0 ¼ 10 (solid black line), r0 ¼ 15 (dashed blue line)
and r0 ¼ 20 (dash-dotted red line). We have also plotted the
approximate analytical solution (42) for m ¼ h ¼ g ¼ k ¼ 1 and
r0 ¼ 10 (dotted orange line), for comparison.

FIG. 2. Numerical solutions to AðrÞ. Conventions are the
same as in Fig. 1. We have also plotted the approximate
analytical solution (43). The solutions approach the value
Amðr → ∞Þ ¼ 4ðmþ 1Þ, with the numerical values being
A1ðr → ∞Þ ≈ 8.20526 for r0 ¼ 10, A1ðr → ∞Þ ≈ 8.10268 for
r0 ¼ 15, and A1ðr → ∞Þ ≈ 8.06025 for r0 ¼ 20.

FIG. 3. Numerical solutions to the magnetic field BðrÞ. Con-
ventions are the same as in Fig. 1. The resulting configurations
are rings centered at the origin, with their radii being given
by (45). In particular, Bmðr ¼ rmaxÞ ∝ r−20 , decreasing as r0
increases.

R. CASANA, M. L. DIAS, and E. DA HORA PHYS. REV. D 98, 056011 (2018)

056011-6



εbps;mðrÞ ¼
g4h3

2κ2
α2m þ 2h

�
dαm
dr

�
2

; ð50Þ

from which we get that the radii inherent in the energy rings
are also defined by the expression in (45). Moreover, we
calculate

εbps;mðr ¼ rmaxÞ ¼
2hðmþ 2Þ2

r20

�
m

mþ 2

� m
mþ1 ð51Þ

and

εbps;mðr ¼ 0Þ ¼
� 128m2κ2

g4hr4
0

if m ¼ 1

0 if m > 1;
ð52Þ

with εbps;1ðr ¼ 0Þ decreasing as r0 increases (see the
numerical solutions).
We plot the numerical results to the electric potential

A0ðrÞ in Fig. 5, with the approximate solution standing for

A0
mðrÞ ¼ � gh

κ

�
1 −

1

2
α2m

�
; ð53Þ

and the resulting profile satisfyingA0
mðr¼0Þ¼A0

mðr→∞Þ¼
�gh=κ; these boundary conditions do not depend on m.
Moreover, given (53), one concludes that the corresponding
radius is also given by (46), via which we calculate

A0
mðr ¼ rmaxÞ ¼ � gh

κ

�
1 −

2ðmþ 2Þ2
ðλr0Þ2

�
m

mþ 2

� m
mþ1

�
;

ð54Þ

which vanishes in the limit r0 → ∞. In particular, for m ¼
h ¼ g ¼ κ ¼ 1 and r0 ¼ 10, one gets A0

m¼1ðr ¼ rmaxÞ ≈
0.89608 (see Fig. 5).
The numerical solutions to the electric field EðrÞ ¼

−dA0=dr appear in Fig. 6, with the approximate one
reading

EmðrÞ ¼
gh
κ

α2m
r

�
Am

2
−m

�
; ð55Þ

and AmðrÞ itself given by (43). In this case, one gets that

dEm

dr
¼ −

d2A0
m

dr2
¼ � gh

κ

��
dαm
dr

�
2

þ αm
d2αm
dr2

�
ð56Þ

vanishes for
�
dαm
dr

�
2

¼ −αm
d2αm
dr2

; ð57Þ

whose solutions are

rm;∓ ¼ r0R
1

2ðmþ1Þ
m;∓ ; ð58Þ

in which

Rm;∓ ¼ am ∓ bm
cm

; ð59Þ

with the positive coefficients

am ¼ 4m2 þ 8mþ 1; ð60Þ

FIG. 4. Numerical solutions to the energy density εbpsðrÞ.
Conventions are the same as in Fig. 1. Here, εbps;mðr ¼ 0Þ ∝
r−40 for m ¼ 1 and εbps;mðr ¼ 0Þ ¼ 0 for m > 1.

FIG. 5. Numerical solutions to the electric potential
A0ðrÞ. Conventions are the same as in Fig. 1. Here,
A0
mðr ¼ 0Þ ¼ A0

mðr → ∞Þ ¼ gh=k, with A0
mðr ¼ rmaxÞ vanishing

for r0 → ∞.
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bm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12m4 þ 48m3 þ 61m2 þ 26mþ 1

p
; ð61Þ

and

cm ¼ 2m2 þ 9mþ 10 ð62Þ
depending on the vorticity m explicitly.
In Fig. 6, rm;− and rm;þ are the points at which the

approximate solution (55) for the electric field reaches its
extreme values, i.e.,

Emðr ¼ rm;∓Þ ¼
16ðmþ 1Þ2gh

λ2κr0
Σm;∓ ð63Þ

for m > 0, and

Emðr ¼ rm;∓Þ ¼ −
16ðmþ 1Þ2gh

λ2κr0
Σm;∓ ð64Þ

for m < 0, where

Σm;∓ ¼ R
2m−1
2ðmþ1Þ∓

ð1þ R∓Þ3
ðm − ðmþ 2ÞR∓Þ; ð65Þ

with both Emðr ¼ 0Þ and Emðr → ∞Þ vanishing.
In particular, again for m ¼ h ¼ g ¼ κ ¼ 1 and r0 ¼ 10,
we get rm¼1;− ≈ 4.46485 and rm¼1;þ ≈ 10.46277, with
Em¼1ðr¼rm¼1;−Þ≈0.02239 and Em¼1ðr ¼ rm¼1;þÞ≈
−0.01636. Here, it is interesting to note the inversion in
the sign dictating the electric interaction.

It is instructive to highlight that, in view of the analytical
results we have obtained, the energy bound (30) can be
calculated explicitly, with its approximate value being
given by

Ebps ¼∓ 8πhðmþ 1Þ; ð66Þ
and the magnetic flux (36) standing for

ΦB ¼ −
8π

g
ðmþ 1Þ; ð67Þ

from which one gets Ebps ¼ �ghΦB, with the energy of the
analytical first-order vortices then being proportional to
their magnetic flux, therefore verifying our previous con-
clusion established right after Eq. (36). We also point out
that both the energy and the magnetic flux of those vortices
attained numerically are proportional to the effective values
of Amðr → ∞Þ.

2. First-order solutions: Full numerical case

It is important to clarify that, beyond the configurations
we have presented above, there is a second first-order
scenario which cannot be predicted by any analytical
construction; i.e., it is not possible to approximate its
solutions via αðrÞ ≪ 1. In order to introduce these new
solutions, we again solve the first-order equations (32) and
(33) numerically according to the conditions (11) and (12),
from which we depict the resulting profiles in Figs. 7–12.
Here, we use h ¼ g ¼ κ ¼ r0 ¼ 1 and m ¼ 1 (solid black

FIG. 6. Numerical solutions to the electric field EðrÞ. Con-
ventions are the same as in Fig. 1. In this case, rm¼1;− ≈ 4.46485
and rm¼1;þ ≈ 10.46277, with Em¼1ðr ¼ rm¼1;−Þ ≈ 0.02239 and
Em¼1ðr ¼ rm¼1;þÞ ≈ −0.01636. Note the inversion of the sign
dictating the electric interaction.

FIG. 7. Numerical solutions to αðrÞ. Here, we have used h ¼
g ¼ k ¼ r0 ¼ 1 andm ¼ 1 (solid black line),m ¼ 2 (dashed blue
line), and m ¼ 3 (dash-dotted red line), with the resulting
scenario not being predictable by any analytical treatment.
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line), m ¼ 2 (dashed blue line), and m ¼ 3 (dash-dotted
red line).
The new numerical solutions for αðrÞ are depicted in

Fig. 7. The resulting configurations behave in the same way

as before, i.e., as rings centered at the origin whose radii
and amplitudes increase as the vorticity m itself increases.
In Fig. 8, we show the profiles of the gauge function

AðrÞ, with the additional dotted orange line representing
the solution for m ¼ 4. Here, it is important to point out the
existence of an interesting internal structure inherent in the
new gauge profiles. Moreover, we emphasize that the new
solutions do not obey Aðr → ∞Þ → 4ðmþ 1Þ, as expected.
The solutions to the magnetic field BðrÞ and the energy

density εbpsðrÞ appear in Figs. 9 and 10, respectively, with
both standing for double rings centered at r ¼ 0.
In particular, the magnetic field satisfies Bðr ¼ 0Þ ¼ 0
and Bðr → ∞Þ → 0, with the energy distribution vanishing
at the origin for m ≠ 1 only, with εbpsðr → ∞Þ → 0

(i.e., the finite-energy requirement still holds).
Finally, Figs. 11 and 12 show the numerical solutions to

the electric potential A0ðrÞ and the electric field EðrÞ, from
which we see that these two fields behave in the same way
as those depicted in Figs. 5 and 6 (including the sign
inversion inherent in the electric field), respectively, with
the electric one also possessing an internal structure (see the
dotted orange line).

B. BPS formalism for βðrÞ= β2
We now summarize the implementation of the BPS

formalism for the case

βðrÞ ¼ β2 ¼
π

2
k; ð68Þ

which gives cos2ð2β2Þ ¼ 1 and Wðα; β2Þ ¼ 1
4
sin2 2α.

FIG. 8. Numerical solutions to AðrÞ. Conventions are the same
as in Fig. 7, with the dotted orange line representing the solution
for m ¼ 4 and the resulting gauge profile presenting an internal
structure.

FIG. 9. Numerical solutions to BðrÞ. Conventions are the same
as in Fig. 7. The solution is a double ring centered at the origin,
with the magnetic field vanishing at the boundaries.

FIG. 10. Numerical solutions to εbpsðrÞ. Conventions are the
same as in Fig. 7, with the energy distribution vanishing at r ¼ 0
for m ≠ 1 only.
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In this case, the total energy obtained from (19) reads

E ¼ 2πh
Z

∞

0

��
dα
dr

�
2

þ sin22α
4r2

�
A
2
−m

�
2
�
rdr

þ 2π

Z
∞

0

�
4κ2B2

g2hsin22α
þ V

�
rdr: ð69Þ

Moreover, after some algebraic manipulation similar to
the one we have performed in the case βðrÞ ¼ β1, we attain
the following condition for the self-interacting potential:

4κ

g2
ffiffiffi
h

p d
dα

� ffiffiffiffi
V

p

sin ð2αÞ
�

¼ h
4

d
dα

cos ð2αÞ; ð70Þ

which can be solved to give

VðαÞ ¼ g4h3

1024κ2
sin2 ð4αÞ: ð71Þ

Inview of this result, the total energy (25) can bewritten as

E ¼ Ebps þ 2πh
Z

∞

0

�
dα
dr

∓ sin ð2αÞ
2r

�
A
2
−m

��
2

rdr

þ 2π

Z
∞

0

�
2κB

g
ffiffiffi
h

p
sin ð2αÞ ∓

g2h3=2

32κ
sin ð4αÞ

�
2

rdr;

ð72Þ
where the lower bound now reads

Ebps ¼ 2π

Z
rεbpsdr ¼∓ π

h
2
A∞; ð73Þ

which is saturated when the profile fields satisfy

dα
dr

¼ � sin ð2αÞ
2r

�
A
2
−m

�
; ð74Þ

B ¼ � g3h2

64κ2
sin ð2αÞ sin ð4αÞ: ð75Þ

We point out that the potential in (71) can also be written
as an explicit function of jϕ3j, i.e.,

Vðjϕ3jÞ ¼
g4

64k2h
jϕ3j2ðh − jϕ3j2Þðh − 2jϕ3j2Þ2; ð76Þ

which manifestly breaks the original SUð3Þ symmetry, as
expected.
Here, it is important to highlight the fact that a simple

comparison reveals that the first-order results obtained for
βðrÞ ¼ β2 can be mapped directly from those calculated for
βðrÞ ¼ β1 via the redefinitions α → 2α and h → h=4.

IV. FINAL COMMENTS

In this work, we have considered the nontopological
first-order solitons inherent in a planar gauged CPð2Þ
scenario endowed by the Chern-Simons action, focusing
our attention on time-independent profiles possessing
radial symmetry. We have proceeded with the minimization
of the corresponding energy (the starting point being the
energy-momentum tensor), from which we have estab-
lished the corresponding first-order framework (a set of two
coupled first-order equations and a well-defined lower

FIG. 11. Numerical solutions to A0ðrÞ. Conventions are the
same as in Fig. 7. This field behaves in the same way as before. FIG. 12. Numerical solutions to EðrÞ. Conventions are the

same as in Fig. 8. Note the internal structure inherent in the
electric field.

R. CASANA, M. L. DIAS, and E. DA HORA PHYS. REV. D 98, 056011 (2018)

056011-10



bound for the total energy itself) inherent in the effective
radially symmetric scenario.
In the sequel, we have solved the first-order equations

numerically by means of a finite-difference method. In this
sense, despite the high nonlinearity, we have identified a
special kind of configuration that can be described by
approximate analytical solutions in the regime αðrÞ ≪ 1 for
all r. The resulting profiles have been depicted, and we
have commented on their main characteristics, from which
we have noted an interesting inversion of the sign dictating
the electric interaction and the existence of an internal
structure inherent in the gauge function.
An interesting issue for future work includes the

search for a more general implementation of the

first-order BPS formalism independent of a specific
Ansatz. This idea is currently under investigation, and
we hope that positive results will be presented in an
upcoming contribution.
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