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In a large-momentum nucleon state, the matrix element of a gauge-invariant Euclidean Wilson line
operator accessible from lattice QCD can be related to the standard light-cone parton distribution function
through the large-momentum effective theory (LaMET) expansion. This relation is given by a
factorization formula with a nontrivial matching coefficient. Using the operator product expansion
we derive the large-momentum factorization of the quasiparton distribution function in LaMET, and show
that the more recently discussed pseudoparton distribution approach also obeys an equivalent
factorization formula. Explicit results for the coefficients are obtained and compared at one loop. We
also prove that the matching coefficients in the MS scheme depend on the large partonic momentum
rather than the nucleon momentum.
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I. INTRODUCTION

Parton distribution functions (PDFs) are key quantities
for gaining an understanding of hadron structure and
for making predictions for the cross sections in high-
energy scattering experiments. In QCD factorization
theorems for hard scattering processes [1], the relevant
PDFs are defined in terms of the nucleon matrix elements
of light-cone correlation operators. For example, in dimen-
sional regularization with d ¼ 4 − 2ϵ, the bare unpolarized
quark PDF is

qðx; ϵÞ≡
Z

dξ−

4π
e−ixP

þξ−hPjψ̄ðξ−ÞγþUðξ−; 0Þψð0ÞjPi;

ð1Þ

where x is the momentum fraction, the nucleon momen-
tum Pμ ¼ ðP0; 0; 0; PzÞ, ξ� ¼ ðt� zÞ= ffiffiffi

2
p

are the light-
cone coordinates, and the Wilson line is

Uðξ−; 0Þ ¼ P exp

�
−ig

Z
ξ−

0

dη−Aþðη−Þ
�
: ð2Þ

Most often the bare PDF is renormalized in the MS
scheme to obtain qðx; μÞ, and this renormalized PDF is
used to make predictions for experiment. The relation is

qðx; ϵÞ ¼
Z

1

x

dy
y
ZMS

�
x
y
; ϵ; μ

�
qðy; μÞ; ð3Þ

where μ is the renormalization scale, and we have sup-
pressed the flavor indices in the renormalization constant

ZMS and PDFs. In light-cone quantization with Aþ ¼ 0,
the MS definition has an interpretation as a parton number
density.
So far our main knowledge of the PDF is obtained from

global fits to deep inelastic scattering and jet data; see e.g.,
[2–6]. On the other hand, calculating the PDF from first
principles with QCD has been an attractive subject, which
can e.g., provide access to spin and momentum distribu-
tions that are hard to determine experimentally. Several
different approaches to this have been considered using the
lattice theory which is a nonperturbative method to solve
QCD. Since the lattice theory is defined in a discretized
Euclidean space with imaginary time, it is very difficult to
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calculate Minkowskian quantities with real-time depend-
ence such as the PDF. The first and most well-explored
option is calculating the moments of the PDF [7–11] that
are matrix elements of local gauge-invariant operators.
However, since the lattice regularization breaks Oð4Þ
rotational symmetry, the consequent mixing between oper-
ators of different dimensions makes it difficult to compute
higher moments, which in practice has limited the amount
of information that can be extracted from this approach. A
method to improve this situation by restoring the rotational
symmetry has been proposed in Ref. [12]. Other proposals
include extracting the PDF from the hadronic tensor [13–
16] and the forward Compton amplitude [17], possibly with
flavor changing currents [18], and the more general “lattice
cross sections” [19,20]. Systematic lattice analyses of these
approaches are under investigation, but challenges remain.
In Ref. [21] Ji proposed that the x dependence of the PDF

can be extracted from a Euclidean distribution on the
lattice, which can be understood in the language of the
large-momentum effective theory (LaMET) [22]. This
Euclidean distribution is referred to as the quasi-PDF,
whose bare matrix element is defined using a spatial
correlation of quarks along the z direction,

q̃ðx; Pz; ϵÞ≡
Z

∞

−∞

dz
4π

eixP
zzhPjψ̄ðzÞΓUðz; 0Þψð0ÞjPi; ð4Þ

where Γ ¼ γz, zμ ¼ zeμ, eμ ¼ ð0; 0; 0; 1Þ, and the Wilson
line is

Uðz; 0Þ ¼ P exp

�
−ig

Z
z

0

dz0Azðz0Þ
�
: ð5Þ

For finite momentum Pz, q̃ðx; Pz; ϵÞ has support in
−∞ < x < ∞. According to Ref. [23], there is a univer-
sality class of operators that can be considered. For
example, for the quasi-PDF, one could also replace
Γ ¼ γz by Γ ¼ γ0 in Eq. (4) as both definitions reduce
to the PDF under an infinite Lorentz boost along the z
direction. Unlike the PDF in Eq. (1) that is invariant under
the Lorentz boost, the quasi-PDF depends dynamically on
it through the nucleon momentum Pz. When the nucleon
momentum Pz is much larger that the nucleon mass M and
ΛQCD, which is an attainable window on the lattice, the
quasi-PDF can be factorized into a matching coefficient and
the PDF [21,22]. The factorization formula is

q̃ðx; Pz; μRÞ ¼
Z

1

−1

dy
jyjC

�
x
y
;
μR
μ
;
μ

pz

�
qðy; μÞ

þO
�
M2

P2
z
;
Λ2
QCD

P2
z

�
; ð6Þ

where the renormalized quasi-PDF q̃ðx; Pz; μRÞ is defined
in a particular scheme at renormalization scale μR, and
OðM2=P2

z ;Λ2
QCD=P

2
zÞ are power corrections suppressed by

the nucleon momentum. In general the result for C will
depend on the choice of Γ ¼ γz or γ0 and renormalization
schemes. For Γ ¼ γz the matching coefficient C has been
computed for the isovector quark quasi-PDF at one-loop
level, first with a transverse momentum cutoff in [24],
confirmed in [19,25], and also recently determined in the
regularization-invariant momentum subtraction (RI/MOM)
scheme [26]. Matching for the gluon quasi-PDF is calcu-
lated in [27,28]. The matching coefficient C is independent
of the choice of states used for q̃ and q.1 Since matching
calculations are carried out with quark states of momentum
pz, it can be tricky to know what is the right choice to make
for C, and in some of the literature the choice of pz ¼ Pz

has been suggested when utilizing C for the hadronic
nucleon state. This is e.g., the case in the original quasi-
PDF papers [21,22,24] and in the pioneering lattice cal-
culations of the PDF from the quasi-PDF in [25,29–36],
which was summarized in Ref. [37]. In the quasigeneral-
ized parton distribution analysis in [38] it was observed that
one should take pz ¼ jyjPz. Through our rigorous analysis
of Eq. (6) we show that the correct result for this equation is
indeed pz ¼ jyjPz.
Recently, a different procedure [39] to extract PDFs from

the same lattice QCD matrix element as in [21] has been
proposed based on the Lorentz invariant variables of the
spatial correlator (or pseudo-PDF), in place of the quasi-
PDF. In this approach, one starts from the spatial correlator
Q̃γμ defined for μ ¼ 0 or μ ¼ z by

1

2
hPjÕγμðz; ϵÞjPi ¼ PμQ̃γμðζ ¼ Pzz; z2; ϵÞ; ð7Þ

which depends on the two Lorentz invariants z2 and
ζ ¼ −z · P ¼ Pzz; the latter is also called the Ioffe time.
For an arbitrary Dirac matrix Γ the operator ÕΓ is defined as

ÕΓðz; ϵÞ ¼ ψ̄ðzÞΓUðz; 0Þψð0Þ: ð8Þ

This is the same spatial correlator (calculable on lattice) used
to define the quasi-PDF in Eq. (4), wherePz is fixed and one
Fourier transforms with respect to z. If instead z2 is fixed,
and we Fourier transform from the Ioffe time ζ—which is in
principle integrating over Pz—to the momentum fraction x,
then one obtains the pseudo-PDF [39],

Pðx; z2; ϵÞ ¼
Z

∞

−∞

dζ
2π

eixζQ̃γ0ðζ; z2; ϵÞ: ð9Þ

For arbitrary finite z, the pseudo-PDF only has support in
−1 ≤ x ≤ 1 [40,41], but has no parton model interpretation.

1The scheme definition itself may separately involve a choice
of state, such as in the RI/MOM scheme, but the result is still an
operator renormalization that can be used for different choices of
hadronic states for q̃ and q. The transverse cutoff and MS
schemes do not require even this choice.
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(Again the pseudo-PDF can equally well be considered for
Γ ¼ γz). The spatial correlator or pseudo-PDF approach has
been explored on the lattice [42,43], where the short-
distance behavior was explored. The PDF corresponds
to the situation when zμ is lightlike, in which case the
space-time correlator is referred to as the Ioffe-time
distribution [44],

Qðζ; ϵÞ ¼ Q̃γþðζ ¼ −Pþξ−; z2 ¼ 0; ϵÞ: ð10Þ

When Fourier transformed this correlation gives the PDF

qðy; ϵÞ ¼
Z

∞

−∞

dζ
2π

eiyζQðζ; ϵÞ: ð11Þ

In short the quasi-PDF and pseudo-PDF are different
representations of the Euclidean spatial correlator as sum-
marized in Table I.
It was pointed out in Ref. [45] that to obtain enough

information to extract the PDF for the spatial correlator
with small z2, one has to do lattice calculations with large
momenta Pz, which is the same requirement as for the
quasi-PDF. Reference [45] also proposed that the renor-
malized pseudo-PDF satisfies the following small z2

factorization,

Pðx; z2μ2RÞ ¼
Z

dy
jyj C

�
x
y
;
μ2R
μ2

; z2μ2R

�
qðy; μÞ

þOðz2Λ2
QCD; z

2M2Þ; ð12Þ

which they verified at order OðαsÞ for the unpolarized
isovector case with Γ ¼ γ0. (Again the coefficient C will
depend on the choice of Γ ¼ γ0 or γz.)
In Ref. [19] a diagrammatic derivation of the factoriza-

tion formula in Eq. (6) for the quasi-PDF was given. Here
we derive this factorization formula for the quasi-PDF in an
alternate manner, and also show that the spatial correlator
and pseudo-PDF are different representations of the same
fundamental factorization. Our approach is based on the
operator product expansion (OPE) for spacelike separated
local operators [46]. For such operators the OPE has been
proven for scalar field theory to all orders in perturbation
theory [47–49], and is widely assumed to hold for any
renormalizable quantum field theory including QCD. By
introducing auxiliary fields in place of the Wilson line [50],

the correlator in Eq. (8) is known to be equivalent to a
product of local renormalizable operators of this type.
Through our derivation we find the explicit form of the
large Pz and small z2 factorization formulas in Eqs. (6) and
(12) respectively, as well as the relationship between the
matching coefficients C and C. Since the requirement for
large Pz and small z2 is the same for both the quasi-PDF
and pseudo-PDF approaches, there is in principle no
fundamental difference in applying either one to lattice
calculations of the proton matrix element of ÕΓðzÞ. It is
interesting to compare both approaches utilizing the same
lattice data, although they shall not yield a different result in
principle.
The rest of this paper is organized as follows: In Sec. II,

we use an OPE of ÕΓðzÞ to derive the large Pz factorization
of LaMET in Eq. (6) and small z2 factorization of the
pseudo-PDF in Eq. (12). We prove that one must take
pz ¼ jyjPz in Eq. (6), so the corresponding argument in C
is μ=ðjyjPzÞ. (This OPE approach was used recently in
Ref. [20] to prove the factorization theorem for the “lattice
cross sections,” and the OPE proof carried out here was
done independently and first presented in Ref. [51]).
In Sec. III, we derive the spatial correlator, pseudo-PDF,
and quasi-PDF distributions and matching coefficients at
one loop in MS and analyze the Fourier-transform relation
between the quasi-PDF and pseudo-PDF. Unlike earlier
results for the quasi-PDF in MS, we also use dimensional
regularization with minimal subtraction to renormalize
divergences at x ¼ �∞. In Sec. IV, we discuss how
renormalization schemes other than MS are easily incorpo-
rated into the factorization formulas. In Sec. V we carry out
a numerical analysis of the matching coefficients by
computing the convolution in Eq. (6) numerically using
the PDF determined by global fits [4]. We show that the
difference between using pz ¼ Pz and pz ¼ jyjPz in
Eq. (6) is an important effect, and that our MS matching
coefficients are insensitive to cutoffs in the convolution
integral. In Sec. VI, we discuss the implications of our OPE
analysis for the lattice calculation of the PDF in both the
quasi-PDF and pseudo-PDF approaches. Finally, we con-
clude in Sec. VII.

II. FACTORIZATION FROM THE OPE

In this section we make use of the operator product
expansion to derive the matching relation for the quasi-
PDF, as well as the equivalent matching relations for the
spatial correlator and pseudo-PDF. For simplicity these
three equivalent cases are presented in separate subsections.

A. OPE and factorization for the spatial correlator

The OPE is a technique to expand nonlocal operators
with separation zμ in terms of local ones in the Euclidean
limit of z2 → 0. It can be applied to both bare regulated
operators as well as renormalized operators, and our focus

TABLE I. Summary of the relationship between different
Euclidean distributions.

Distribution
Fourier transform

from spatial correlator Arguments

Spatial correlation ζ ¼ zPz; z2

Quasi-PDF z → xPz x; Pz

Pseudo-PDF ζ → x x; z2
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will be on the latter. For the gauge-invariant Wilson
operator ÕΓðzÞ, it was proven that it can be multiplicatively
renormalized in coordinate space as [52,53]

ÕΓðz; μÞ ¼ Zψ ;zeδmjzjÕΓðz; ϵÞ; ð13Þ

where δm captures the power divergence from the Wilson
line self-energy, and Zψ ;z only depends on the end points
z; 0 and renormalizes the logarithmic divergences. This
multiplicative renormalization was also discussed earlier in
Refs. [54–56]. For simplicity, in this section we take Γ ¼ γz

for Eq. (13).
In the MS scheme, the power divergence vanishes, and

using the OPE the renormalized ÕΓðz; μÞ can be expanded
in terms of local gauge-invariant operators as z2 → 0 giving

Õγzðz; μÞ ¼
X∞
n¼0

�
Cnðμ2z2Þ

ð−izÞn
n!

eμ1 � � � eμnOμ0μ1���μn
1 ðμÞ

þ C0
nðμ2z2Þ

ð−izÞn
n!

eμ1 � � � eμnOμ0μ1���μn
2 ðμÞ

þ higher-twist operators

�
; ð14Þ

where μ0 ¼ z, Cn ¼ 1þOðαsÞ and C0
n ¼ OðαsÞ are

Wilson coefficients, and Oμ0μ1���μn
1 ðμÞ and Oμ0μ1���μn

2 ðμÞ are
the only allowed renormalized traceless symmetric twist-2
quark and gluon operators at leading power in the OPE,

Oμ0μ1…μn
1 ðμÞ ¼ Zqq

nþ1ðψ̄γðμ0iDμ1 � � � iDμnÞψ − traceÞ;
Oμ0μ1…μn

2 ðμÞ ¼ Zqg
nþ1ðFðμ0ρiDμ1 � � � iDμn−1FμnÞ

ρ − traceÞ:
ð15Þ

Here Zij
nþ1 ¼ Zij

nþ1ðμ; ϵÞ are multiplicative MS renormali-
zation factors and ðμ0 � � � μnÞ stands for the symmetrization
of these Lorentz indices.
The above OPE is valid for the operator itself, where we

implicitly constrain ourselves to the subspace of matrix
elements for which the twist expansion is appropriate.
In the isovector case, the mixing with the gluon operators is
absent, which we will stick to for the rest of the paper.
When Oμ0μ1���μn

1 is evaluated in the nucleon state,

hPjOμ0μ1���μn
1 jPi ¼ 2anþ1ðμÞðPμ0Pμ1…Pμn − traceÞ; ð16Þ

where anþ1ðμÞ is the (nþ 1)th moment of the PDF,

anþ1ðμÞ ¼
Z

1

−1
dxxnqðx; μÞ; ð17Þ

and the explicit expression of the trace term has been
derived in Refs. [30,57,58]. The inverse relation to Eq. (17)
is that qðx; μÞ has an expansion with terms proportional to

the nth derivative of the δ function, as in δðnÞðxÞanðμÞ,
without any nontrivial short-distance Wilson coefficient.
As pointed out in Ref. [45], to obtain enough information

for the spatial correlator at jζj ¼ jPzzj ∼ 1 at small z2, we
have to choose Pz large compared to the scale ΛQCD. When
P2
z ≫ fΛ2

QCD;M
2g, the trace terms in Eq. (16) are sup-

pressed by powers of M2=P2
z , while the contributions from

higher-twist operators in Eq. (14) are suppressed by powers
of Λ2

QCD=P
2
z or z2Λ2

QCD. Therefore, the twist-2 contribution
is the leading approximation of the nucleon matrix element
hPjÕγzðzÞjPi at large momentum. From now on we will
drop all the power corrections from our discussion.
The Wilson coefficients Cnðμ2z2Þ in the OPE of

ÕγzðzÞ can be computed in perturbation theory for
μ ∼ 1=jzj ≫ ΛQCD. In the MS scheme, the Cn are log
singular near z2 ¼ 0, and so is hPjÕγzðz; μÞjPi. For this
reason the x moments of the quasi-PDF q̃ðx; Pz; μÞ are
proportional to Cnjz¼0 which is divergent, and the quasi-
PDF will not simply become the PDF in the infinite Pz

limit. Instead, we need a factorization formula which
matches the quasi-PDF to the PDF. In contrast, for the
pseudo-PDF the moments do exist since we hold μ2z2 fixed
when taking the x moment. However, we still need a
factorization formula to match the pseudo-PDF to the PDF.
We will comment further about this below.
Based on Eqs. (14)–(17), we can write down the leading-

twist approximation to the spatial correlator as

Q̃γzðζ; μ2z2Þ ¼
X
n

Cnðμ2z2Þ
ð−iζÞn
n!

anþ1ðμÞ

¼
X
n

Cnðμ2z2Þ
ð−iζÞn
n!

Z
1

−1
dyynqðy; μÞ: ð18Þ

It should be noted that the only approximation we have
made so far is ignoring the higher-twist effects that are
suppressed by small z2 and the large momentum Pz of the
nucleon. In the limit of P2

z ≫ M2;Λ2
QCD, we have P

0 ∼ Pz,
so even if μ0 ¼ 0 in Eq. (14), the leading approximation of
Õγ0ðzÞ is still given by the twist-2 contributions in Eq. (18),
just with modified coefficients Cn.
Based on the OPE results in Eq. (18), we can derive a

factorization formula for the Euclidean spatial correlator.
First of all, let us define a function Cðα; μ2z2Þ:

Cðα; μ2z2Þ≡
Z

dζ
2π

eiαζ
X
n

Cnðμ2z2Þ
ð−iζÞn
n!

: ð19Þ

From Eq. (18) and the renormalized analog of the Fourier-
transform relation in Eq. (9) Cðα; μ2z2Þ corresponds to a
pseudo-PDF in the special case where anþ1ðμÞ ¼ 1. The
analysis of Refs. [40,41] implies that the support of
Cðα; μ2z2Þ is −1 ≤ α ≤ 1. Noting that
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Z
dαe−iαðyζÞCðα; μ2z2Þ ¼

X
n

Cnðμ2z2Þ
ð−iζyÞn

n!
; ð20Þ

we find from Eq. (18) that

Q̃ðζ; μ2z2Þ ¼
Z

1

−1
dy

Z
1

−1
dαe−iαðyζÞCðα; μ2z2Þqðy; μÞ: ð21Þ

Finally, using the inverse transform of the renormalized
analog of Eq. (11),

Qðζ; μÞ ¼
Z

1

−1
dye−iyζqðy; μÞ; ð22Þ

we obtain

Q̃ðζ; μ2z2Þ ¼
Z

1

−1
dαCðα; μ2z2ÞQðαζ; μÞ þOðz2Λ2

QCDÞ:

ð23Þ

The result inEq. (23) is the factorization formula for the lattice
calculable spatial correlator Q̃ðζ; μ2z2Þ which expresses it in
terms of the light-cone correlation Qðζ; μÞ that defines the
PDF. It has the same structure as the factorization formula for
the spatial correlator used for the calculation of the pion
distribution amplitude in Refs. [59,60].

B. Factorization for the quasi-PDF

The renormalized quasi-PDF is defined as a Fourier
transform of the renormalized spatial correlator,

q̃

�
x;

μ

Pz

�
≡

Z
dζ
2π

eixζQ̃

�
ζ;
μ2ζ2

P2
z

�
: ð24Þ

Note that we could use either Q̃γz or Q̃γ0 here. Using the
result for the spatial correlator in Eq. (18) this gives

q̃

�
x;

μ

Pz

�

¼
Z

1

−1
dy

�Z
dζ
2π

eixζ
X
n¼0

Cn

�
μ2ζ2

P2
z

� ð−iζÞn
n!

yn
�
qðy; μÞ

¼
Z

1

−1

dy
jyj

�Z
dζ
2π

ei
x
yζ
X
n¼0

Cn

�
μ2ζ2

ðyPzÞ2
� ð−iζÞn

n!

�
qðy; μÞ:

ð25Þ

Already, one can see that the matching kernel is a function
of x=y and μ=ðjyjPzÞ. We define the kernel as

C

�
x
y
;

μ

jyjPz

�
≡

Z
dζ
2π

ei
x
yζ
X
n¼0

Cn

�
μ2ζ2

ðyPzÞ2
� ð−iζÞn

n!
; ð26Þ

and then Eq. (25) can be rewritten as

q̃

�
x;

μ

Pz

�
¼

Z
1

−1

dy
jyjC

�
x
y
;

μ

jyjPz

�
qðy; μÞ; ð27Þ

which is theMS factorization formula for the quasi-PDF. This
result shows that the factorization formula inEq. (6)must have
pz ¼ jyjPz for the quasi-PDF in the MS scheme. We will
show that this remains true for any quasi-PDF renormalization
scheme inSec. IV.This differs from the choicepz ¼ Pzwhich
had been conjectured and used in the early papers on the
quasi-PDF [21,22,24]. Physically the correct result in Eq. (27)
can be understood as the fact that the matching coefficient is
only sensitive to the perturbative partonic dynamics, and
hence it is the magnitude of the partonic momentum jyjPz

which appears, rather than the hadronic momentum Pz.
Taking the moment of the quasi-PDF using Eq. (24)

givesZ
1

0

dxxnq̃

�
x;

μ

Pz

�

¼
�
i
d
dζ

�
n
Q̃

�
ζ;
μ2ζ2

P2
z

�����
ζ→0

¼
X
n0

�
i
d
dζ

�
n
�
Cn0

�
μ2ζ2

P2
z

�ð−iζÞn0
n0!

�����
ζ→0

an0þ1ðμÞ: ð28Þ

Since the Cn0 coefficients have lnðζ2Þ dependence, the
derivative for n0 ¼ n will always have a logarithmic
singularity as ζ → 0, and there will be even more singular
terms for n0 < n. This explains why the short-distance
Wilson coefficient causes the moments not to exist for the
quasi-PDF.

C. Factorization for the pseudo-PDF

The renormalized pseudo-PDF is the Fourier transform
of the renormalized spatial correlator

Pðx; μ2z2Þ ¼
Z

∞

−∞

dζ
2π

eixζQ̃ðζ; μ2z2Þ: ð29Þ

Since both the pseudo-PDF and spatial correlator are
multiplicatively renormalized in a ζ-independent manner,
this follows immediately from Eq. (9). If we take Eq. (23)
and Fourier transform the spatial correlator Q̃ðζ; μ2z2Þ into
the pseudo-PDF, and light-cone correlation Qðαζ; μÞ into
the PDF, then we immediately obtain the factorization
formula for the pseudo-PDF,

Pðx; z2μ2Þ ¼
Z

1

jxj

dy
jyj C

�
x
y
; μ2z2

�
qðy; μÞ

þ
Z

−jxj

−1

dy
jyj C

�
x
y
; μ2z2

�
qðy; μÞ

þOðz2Λ2
QCDÞ; ð30Þ

which is the small z2 factorization formula in Eq. (12). The
upper and lower limits of the integrals in Eq. (30) follow
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immediately from the support −1 ≤ α ≤ 1 of the matching
coefficient Cðα; z2μ2Þ, and we recall that we also have
−1 ≤ x ≤ 1 for the pseudo-PDF on the lhs.
Since the range of x is bounded for the pseudo-PDF the

terms in the series expansion of the exponential in Eq. (29)
exist,

Q̃ðζ; μ2z2Þ ¼
X∞
n¼0

Z
1

−1
dx

ð−iζÞnxn
n!

Pðx; μ2z2Þ: ð31Þ

Comparing with Eq. (18) this implies that the moments of
the pseudo-PDF are given byZ

1

−1
dxxnPðx; μ2z2Þ ¼ Cnðμ2z2Þanþ1ðμÞ: ð32Þ

So far we have proven the large Pz factorization of the
quasi-PDF and small z2 factorization of the spatial corre-
lation and pseudo-PDFs. After deriving one factorization, it
immediately leads to the others, since they are just different
representations of the same spatial correlator. Indeed, we
see that the quasi-PDF and pseudo-PDF are related at
leading power by their definitions:

q̃

�
x;

μ

Pz

�
¼

Z
dζ
2π

eixζ
Z

1

−1
dye−iyζP

�
y;
μ2ζ2

P2
z

�
; ð33Þ

where we have used z ¼ ζ=Pz. Based on Eqs. (19) and (26),
the Wilson coefficients in their factorization theorems also
maintain the same relationship,

C

�
ξ;

μ

jyjPz

�
¼
Z

dζ
2π

eiξζ
Z

1

−1
dαe−iαζC

�
α;

μ2ζ2

ðyPzÞ2
�
: ð34Þ

For the relations in Eqs. (33) and (34) the same choice of
Γ ¼ γ0 or γz should be used in the quasi- and pseudo-PDFs,
or their corresponding coefficients.
In summary, there is a unique factorization formula that

matches the quasi-PDF, spatial correlator, and pseudo-PDF
to the PDF. Since their factorizations into the PDF all
require small distances and have large nucleon momentum,
the setup for their lattice calculations must also be the same.
Therefore, the LaMET and pseudodistribution approaches
are in principle equivalent to each other, and they differ
perhaps only by effects related to their implementation on
the lattice.
In Ref. [39] it was speculated that one can study a ratio

function

Q̃ðζ; z2; a−1Þ=Q̃ð0; z2; a−1Þ ð35Þ
on a lattice with spacing a, and the Oðz2Þ corrections may
cancel approximately. This idea was tested in Ref. [42] in
lattice QCD, and the results show that the ratio evolves
slowly in z2 at small values. It is then interesting to consider
what type of nonperturbative information can be extracted
from this ratio.
This question can be answered using the small z2

factorization for the spatial correlator. According toEq. (18),

Q̃ð0; μ2z2Þ ¼ C0ðμ2z2Þ þOðz2Λ2
QCDÞ; ð36Þ

where in the MS scheme to one loop

C0ðμ2z2Þ ¼ 1þ αsCF

2π

�
3

2
lnðμ2z2e2γE=4Þ þ 5

2

�
; ð37Þ

which was also derived recently in [61]. Then the ratio
becomes

Q̃ðζ; μ2z2Þ
Q̃ð0; μ2z2Þ ¼

X
n

Cnðμ2z2Þ
C0ðμ2z2Þ

ð−iζÞn
n!

anþ1ðμÞ

þOðz2Λ2
QCDÞ: ð38Þ

Using Eq. (32) and our MS one-loop perturbative pseudo-
PDF result in Eq. (54) below we find for Γ ¼ γ0 that

Cnðμ2z2Þ ¼ 1þ αsCF

2π

��
3þ 2n

2þ 3nþ n2
þ 2Hn

�
ln
μ2z2e2γE

4

þ 5þ 2n
2þ 3nþ n2

þ 2ð1 −HnÞHn − 2Hð2Þ
n

�
;

ð39Þ
where the Harmonic numbers are Hn ¼

P
n
i¼1 1=i and

Hð2Þ
n ¼ P

n
i¼1 1=i

2. For the caseΓ ¼ γzwehaveCγz
n ðμ2z2Þ ¼

Cnðμ2z2Þ þ ΔCγz
n ðμ2z2Þ with

ΔCγz
n ðμ2z2Þ ¼ αsCF

2π

2

2þ 3nþ n2
; ð40Þ

which also modifies Eq. (37) for n ¼ 0. At small z2 where
the perturbative expansionwithμ ≃ 1=jzj is valid, the ratio in
Eq. (38) has a weak logarithmic dependence on jzj, which is
consistent with the lattice findings in Refs. [42,43]. The
weak dependence on jzj can be quantitatively described by
an evolution equation in ln z2 [39,62]. According to ourOPE
analysis, here Q̃ð0; μ2z2Þ only serves as an overall normali-
zation factor which is contaminated by higher-twist correc-
tions, and the ln z2 evolution can be put in accurate terms
with the factorization formula in Eq. (23) that enables us to
extract the PDF from the ratio function. The same point was
demonstrated by work done very recently in [61], which
appeared simultaneously with our paper.

III. EQUIVALENCE AT ONE-LOOP ORDER

As has been proven in Sec. II, the quasi-PDF and
pseudo-PDF as well as their matching coefficients are
related by a simple Fourier transform in Eqs. (33) and (34).
This relation is valid to all orders in perturbation theory. In
this section we check the relations in Eqs. (33) and (34) at
one-loop order. We choose Γ ¼ γ0 for our main presenta-
tion, but also quote final results for the case Γ ¼ γz.
In the Feynman gauge, we calculate the quark

matrix elements of the unpolarized isovector quasi-PDF,
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pseudo-PDF, and light-cone PDF at one-loop order
in dimensional regularization with d ¼ 4 − 2ϵ. The
external quark state is chosen to be on shell and massless,
and we regularize the UV and collinear divergences by

1=ϵUVðϵUV > 0Þ and 1=ϵIRðϵIR < 0Þ respectively. The one-
loop order Feynman diagrams are shown in Fig. 1.
In an on-shell quark state with momentum

pμ ¼ ðp0 ¼ pz; 0; 0; pzÞ, for Γ ¼ γ0, each diagram gives

Q̃ð1Þ
vertexðζ; z2; ϵÞ ¼

μ2ϵιϵ

2p0
ūðpÞ

Z
ddk
ð2πÞd ð−igT

aγμÞ i
=k
γ0

i
=k
ð−igTaγνÞ −igμν

ðp − kÞ2 uðpÞe
−ikzz;

Q̃ð1Þ
sailðζ; z2; ϵÞ ¼

μ2ϵιϵ

2p0
ūðpÞ

Z
ddk
ð2πÞd ðigT

aγ0Þ 1

iðpz − kzÞ ðe
−ipzz − e−ik

zzÞδμz i
=k
ð−igTaγνÞ −igμν

ðp − kÞ2 uðpÞ

þ μ2ϵιϵ

2p0
ūðpÞ

Z
ddk
ð2πÞd ð−igT

aγνÞ i
=k
ðigTaγ0Þ 1

iðpz − kzÞ ðe
−ipzz − e−ik

zzÞδμz −igμν
ðp − kÞ2 uðpÞ;

Q̃ð1Þ
tadpoleðζ; z2; ϵÞ ¼

μ2ϵιϵ

2p0
ūðpÞ

Z
ddk
ð2πÞd ð−g

2ÞCFγ
0δμzδνz

�
e−ip

zz − e−ik
zz

ðpz − kzÞ2 −
ze−ip

zz

iðpz − kzÞ
�

−igμν
ðp − kÞ2 uðpÞ; ð41Þ

where ι ¼ eγE=ð4πÞ is included to implement μ in the MS scheme, CF ¼ 4=3, and Ta is the SU(3) color matrix in the
fundamental representation. The second term in the brackets in the last line, which is proportional z, does not contribute to
the loop integral as it is odd under the exchange of pz − kz → −ðpz − kzÞ. The quark self-energy correction is
Q̃ð1Þ

w:fn:ðζ; z2; ϵÞ ¼ δZψQ̃
ð0Þðζ; z2Þ with the tree-level matrix element Q̃ð0Þðζ; z2Þ ¼ e−iζ and on-shell renormalization

constant δZψ ,

δZψ ¼ αsCF

2π

�
−
1

2

��
1

ϵUV
−

1

ϵIR

�
: ð42Þ

After carrying out the loop integrals in Eq. (41) according to the method in Ref. [45], we obtain

Q̃ð1Þ
vertexðζ; z2; ϵÞ ¼

αsCF

2π
eϵγE

Z
1

0

duð1 − ϵÞð1 − uÞe−iuζΓð−ϵÞ4−ϵðμjzjÞ2ϵ

¼ αsCF

2π
eϵγE

�
μjzj
2

�
2ϵ ð−1ÞΓð2 − ϵÞ

ϵIR

1 − iζ − e−iζ

ζ2
;

Q̃ð1Þ
sailðζ; z2; ϵÞ ¼

αsCF

2π
eϵγE

�
ðiζÞ

Z
1

0

du
Z

1

0

dtð2 − uÞe−ið1−utÞζΓð−ϵÞ4−ϵðt2z2μ2Þϵ

−
Z

1

0

due−iuζΓð−ϵÞ4−ϵðz2μ2Þϵ þ
�

1

ϵUV
−

1

ϵIR

�
e−iζ

�

¼ αsCF

2π
eϵγE

�
μjzj
2

�
2ϵ
�
−Γð1 − ϵÞ

ϵIR

2ð1 − ϵÞ
1 − 2ϵ

�
1 − e−iζ

−iζ
þ e−iζð−iζÞ−2ϵðΓð2ϵÞ − Γð2ϵ;−iζÞÞ

�

þΓð1 − ϵÞ
ϵIR

e−iζ

ϵ
þ
�

1

ϵUV
−

1

ϵIR

�
e−iζ

	
;

Q̃ð1Þ
tadpoleðζ; z2; ϵÞ ¼

αsCF

2π
eϵγE

�
μjzj
2

�
2ϵ Γð1 − ϵÞ
ϵUVð1 − 2ϵÞ e

−iζ: ð43Þ

FIG. 1. One-loop Feynman diagrams for the quasi-PDF, spatial correlator, and pseudo-PDFs. The first one is named “vertex,” the
second and third ones are named “sail,” and the last one “tadpole.” The standard quark self-energy wave function is also included.
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For simplicity we have left out the tree-level multiplicative spinor factor ūγ0u when quoting one-loop results in Eq. (43),
and will continue to do so for the spatial correlator, quasi-PDF, and pseudo-PDF results quoted below. Since αbares ¼
αsðμÞμ2ϵZ2

g ¼ αsðμÞμ2ϵ þOðα2sÞ is μ independent we do not include μ as an argument in the bare functions. In the final
result for each term we have also specified whether 1=ϵ factors (that remain after expanding about ϵ → 0) are IR or UV
divergences. Combined with the wave function correction, the bare spatial correlator Q̃ð1Þðζ; z2; ϵÞ is

Q̃ð1Þðζ; z2; ϵÞ ¼ αsCF

2π
eϵγE

�
μjzj
2

�
2ϵ
�
3

2

�
1

ϵUV
−

1

ϵIR

�
e−iζ þ ð−1ÞΓð2 − ϵÞ

ϵIR

�ð1 − iζ − e−iζÞ
ζ2

þ 2

1 − 2ϵ

�
1 − e−iζ

−iζ
þ e−iζð−iζÞ−2ϵðΓð2ϵÞ − Γð2ϵ;−iζÞÞ − e−iζ

2ϵ

	�	
: ð44Þ

Note that as ϵ → 0 the terms in the innermost curly brackets have no 1=ϵ term. Also we can verify that in the local limit of
the operator that the bare one-loop correction vanishes as expected by conservation of the vector current:

lim
z→0

Q̃ð1ÞðzPz; z2; ϵÞ ¼ lim
z→0

αsCF

2π
eϵγE

�
μjzj
2

�
2ϵ
�
3

2

�
1

ϵUV
−

1

ϵIR

�
þ 3

2ϵIR

	
¼ 0; ð45Þ

where we note that it is important that the 1=ϵIR terms cancel since the assumption ϵ > 0 is only valid for the 1=ϵUV term.
The corresponding bare pseudo-PDF is

Pð1Þðx; z2; ϵÞ ¼ αsCF

2π

�
−1þ xþ 2

ð1 − 2ϵÞ −
�

2

ð1 − 2ϵÞ
1

ð1 − xÞ1−2ϵ
�½0;1�

þð1Þ

�
eϵγE

�
μjzj
2

�
2ϵ Γð2 − ϵÞ

ϵIR
θðxÞθð1 − xÞ

þ αsCF

2π
eϵγE

�
μjzj
2

�
2ϵ 3

2

�
1

ϵUV
−

1

ϵIR

�
δð1 − xÞ: ð46Þ

Since we will encounter plus functions over different domains below, we define a plus function at x ¼ x0 within a given
domain D so that

Z
D
dx½gðxÞ�Dþðx0ÞhðxÞ ¼

Z
D
dxgðxÞ½hðxÞ − hðx0Þ�: ð47Þ

(See Appendix C for more details.) It is straightforward to confirm that the bare pseudo-PDF satisfies the local vector-
current conservation, limz→0

R
dxPð1Þðx; z2μ2; ϵÞ ¼ 0, with the same cancellation as in Eq. (45).

Now, according to the relations between the quasi-PDF and the spatial correlator or pseudo-PDFs in Eqs. (24) and (33),
we can do a Fourier or double Fourier transform of the results in Eqs. (44) and (46) to get the quasi-PDF. Despite its
straightforwardness, the Fourier transform is subtle and the details are provided in Appendix A. Here we simply quote the
result for the bare quasi-PDF,

q̃ð1Þðx; pz; ϵÞ ¼ αsCF

2π

�
3

2

�
1

ϵUV
−

1

ϵIR

�
δð1 − xÞ þ Γðϵþ 1

2
ÞeϵγEffiffiffi
π

p μ2ϵ

p2ϵ
z

1 − ϵ

ϵIRð1 − 2ϵÞ

×

�
jxj−1−2ϵ

�
1þ xþ x

2
ðx − 1þ 2ϵÞ

�
− j1 − xj−1−2ϵ

�
xþ 1

2
ð1 − xÞ2

�
þ I3ðxÞ

�	
; ð48Þ

where

I3ðxÞ ¼ θðx − 1Þ
�
x−1−2ϵ

x − 1

�½1;∞�

þð1Þ
− θðxÞθð1 − xÞ

�
x−1−2ϵ

1 − x

�½0;1�

þð1Þ
− δð1 − xÞπ cscð2πϵÞ þ θð−xÞ jxj

−1−2ϵ

x − 1
: ð49Þ

After some algebra one can confirm that the bare quasi-PDF satisfies local vector-current conservation, withR
dxq̃ð1Þðx; pz; ϵÞ ¼ 0. To verify this result one must carefully separate out 1=ϵUV factors arising from requiring ϵ > 0

to obtain convergence at x ¼ �∞, and 1=ϵIR factors that arise from requiring ϵ < 0 to obtain convergence at x ¼ 1.
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An alternate method of obtaining the quasi-PDF is to
directly calculate it from the Feynman diagrams by first
Fourier transforming z into xpz. As a result, the factors
ðe−ipzz − e−ik

zzÞ are transformed into ½δðpz − xpzÞ−
δðkz − xpzÞ�, and all the loop integrals reduce to (d − 1)-
dimensional ones. This is the procedure for the matching
calculations of the quasi-PDF used in Refs. [24,26,27],
and is distinct from doing the Fourier transformation after
fully carrying out the integrals as in Eqs. (43)–(48). As a
cross-check we have confirmed in Appendix B that we
obtain the exact same bare quasi-PDF in Eq. (48) from
both procedures.

Now we consider the ϵ expansion to obtain MS renor-
malized results for the spatial correlator, pseudo-PDF, and
quasi-PDF. Expanding the spatial correlator in ϵ we obtain

Q̃ð1Þðζ; z2; ϵÞ ¼ δQ̃ð1Þðζ; z2; μ; ϵUVÞ
þ Q̃ð1Þðζ; z2; μ; ϵIRÞ þOðϵÞ ð50Þ

with the MS counterterm and renormalized spatial corre-
lator given by

δQ̃ð1Þðζ; z2; μ; ϵUVÞ ¼
αsCF

2π
e−iζ

3

2

1

ϵUV
;

Q̃ð1Þðζ; z2; μ; ϵIRÞ ¼
αsCF

2π

�
3

2

�
ln
μ2z2e2γE

4
þ 1

�
e−iζ þ

�
−

1

ϵIR
− ln

z2μ2e2γE

4
− 1

�
hðζÞ þ 2ð1 − iζ − e−iζÞ

ζ2

þ 4iζe−iζ3F3ð1; 1; 1; 2; 2; 2; iζÞ
	
: ð51Þ

Here 3F3 is a hypergeometric function and the Fourier transform of ½ð1þ x2Þ=ð1 − xÞ�½0;1�þð1Þ gives the function

hðζÞ ¼ 3

2
e−iζ þ 1þ iζ − e−iζ − 2iζe−iζ

ζ2
− 2e−iζ½Γð0;−iζÞ þ γE þ lnð−iζÞ�: ð52Þ

For the position space PDF we have

Qð1Þðζ; μ; ϵIRÞ ¼ −
αsCF

2π

1

ϵIR
hðζÞ: ð53Þ

Next we expand the bare pseudo-PDF from Eq. (46) in ϵ to obtain the MS counterterm and renormalized pseudo-PDF as
Pð1Þðx; z2; ϵÞ ¼ δPð1Þðx; z2μ2; ϵUVÞ þ Pð1Þðx; z2μ2; ϵIRÞ þOðϵÞ with

δPð1Þðx; z2μ2; ϵUVÞ ¼
αsCF

2π

3

2ϵUV
δð1 − xÞ;

Pð1Þðx; z2μ2; ϵIRÞ ¼
αsCF

2π

��
1þ x2

1 − x

�½0;1�

þð1Þ

�
−
�

1

ϵIR
þ ln

e2γE

4

�
− lnðz2μ2Þ − 1

�

−
ð4 lnð1 − xÞ

1 − xÞ
½0;1�

þð1Þ
þ 2ð1 − xÞ

	
θðxÞθð1 − xÞ þ αsCF

2π

�
3

2
lnðz2μ2Þ þ 3

2
ln
e2γE

4
þ 3

2

�
δð1 − xÞ: ð54Þ

Note that the renormalized MS pseudo-PDF depends
explicitly on μ2, and satisfies the relation to the renormal-
ized MS spatial correlator given in Eq. (29). It is also
interesting to note that having expanded in ϵ, local vector-
current conservation is no longer satisfied by the limit of
the renormalized MS pseudo-PDF, since

lim
z→0

Z
dxPð1Þðx;z2μ2;ϵIRÞ≃ð3αsCF=4πÞlim

z→0
lnðz2μ2Þ ð55Þ

gives a divergent result. The same divergence is present in
the one-loop MS renormalized spatial correlator in
Eq. (51). Although this is the case in MS, it does not
need to be the case in other renormalization schemes.

For the quasi-PDF there are two methods that we
can consider for the renormalized calculation, either
expanding the bare result in Eq. (48) and renormalizing
in ðx; pzÞ space, or following our preferred definition in
Eq. (24) and Fourier transforming the renormalized spatial
correlator in Eq. (51). Although these two approaches will
lead to the same final result for C for practical applications,
there is a subtle difference that we will explain.
First consider the renormalization of the quasi-PDF done

in ðx; pzÞ space. Expanding Eq. (48) in ϵ, and writing
q̃ð1Þðx;pz;ϵÞ ¼ δq̃ð1Þðx;μ=jpzj;ϵUVÞþ q̃ð1Þðx;μ=jpzj;ϵIRÞþ
OðϵÞ allows us to identify the MS counterterm and
renormalized quasi-PDF as
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δq̃ð1Þðx; μ=jpzj; ϵUVÞ ¼
αsCF

2π

3

2ϵUV

�
δð1 − xÞ − 1

2

1

x2
δþ

�
1

x

�
−
1

2

1

ð1 − xÞ2 δ
þ
�

1

1 − x

��
;

q̃ð1Þðx; μ=jpzj; ϵIRÞ ¼
αsCF

2π

8>>>>>><
>>>>>>:



1þx2
1−x ln

x
x−1 þ 1þ 3

2x

�½1;∞�
þð1Þ

−



3
2x

�½1;∞�
þð∞Þ

x > 1



1þx2
1−x

h
− 1

ϵIR
− ln μ2

4p2
z
þ lnðxð1 − xÞÞ

i
− xð1þxÞ

1−x

�½0;1�
þð1Þ

0 < x < 1



− 1þx2

1−x ln
−x
1−x − 1þ 3

2ð1−xÞ
�½−∞;0�
þð1Þ

−



3
2ð1−xÞ

�½−∞;0�
þð−∞Þ

x < 0

þ αsCF

2π

�
δð1 − xÞ − 1

2

1

x2
δþ

�
1

x

�
−
1

2

1

ð1 − xÞ2 δ
þ
�

1

1 − x

���
3

2
ln

μ2

4p2
z
þ 5

2

�
: ð56Þ

The details of working out the ϵ expansion of Eq. (48) are provided in Appendix C, including definitions of the plus
functions and δ functions at x0 ¼ �∞ that appear in the result quoted here. The MS quasi-PDF obtained in Eq. (56) still
satisfies vector-current conservation

Z
dxq̃ð1Þðx; μ=jpzj; ϵIRÞ ¼ 0: ð57Þ

This is obviously the case for the plus function terms which individually integrate to zero, and is also true for the
combination of δ functions which appears in Eq. (56).
The renormalized MS quasi-PDF in Eq. (56) differs slightly from that obtained using our definition in Eq. (24). Using

Eq. (24) and the renormalized spatial correlator in Eq. (51) we instead obtain

δq̃0ð1Þðx; μ=jpzj; ϵUVÞ ¼
αsCF

2π

3

2ϵUV
δð1 − xÞ;

q̃0ð1Þðx; μ=jpzj; ϵIRÞ ¼
αsCF

2π

8>>>>>><
>>>>>>:



1þx2
1−x ln

x
x−1 þ 1þ 3

2x

�½1;∞�
þð1Þ

−



3
2x

�½1;∞�
þð∞Þ

x > 1

�
1þx2
1−x

h
− 1

ϵIR
− ln μ2

4p2
z
þ lnðxð1 − xÞÞ

i
− xð1þxÞ

1−x

�½0;1�

þð1Þ
0 < x < 1



− 1þx2

1−x ln
−x
1−x − 1þ 3

2ð1−xÞ
�½−∞;0�
þð1Þ

−



3
2ð1−xÞ

�½−∞;0�
þð−∞Þ

x < 0

þ αsCF

2π

�
δð1 − xÞ

�
3

2
ln

μ2

4p2
z
þ 5

2

�
þ 3

2
γE

�
1

ðx − 1Þ2 δ
þ
�

1

x − 1

�
þ 1

ð1 − xÞ2 δ
þ
�

1

1 − x

���
: ð58Þ

To carry out this calculation we defined the Fourier transformation of the singular function lnðζ2Þ as
Z

dζ
2π

eixζ ln ζ2 ¼
�
d
dη

Z
dζ
2π

eixζðζ2Þη
�����

η¼0

¼
�
d
dη

4η

Γð−ηÞ
Γðηþ 1=2Þffiffiffi

π
p ½θðxÞ þ θð−xÞ�

jxj1þ2η

�����
η¼0

¼ γE

��
−δðxÞ þ 1

x2
δþ

�
1

x

��
þ
�
−δðxÞ þ 1

x2
δþ

�
1

−x

���

−
��

1

x

�½0;1�

þð0Þ
þ
�
1

x

�½1;∞�

þð∞Þ

�
θðxÞ −

��
1

−x

�½−1;0�

þð0Þ
þ
�

1

−x

�½−∞;−1�

þð∞Þ

�
θð−xÞ; ð59Þ

where we have used the results in Eqs. (A1) and (C7) to derive the second and last equalities, and took the limit η → 0þ or
η → 0− when needed. This q̃0ð1Þðx; μ=jpzj; ϵIRÞ does not satisfy vector-current conservation, and is different from
q̃ð1Þðx; μ=jpzj; ϵIRÞ in Eq. (56) only by the δ functions at x0 ¼ �∞. Within the function domain −∞ < x < ∞, they are
exactly the same. Wewill see below that both Eqs. (56) and (58) eventually lead to the same result for the one-loop matching
coefficient.
The final ingredient we need for the matching calculations is the PDF, whose one-loop bare matrix element can be written

as a sum of a MS counterterm and renormalized matrix element, qð1Þðx; ϵÞ ¼ δqð1Þðx; ϵUVÞ þ qð1Þðx; ϵIRÞ, where
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δqð1Þðx; ϵUVÞ ¼
αsCF

2π

1

ϵUV

�
1þ x2

1 − x

�½0;1�

þð1Þ
θðxÞθð1 − xÞ;

qð1Þðx; ϵIRÞ ¼
αsCF

2π

ð−1Þ
ϵIR

�
1þ x2

1 − x

�½0;1�

þð1Þ
θðxÞθð1 − xÞ:

ð60Þ

With the above results in hand we can now determine the
matching coefficients up to one-loop order. Using Eq. (30)
we find

Cð1Þðα; z2μ2Þ ¼ Pð1Þðα; z2μ2; ϵIRÞ − qð1Þðα; ϵIRÞ: ð61Þ
Therefore the matching coefficient relating the pseudo-PDF
and PDF in the MS scheme with Γ ¼ γ0 is2

Cðα; z2μ2Þ

¼
�
1þαsCF

2π

�
3

2
lnðz2μ2Þþ 3

2
ln
e2γE

4
þ 3

2

��
δð1−αÞ

þαsCF

2π

��
1þα2

1−α

�½0;1�

þð1Þ

�
− lnðz2μ2Þ− ln

e2γE

4
− 1

�

−
�
4 lnð1−αÞ

1−α

�½0;1�

þð1Þ
þ 2ð1−αÞ

	
θðαÞθð1−αÞ: ð62Þ

This result is independent of the infrared regulator as it
must be. We have also computed the matching coefficient
for the Γ ¼ γz case, and it is Cγzðα; z2μ2Þ ¼ Cðα; z2μ2Þ þ
ΔCγzðα; z2μ2Þ with

ΔCγzðα; z2μ2Þ ¼
αsCF

2π
2ð1 − αÞθðαÞθð1 − αÞ: ð63Þ

Due to the lnðz2μ2Þδð1 − αÞ term in Eq. (62), the matching
coefficient for the MS pseudo-PDF again displays the fact
that there is not a smooth local limit as z → 0. It is possible
to define a scheme other than MS to ensure that this limit is
smooth, reproducing a renormalization for z → 0 that
agrees with the fact that the local operator corresponds
with a conserved current. One such scheme would be to
simply multiply all MS renormalization constants by
C0ðμ2z2Þ, which would lead to a spatial correlator renor-
malized in a different scheme, and a corresponding differ-
ent matching coefficient in Eq. (62) with a smooth z → 0
limit. This is equivalent to studying the ratio of Eq. (38)
from the start as advocated in Refs. [39,62]. We will give
explicit results for this scheme choice below. This modified
scheme should not be confused with the strict definition of
the MS scheme.
From Eq. (27) the corresponding relation for the match-

ing coefficient for the quasi-PDF defined in Eq. (24) is

Cð1Þðξ; μ=ðjyjPzÞÞ ¼ q̃0ð1Þðξ; μ=jyjPz; ϵIRÞ − qð1Þðξ; ϵIRÞ:
ð64Þ

Therefore using Eq. (58) the matching coefficient relating
the quasi-PDF and PDF is

C

�
ξ;

μ

jyjPz

�
¼ δð1 − ξÞ þ αsCF

2π

8>>>>>><
>>>>>>:



1þξ2

1−ξ ln
ξ

ξ−1 þ 1þ 3
2ξ

�½1;∞�
þð1Þ

−



3
2ξ

�½1;∞�
þð∞Þ

ξ > 1



1þξ2

1−ξ

h
− ln μ2

y2P2
z
þ lnð4ξð1 − ξÞÞ

i
− ξð1þξÞ

1−ξ

�½0;1�
þð1Þ

0 < ξ < 1



− 1þξ2

1−ξ ln
−ξ
1−ξ − 1þ 3

2ð1−ξÞ
�½−∞;0�
þð1Þ

−



3
2ð1−ξÞ

�½−∞;0�
þð−∞Þ

ξ < 0

þ αsCF

2π

�
δð1 − ξÞ

�
3

2
ln

μ2

4y2P2
z
þ 5

2

�
þ 3

2
γE

�
1

ðξ − 1Þ2 δ
þ
�

1

ξ − 1

�
þ 1

ð1 − ξÞ2 δ
þ
�

1

1 − ξ

���
: ð65Þ

Again this result is independent of the IR regulator as it must be. Here the plus function terms ½g1ðξÞ�½1;∞�
þð1Þ and ½g2ðξÞ�½−∞;0�

þð1Þ
have integrands that converge for ξ → �∞ behaving as giðξÞ ∼ 1=ξ2. Note that if we had instead used the renormalized MS
quasi-PDF calculated in Eq. (56), we would obtain a different matching coefficient C with different δ functions at ξ ¼ �∞.
However, the δ functions do not contribute to the convolution integral in Eq. (27) for any integrable PDFs. For example, to
carry out the convolution with 1=ξ2δþð1=ξÞ we can use δþð1ξÞ ¼ limβ→0þδð1ξ − βÞ, which when plugged into the
factorization formula gives

2A one-loop analysis of the spatial correlator in the coordinate space also recently appeared in Refs. [62,63]. Our factorization result
for the spatial correlator in Eq. (23) has a similar form to the hard part of the reduced spatial correlator found in Eq. (3.35) of Ref. [62]
and Eq. (17) of Ref. [63]. It is therefore interesting to compare our Cðα; z2μ2Þ=C0ðμ2z2Þ and this hard part. Our MS result Eq. (62) differs
from Ref. [62] due to the presence of the 2ð1 − αÞ term. The result in the final version of Ref. [63] agrees with ours. Equation (62) also
agrees with the original result derived in Ref. [45], up to the addition of our e2γE terms. The result for Cðα; z2μ2Þ in Eq. (62) should be
used to extract a MS PDF from a MS result for the pseudo-PDF.

FACTORIZATION THEOREM RELATING EUCLIDEAN AND … PHYS. REV. D 98, 056004 (2018)

056004-11



lim
β→0þ

Z
dy
jyj

y2

x2
δ

�
y
x
− β

�
fu−dðyÞ ¼ lim

β→0þ
βfu−dðβxÞ: ð66Þ

For the plus function at ∞ using Eqs. (C9) and (C3) we have

Z þ1

−1

dy
jyj

�
1

ðx=yÞ
�½1;∞�

þð∞Þ
fu−dðyÞ ¼ lim

β→0þ

Z þ1

−1

dy
jyj

�
θðx=y − βÞ

x=y
þ y2

x2
δ

�
y
x
− β

�
ln β

�
fu−dðyÞ

¼
Z þ1

−1

dy
x

y
jyj fu−dðyÞ þ lim

β→0þ
βfu−dðβxÞ ln β:

In the last line we dropped the θðx=y − βÞ since at small y our PDF behaves as fu−dðyÞ ∼ y−1þa with 0 < a < 1. This also
implies

lim
β→0

βfu−dðβxÞ ∝ x−1þalim
β→0

βa ¼ 0; lim
β→0

βfu−dðβxÞ ln β ∝ x−1þalim
β→0

βa ln β ¼ 0; ð67Þ

which means that the distribution contributions evaluated at ξ ¼ �∞ in the matching coefficient C give zero contribution.
Therefore, the matching coefficients calculated from the quasi-PDFs in Eqs. (56) and (58) are the same in effect, and we

can simply drop all the δ functions at ξ ¼ �∞ when plugging them into the factorization formula:

CMS

�
ξ;

μ

jyjPz

�
¼ δð1 − ξÞ þ αsCF

2π

8>>>>>><
>>>>>>:



1þξ2

1−ξ ln
ξ

ξ−1 þ 1þ 3
2ξ

�½1;∞�
þð1Þ

− 3
2ξ ξ > 1



1þξ2

1−ξ

h
− ln μ2

y2P2
z
þ lnð4ξð1 − ξÞÞ

i
− ξð1þξÞ

1−ξ

�½0;1�
þð1Þ

0 < ξ < 1



− 1þξ2

1−ξ ln
−ξ
1−ξ − 1þ 3

2ð1−ξÞ
�½−∞;0�
þð1Þ

− 3
2ð1−ξÞ ξ < 0

þ αsCF

2π
δð1 − ξÞ

�
3

2
ln

μ2

4y2P2
z
þ 5

2

�
: ð68Þ

The use of Eq. (68) in the factorization formula is valid for any PDF that behaves as limy→0fðy; μÞ ∼ y−1þa with a > 0. We
have also computed the matching coefficient for the Γ ¼ γz case, and it is given by Cγzðξ; μ=ðjyjPzÞÞ ¼ Cðξ; μ=ðjyjPzÞÞ þ
ΔCγzðξ; μ=ðjyjPzÞÞ with

ΔCγzðξ; μ=ðjyjPzÞÞ ¼ αsCF

2π
2ð1 − ξÞθðξÞθð1 − ξÞ: ð69Þ

Note that our result for the quark matching coefficient in MS differs from that of Ref. [27] which is a pure plus function,
but gives a convolution that does not converge, just as in the case of the quasi-PDF with a transverse momentum cutoff;
see Ref. [26].
Since the renormalized pseudo-PDF and quasi-PDF satisfy the relation in Eq. (33) by definition, Cðξ; μ=ðjyjPzÞÞ and

Cðα; z2μ2Þ that are given by Eqs. (62) and (65) automatically satisfy the relation in Eq. (34).
Besides, if one uses a scheme other than MS for the quasi-PDF, such as the scheme obtained by absorbingC0 into the MS

renormalization constant, then this will lead to a result for the matching coefficient that is a pure plus function and hence
satisfies current conservation. Starting with Eq. (65) and using Eq. (37) together with Eq. (59) we obtain

Cratio

�
ξ;

μ

jyjPz

�
¼ δð1 − ξÞ þ αsCF

2π

8>>>>>><
>>>>>>:



1þξ2

1−ξ ln
ξ

ξ−1 þ 1 − 3
2ð1−ξÞ

�½1;∞�
þð1Þ

ξ > 1



1þξ2

1−ξ

h
− ln μ2

y2P2
z
þ lnð4ξð1 − ξÞÞ − 1

i
þ 1þ 3

2ð1−ξÞ
�½0;1�
þð1Þ

0 < ξ < 1



− 1þξ2

1−ξ ln
−ξ
1−ξ − 1þ 3

2ð1−ξÞ
�½−∞;0�
þð1Þ

ξ < 0

; ð70Þ

and for the Γ ¼ γz case,
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ΔCratio
γz ðξ; μ=ðjyjPzÞÞ ¼ αsCF

2π
½2ð1 − ξÞ�½0;1�þð1Þ: ð71Þ

While retaining current conservation in the renormalized
quasi-PDF, Eq. (70) can be used e.g., as input to the two-
step matching procedure in the lattice calculation of PDF in
Ref. [33]. For the matching step, an equivalent procedure is
to study the ratio given in Eq. (38) in the MS scheme from
the start, as advocated in Refs. [39,62], performing its
matching onto the PDF, which will yield Eq. (70). This
concludes our discussion of matching results and the
equivalence between the quasi-PDF and pseudo-PDF at
one-loop order.

IV. OTHER RENORMALIZATION SCHEMES

Although we derive the above matching formula assum-
ing that the quasi-PDF is renormalized in the MS scheme,
this is not a limitation to our result. Since the gauge-invariant
Wilson line operator ÕΓðzÞ has been proven to be multi-
plicatively renormalizable in the coordinate space [52,53],
one can convert Q̃ΓðzÞ from any other scheme to the MS
scheme before using the above factorization formula. The
renormalization of the quasi-PDF has been studied in many
recent papers [26,28,33,34,54–56,64–66]. We will discuss
some of these results and showhow they can be incorporated
into the factorization formula in Eq. (27).
The MS scheme is convenient for our discussion of the

OPE as it guarantees Lorentz and gauge invariances, but it
is not practical for lattice renormalization. Since the lattice
theory has a natural UV cutoff 1=a with a being the lattice
spacing, the unrenormalized spatial correlator Q̃ inherits
the power divergence from the Wilson line self-energy
according to Eq. (13). For an arbitrary scheme X, the
renormalized spatial correlator

Q̃Xðζ; z2μ2RÞ ¼ lim
a→0

Z−1
X ðz2μ2R; a2μ2RÞQ̃ðζ; z2=a2Þ ð72Þ

should be free of all the UV divergences and have a well-
defined continuum limit as a → 0. This continuum limit, in
particular, is independent of the UV regulator, so

lim
a→0

Z−1
X ðz2μ2R; a2μ2RÞQ̃ðζ; z2=a2Þ ¼ Z−1

X ðz2μ2R; ϵÞQ̃ðζ; z2; ϵÞ:
ð73Þ

As a result, we can relate Q̃Xðζ; z2μ2RÞ to the MS scheme by
the conversion

Q̃Xðζ; z2μ2RÞ ¼
ZMSðϵ; μÞ
ZXðz2μ2R; ϵÞ

Q̃MSðζ; z2μ2Þ

¼ Z0
Xðz2μ2R; μ2R=μ2ÞQ̃MSðζ; z2μ2Þ; ð74Þ

where the regulator ϵ dependence is completely canceled
out between ZMS and ZX. The ratio Z0

X can be calculated

perturbatively in QCD, which was done in [56] for several
lattice schemes and the RI/MOM scheme. Thus the
factorization formula we have proven in Sec. II still applies
to Q̃X with a slight modification to the coefficient function,

Q̃Xðζ; z2μ2RÞ ¼
Z

1

−1
dαCXðα; μ2R=μ2; μ2z2ÞQðαζ; μÞ; ð75Þ

where the matching coefficient for the scheme X is related
to that of MS by

CXðα; μ2R=μ2; μ2z2Þ ¼ Z0
Xðz2μ2R; μ2R=μ2ÞCðα; μ2z2Þ: ð76Þ

For the pseudo-PDF the modified result also involves this
same coefficient

PXðx; z2μ2RÞ ¼
Z

1

jxj

dy
jyj C

X

�
x
y
;
μ2R
μ2

; μ2z2
�
qðy; μÞ

þ
Z

−jxj

−1

dy
jyj C

X

�
x
y
;
μ2R
μ2

; μ2z2
�
qðy; μÞ: ð77Þ

Meanwhile, for the quasi-PDF we have

q̃X

�
x;
μ2R
P2
z

�
≡

Z
dζ
2π

eixζQ̃X

�
ζ;
μ2ζ2

P2
z

�

¼
Z

1

−1

dy
jyjC

X

�
x
y
;
μR
μ
;

μ

jyjPz

�
qðy; μÞ: ð78Þ

Here the modified coefficient for the X scheme is related to
coefficient in the MS scheme by

CX

�
x
y
;
μR
μ
;

μ

jyjPz

�

¼
Z

dηZ̄0
X

�
η2;

μ2R
μ2

�
C

�
x
y
−

η

jyj
μR
Pz ;

μ

jyjPz

�
; ð79Þ

where here Z̄0
X is defined by the Fourier transform

Z̄0
X

�
η2;

μ2R
μ2

�
≡

Z
dτ
2π

eiητZ0
X

�
τ2;

μ2R
μ2

�
: ð80Þ

Depending on the scheme X we note that slightly modified
definitions of Z̄0

X may be more appropriate.
One undesirable feature of the MS scheme for the

renormalized spatial correlator is that it does not have a
smooth z → 0 limit, and hence no simple connection with
the fact that the local operator for z ¼ 0 is a conserved
current. To avoid this one can simply make use of a
different scheme that has a simple relation to MS, such as
by adding C0ðμ2z2Þ to the MS renormalization constant.
This removes the offending lnðμ2z2Þ terms and yields a
scheme with a smooth connection to the conserved current.
Besides the MS scheme, the quasi-PDF has also been

defined with a transverse momentum cutoff [19,24,25,29]
and in a RI/MOM scheme [26,33,34,56,66]. The RI/MOM
scheme has attracted strong interest recently as it can be
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implemented nonperturbatively on the lattice, so we con-
sider it as an explicit example of the above relations. In this
scheme, the renormalization constant ZOM is determined by
imposing a condition on the spatial correlator in an off-shell
quark state,

Z−1
OMQ̃ðζ ¼ zpz; z2=a2;−p2a2Þjp2¼−μ2R;p

z¼pz
R

¼ Q̃ð0Þ
q ðzpz

R; z
2=a2; z2μ2RÞ ¼ e−izp

z
R ; ð81Þ

where q denotes the quark state, pμ is the external
momentum, and “(0)” in the superscript stands for the
tree-level matrix element. As a result,

ZOM ¼ ZOMðzpz
R; z

2=a2; a2μ2RÞ;
Z0
OM ¼ Z0

OMðzpz
R; z

2μ2R; μ
2
R=μ

2Þ; ð82Þ
and here we define

Z̄0
OM

�
η;

μ2R
ðpz

RÞ2
;
μ2R
μ2

�

≡ pz
R

Z
dz
2π

eiηp
z
RzZ0

OMðzpz
R; z

2μ2R; μ
2
R=μ

2Þ: ð83Þ

Then the matching coefficient in Eq. (78) becomes

COM

�
x
y
;
μR
pz
R
;
μR
μ
;
μ

yPz

�

¼
Z

dηZ̄0
OM

�
η;

μ2R
ðpz

RÞ2
;
μ2R
μ2

�
C

�
x
y
−
η

y
pz
R

Pz ;
μ

jyjPz

�
: ð84Þ

The choices of μR and pz
R are independent of μ and Pz, and

pz
R ¼ Pz was used in Refs. [26,34].
It should be noted that on the lattice, due to the breaking

of chiral symmetry, the vectorlike quark Wilson line
operator ÕγμðzÞ can mix with the scalar operator Õ1ðzÞ,
as has been discussed in Refs. [33,34,56,66,67]. After
considering the mixing effects, the same factorization
formula can still be applied to the RI/MOM quasi-PDF
from lattice QCD.

V. NUMERICAL RESULTS

In this section we numerically analyze the quasi-PDF,
spatial correlator, and pseudo-PDF by studying how the
matching coefficients in Eqs. (27) and (30) change the PDF.
The quasi-PDF has already been studied in this manner for
the MS, transverse momentum cutoff, and RI/MOM
schemes in Ref. [26]. Our new MS result for the matching
is given in Eq. (68), and leads to stable convolution
integrals. We also compare the differences between using
hadron momentum pz ¼ Pz and the parton momentum
pz ¼ jyjPz for the matching coefficient in the MS scheme.
We take Γ ¼ γ0 for the results here.

As an example we use for our analysis the unpolarized
isovector parton distribution,

fu−dðx; μÞ ¼ fuðx; μÞ − fdðx; μÞ − fūð−x; μÞ þ fd̄ð−x; μÞ;
ð85Þ

where we include fūð−x; μÞ ¼ −fūðx; μÞ and fd̄ð−x; μÞ ¼
−fd̄ðx; μÞ, the antiparton distributions. For ease of com-
parison, we use the next-to-leading-order isovector PDF
fu−d fromMSTW 2008 [4] with the corresponding running
coupling αsðμÞ.
To implement the plus functions in the numerical

calculation, we impose a soft cutoff jy − xj < 10−m and
test the sensitivity of results to m. Since the limit of y → 0
corresponds to the asymptotic region jx=yj → ∞, we also
impose a UV cutoff jyj > 10−n to test the convergence of
the convolution integral. We find that all the results
presented below are insensitive to m and n. The fact that
our result in Eq. (68) has terms outside the plus function at
1 in each of the ξ ∈ ½1;∞� and ξ ∈ ½−∞; 0� intervals is
important for ensuring that our MS result for C is
insensitive to the jyj > 10−n cutoff. This was not the case
for the quasi-PDF that was defined with a transverse
momentum cutoff [24]. The RI/MOM scheme result [26]
also does not suffer from this issue.
In Fig. 2 we compare the PDF with the quasi-PDF in the

MS scheme obtained from the convolution in Eq. (27)
using our one-loop result in Eq. (68). We observe that
changing from pz ¼ Pz to the correct pz ¼ jyjPz shifts the
result in the physical region by a considerable amount.
The same type of comparison can bemade for the pseudo-

PDF in theMS schemeby applying the factorization formula
in Eq. (30) and matching coefficient in Eq. (62). In Fig. 3(a)
we compare the PDF and pseudo-PDF and their dependence
on the factorization scale μ, while in Fig. 3(b) we include the
dependence of the pseudo-PDF on the distance jzj. Since the
matching coefficient in Eq. (62) is similar to the parton

FIG. 2. The MS scheme PDF xfu−d and the MS quasi-PDF

obtained from xCMSðpzÞ ⊗ fu−d, comparing results obtained
with pz ¼ yPz and pz ¼ Pz.
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(a) (b)

FIG. 3. (a) Comparison between the PDF xfu−d and the pseudo-PDF xðCM̄S ⊗ fu−dÞ in the MS scheme. The orange and blue bands
indicate the results from varying the factorization scale μ ¼ 4 GeV by a factor of 2. (b) Same but now showing only central pseudo-PDF
curves for different values of z.

FIG. 4. (Left) Comparison between the light-cone time distributionQu−d and spatial correlator from ðCMS ⊗ Qu−dÞ in the MS scheme.
The orange and blue bands indicate the results from varying the factorization scale μ ¼ 4 GeV by a factor of 2. (Right) Same but now
showing only central spatial correlator curves for different values of z. The top panels show the real part, while bottom panels show the
imaginary part.
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splitting function except for the nontrivial finite constants,
matching the PDF to the pseudo-PDF is analogous to
evolving the PDF from μ to the scale of 1=jzj. This evolution
has been calculated in Ref. [39]. The variation of jzj has a
similar effect on the PDF evolution, as is observed in
the right panel of Fig. 3. When jzjμ ¼ 1, the logarithm is
zero, and the matching effect from C is determined by
the nontrivial constants in Eq. (62), which shifts the PDF
downward in the large-x region and upward in the small-x
region.
Finally, we can make a similar comparison for the

spatial correlator in the MS scheme obtained with
Eqs. (23) and (62). Its real and imaginary parts are even
and odd functions of ζ respectively, and are shown in
Fig. 4. Again we show the residual dependence on μ and
jzj which is similar to that for the pseudo-PDF. The
matching broadens the curves in the coordinate space. The
spatial correlator renormalized in the MS scheme does not
exhibit vector-current (or particle number) conservation,
which can be clearly seen from the fact that the real part of
the distribution is not equal to 1 at ζ ¼ 0 (except for the
special case where jzjμ is tuned to cancel the constant
terms in the one-loop C).

VI. IMPLICATIONS FOR LATTICE
CALCULATIONS

Our proof in Sec. II makes clear the relationship between
the renormalized quasi-PDF, spatial correlator, and pseduo-
PDF distributions. As a practical matter there are a few
different ways in which these equations can be used to
convert a lattice calculation of the spatial correlator Q̃ into a
PDF. Three examples are (1) first Fourier transform to the
quasi-PDF with Eq. (24), and then use Eq. (27), (2) first
Fourier transform to the pseudo-PDF with Eq. (29),
and then use Eq. (30), and (3) first match to the Fourier
transform the position space PDF Qðζ; μÞ using Eq. (23),
and then transform it to the PDF with the inverse of
Eq. (22). Since the numerical implementation of these steps
may have slightly different systematics it is interesting to
compare them, or to use more than one approach in order to
reduce uncertainties.
According to the analysis in Sec. II, for the factorization

formula of the Euclidean distributions to work, one must
calculate the same spatial correlator with small distance z2

and large momentum Pz so that the dynamical and
kinematic higher-twist effects are suppressed. For practical
lattice calculations, this means that there is only a finite
number of useful data points in ðz; PzÞ that we can use to
extract the PDF.
To illustrate this, consider a 483 × 64 lattice with spacing

a ¼ 0.09 fm. The distance of the spatial correlation z is in
units of a ∼ 1=2.2 GeV−1, and the nucleon momentum
Pz is in units of 2π=ð48aÞ ∼ 0.29 GeV. Let us take
ΛQCD ∼ 0.3 GeV. In principal the target mass corrections

can be subtracted. If we consider various values z ¼ ma
and Pz ¼ n � 2π=ð48aÞ for integer m and n, then to satisfy
zΛQCD ≪ 1 and Pz ≫ ΛQCD, we must have

m ≪ 11; n ≫ 1: ð86Þ

To control the higher-twist correction at 20%, i.e.,
z2Λ2

QCD ∼ 0.2;Λ2
QCD=P

2
z ∼ 0.2, we can only choose

m ¼ f0; 1; 2; 3; 4g; n ¼ f3; 4; 5; 6;…g; ð87Þ
where the largest value for n is limited by what is practical
in current lattice simulations. Six is the largest number of
units attained in Ref. [42]. For quasi-PDF calculations,
there are 4 × 2þ 1 ¼ 9 useful data points for each fixed
momentum jPzj; for the pseudo-PDF calculation, there are
only 4 × 2 ¼ 8 useful data points for each fixed jzj. In
either case, it is anticipated that a direct Fourier transform
with respect to z or ζ ¼ zPz will lead to oscillation in x
space and incorrect prediction for the small-x region due to
the truncation in coordinate space. This has been observed
in a recent lattice calculation of the quasi-PDF in Ref. [34].
Methods have been developed in recent works to eliminate
the oscillation from the truncation effect [35,68] in the
quasi-PDF, while the higher-twist contributions at large z
still need to be systematically corrected. It should be noted
that the above is a rough estimate of the higher-twist
corrections since the prefactor of z2Λ2

QCD could be smaller
than 1. Their actual significance can only be quantitatively
determined from lattice simulations.
To fully take advantage of all the useful data points, we

can evolve them to either the same z2 or Pz according to
the perturbative analysis, which has been studied in
Refs. [42,43,62] for the spatial correlator. However, since
the evolution equation of the spatial correlator in ln z2 or
lnP2

z follows a nonlocal convolution in ζ ¼ zPz or z, one
has to know the full information in coordinate space to do
the evolution. With limited number of data points, either
large uncertainties or adopting a model-dependent
assumption about the shape is inevitable.
To improve the precision of either approach, the only

way forward is to have finer lattice spacing a so that we
could have more data points which satisfy jzj ≪ Λ−1

QCD and
larger nucleon momentum Pz. With increasing Pz, the
valence distribution of the nucleon is contracted in the z
direction, so the spatial correlation of valence quarks
shrinks into smaller distance in z. If Pz is large enough,
the spatial correlation will fall off quickly within
jzj < Λ−1

QCD, then the truncation error from the Fourier
transform will be significantly reduced. On the other hand,
if we interpret the spatial correlation as the spatial corre-
lator, its shape will not change under a Lorentz boost
because it is a scalar function of ζ ¼ zPz and z2.
Nevertheless, finer lattice spacing a allows for calculation
with a wider range of Pz, thus covering larger values of
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ζ ¼ zPz to reduce the truncation error. Since the number of
useful data points increases quadratically with 1=a, a more
precise lattice calculation with controlled systematic errors
will be available in the future.

VII. CONCLUSIONS

Starting with a Euclidean operator product expansion
for products of gauge-invariant operators in QCD, we have
derived the factorization formulas for the quasi-PDF,
spatial correlator, and pseudo-PDF. The three Euclidean
distribution functions are related observables, and all
follow from the same fundamental factorization. For the
spatial correlator this derivation implies that the ratio in
Eq. (35) does scale in z2, but needs the small z2

factorization formula in Eq. (23) to extract the PDF.
Our derivation for the factorization formula applies when
the renormalized spatial correlator is defined in any
scheme. The OPE used here could also be used to
systematically derive factorization formulas for power
corrections to Eq. (6), which will involve matching onto
higher-twist parton distributions. (The numerical relevance
of these corrections is considered in Ref. [30].) Note that
LaMET is not equivalent to the expansion from the OPE,
as the former is more general and can be applied to the
lattice calculations of other quantities, e.g., the TMD PDF
where a simple OPE does not exist.
Our derivation of the factorization formula for the quasi-

PDF also verifies that the parton momentum pz in the
matching coefficient in Eq. (6) has to be pz ¼ yPz, which
makes a considerable difference for the MS matching result
when compared with pz ¼ Pz (see Fig. 2). The proper pz

should therefore be used in lattice calculations of the PDF
in the LaMET approach.
As a nontrivial test of relations between the various

distributions and factorization formulas we have considered
results at one loop in the MS scheme. We have derived
corrected results for the coefficient C for the MS scheme
given in Eq. (68), which leads to convergent results in the
convolution integral. We have also computed the one-loop
MS result for the Wilson coefficient C appearing in the
spatial correlator and pseudo-PDF factorizations. A numeri-
cal analysis of these one-loop corrections in MS has also
been provided. The one-loop matching coefficient C has a
smaller effect for the pseudo-PDF than C does for quasi-
PDF, as can seen by comparing Figs. 2 and 3. Given
systematic uncertainties in manipulating the lattice data, it is
potentially interesting to consider using the same lattice
data on the spatial correlator to extract the parton distri-
bution function using both the quasi-PDF and pseudo-PDF
approaches.
There are several different ways of implementing the

factorization formula to calculate the PDF from lattice data
for the spatial correlator Q̃, which we have discussed in
Sec. VI. One always has to work with short-distance

correlation and large nucleon momentum to reduce higher-
twist corrections. This limits the number of useful data
points from lattice calculations as described in Sec. VI. To
achieve precision calculations without making model
assumptions it will be highly desirable to move towards
finer lattice spacing to increase the number of effective
data points.
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APPENDIX A: FOURIER TRANSFORM

To Fourier transform the bare pseudo-PDF in Eq. (46)
into the bare quasi-PDF, we use the identityZ

dζ
2π

eixζðz2μ2ÞϵΓð−ϵÞ4−ϵ

¼
�
μ2

p2
z

�
ϵ Z dζ

2π
eixζ

Z
∞

0

dαα−1−ϵe−αζ
2

4−ϵ

¼
�
μ2

p2
z

�
ϵ Z ∞

0

dα
2

ffiffiffi
π

p α−3=2−ϵe−x
2=ð4αÞ4−ϵ

¼
�
μ2

p2
z

�
ϵ Γðϵþ 1=2Þffiffiffi

π
p 1

jxj1þ2ϵ ; ðA1Þ

which is true for ϵ < 0.

Now let us turn to a plus function gðyÞ½0;1�þð1Þ. The double
Fourier transformZ

dζ
2π

eixζ
Z

1

0

dye−iyζgðyÞ½0;1�þð1Þðz2μ2ÞϵΓð−ϵÞ4−ϵ

¼ ðiζÞ
Z

dζ
2π

eiðx−1Þζ
Z

1

0

dy
Z

1

0

dtygð1 − yÞ

× eityζðz2μ2ÞϵΓð−ϵÞ4−ϵ

¼
�
μ2

p2
z

�
ϵ Γðϵþ 1

2
Þffiffiffi

π
p ∂

∂x
Z

1

0

dy
Z

1

0

dt
ygð1 − yÞ

jx − 1þ tyj1þ2ϵ :

ðA2Þ
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Since the integration over y and t leads to a piecewise function of x, the derivative will end up with a plus function as the
discontinuity at x ¼ 1 gives δð1 − xÞ.

APPENDIX B: QUASI-PDF CALCULATION

Here we quote the pure dimensional regularization results obtained when we carry out the quasi-PDF calculation
following Refs. [24,26] by Fourier transforming from z to xpz for the integrand to obtain ½δðpz − xpzÞ − δðkz − xpzÞ�. For
the vertex and wave function renormalization graphs we obtain

q̃ð1Þvertexðx; pz; ϵÞ þ q̃ð1Þw:fn:ðx; pz; ϵÞ

¼ αsCF

2π

�
μ2

p2
z

�
ϵ
�
ð1 − ϵÞ

Z
1

0

dyð1 − yÞ 1

jx − yj1þ2ϵ

Γðϵþ 1
2
Þffiffiffi

π
p − δð1 − xÞ 1

2

�
1

ϵUV
−

1

ϵIR

��
; ðB1Þ

while for the sail diagram

q̃ð1Þsailðx; pz; ϵÞ

¼ αsCF

2π

�
4πμ2

p2
z

�
ϵ
�Z

1

0

dy
xþ y
1 − x

1

jx − yj1þ2ϵ

Γðϵþ 1
2
Þffiffiffi

π
p − δð1 − xÞ

Z
dx0

Z
1

0

dy
x0 þ y
1 − x0

1

jx0 − yj1þ2ϵ

Γðϵþ 1
2
Þffiffiffi

π
p

�

¼ αsCF

2π

�
μ2

p2
z

�
ϵ
�Z

1

0

dy
xþ y
1 − x

1

jx − yj1þ2ϵ

Γðϵþ 1
2
Þffiffiffi

π
p þ δð1 − xÞ

�
1

ϵUV
−

1

ϵIR

�

−δð1 − xÞ
Z

dx0
Z

1

0

dy
1þ y
1 − x0

1

jx0 − yj1þ2ϵ

ΓðϵIR þ 1
2
Þffiffiffi

π
p

�
; ðB2Þ

and for the tadpole diagram

q̃ð1Þtadpoleðx; pz; ϵÞ

¼ αsCF

2π

�
4πμ2

p2
z

�
ϵ
�
−

1

1 − 2ϵ

1

j1 − xj1þ2ϵ

Γðϵþ 1
2
Þffiffiffi

π
p − δð1 − xÞ 1

1 − 2ϵ

1

j1 − xj1þ2ϵ

Z
∞

−∞
dx0

1

j1 − x0j1þ2ϵ

Γðϵþ 1
2
Þffiffiffi

π
p

�

¼ αsCF

2π

�
4πμ2

p2
z

�
ϵ
�
−

1

1 − 2ϵ

1

j1 − xj1þ2ϵ

Γðϵþ 1
2
Þffiffiffi

π
p þ δð1 − xÞ

�
1

ϵUV
−

1

ϵIR

��
: ðB3Þ

After adding these expressions and carrying out the remaining integrations over y, we obtain the same result as
in Eq. (48).

APPENDIX C: ϵ EXPANSION AND PLUS FUNCTIONS

Since the support of the quasi-PDF ranges from −∞ to ∞, its asymptotic behavior as ∼1=jxj at jxj → ∞ implies a UV
divergence which can be regularized by dimensional regularization. Therefore, the ϵ expansion of the quasi-PDF should
account for this feature.
In general, we need to expand

θðxÞ
x1þϵ ¼

θðxÞθð1 − xÞ
x1þϵ þ θðx − 1Þ

x1þϵ ; ðC1Þ

and it is well known that

θðxÞθð1 − xÞ
x1þϵ ¼ −

1

ϵ
δðxÞ þ L̃0ðxÞ − ϵL̃1ðxÞ þOðϵ2Þ; ðC2Þ

where ϵ < 0. Here we follow [69] and the plus functions LnðxÞ are defined as

LnðxÞ≡
�
θðxÞlnnx

x

�
þ
¼ lim

β→0

�
θðx − βÞlnnx

x
þ δðx − βÞ ln

nþ1β

nþ 1

�
; ðC3Þ

and we let
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L̃nðxÞ ¼ θð1 − xÞLnðxÞ: ðC4Þ

Note that
R
1
0 dxLnðxÞ ¼ 0.

To define the expansion in the range x ∈ ½1;∞� we
simply map this interval to [0, 1] via t ¼ 1=x. Taking an
arbitrary smooth test function gðxÞ we have

Z
∞

1

dx
1

x1þϵ gðxÞ

¼
Z

1

0

dt
1

t1−ϵ
gð1=tÞ

¼
Z

1

0

dt

�
1

ϵ
δðtÞ þ L0ðtÞ þ ϵL1ðtÞ þOðϵ2Þ

�
gð1=tÞ

¼
Z

∞

1

dx
x2

�
1

ϵ
δþ

�
1

x

�
þ L0

�
1

x

�
þ ϵL1

�
1

x

�

þOðϵ2Þ
�
gðxÞ: ðC5Þ

Here ϵ > 0 and the superscript þ on the δþ function
indicates that its argument should be positive. Therefore
δþð1=xÞ has its support at x ¼ þ∞, not x ¼ −∞. Since g is
arbitrary we can identify

θðx − 1Þ
x1þϵ ¼ 1

ϵ

1

x2
δþ

�
1

x

�
þ 1

x2
L̃0

�
1

x

�
þ ϵ

1

x2
L̃1

�
1

x

�

þOðϵ2Þ: ðC6Þ

Combining the above results and denoting which 1=ϵ poles
are UV or IR divergences we have

θðxÞ
x1þϵ ¼

�
−

1

ϵIR
δðxÞ þ 1

ϵUV

1

x2
δþ

�
1

x

��

þ
�
1

x

�½0;1�

þð0Þ
þ
�
1

x

�½1;∞�

þð∞Þ

− ϵ

��
ln x
x

�½0;1�

þð0Þ
þ
�
ln x
x

�½1;∞�

þð∞Þ

�
þOðϵ2Þ; ðC7Þ

where we have defined the distributions

ð1=xÞ½0;1�þð0Þ ≡ L̃0ðxÞ; ðln x=xÞ½0;1�þð0Þ ≡ L̃1ðxÞ; ðC8Þ

and

ð1=xÞ½1;∞�
þð∞Þ ≡ ð1=x2ÞL̃0ð1=xÞ;

ðln x=xÞ½1;∞�
þð∞Þ ≡ −ð1=x2ÞL̃1ð1=xÞ: ðC9Þ

Note that Eq. (C7) is consistent with the expected result
that

Z
∞

0

dx
x1þϵ ¼

1

ϵUV
−

1

ϵIR
: ðC10Þ
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