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We investigate the pion scalar form factor in the Meiman-Okubo framework, implementing the phase
below the inelastic KK̄ threshold, where it is known from the ππ scalar isoscalar phase shift δ00 by Watson
theorem. State-of-the-art knowledge of the perturbative QCD expansion of the scalar correlator and the
phase shift δ00 is used as input. No assumptions about the phase above the inelastic threshold or the possible
zeros of the form factor in the complex plane are necessary. We obtain a model-independent constraint
relating the sum of the light quark masses to the slope and the curvature of the pion scalar form factor at the
origin. The recent lattice results for the light quark masses and the pion scalar radius are found to satisfy this
constraint. We obtain also a strong correlation between the pion scalar radius and the curvature of the form
factor, with rather high values predicted for the curvature.
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I. INTRODUCTION

The pion scalar form factor ΓπðtÞ is defined by the matrix
element

hπaðpÞπbðp0ÞoutjSð0Þj0i¼δabΓπðtÞ; t¼ðpþp0Þ2; ð1Þ

of the scalar operator

SðxÞ¼ m̂½ūðxÞuðxÞþ d̄ðxÞdðxÞ�; m̂≡1

2
ðmuþmdÞ; ð2Þ

where u, d are quark fields and mu, md the quark current
masses.
Since the Higgs boson is not light, the pion scalar form

factor is not accessible to experiment. However, it is
important for theory, reflecting crucial aspects of QCD
at low energy. Its Taylor expansion at t ¼ 0,

ΓπðtÞ ¼ Γπð0Þ
h
1þ 1

6
hr2iπs tþ cπs t2 þ � � �

i
; ð3Þ

convergent in a disk limited by the nearest branch point of
ΓπðtÞ at t ¼ 4m2

π , has been investigated in chiral perturba-
tion theory (χPT), where the pion scalar form factor has
been calculated up to two loops [1–3].

The value of the form factor at zero momentum transfer,
Γπð0Þ, referred to as the pion σ-term, describes the
dependence of the pion mass on the quark masses and
was evaluated using Gell-Mann-Oakes-Renner relation [4].
The value quoted in [2] is

Γπð0Þ ¼ ð0.99� 0.02Þm2
π þOðm6

πÞ: ð4Þ

The uncertainty in this relation might be somewhat under-
estimated, since Ref. [4] included only parts of the higher-
order corrections. We shall discuss in the last section the
impact of a larger uncertainty on the results derived in
this paper.
The quadratic scalar radius hr2iπs ¼ 6Γ0

πð0Þ=Γπð0Þ is
connected to another important quantity of χPT, the
effective chiral constant l̄4 that determines the first non-
leading contribution in the chiral expansion of the pion
decay constant fπ . It also contributes to the S-wave ππ
scattering lengths a00 and a20 [5].
From general principles it is known that ΓπðtÞ is an

analytic function of hermitian (real) type (i.e., it satisfies the
Schwarz reflection relation ΓπðtÞ� ¼ Γπðt�Þ) in the t com-
plex plane with a cut determined by unitarity for t ≥ 4m2

π.
Watson final-state theorem states that below the first
inelastic threshold, which in practice is due to the KK̄
channel, the phase of the form factor is equal to the phase-
shift δ00ðtÞ of the I ¼ L ¼ 0 partial-wave amplitude of ππ
elastic scattering:

arg½Γπðtþ iϵÞ� ¼ δ00ðtÞ; 4m2
π ≤ t ≤ 4m2

K: ð5Þ
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There have been some discussions in the literature
about the value of hr2iπs obtained in the frame of
dispersion theory. While the treatments [5–7] based on
Mushkhelishvili-Omnès equations give hr2iπs in the range
ð0.57–0.65Þ fm2, the calculations [8,9] based on single-
channel Omnès formalism led to a higher prediction,
hr2iπs ¼ ð0.75� 0.07Þ fm2. This discrepancy was dis-
cussed in [10], where it was shown that the single-channel
treatment can be made consistent with the multi-channel
one if one takes into account the fact that Watson theorem is
valid modulo �π (an interpretation in terms of a possible
zero of the form factor was given in [11]). In this context,
any alternative investigation of the scalar form factor based
on analyticity, which might improve the knowledge of the
scalar radius, is of great interest.
In a recent paper [12], a precise determination of the

charge radius of the pion was obtained in the frame of a
mixed dispersion formalism, using as input the phase of the
electromagnetic form factor in the elastic region and the
modulus above the first inelastic threshold. Unfortunately,
in the case of the scalar form factor (1) no data on the
modulus above the KK̄ threshold are available. One can
obtain however an integral constraint on the modulus
squared of ΓπðtÞ along the cut using a formalism proposed
a long time ago by Meiman [13] and Okubo [14], which
exploits the dispersion relations for suitable QCD correla-
tors, combined with unitarity and the positivity of the
spectral functions. This formalism has been applied in the
context of QCD for the first time in [15], and afterwards in
many papers [16–33], being in particular a valuable tool for
obtaining model-independent constraints on weak semi-
leptonic form factors.
The Meiman-Okubo formalism has been applied also to

the light-quark scalar correlator in [34,35], where it was
used as a mean to derive a lower bound on the sum of the
light quark masses. In the present paper, we revisit the
analysis reported in [34,35] bringing several improvements
and updates. Thus, while in these works Watson theorem
(5) was implemented only below 0.5 GeV, now it can be
imposed up to the first relevant inelastic threshold, set by
the KK̄ channel, taking advantage of the recent progress in
the determination of the pion-pion phase shifts. We include
also higher terms in the expansion (3), which will lead to a
more general constraint on the sum of the light quark
masses, the derivatives of the scalar form factor at the origin
and the phase shift δ00. Finally, we use the most recent
calculation of the scalar correlator in perturbative QCD,
available now to Oðα4sÞ [36]. The motivation of revisiting
this analysis is the fact that precise results for both the light-
quark masses and the pion scalar radius are now available
from lattice calculations (for a recent review and earlier
references see [37]). An updated, more precise independent
constraint on these quantities is therefore of interest.
In the next section, we describe the mathematical

formalism, in Sec. III we discuss the input used in the

calculations and in Sec. IV we present our results. Sec. V
contains a discussion of the results in comparison with
previous determinations and our conclusions.

II. DERIVATION OF THE BOUNDS

We consider the scalar correlator [34]

Ψðq2Þ ¼ i
Z

dxeiq·xh0jTðSðxÞS†ð0ÞÞj0i; ð6Þ

written in terms of the operator SðxÞ defined in (2).
The function Ψðq2Þ satisfies a dispersion relation which

requires two subtractions. Therefore, as in [34] we shall
consider the second derivative of Ψ, which is expressed on
the Euclidian axis, i.e., for Q2 ¼ −q2 > 0, as

Ψ00ðQ2Þ ¼ 1

π

Z
∞

0

2

ðtþQ2Þ3 ImΨðtÞdt: ð7Þ

At large Q2, Ψ00ðQ2Þ is given by the QCD perturbative
expansion in powers of the renormalized strong coupling αs
with negligible power corrections [36]:

Ψ00ðQ2Þ ¼ 3

16π2
ðmu þmdÞ2

Q2

�
1þ

X
n≥1

d̄0;n

�
αs
π

�
n
�
; ð8Þ

where the quark masses and the strong coupling are
evaluated at a fixed scale μ2.
On the other hand, on the timelike axis the spectral

function ImΨðtÞ can be expressed, using unitarity, in terms
of the contributions of hadronic states. Keeping the lowest
two-pion contributions and using the positivity of the
spectral function one obtains [34]

ImΨðtÞ ≥ 3

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

t

r
jΓπðtÞj2θðt − 4m2

πÞ; ð9Þ

where ΓπðtÞ is the pion scalar form factor defined in (1).
From (7) and (9) one obtains the inequality

Ψ00ðQ2Þ ≥ 3

8π2

Z
∞

tp

1

ðtþQ2Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − tp=t

q
jΓπðtÞj2dt; ð10Þ

where we denoted tp ¼ 4m2
π.

By applying standard techniques of complex analysis,
the right hand side of (10) can be further bounded from
below by definite expressions involving values of the form
factor at points inside the analyticity domain or the
coefficients of the Taylor expansion (3) at t ¼ 0.
In order to derive the optimal lower bound on the rhs of

(10) with the constraints (3) and (5), we first perform the
conformal mapping
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z≡ z̃ðtÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=tp

p
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − t=tp
p ; ð11Þ

which maps the complex t plane cut for t ≥ tp onto the unit
disk jzj < 1 such that z̃ð0Þ ¼ 0, z̃ðtpÞ ¼ 1 and the upper
(lower) edge of cut becomes the unit semicircle ζ ¼ eiθ

with θ > 0 (θ < 0). Then the inequality (10) can be written
in the equivalent form

Ψ00ðQ2Þ ≥ 1

2π

Z
π

−π
jϕðζÞΓπðt̃ðζÞÞj2dθ; ð12Þ

where t̃ðzÞ ¼ 4tpz=ð1þ zÞ2 is the inverse of (11) and ϕðzÞ
is an analytic function in jzj < 1 defined as

ϕðzÞ ¼
ffiffiffiffiffiffi
3

4π

r
1

tp

ð1 − zÞð1þ zÞ3=2
ð1 − zþ βQð1þ zÞÞ3 ; ð13Þ

with βQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2=tp

q
. By construction, ϕðzÞ in an “outer

function” [38], i.e., it has no zeros in jzj < 1, and its
modulus on the boundary jzj ¼ 1 is given by

jϕðζÞj2 ¼ 3

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − tp=t̃ðζ

p Þ
ðt̃ðζÞ þQ2Þ3

���� dt̃ðζÞdζ

����: ð14Þ

We emphasize that the absence of zeros in ϕðzÞ guarantees
that the bounds derived below are optimal.
We further define a new function gðzÞ, analytic in

jzj < 1, by

gðzÞ ¼ ϕðzÞΓπðt̃ðzÞÞ: ð15Þ
Then (12) implies the following inequality, valid for any
K ≥ 1,

Ψ00ðQ2Þ ≥
XK−1
k¼0

g2k; ð16Þ

where the real coefficients gk are defined by the Taylor
expansion

gðzÞ ¼
X∞
k¼0

gkzk: ð17Þ

From (15) and (17) it follows that each gk is a linear
combination of the derivatives of ΓπðtÞ at t ¼ 0 up to the
order k.
We now improve (16) by taking into account the addi-

tional constraint (5). We apply a technique of functional
optimization based on functional Lagrange multipliers,
proposed for the first time in [39], generalized and applied
further in many papers [24,25,29,33]. We write below the
solution of this optimization problem in our case (for a
proof see [24,29]). Let

ζin ≡ z̃ð4m2
KÞ ¼ eiθin ð18Þ

be the image on the unit circle in the z plane of the point
4m2

K þ iϵ situated on the upper edge of the cut [the point
4m2

K − iϵ being mapped onto expð−iθinÞ]. Then one
obtains the stronger condition [24,29]

Ψ00ðQ2Þ ≥
XK−1
k¼0

g2k þ
XK−1
k¼0

gk
π

Z
θin

−θin
dθλðθÞ sin ½kθ −ΦðθÞ�;

ð19Þ

where the function λðθÞ is the solution of the integral
equation

XK−1
k¼0

gk sin½kθ −ΦðθÞ� ¼ λðθÞ − 1

2π

Z
θin

−θin
dθ0λðθ0ÞKΦðθ; θ0Þ;

ð20Þ

valid for θ ∈ ð−θin; θinÞ, where the kernel is defined as

KΦðθ;θ0Þ ¼
sin½ðK−1=2Þðθ−θ0Þ−ΦðθÞþΦðθ0Þ�

sin½ðθ−θ0Þ=2� ; ð21Þ

in terms of the function

ΦðθÞ ¼ δ00ðt̃ðeiθÞÞ þ arg½ϕðeiθÞ�: ð22Þ

We mention that integral equations of the form (20) are
often encountered in solving functional optimization prob-
lems with constraints on the boundary implemented by
Lagrange multipliers. The function λ (which is actually a
generalized Lagrange multiplier) is a smooth, odd function
of θ defined on the range ð−θin; θinÞ, with values depending
on the free parameters ðrπ; cπÞ used in the optimization
procedure. If the function ΦðθÞ defined in (22) is suffi-
ciently smooth, the integral equation (20) is of Fredholm
type and is solved numerically by approximating it by a
linear system of equations obtained by discretizing the
integral. In the calculations performed in this work, the
results proved to be very stable when the number of
integration points was increased up to several hundreds.
The inequality (19), with Ψ00ðQ2Þ, given by (8), provides

a model-independent relation between the sum of the light
quark masses, the coefficients of the Taylor expansion of
the scalar form factor, and its phase on the elastic part of the
unitarity cut. In Sec. IV, we shall explore numerically
the consequences of this result. Before this we review in the
next section the quantities used as input in the calculations.

III. INPUT

The perturbation expansion (8) of the scalar correlator is
known at present in the M̄S scheme toOðα4sÞ [36]. We used
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the coefficients d̄0;j written in [36,40] for 1 ≤ j ≤ 4 as
polynomials of degree j of the quantity LQ ¼ logQ2=μ2.
We have to specify the spacelike value Q2 > 0 to be

taken in the dispersion relation (7). The obvious require-
ment is that the perturbative QCD expansion (8) must be
meaningful. As discussed in [34] and in other applications
of this formalism [24,26,29,30], the choice Q ¼ 2 GeV is
very reasonable for correlators involving light-quark oper-
ators, so we make this choice here. For illustration, as in
[34], we take alsoQ ¼ 1.5 GeV, which is still large enough
compared to ΛQCD ∼ 0.300 GeV. Other choices of Q will
be discussed in the last section. For the renormalization
scale we made the choices μ ¼ 2 GeV and μ ¼ Q.
We obtained the strong coupling αsðμ2Þ by using as input

αsðmτÞ ¼ 0.330� 0.010 [41] and evolving it to the scale μ
by the renormalization group equation with β function to
the same accuracy as the correlator [42,43]. The quark
masses at μ ¼ Q have been calculated starting from μ ¼
2 GeV and evolving them with the running to four loop
from [44]. The apparent convergence of the expansion of
Ψ00ðQ2Þ is quite good: for Q ¼ 2 GeV the contribution of
the higher corrections in (8) is of 10% for α2s terms, 5% for
α3s and 3% for α4s. For Q ¼ 1.5 GeV the corrections are
larger by a factor of about two.1

Considerable progress in the calculation of the ππ phase
shifts using experimental data and Roy equations [45] has
been achieved recently. In particular, several determinations
of δ00ðtÞ have been performed [46–49]. We used in the
calculations the two solutions given in Eq. (11) and the
Appendix of [48] and the most precise solution, with CFD

parameters, specified in Eq. (A.3) and Table V of [49]. As
can be seen from Fig. 1, where the central values of these
phases are shown for

ffiffi
t

p
< 2mK, there are some differences

between them, the prediction from [49] exhibiting slightly
larger values around 0.8 GeV and a more pronounced
increase near the KK̄ threshold. We mention that the phase-
shift δ00 determined in [47], with the boundary values given
in Eq. (72) of that work, is quite close to the second solution
of [48], both exhibiting in particular a more moderate
increase near the opening of the KK̄ channel.

IV. RESULTS

By first setting K ¼ 2 in the inequalities (16) and (19)
and fixing the normalization Γπð0Þ, we obtain from these
inequalities a lower bound on the sum mu þmd in terms of
the scalar radius. Alternatively, the inequalities impose
constraints on hr2iπs for input values of quark masses. Since
the right hand sides of (16) and (19) are quadratic convex
functions of hr2iπs , they lead to allowed ranges for this
quantity, situated between a lower and an upper bound.
In Fig. 2, we show the parts of the boundaries of

the domains (16) and (19) leading to lower bounds on
mu þmd for fixed hr2iπs , or lower bounds on hr2iπs for
fixed mu þmd, for a range of hr2iπs of physical interest.
The renormalization scale has been fixed at μ ¼ 2 GeV.
The allowed values of the variables are situated above the
curves. The parts of the boundaries giving upper bounds
on hr2iπs involve values of this quantity too large to be of
interest and are not shown in this figure (they will appear
however in Figs. 3, 4 shown below).
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FIG. 1. Phase shift δ00ðtÞ below the KK̄ threshold calculated
from Roy equations in Refs. [48] and [49].
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FIG. 2. Boundaries of the domains (16) and (19) leading to
lower bounds on mu þmd for fixed hr2iπs or to lower bounds on
hr2iπs for fixed mu þmd. Solid red (blue) lines: curves obtained
with input phase equal to Solution 1 from [48], for Q ¼ 2 GeV
(1.5 GeV). Dashed red (blue) lines: curves obtained without
phase input, for Q ¼ 2 GeV (1.5 GeV).

1As for other QCD correlators, the expansion (8) is most
probably a divergent series. In the spirit of asymptotic series, we
attached to it an uncertainty equal to the last term kept in the
expansion.
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The comparison of the dashed and solid curves, obtained
without and with phase input, respectively, prove the
significant improvement brought by the implementation
of Watson theorem. Figure 2 shows also that the bounds
obtained with Q ¼ 1.5 GeV (blue curves) are more strin-
gent than those obtained with Q ¼ 2 GeV (red curves).
The results shown in Fig. 2 have been obtained with the

central value Γπð0Þ ¼ 0.99m2
π and the first solution for the

phase-shift δ00 given in [48]. The phase shift from [49] leads
to very close and slightly weaker results, while the second
solution given in [48] leads to somewhat better (higher)
bounds. It appears that a phase-shift δ00 with a moderate
increase near the KK̄ threshold, such as exhibited by
solution 2 of [48] and the phase-shift calculated in [47],
leads to stronger lower bounds. These constraints can be

used for testing the consistency of specific values for the
sum of light quark masses and the pion scalar radius.
The study of the light quarks masses has a long history in

the frame of low-energy effective theory of QCD [50,51].
The quantity difficult to estimate is the differencemu −md,
or the ratio mu=md, for which recently an accurate value
was obtained through the dispersive analysis [52] of the
isospin-breaking decay η → 3π. We concentrate in our
discussion on the recent lattice calculations of the quark
masses and hr2iπs , summarized in the review [37]. From
Table 7 of [37], one can obtain 13 lattice predictions for the
sum mu þmd at the scale μ ¼ 2 GeV, ranging from
ð5.60� 0.55Þ MeV [53,54] to ð8.51� 0.51Þ MeV [55],
while four values of hr2iπs are given in Table 22 of the same
review.
Using as input the lowest of these values, hr2iπs ¼

ð0.481� 0.062Þ fm2, obtained by the HPQCD Collab-
oration [56], and varying the normalization in the range
(4) we obtained with the phase 2 from [48] a lower
bound on mu þmd in the range ð5.99–6.86Þ MeV for
Q ¼ 2 GeV, and in the range ð6.76–7.74Þ MeV for
Q ¼ 1.5 GeV. The range obtained with Q ¼ 1.5 GeV is
in slight tension with the lowest value of mu þmd
in Table 7 of [37], quoted above, obtained by MILC
Collaboration [53,54].
For the other values of hr2iπs listed in Table 22 of [37],

which are larger than the HPQCD prediction, one
obtains from Fig. 2 smaller lower bounds on mu þmd,
which are in no conflict with the values given in Table 7 of
[37]. Adopting the central value hr2iπs ¼ 0.61 fm2 of
the lattice calculations in [57–59] and using as input for
the phase the solution 2 from [48], the most conservative
lower bound, obtained with Q ¼ 2 GeV and Γπð0Þ ¼
ð0.99� 0.02Þm2

π , is
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FIG. 3. Allowed domain in the hr2iπs − cπs plane for mu þmd ¼ 6.85 MeV [41]. Left panel: Q ¼ 2 GeV. Right panel: Q ¼ 1.5 GeV
(note the different scales). Large ellipses: allowed domains obtained without phase input. Inner ellipses: allowed domains with phase
input from [48].
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FIG. 4. Inner ellipses from Fig. 3. Gray: allowed domain for
Q ¼ 2 GeV. Cyan: allowed domain for Q ¼ 1.5 GeV.
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mu þmd ≥ 5.68 MeV: ð23Þ

This bound is consistent with all the lattice values
listed in Table 7 of [37] and the average mu þmd ¼
ð6.85� 0.25Þ MeV quoted in the Review of Particle
Physics [41].
We can generalize the constraints by setting in (16) and

(19) the parameter K ¼ 3, i.e., including also a curvature
term in the expansion (3). Then, for a fixed value of the
sum of quark masses, the inequalities (16) and (19)
describe ellipses in the plane hr2iπs − cπs . We show for
illustration in Fig. 3 the ellipses obtained using as input for
the phase the solution 1 from [48] and the average value
mu þmd ¼ 6.85 MeV, quoted in [41]. The CFD para-
metrization [49] of the phase-shift leads to slightly larger
domains, while for the solution 2 of δ00 given in [48] the
allowed domains are slightly smaller.
The comparison of the large ellipses with the small ones

shows again the considerable effect of the implementation of
Watson theorem. As before, the choice Q ¼ 1.5 GeV leads
to stronger constraints. In Fig. 4, we show for comparison the
small ellipses, obtained with implementation of Watson
theorem, for Q ¼ 1.5 GeV and Q ¼ 2 GeV.
From these ellipses one can read the values of the upper

and lower bounds on hr2iπs obtained by using as input the
sum of the quark masses. The upper bounds turn out to be
very weak, so they are not useful for improving the
accuracy of the dispersive predictions. On the other hand,
as it was clear already from the previous discussion, the
lower bounds are nontrivial. For instance, by varying the
normalization (4) we obtain the conservative lower bounds
hr2iπs ≥ 0.37 fm2 for Q ¼ 2 GeV and hr2iπs ≥ 0.53 fm2

for Q ¼ 1.5 GeV.
Another interesting property illustrated in Figs. 3, 4 is the

strong correlation between the radius and the curvature at
t ¼ 0. In particular, for hr2iπs ¼ 0.61 fm2, we obtained for
the curvature the allowed range

cπs ∈ ð32.4–35.4Þ GeV−4; ð24Þ

where we included the small variations due to the uncer-
tainties of the phase δ00 below the KK̄ threshold, the
normalization (4), the strong coupling αs and the truncation
of the QCD expansion (8).
The allowed values given in (24) are higher than the

prediction cπs ≈ 10 GeV−4 of the coupled-channel disper-
sive formalism [2,7]. A large value of the curvature would
lead to rather large values of the relevant low energy
constants (LEC) of χPT both for the two and three-flavour
case. The study of these implications is beyond the scope
of the present paper. It is important however to identify
possible sources of systematic uncertainties that can affect
both the dispersive approach and the bounds derived in this
paper. We shall briefly discuss this problem in the next
section.

V. DISCUSSION AND CONCLUSIONS

In this work, we revisited the application of the Meiman-
Okubo formalism to the light-quark scalar correlator,
improving the previous analysis [34] by the implementation
of Watson theorem (5) up to the KK̄ threshold and by the
inclusion of higher derivatives in the Taylor expansion (3)
of the pion scalar form factor. Moreover, recent progress in
the determination of the scalar correlator in perturbative
QCD and the phase shift δ00 of pion-pion scattering has been
taken into account.
Our result (19) is a model-independent constraint relat-

ing the sum of the light quark masses mu þmd (appearing
in the expression (8) of the lhs) to the derivatives of the pion
scalar form factor (entering the real coefficients gk), and the
phase shift δ00ðtÞ below the KK̄ inelastic threshold (appear-
ing in the expression (22) of ΦðθÞ). The phase of the form
factor above the elastic region is not required in this
approach. The results shown in Figs. 1–3 illustrate the
significant improvement brought by the implementation of
Watson theorem along the entire elastic region up to theKK̄
threshold.2

We have applied the above constraint for testing the
consistency of the recent lattice results on the quark masses
and the pion scalar radius hr2iπs . We found that, except a
slight tension between the lowest value of hr2iπs given in
Table 22 of the review [37] and the lowest value ofmu þmd
in Table 7 of the same review, the recent lattice determi-
nations of the light quark masses and the pion scalar radius
satisfy the consistency test.
As illustrated in Fig. 4, the sum of the light-quark masses

and the phase below the inelastic threshold impose non-
trivial constraints on the higher coefficients of the Taylor
expansion (3) of the pion scalar form factor. The upper
bounds on the scalar radius are very weak, being not useful
for increasing the precision of the dispersive calculations of
hr2iπs . On the other hand, the lower bounds turn out to be at
the edge of the currently accepted values.
Figure 4 shows also a strong correlation between the

radius hr2iπs and the curvature cπs . This result is not
surprising: strong correlations between the higher deriva-
tives have been obtained also for other form factors in
the frame of Meiman-Okubo formalism [23,25,33]. In the
present case, somewhat surprising is the fact that the
allowed range (24) for the curvature corresponding to
hr2iπs ¼ 0.61 fm2 is considerably higher than the predic-
tions of the dispersive treatment [2,7]. It is of interest
therefore to discuss the possible systematic uncertainties

2If the phase is imposed only up to 0.5 GeV, as in [34], the
constraints are weaker, the solid lines in Fig. 2 being shifted
downward by about 1 MeV. Note that the bounds reported in [34]
are somewhat higher since they have been obtained with the
one-loop expression for Ψ00ðQ2Þ. The question of higher pertur-
bative orders was addressed in [35], where it was found that a
resummation lowers the bounds, in agreement with our results.
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that can affect the dispersive approach and the bounds
derived in this paper.
The dispersive approach exploits unitarity, which relates

the form factors to the meson-meson scattering amplitudes
through a set of coupled homogeneous integral equations
[2,6,7]. For solving these integral equations, each form
factor is parametrized most generally as a polynomial PðtÞ
multiplied by an Omnès function ΩðtÞ, defined in terms of
the phase δðtÞ on the cut by

ΩðtÞ ¼ exp

�
t
π

Z
∞

4m2
π

dt0
δðt0Þ

t0ðt0 − tÞ
�
: ð25Þ

In particular, for the form factor ΓπðtÞ the polynomial was
taken as a constant, which implies that the form factor was
assumed to have no zeros.3 This assumption may be too
restrictive: the presence of a polynomial which multiplies
the Omnès function can lead to different predictions outside
the limited interval of the unitarity cut where the coupled-
channel equations are solved.
Another source of systematic uncertainty is the fact that

the phase δðtÞ is not known at higher energies, and some
model-dependent assumptions about its behavior are
required in the dispersive approach. One can check that

the modulus of the Omnès function (25) behaves as t−
δð∞Þ
π at

large t. Therefore, ifΩðtÞ is multiplied by a polynomial, the
asymptotic phase δð∞Þ should be increased in order to
ensure the asymptotic decrease as 1=t of the form factor,
predicted by perturbative QCD. Although the higher
derivatives at t ¼ 0 are less sensitive to the phase at high
energies, an anomalously large contribution of the inelastic
channels and the presence of one or more zeros in the
complex plane may have a significant contribution to the
curvature.
On the other hand, the bounds derived in the present

paper have been obtained with no assumptions about the
phase above the KK̄ threshold or the analytic expression of
the form factor (i.e., the presence or absence of zeros).
Below (24) we mentioned the small uncertainties due to the
various pieces of the input. We shall now consider in more
detail the normalization condition (4) and the perturbative
QCD input as possible sources of systematic uncertainties.
As already mentioned, the error given in (4) might be

underestimated. It is of interest to see how much would this
uncertainty have to change in order to have a substantial
impact on the results. We found that by increasing the error
quoted in (4) by a factor of 10, the lower bound (24) on the
curvature decreases slightly, becoming 31 GeV−4. It turns
out that in order to decrease the lower bound on the
curvature below 20 GeV−4, a huge increase of the error by a

factor of about 40 would be required. We emphasize that
the value of the form factor at the origin does not appear in
the dispersive treatment [2,7], which involves only the
ratio ΓπðtÞ=Γπð0Þ.
Turning to the perturbative QCD input, we note that from

the maximum modulus principle it follows that the bounds
depend in a monotonous way on the value of the lhs of the
inequality (10), in the sense that larger values ofΨ00ðQ2Þ for
a fixed Q lead to weaker bounds. Making the very
conservative assumption that the higher perturbative terms
increase by a factor of 2 the value calculated from the sum
in (8) truncated after four terms, we obtained the slightly
larger interval cπs ∈ ð31 − 36.7ÞGeV−4.
The bounds become weaker also if the value of the

spacelike energyQ is increased (this was already illustrated
in Fig. 4). Therefore, in order to obtain bounds of interest,
one should take the lowest Q for which the perturbative
expansion is considered to be reliable. The range (24) was
obtained by assuming that this value isQ ¼ 2 GeV, which,
as discussed in Sec. III, is reasonable for light-quark
correlators evaluated on the spacelike axis. Assuming
this value to be Q ¼ 4 GeV gives the larger interval
cπs ∈ ð29–36Þ GeV−4, while the choice Q ¼ 10 GeV leads
to the even larger range cπs ∈ ð17 − 46Þ GeV−4. In these
calculations, we used both scales μ ¼ 2 GeV and μ ¼ Q,
which lead to very close results, and took the most
conservative bounds.
Our analysis indicates that the model-independent

bounds can accommodate the low values predicted by
the older dispersive calculations only if the corrections to
the normalization of the form factor at t ¼ 0 are much
larger than quoted in (4), or the perturbative QCD regime
for the scalar correlator is assumed to start at quite large
energies. Whether these strong assumptions are necessary
or not remains to be established.
The results derived in this paper can be improved in

principle by including in the unitarity sum for the spectral
function ImΨðtÞ, besides the ππ states, also the contri-
bution of the KK̄ states, nonzero for t ≥ 4m2

K, which can
be expressed in terms of the kaon scalar form factor ΓKðtÞ.
One can thus include information about ΓKð0Þ available
in χPT, however, as discussed in [6], the knowledge of
this quantity is not very precise. In addition, one has to
evaluate also the contribution of the unphysical cut of
ΓKðtÞ along ð4m2

π; 4m2
KÞ, which requires some model-

dependent assumptions. Therefore, we shall not pursue
this line here.4

We finally note that the uncertainties of the input
quantities can be accounted for in a more realistic way
by merging the present formalism with Monte Carlo
simulations, as done in the recent analysis [12] of the pion
charge radius.3It is known that χPT predicts no zeros for ΓπðtÞ near the

origin. However, one or more zeros located at larger distances in
the complex plane, outside the range where χPT is reliable,
cannot be excluded by general arguments.

4The inclusion of higher states in the Meiman-Okubo formal-
ism was used in [32] for constraining the ωπ form factor.
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