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We discuss diffractive photon production of vector mesons in holographic QCD. At large
ffiffiffi
s

p
, the QCD

scattering amplitudes are reduced to the scattering of pairs of dipoles exchanging a closed string or a
pomeron. We use the holographic construction in a 5-dimensional anti-deSitter space (AdS5) to describe
both the intrinsic dipole distribution in each hadron, and the pomeron exchange. Our results for the heavy
meson photon production are made explicit and compared to some existing experiments.
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I. INTRODUCTION

Diffractive scattering at high energy is dominated by
pomeron exchange, an effective object corresponding to the
highest Regge trajectory. The slowly rising cross sections
are described by the soft Pomeron with a small intercept
(0.08) and vacuum quantum numbers. Reggeon exchanges
have even smaller intercepts and are therefore subleading.
Reggeon theory for hadron-hadron scattering with large
rapidity intervals provide an effective explanation for the
transverse growth of the cross sections [1]. In QCD at weak
coupling the pomeron is described through resummed
Balitsky-Fadin-Kuraev-Lipatov (BFKL) ladders resulting
in a large intercept and zero slope [2,3].
The soft Pomeron kinematics suggests an altogether

nonperturbative approach. Through duality arguments,
Veneziano suggested long ago that the soft Pomeron is a
closed string exchange [4]. In QCD the closed string world
sheet can be thought as the surface spanned by planar gluon
diagrams. The quantum theory of planar diagrams in
supersymmetric gauge theories is tractable in the double
limit of a large number of colors Nc and ’t Hooft coupling
λ ¼ g2Nc using the AdS=CFT holographic approach [5].
In the past decade there have been several attempts at

describing the soft pomeron using holographic QCD [6–
11]. In this paper we follow the work in [10] and describe

diffractive γ þ p → V þ p production through the
exchange of a soft pomeron in curved in a 5-dimensional
anti-deSitter space (AdS5) geometry with a soft or hard
wall. This is inherently a bottom-up approach [12] with the
holographic or fifth direction playing the role of the scale
dimension for the closed string, interpolating between two
fixed size dipoles. We follow the suggestion in [13,14] and
describe the intrinsic dipole size distribution of hadrons on
the light cone through holographic wave functions in
curved AdS5. Diffractive production of vector mesons
was investigated in the nonholographic context by many
in [15]. Recently a holographic description was explored in
[16] in the context of the color glass condensate, and in the
context of reggeized gravitons in [17].
Our approach is different from calculating the entire

diffractive process in the holographic setup through the use
of boundary currents and graviton exchange as in, e.g.,
[17]. The diffractive amplitude for vector photoproduction
is first established in 4-dimensional QCD, where it reduces
to the convolution of a dipole-dipole scattering amplitude
times pertinent light-cone wave functions. This QCD
reduction is exact in the eikonal limit and is the benchmark
for all model estimates. We then use holography to make a
nonperturbative estimate of the wave functions and the
dipole-dipole scattering amplitude.
The organization of the paper is as follows: In Sec. II we

briefly review the setup for diffractive scattering through a
holographic pomeron as a closed surface exchange in
curved AdS5 with a (hard) wall. In Sec. III, we detail
the construction of the light-cone wave functions including
their intrinsic light-cone dipole distributions. In Secs. IV
and V we make explicit the AdS5 model with a (soft) wall
to describe the intrinsic dipole distributions of massive
vector mesons. As a check on the intrinsic wave functions,
we calculate the pertinent vector electromagnetic decay
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constants. Our numerical results for the partial cross
sections and their comparison to vector photoproduction
data are given in Sec. VI. Our conclusions are summarized
in Sec. VII.

II. DIPOLE-DIPOLE SCATTERING

In this section we briefly review the setup for dipole-
dipole scattering using an effective string theory. For that we
follow [11] and consider the elastic scattering of two dipoles

D1ðp1Þ þD2ðp2Þ → D1ðk1Þ þD2ðk2Þ ð1Þ
as depicted in Fig. 1. b is the impact parameter and the
relative angle θ is the Euclidean analogue of the rapidity
interval [18,19]

cosh χ ¼ s
2m2

− 1 → cos θ ð2Þ

with s ¼ ðp1 þ p2Þ2.

A. Dipole-dipole correlator

Following standard arguments as in [11], the scattering
amplitude T in Euclidean space is given by

1

−2is
T ðθ; qÞ ≈

Z
d2beiq⊥·bWW ð3Þ

with WW the connected correlator of two Wilson loops,
each represented by a rectangular loop sustained by a
dipole and slated at a relative angle θ in Euclidean space, as
shown in Fig. 1. The leading 1=Nc contribution from a
closed string exchange is

WW ¼ g2s

Z
dT
2T

KðTÞ ð4Þ

where

KðTÞ ¼
Z
T
D½x�e−S½x�þghost ð5Þ

is the string partition function on the cylinder topology with
modulus T. The sum is over the string world sheet with
specific gauge fixing or ghost contribution. Here gs is the
string coupling.

B. Holographic pomeron

In flat 2þD⊥ dimensions, the effective string descrip-
tion for long strings is the Polyakov-Luscher action with
D⊥ ¼ 2. However, the dipole sources for the incoming
Wilson loops vary in size within a hadron. To account for
this change and enforce conformality at short distances, we
follow [9] and identify the dipole size z with the holo-
graphic direction. The stringy exchange in (4) is now in
curved AdS in 2þD⊥ with D⊥ ¼ 3. At large relative
rapidity χ this exchange is dominated by the string tachyon
mode with the result [9]

WWðz; z0;b⊥Þ ≃ −
g2s
4

ð2π2Þ32
λ
1
4

ðzz0Þ2
z40

Nðχ; z; z0;b⊥Þ ð6Þ

and

Nðχ;b⊥; z; z0Þ ¼
z20
zz0

Δðχ; ξÞ þ z
z0
Δðχ; ξ�Þ; ð7Þ

where Δðχ; ξÞ refers to the tachyon propagator in walled
AdS. It solves a curved diffusion equation in the metric
defined by

ds2 ¼ z20
z2
ðdb2⊥ þ dz2Þ ð8Þ

within 0 ≤ z ≤ z0 with a zero current at the wall,

Δðχ; ξÞ ¼ exp½ðαP − 1Þχ�
ð4πDχÞ3=2

ξ exp½−ξ2=ð4DχÞ�
sinhðξÞ ð9Þ

with the chordal distances given by

cosh ξ ¼ coshðu0 − uÞ þ b2⊥
2z20

eu
0þu;

cosh ξ� ¼ coshðu0 þ uÞ þ b2⊥
2z20

eu
0−u; ð10Þ

with u ¼ ln z0
z and u0 ¼ ln z0

z0 . The holographic Pomeron
intercept and diffusion constant are respectively given by

αP ¼ 1þD⊥
12

−
1

2
ffiffiffi
λ

p ;

D ¼ 1

2
ffiffiffi
λ

p : ð11Þ

FIG. 1. Dipole-Dipole scattering.
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The string coupling in walled AdS is identified as gs ¼
κgλ=4πNc and α0=z20 ¼ 1=

ffiffiffi
λ

p
. Here κg is an overall

dimensionless parameter that takes into account the
arbitrariness in the normalization of the integration
measure in (4). This analysis of the holographic
Pomeron is different from the (distorted) spin-2 graviton
exchange in [8] as the graviton is massive in walled
AdS5. Our approach is similar to the one followed in
[11] with the difference that 2þD⊥ ¼ 5 and not 10 [9].
It is an effective approach along the bottom-up scenario
of AdS5. Modulo different parameters, the holographic
Pomeron yields a dipole-dipole total cross section that is
similar to the one following from BFKL exchanges
[20,21], and a wee-dipole density that is consistent with
saturation at HERA [22].

III. PHOTON-HADRON SCATTERING

In a valence quark picture an incoming meson is
considered as a dipole made of a qq̄ pair, while a baryon
is considered as a dipole made of a pair of a quark and
diquark. The quantum scattering amplitude follows by
assigning to the scattering pair dipole sizes r1;2 and
distributing them within the quantum mechanical ampli-
tude of the pertinent hadron. At large

ffiffiffi
s

p
the scattering

particles propagate along the light cone and are conven-
iently described by light-cone wave functions. Typically,
the latters are given in terms of an intrinsic wave function
Ψðx; rÞ for a dipole of size r with a fraction of parton
longitudinal momentum x. With this in mind, the scattering
amplitude for the diffractive process for vector meson
photoproduction γ þ p → V þ p reads

A¼−2is
Z

d2b⊥e−iq⊥b⊥

×
Z

d2r1dx1
4π

Ψ†
VΨγðx1;r1Þ

×
Z

d2r2dx2
4π

Ψ†
pΨpðx2;r2Þð−WWðr1;r2;b⊥ÞÞ ð12Þ

¼−2is
Z

db2⊥πJ0
�
jb⊥j

ffiffiffiffiffi
jtj

p �

×
Z

d2r1dx1
4π

Ψ†
VΨγðx1;r1Þ

×
Z

d2r2dx2
4π

Ψ†
pΨpðx2;r2Þð−WWðr1;r2; jb⊥jÞÞ: ð13Þ

The 1
4π normalization conforms with the light-cone rules.

Note that in flat D⊥ space (also for ξ ≪ 1), the
propagator (9) simplifies to

ΔFðχ; ξÞ ¼ ΔFðχ; ξ�Þ

¼ exp½ðαP − 1Þχ�
ð4πDχÞ3=2

× exp½−ðb2⊥ þ ðz − z0Þ2Þ=ð2α0χÞ� ð14Þ

after the substitution z20D → α0
2
. For an estimate of (12) we

may insert (14) into (12), ignoring the wall and assuming
z ∼ z0 to carry out the integration in (12) exactly

AF ¼ 2 ×
g2s
4

ð2π2Þ32
λ
1
4

2isz20
ð4πD ln s

s0
Þ12
�
s
s0

�
αPðtÞ−1

×
Z

d2r1dx1
4π

Ψ†
VΨγðx1; r1Þ

×
Z

d2r2dx2
4π

Ψ†
pΨpðx2; r2Þ ð15Þ

with the Pomeron trajectory

αPðtÞ ¼ αP þ α0

2
t: ð16Þ

A. Photon wave function

The description of the light-cone photon wave function
in terms of a qq̄ pair follows from light cone perturbation
theory as described in [23]. Let Q2 be the virtuality of the
photon of polarization h. The amplitude for finding a qq̄
pair in the virtual photon with light-cone momentum
fractions ðx; x̄Þ is given by [15,23]

ψγ;L
h;h̄
ðr;x∶Q2;mfÞ¼

ffiffiffiffiffiffi
Nc

p
eefδh;−h̄xx̄2Q

K0ðϵrÞ
2π

ψγ;T�
h;h̄

ðr;x∶Q2;mfÞ
¼

ffiffiffiffiffiffiffiffi
2Nc

p
eef½ie�iθrðxδh�δh̄∓− x̄δh∓δh̄�Þð∓∂rÞ

þmfδh�δh̄�Þ�
K0ðϵrÞ
2π

ð17Þ

with Ψγ
h;h̄

the matrix entries in helicity of Ψγ in (12). Here

eef is the charge of a quark of flavor f, ϵ2 ¼ xx̄Q2 þm2
f,

and K0;1 are modified Bessel functions. Also ðr; θrÞ are the
2-dimensional dipole polar coordinates. While the photo-
production analysis to be detailed below corresponds to
Q2 ¼ 0, we will carry the analysis for general Q2 for future
reference.

B. Hadron wave functions

We note that in (12) only the squared proton wave
function is needed, while both the vector meson and photon
amplitudes are required. With this in mind, we define the
proton (squared) wave function for a quark-diquark pair as
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jψpðx; rÞj2 ¼
2

rp
δ

�
x −

1

2

�
δðr − rpÞ ð18Þ

by simply assuming equal sharing of the longitudinal
momentum among the pair, and a fixed dipole size rp,
with the normalization

Z
d2rdx
4π

jψpðx; rÞj2 ¼ 1: ð19Þ

The vector meson wave function on the light cone will be
sought by analogy with the photon wave function given
above. Specifically we write

ψV;L
h;h̄

ðr; x∶MV;mfÞ ¼ δh;−h̄xx̄fLðx; rÞ

ψV;T�
h;h̄

ðr; x∶MV;mfÞ ¼
�
ir�

rMV
ðxδh�δh̄∓ − x̄δh∓δh̄�Þð∓ ∂rÞ

þ mf

MV
δh�δh̄�

�
fTðx; rÞ ð20Þ

where ΨV
h;h̄

are the matrix entries in helicity of ΨV in (12).
The intrinsic fL;Tðx; rÞ dipole distributions for the vector
mesons will be sought below in the holographic construc-
tion by identifying the holographic direction in the descrip-
tion of massive vector mesons with the dipole size [13,14].

C. Partial cross sections

The partial diffractive cross sections for the production
of longitudinal and transverse vector mesons are given by

dσL;T
dt

¼ 1

16πs2
jAL;T j2 ð21Þ

with the virtual-photon-vector-meson transition amplitudes
following from the contraction of the helicity matrix
elements (17)–(20). The results are

L∶Ψ†
VΨγ ¼

2
ffiffiffiffiffiffi
Nc

p
π

eeVðxx̄Þ2QK0fLðx; rÞ

T∶Ψ†
VΨγ ¼

ffiffiffiffiffiffi
Nc

p

π
ffiffiffi
2

p eeV

×

�
ϵ

MV
ðx2 þ x̄2ÞK1ð−∂rÞ þ

m2
f

MV
K0

�
fTðx; rÞ:

ð22Þ

The vector charge eV is computed as the average charge

eV ¼
				
X
f

afef

				 ¼
�
ρ∶

1ffiffiffi
2

p ;ω∶
1ffiffiffiffiffi
18

p ;ϕ∶
1

3
; J∶

2

3
;ϒ∶

1

3

�

ð23Þ

in a state with flavor content V ¼ P
faff̄f. The elastic

differential cross section follows as

dσel
dt

¼ dσL
dt

þ dσT
dt

: ð24Þ

IV. f L;T FROM HOLOGRAPHY

The intrinsic light-cone distributions in the vector
mesons are inherently nonperturbative. Our holographic
setup for the description of the γ þ p → V þ p process as a
dipole-dipole scattering through a holographic pomeron in
AdS5 suggests that we identify the intrinsic light-cone
distributions fL;T with the holographic wave function of
massive spin-1 mesons in AdS5. The mass will be set
through a tachyon field in bulk.

A. AdS model for spin-1

With this in mind, consider an AdS5 geometry with a
vector gauge field A and a dimensionless tachyon field X
described by the nonanomalous action

S ¼
Z

d4xdz

×

�
1

2g25

1

z
FMNFMN −

1

z3
jDXj2 þ 3

z5
jX2j

�
; ð25Þ

with DX ¼ dX þ AX and F ¼ dA, M, N ¼ 0; 1; 2; 3; z,
and signature ð−;þ;þ;þ;þÞ The coupling g25 ≡ 12π2=Nc

is fixed by standard arguments [12]. The background
tachyon field satisfies

d
dz

�
1

z3
dX
dz

�
þ 3

z5
X ¼ 0; ð26Þ

which is solved by

XðzÞ ≈ c1zþ c2z3: ð27Þ

The constants in (27) are fixed by the holographic dic-
tionary [5,12] near the UV boundary (z ≈ 0)

XðzÞ ≈Mzþ hQ̄Qiz3: ð28Þ

In the heavy quark limit hQ̄Qi → 0, so XðzÞ ≈Mz.
In the presence of XðzÞ, the vector gauge field satisfies

DMFMN þ 4g25
z2

X2AN ¼ 0: ð29Þ

Wenow seek a plane-wave vectormesonwith 4-dimensional
spatial polarization ϵμ in the form
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AMðx; zÞ ¼ eix
μpμð ffiffiffi

z
p

φðzÞÞδMμϵμðpÞ; ð30Þ

which yields

−φ00 þ
3
4

z2
φþ 4g25

z2
X2ðzÞφ ¼ −p2φ: ð31Þ

We now use the solution for XðzÞ ≈ c1zþ c2z3 with c2 ¼ 0

(no heavy chiral condensate), and identify 4g25c
2
1 ¼ ð2mfÞ2

with mf, the (constituent) quark mass. Thus, near the
boundary

−φ00 þ
3
4

z2
φ ≈ ð−p2 − ð2mfÞ2Þφ: ð32Þ

We can now either solve (32) using a hard wall by restricting
(32) to the slab geometry 0 ≤ z ≤ z0, or by introducing a soft
wall [24]. The former is a Bessel function with a spectrum
that does not Reggeize, while the latter is usually the one
favored by the light conewith a spectrum thatReggeizes. The
minimal soft wall amounts to

−φ00 þ
3
4

z2
φþ κ2z2φ ¼ ð−p2 − ð2mfÞ2Þφ: ð33Þ

Defining E ¼ M2 − ð2mfÞ2, it follows that

M2
n ¼ 4κ2ðnþ 1Þ þ ð2mfÞ2

φnðzÞ ∼ ðκzÞ32e−1
2
κ2z2L1

nðκ2z2Þ: ð34Þ
Themeson spectrumReggeizes. Thevalue for κ ¼ ffiffiffiffiffi

σT
p

=2 ≈
1
2
GeV is fixed by the string tension.

B. Intrinsic wave functions

We now suggest that the holographic wave function

φn¼0ðzÞ ∼ ðκzÞ32e−1
2
κ2z2 ð35Þ

can be related to the intrinsic amplitudes fL;T for the dipole
distribution in the light-cone wave functions for the vector
mesons in (20). For that we note that the main part of the

transverse vector in (20) satisfies Ψ⃗T ∼ ∇⃗fT . With this in
mind, we identify the holographic coordinate z with the
relative dipole size r through z ¼ ffiffiffiffiffi

xx̄
p

r [13,14], and match
the r probability of the intrinsic state to the z probability of
the spin-1 state in bulk AdS5,

drj ffiffiffi
r

p ∇⃗fT j2 ∼
�
dz
z
j ffiffiffi

z
p

φ0ðzÞj2
�

z¼ ffiffiffiffi
xx̄

p
r
: ð36Þ

The extra 1
z in the bracket is the warping factor. Solving for

fT , we obtain

fTðx; rÞ ¼ 2κðxx̄Þ12e−1
2
κ2xx̄r2 ; ð37Þ

which normalizes to 1,

Z
d2rdx
4π

jfTðx; rÞj2 ¼ 1 ð38Þ

For a massive spin-1 meson with the helicity content and
quark mass analogous to the γ� ∼ q̄q content as ansatz in
(37), wewill assume the holographic dipole content derived
in (37), with instead general overall constants

fT;Lðx; rÞ → NT;Lðxx̄Þ12e−1
2
κ2xx̄r2 : ð39Þ

NT;L are now fixed by the helicity-dependent normaliza-
tions using (20), i.e.,

Z
d2rdx
4π

jψL;T
V ðx; rÞj2 ¼ 1: ð40Þ

More specifically we have

L∶
N2

L

2κ2

Z
1

0

ðxx̄Þ2dx ¼ 1

T∶
N2

T

2κ2

Z
1

0

�
m2

f

M2
V
þ xx̄ðx2 þ x̄2Þ κ2

2M2
V

�
dx ¼ 1; ð41Þ

which fix NT;L,

L∶NL ¼ κ
ffiffiffiffiffi
60

p

T∶NT ¼ κMV

�
40

κ2 þ 20m2
f

�1
2

: ð42Þ

Equation (39) is in agreement with the intrinsic dipole wave
function developed in [14] using the light-cone holographic
procedure for mf ¼ 0. We note that (35) describes a
massive spin-1 gauge field in AdS5 following the soft-wall
construction in [24].
The substitution z →

ffiffiffiffiffi
xx̄

p
r in (35)–(37) can be physi-

cally motivated by the fact that the intrinsic diplole size r is
small in the UVand large in the IR. The dependence on the
parton fraction x is more ad hoc, but perhaps one can find a
motivation in the light-cone arguments presented in [14].
We have no additional theoretical arguments to support it.
On the phenomenological side, the ensuing intrinsic holo-
graphic wave function (39) compares favorably to the ones
used phenomenologically in semileptonic decays [25], as
well as some of the vector photoproduction analyses in
[15,16]. The difference is an extra suppression due to the
mass of the vector meson in the exponent.

V. LEPTONIC DECAY CONSTANTS

The size of the light-cone wave function is empirically
constrained by the electromagnetic decay width V → eþe−
as captured by the measured vector decay constant fV for
each of the vector mesons,

h0jJμemð0ÞjψL;T
V ðqÞi ¼ efVMVϵ

μ
L;TðqÞ: ð43Þ
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This puts an empirical constraint on the longitudinal and
transverse light-cone wave functions (37) using the holo-
graphic intrinsic wave functions (39) as suggested earlier.

A. Longitudinal

More specifically, the longitudinal wave function gives,
for the right-hand side in (43),

efVMVϵ
þ
L ðqÞ → efVqþ ð44Þ

as qþ → ∞, with the conventions q2 ¼ qþq− ¼ −Q2 ¼
−M2

V . The left-hand side in (43) can be reduced using the
light-cone rules in the Appendix of [23] together with the
longitudinal wave function (20) to have

h0jJþemð0ÞjψL
VðqÞi ¼

Z
1

0

dx

�
eeV

ffiffiffiffiffiffi
Nc

p
δh;−h̄

2
ffiffiffiffiffi
xx̄

p
ffiffiffi
x

p ffiffiffī
x

p qþ
�

×

�Z
d2rd2k
ð2πÞ3 eik·rδh;−h̄xx̄fLðx; rÞ

�
:

ð45Þ

The first bracket refers to the reduction of the current, and
the second bracket to the reduction of the longitudinal wave
function. The result for the vector decay constant from the
longitudinal current Jþem is

fLV
κ

¼ eV
ffiffiffiffiffiffi
Nc

p 3
ffiffiffiffiffi
15

p

32
ð46Þ

after the use of the normalization NL as given in (42). For
example, for the rho meson fρ=κ ¼ 9

ffiffiffi
5

p
=ð32 ffiffiffi

2
p Þ, while

for the phi meson fϕ=κ ¼ 3
ffiffiffi
5

p
=32.

B. Transverse

For a consistency check, the same rules apply to the
transverse component of the current J1em. The transverse
wave function gives, for the right-hand side of (43),

efTVMVϵ
1
TðqÞ → efTVMV

�
−1ffiffiffi
2

p
�
: ð47Þ

The left-hand side can be reduced using also the light-cone
rules

h0jJ1emð0ÞjψT
VðqÞi

¼
Z

1

0

dx
Z

d2rd2k
ð2πÞ3 eik·r

×
eeV

ffiffiffiffiffiffi
Nc

p
ffiffiffiffiffiffiffiffiffiffi
2x2x̄

p
�
xk− − x̄kþffiffiffiffiffi

xx̄
p δh;−h̄ −

mfffiffiffiffiffi
xx̄

p δh;h̄

�

×

�
ir�

MV

�
−
1

r
∂r

�
ðxδhþδh̄− − x̄δh−δh̄þÞ þ

mf

MV
δh;h̄

�

× fTðx; rÞ: ð48Þ

The first contribution stems from the reduction of the
current and the second contribution from the reduction of
the transverse wave function. The ∓ signs in (48) follows
the h ¼ � assignments. Using the explicit form of the wave
function (37) and performing an integration by parts, we
have the identityZ

d2rd2k
ð2πÞ3 eik·rixþk−

�
−
1

r
∂r

�
fTðx; rÞ ¼ −

κ2xx̄
π

fTðx; 0Þ:

ð49Þ
Inserting (49) into (48) gives, for the left-hand side,

h0jJ1emð0ÞjψT
VðqÞi ¼ −

eeV
ffiffiffiffiffiffi
Nc

p
2π

×
Z

1

0

dx

�
m2

f þ κ2xx̄ðx2 þ x̄2Þ
MVxx̄

�

× fTðx; 0Þ; ð50Þ
which reduces to

fTV
κ

¼ eV
ffiffiffiffiffiffi
Nc

p

π
ffiffiffi
2

p
�

40M2
V

κ2 þ 20m2
f

�1
2

×
Z

1

0

dxffiffiffiffiffi
xx̄

p
�
m2

f

M2
V
þ xx̄ðx2 þ x̄2Þ κ2T

M2
V

�
: ð51Þ

Substituting the value of κ from the Regge spectrum (34)
yields the transverse-to-longitudinal ratio for the decay
constants

fTV
fLV

¼ 1

6
ffiffiffi
3

p 59ζ2 þ 5

ð1þ 19ζ2Þ12 ð52Þ

with ζ ¼ 2mf=MV . In Fig. 2 we show the behavior of (52)
in the range ζ ¼ 0, 1 from the massless to the heavy quark
limit where it reaches 1.

VI. NUMERICAL ANALYSIS

To carry out the numerical analysis, we can partially
eliminate the model dependence in the transition

FIG. 2. Ratio (52) of the transverse-to-longitudinal decay
constants vs ζ ¼ 2mf=MV from the massless to the heavy
quark limit.
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amplitudes (22), by trading κ in the normalizations NL;T in
(42) with (46) to obtain

L∶Ψ†
VΨγ ¼

128

3π
efLVðxx̄Þ2QK0Fðx; κrÞ

T∶Ψ†
VΨγ ¼

128

3π
efLV

�
1

3þ 57ζ2

�1
2

×

�
ϵ

MV
ðx2 þ x̄2ÞK1ð−∂rÞ þ

m2
f

MV
K0

�
Fðx; κrÞ:

ð53Þ

Here we have set

Fðx; κrÞ ¼ ðxx̄Þ12e−1
2
κ2xx̄r2 ; ð54Þ

with κ fixed by the ground state meson mass in (34),

κ ¼ MV

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
: ð55Þ

With the exception of gs, κ, mf, all holographic param-
etersD⊥, λ, s0, z0, zp are fixed by the DIS analysis in [9] as
listed in Table I. For the light vector mesons, we have set
mu;d;s at their constituent values, and mc;b at their PDG
values. The value of κ is adjusted to reproduce the best
value for the vector meson decay constants. The vector
massesMV are then fixed by (55) as listed in Table I. In our
holographic setup, the lower decay constants for the heavier
mesons imply smaller values of κ (string tension) for J=Ψ,
ϒ in comparison to the ρ, for instance. Since f2V is a
measure of the compactness of the wave function at the
origin, this is reasonable, although the spread in the
transverse direction appears to be larger in the absence
of the Coulombic interactions, which are important for

J=Ψ, ϒ. Finally, the string coupling gs is adjusted to
reproduce the overall normalization of the cross section for
each vector meson channel.

A. Radiative widths

In terms of (46), the radiative decaywidthΓðV→eþe−Þ is

Γ
e2V

¼ 4πα2

3MV

fL2V
e2V

: ð56Þ

We note that (46) is finite in the heavy quark limit as
expected from the Isgur-Wise symmetry. Using (34), (56)
gives

ðρ∶9.32;ω∶8.30;ϕ∶10.6; J∶3.71;ϒ∶0.51Þ KeV: ð57Þ

The emprical ratios of the width to the squared charge are

ðρ∶13.2;ω∶12.8;ϕ∶11.8; J∶10.5;ϒ∶10.6Þ KeV ð58Þ

with eV fixed by (23). The holographic decay widths are in
agreement with the empirical ones for the light vector
mesons ρ, ω, ϕ, but substantially smaller for the heavy
vectormesonsJΨ,ϒ. Thismay be an indication of the strong
Coulomb corrections in the heavy quarkonia missing in our
current holographic construction. Oneway to remedy this is
through the use of improved holographic QCD [26].

B. γp → ρp, ωp

In Fig. 3 we show the differential ρ photoproduction
versus jtj for Eγ ¼ 2.8 GeV. At this energy the photon size
is of the order of the hadronic sizes and sensitive to
nonperturbative physics. In Fig. 4 we show the total cross
section for ω photoproduction in the range of low mass
photons. The discrepancy close to the threshold may be
due to t-channel Reggeons such as sigma exchange, and
the s-channel photoexcitation of the Δð1230Þ, Nð1520Þ,
Nð1720Þ in the intermediate nucleon state, not retained in

TABLE I. Holographic parameters along with the model
prediction for MV, fV . See text.

MV fLV
ðMVÞexp ðfVÞexp fTV=f

L
V mf

[GeV] [MeV] [MeV] [GeV] κ gs

ρ 1000 186.9 1.087 0.380 0.325 0.63
(775.3) (204)

ω 971 44.8 1.114 0.380 0.302 1.46
(782.7) (59)

ϕ 1172 78.67 1.096 0.450 0.375 0.44
(1020) (74)

J=Ψ 3185 153.3 1.344 1.550 0.366 1.50
(3097) (90)

ϒ 9472 49.0 1.367 4.730 0.234 5.00
(9460) (25)

s0 0.1 GeV2 D⊥ 3
zp 1.8 GeV−1 λ 23

FIG. 3. Differential cross section for γp → ρp versus jtj for
Eγ ¼ 2.8 GeV: the solid line is this work; the filled circles are the
data. Data are taken from [27].
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our analysis. Note that both the ρ and ω have comparable
transverse sizes with 1=κ ≈ 1

3
fm but very different decay

constants. We expect their differential and total cross
sections to be in the ratio of their decay constant,
say f2ω=f2ρ ≈ 1

10
.

C. γp → ϕp

In Figs. 5–8, we present the total and differential
cross sections for the ϕ photoproduction γp → ϕp
process. In Fig. 6 we compare our results to the available
CLAS and LEPS data. Our results agree with the
backward angle data well, but overshoot the forward
angle data. In Figs. 7 and 8, the differential cross
sections are shown. The agreement at large

ffiffiffi
s

p
probes

mostly the Pomeron exchange. Note that our overall fit
to the ϕ-decay constant implies a transverse size for the
ϕ that is comparable to the ρ, ω sizes, which is
reasonable. The differential and total cross sections are
expected to be in the ratio of the squared decay constants
f2ϕ=f

2
ρ ≈ 1

5
or f2ϕ=f

2
ω ≈ 1

2
.

D. γp → J=Ψp, ϒp
In Fig. 9 we show the differential cross section for

γp → J=Ψp process, and in Fig. 10 we show the differ-
ential cross section for the γp → ϒp process. We note that
2mf ¼ 2.58, 8.83 GeV, respectively, so

ffiffiffi
s

p
> 10 GeV are

necessary to eikonalize the heavy quarks. These results are

FIG. 4. Total cross section for γp → ωp versus Eγ . The solid
line is this work; the filled circles are the data. Data are taken
from [28].

FIG. 5. Total cross section for γp → ϕp from the threshold toffiffiffi
s

p ¼ 100 GeV. Data are taken from [29–31].

FIG. 6. Differential cross section for γp → ϕp in the low
energy region. The black solid line is the present work. Data atffiffiffi
s

p ¼ 2.015 and 2.365 GeV (red up triangle) are taken from the
charged mode [32] and at

ffiffiffi
s

p ¼ 2.13 and 2.38 GeV (blue down
triangles) from the neutral mode [33] in the CLAS Collaboration.

FIG. 7. Differential cross section for γp → ϕp in the low
energy region. The black solid line is the present work. The data
are from [34]. The units for the photon energy and

ffiffiffi
s

p
are GeV.
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only exploratory, since the transverse sizes of the J=Ψ, ϒ
are large in our current construction as we noted earlier. To
remedy this shortcoming requires including the effects of
the colored Coulomb interaction, which is important in
these quarkonia states. In holography this can be achieved
through the use of improved holographic QCD [26], which
is beyond the scope of our current analysis.
Finally, we note that the general result (12) after further

reduction to (15) implies that the partial diffractive cross
sections for photoproduction (21) scale as s2ðαP−1Þ for both
ρ and J=Ψ production. However, HERA data suggest s0.05

and s0.4 for ρ and J=Ψ, respectively [37]. This behavior
suggests a large increase in the effective intercept of the
Pomeron in relation to the transverse size of the vector
meson, which is not seen in our present holographic
construction.

VII. CONCLUSIONS

In QCD the diffractive photoproduction of vector mes-
ons on protons at large

ffiffiffi
s

p
is described as the scattring of

two fixed size dipoles running on the light cone and
exchanging a soft pomeron. In a given hadron the dis-
tribution of fixed-size dipoles is given by the intrinsic
dipole distribution in the light-cone wave function. The soft
pomeron exchange and the intrinsic dipole distribution are
nonperturbative in nature. We use the holographic construct
in AdS5 to describe both.
The soft Pomeron parameters used in this work were

previously constrained by the DIS data [9], so the extension
to the photoproduction mechanism is a further test of the
holographic construction. The new parameter characteriz-
ing the transverse size of the vector mesons was adjusted to
reproduce the meson radiative decays and found to be
consistent with the expected string tension characteristic of
the vector Regge trajectory. Comparison of our results to
the data for photoproduction of vectors show fair agree-
ment with data for the ρ, ω, ϕ, although the inclusion of
Reggeon exchanges and s-channel photoexcitations of the
nucleon may improve our description at low photon masses
near the threshold. At high photon masses, perturbative
QCD scaling laws are expected. Our analysis of the
photoproduction of J=Ψ, ϒ is limited since the present
construction does not account for the substantial Coulomb
effects for these quarkonia. We hope to address this issue
and others next.
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FIG. 8. Differential cross section for γp → ϕp in the high
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FIG. 10. Differential cross section for γp → ϒp. The black
solid line is the present work.
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