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We present a numerical study of the dynamical effects following a sudden change of the transverse
trapping frequency in an elongated Bose-Einstein condensate, which induces periodic oscillations of the
radial density. At early times, we observe an exponential growth of the number of resonant longitudinal
phonons, in agreement with the predictions of the Bogoliubov–de Gennes treatment. We then observe an
ordered sequence of phenomena induced by the nonlinearities of the system. The first is a loss of the
nonseparability of the resonant phonon pairs. This is followed by the saturation of the exponential growth
and a strong depletion of condensed atoms. Notably, these effects are well described by effective one-
dimensional dynamics, and are hardly affected by the damping of the radial oscillations. Finally, the atomic
spectrum becomes broad, featureless and almost incoherent, in agreement with experimental results. The
link between this sequence of events and the preheating scenario in inflationary cosmology is striking, as is
the similarity of techniques used to study them.
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I. INTRODUCTION

Quantum field theory predicts the production of corre-
lated pairs of particles due to temporal variations of a
background field. The particle production can be seeded
either by an initial presence of particles (such as a thermal
bath), or by vacuum fluctuations [1–3]. The latter mecha-
nism generates pairs of opposite wave vectors ðk;−kÞ that
are quantummechanically entangled, at least when neglect-
ing interactions with other degrees of freedom, see e.g.,
[4–7]. In a cosmological context, one generally considers a
monotonically expanding universe and the particle produc-
tion (mode amplification) mainly occurs when the wave-
length of the excitations crosses the Hubble radius during
the inflationary era. The amplified modes give rise to the
so-called Sakharov oscillations when reentering the hori-
zon in the radiation-dominated era. Their observation in
condensed matter has recently been reported in [8]; see also
[9] for an earlier work along the same lines and [10–16] for
theoretical works where the analogy between cosmology
and condensed matter is presented.
However, the mode amplification process is more

efficient and better controlled when the modifications of
the background field are periodic in time, for this sets up a
parametric resonance between the oscillating field and pairs

of modes belonging to a finite resonant frequency window
[17,18]; see Refs. [9,19] for experiments performed with
atomic condensed clouds. In addition, parametric amplifi-
cation closely corresponds to the exponential growth of
the resonant modes of matter fields induced by oscillations
of the inflaton field, a process normally referred to as
“preheating” [20,21] as it precedes the standard thermal-
ization process (“reheating”) giving rise to a radiation-
dominated universe at the end of the inflationary era, see
[22] for a recent review.1

The efficiency of the exponential growth associated to
the preheating mechanism implies that, at some point
during the process, the nonlinearities of the system can
no longer be neglected, i.e., the linear treatment used to
derive the parametric resonance is no longer sufficient to
describe the behavior of the system. In fact, when working
beyond this description, one faces two types of nonlinear-
ity. The first concerns the interactions between the pro-
duced particles, which propagate in the homogeneous
geometry described by the scale factor aðtÞ and interacting
with the mean value of the inflaton field φðtÞ. The second
concerns the backreaction of the produced particles on the
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1While finishing this work, we became aware of [23] where the
dynamical processes in a supersonically expanding ring-shaped
Bose-Einstein condensate are studied. It also leads to processes
tending towards thermalization, although these appear not to be
analogous to the preheating scenario as they are not driven by
oscillations.
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equations of motion for a and φ. Importantly, to obtain
these ordinary differential equations, one has to take either
a spatial average over a large volume of the energy
contribution of the produced particles, or an ensemble
average over a set of statistically homogeneous configu-
rations. One then finds the expected result that the
amplitude of the coherent inflaton oscillations decreases
in time, see e.g., Fig. 2 in [22].
In this paper, we shall adopt the same theoretical

framework to study the nonlinear effects in an elongated
atomic cloud which is put out of equilibrium by a sudden
and large increase of the trapping frequency, thus inducing
large and coherent oscillations of the radial density. In this
context, the coherent oscillations of the atomic density in
the narrow transverse directions act as the oscillations of
the inflaton field in primordial cosmology, and longitudinal
density fluctuations propagate on top of the homogeneous
time-dependent condensed cloud. Moreover, the first kind
of nonlinearity neglected in the Bogoliubov–de Gennes
(BdG) approximation concerns the interactions between
longitudinal phonons. These are governed by an effective
one-dimensional Gross-Pitaevskii (GP) equation that we
shall solve numerically using the truncated Wigner
approximation (TWA) [24–26].2 The second kind of non-
linearity concerns the backreaction of these longitudinal
phonons on the coherent radial oscillations, and as in
cosmology, it shall be calculated by taking the spatial
average (over the length of the cloud) of their energy
density. As a result, the radial oscillations are progressively
damped, just like those of the inflaton.
Our observations can be summarized thus. At very early

time, the system behaves essentially in accordance with the
BdG formalism, whose predictions concerning the occu-
pation number and the nonseparability of produced phonon
pairs in this particular context were previously studied in
detail in [18]. We observe the first deviations from BdG to
occur rather early, where they manifest as the loss of
entanglement of the produced pairs. Interestingly, this loss
occurs while the occupation numbers of the resonant modes
are still increasing exponentially. It is induced by phonon-
phonon interactions, and thus belongs to the first kind of
nonlinearity in the above classification. As the system
evolves further, the resonant modes become saturated and
there is a fairly sudden transition during which the
longitudinal part of the total energy is exchanged between
all longitudinal modes in a broad band centered at k ¼ 0,

resulting in a relatively featureless and incoherent distri-
bution. Concurrent with this broadening is a large increase
in the entropy of the phonon state. We also observe a
reduction of the energy stored in the coherent radial
excitations which is caused by the second kind of non-
linearity, but our simulations suggest that this is a separate
effect, with the reduction of the radial oscillation energy
occurring at a slower rate whenever the entropy is rapidly
increasing. We can thus conclude that most of the nonlinear
effects involving longitudinal phonons are essentially
described by the effective one-dimensional dynamics.
Finally, we observe that, near the end of our simulations,
the entropy of the longitudinal phonons remains much
lower than that of the thermal state with the same total
energy. This means that we only observe the first steps
towards thermalization. We make no claim about the time
the system would take to thermalize, as the TWA is inapt to
describe this properly; see e.g., [25].
The paper is organized as follows. In Sec. II, we out-

line the equations of motion used to model the system and
the approximations made in their derivation, explicitly
obtaining the two kinds of nonlinear effect described above.
In Sec. III, we focus on the behavior of the system at early
time, i.e., up to the saturation of the resonant modes. The
first deviations from BdG are observed, and the dissipative
effects caused by phonon-phonon interactions are
described. In Sec. IV, we turn our attention to the longer
view, with particular emphasis on the broadening of the
atomic spectrum, the rapid loss of the spatial coherence in
the longitudinal direction, and the accompanying increase
of the entropy encoded in the covariance matrix. We
summarize our findings in Sec. V.

II. SYSTEM AND APPROXIMATIONS

This section is devoted to the description of our system,
namely an elongated cylindrically symmetric atomic con-
densate with a longitudinal length L ≫ a⊥, where a⊥ is the
characteristic radius of the cylindric cloud. The system is
assumed homogeneous in the longitudinal direction, and
taken to be a torus of length L. It is put out of equilibrium
by a sudden increase of the radial trapping frequency ω⊥, as
in the first experiment of [9]. To describe the dynamical
evolution of this system in a tractable manner, we shall rely
on the hierarchy of various scales, and restrict our attention
to phonon states which are statistically homogeneous in the
longitudinal direction.
Under these conditions, to work beyond the mean field

and BdG approximations, we shall proceed as in cosmol-
ogy. (For previous works concerning backreaction effects
in condensed matter systems, we refer the interested reader
to [28–30].) The first kind of nonlinearity concerns self-
interactions of longitudinal excitations and will be
described by an effective one-dimensional equation. The
evolution of the state will be done using the truncated
Wigner approximation (TWA) [24–26]. This method

2After having completed this work, we were made aware of
Ref. [27] where an unstable two-component (one-dimensional)
BEC is studied using the TWA. Although the instability is not
triggered by resonant oscillations, features very similar to ours
(and those of the preheating scenario) are obtained. Namely, the
growth of the occupation numbers shown in their Figs. 11–13
behaves essentially as that of our phonon modes. It would be
interesting to further clarify the nature of the correspondence
between the two systems.
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amounts to considering an ensemble of initial configura-
tions described by the Wigner distribution function, and
evolving each realization according to the effective one-
dimensional Gross-Pitaevskii equation. Ensemble averages
of field functions are then identified with expectation values
of the corresponding symmetrized quantum operators. The
second kind of nonlinearity, which concerns the back-
reaction of longitudinal excitations on the radial oscilla-
tions, will be described by an ordinary differential equation
(ODE) driven by the spatial average of the energy carried
by the former, as in studies of reheating [22]. In our
settings, this ODE accounts for the conservation of the total
energy of the system.
As we shall now see, the implementation of this program

relies on the use of a factorization of the three-dimensional
wave function. For reasons of clarity, we shall present this
factorization as an ansatz, then justify its legitimacy step
by step.

A. The factorization ansatz

We start with the standard three-dimensional Gross-
Pitaevskii equation [31]

iℏ∂tΨ ¼
�
−
ℏ2

2m
∇2 þ Vext þ gjΨj2

�
Ψ; ð1Þ

and its associated energy functional

E3D ¼
Z

d3x

�
ℏ2

2m
j∇Ψj2 þ VextjΨj2 þ

g
2
jΨj4

�
: ð2Þ

Here, Ψ is the classical (c-number) atomic field, m is the
mass of a single atom, Vext is the externally applied
potential, and g is the atom-atom coupling constant, related
to the scattering length as by the relation g ¼ 4πℏ2as=m.
Whenever m, Vext and g are independent of time, E3D is a
constant of motion. It shall thus be constant after the sudden
increase of the radial trapping frequency, which we shall
use to put the system out of equilibrium.
To study elongated (cigar-shaped) condensates which are

cylindrically symmetric, we use a trapping potential of the
form

Vext ¼
1

2
mω2⊥r2; ð3Þ

where r2 ¼ x2 þ y2. Within our scheme of approximations,
an initially cylindrically symmetric condensed cloud will
remain so, having no dependence on the azimuthal angle.
As far as the longitudinal coordinate z is concerned, we
assume periodic boundary conditions so that the cloud
effectively lives on a torus of fixed length L.
As explained above, in order to distinguish the two kinds

of nonlinearity to be handled, we assume the following
factorization of the three-dimensional wave function:

Ψðr; θ; z; tÞ ¼ 1ffiffiffiffiffiffi
2π

p ψðr; tÞ × ϕðz; tÞ: ð4Þ

For definiteness, we choose the following normalization
conditions:

Z
∞

0

dr rjψðr; tÞj2 ¼ 1;
Z

L

0

dz jϕðz; tÞj2 ¼ N; ð5Þ

N being the total number of atoms. jϕðz; tÞj2 is thus the
effective one-dimensional atom number density, and its
spatial average, n1 ¼ N=L, is a constant.
It is quite clear that there exist no exact z-dependent

solutions of Eq. (1) which are factorized as in Eq. (4). (This
is just as in cosmology: one cannot assume that the
geometry is homogeneous when the matter field configu-
rations are not). It behooves us to justify the use of the
above factorization. Its validity rests on several conditions,
which we now make explicit.
First of all, we shall completely neglect the longitudinal

phonic excitations with nodes in the radial direction. The
reason for this neglect is simple: these excitations all have a
frequency which is higher than twice the trapping fre-
quency ω⊥; see [32,33] and Fig. 1. Moreover, 2ω⊥ is the
frequency of the “breathing” (i.e., the unforced radial
oscillations). Hence their occupation number cannot sig-
nificantly increase as they cannot enter into resonance with
the radial oscillations. It should also be noted that their
initial occupation is insignificant since we shall work with
an initial temperature which is half of the chemical
potential. In brief we work in the regime where “the radial

FIG. 1. Dispersion relations of the first two phonic branches
with azimuthal symmetry and with n1as ¼ 0.6, as functions of
the wave number k adimensionalized by that of the resonant
mode, kres; see Sec. III A for its precise definition. The two lower
curves describe, respectively, the numerically computed fre-
quency without using Eq. (4) (continuous blue line) and that
obtained using this factorization (dashed black line). Their
relative difference remains smaller than 8% for all k, and for
k ¼ kres it is close to 5%. The upper branch (in orange) has been
computed without using Eq. (4). We observe that it starts with
ω=ω⊥ ¼ 2, which is a known result [33].

NONLINEARITIES INDUCED BY PARAMETRIC … PHYS. REV. D 98, 056003 (2018)

056003-3



motion of particles is essentially frozen” as in [34].
Furthermore, when considering (at the linear level) longi-
tudinal excitations on the lowest branch, the above fac-
torization offers a very good description; see Fig. 1, and
Fig. 13 in [18]. As a final comment, we should add that
excitations with nodes could participate to the thermal-
ization of the system, but we shall stop our numerical
integration before their effects can become significant.
The second condition concerns the set of phonon states

we shall consider. All our initial states are taken to be
statistically homogeneous in the longitudinal direction, and
hence will remain so at all times. Moreover, since they are
characterized by a low temperature, each realization of the
ensemble is homogeneous to a good approximation. In our
simulations, the typical value of the root-mean-square
relative density fluctuation in the initial state is around
7% for the “benchmark” case (presented below). Hence, at
early times at least, and as in the BdG treatment, one can
safely assume that the radial density profile does not get
significantly modulated in the longitudinal direction.
The third justification comes from an exact property of

homogeneous cylindrically symmetric solutions of Eq. (1).
Namely, for any time-dependent trapping potential of
Eq. (3) quadratic in r, the exact evolution of the radial
wave function is governed by a single scale factor we shall
call σðtÞ, as was shown in [35] and exploited to study the
present system in the BdG approximation [18]. Explicitly,
one has

ψðr; tÞ ¼ eiθðtÞ
σ0
σðtÞψðrσ0=σðtÞ; 0Þ; ð6Þ

where σ0 ≡ σðt ¼ 0Þ, ψðr; 0Þ is an arbitrary exact solution
of the radial GPE [see Eq. (7)], and θðtÞ is a phase governed
by σðtÞ whose expression can be found in [18,35]. Hence,
the evolution of ψðr; tÞ is governed by the ODE obeyed by
σðtÞ; see below for its expression. (This equation will play
the role of the Friedmann equation in cosmology).
Finally, two scale separations ensure the stability of the

results. First, owing to the fact that L ≫ a⊥ there are many
longitudinal modes involved in our simulations (typically
their number is on the order of 256). Therefore the value of
the integrated energy they carry is well defined and hardly
varies when comparing two different realizations of longi-
tudinal modes in the TWA. Second, the damping of the
radial oscillations caused by the resultant decrease of their
energy is adiabatic, in the sense that the relative reduction
of the amplitude of σðtÞ per oscillation is much smaller
than one.
In brief, we shall adopt the following self-consistent

scheme. Using Eqs. (1), (4) and (6), we first derive an
effective one-dimensional equation for ϕðz; tÞ for an
arbitrary function σðtÞ entering Eq. (6). This field equation
governs the nonlinearities of the first kind, namely inter-
actions between longitudinal excitations. Second, to get the
modified ODE governing σðtÞ which takes into account the

energy growth of these excitations, we ensemble average
their energy density, which (because of the statistical
homogeneity of the state) is equivalent to their spatial
average.3 Then, using the fact that E3D is conserved, we
obtain the sought-after ODE obeyed by σðtÞ. The equations
for ϕðz; tÞ and σðtÞ are thus self-consistently solved by the
standard numerical recipes, much like those used in early
cosmology [22].4,5

B. z-independent case

We start by briefly recalling the main results of [35]
which concern homogeneous cylindric condensates
described in the mean field approximation. We pay special
attention to the energy carried by such solutions. Working
in the frame in which the condensate is at rest and using
ϕðz; tÞ ¼ ffiffiffiffiffi

n1
p

, where n1 is the longitudinal density, the
wave equation (1) (exactly) reduces to

iℏ∂tψ ¼ ℏω⊥a2⊥
�
−

1

2r
∂rr∂r þ

r2

2a4⊥
þ 2n1asjψ j2

�
ψ ; ð7Þ

where a⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω⊥

p
. A remarkable property of this

equation is that, given any stationary solution ψ0ðrÞ, when
ω⊥ is time-dependent the corresponding exact solution can
be written at any time in the form of Eq. (6). Hence the
density at time t is related to the initial density ρ0ðrÞ by

ρðt; rÞ ¼ σ20
σ2ðtÞ ρ0

�
r
σ0
σðtÞ

�
: ð8Þ

The description of the system is thus reduced to a single
parameter, the scale factor σðtÞ, which behaves like the
position of a point particle of mass m with total energy
[18,35]

3We should here point out that in our simulations, σðtÞ
evolves separately for each realization, with the influence of
inhomogeneities having been averaged over space but not
over the ensemble. Importantly, this procedure does not lead
to large fluctuations in σðtÞ. In fact the relative variance
hðσðtÞ=hσðtÞi − 1Þ2i remains less than 2.5 × 10−3 at all times
for our simulations based on the benchmark parameters we
discuss later in the text.

4The validity of separately considering the two kinds of
nonlinearity should be better in our settings than in cosmology.
The reason is that the atom-atom self-interactions are repulsive
while gravity is attractive. Hence there should be less clustering
in our simulations than in cosmology, thereby validating
our approach for longer periods of time.

5There is a strong analogy between this scheme and that used
in [36] to study black hole evaporation. Namely, rather than
working in a fixed background geometry as originally done by
Hawking [37], the outgoing flux of radiation is computed for an
arbitrary slowly evaporating metric. Then the expectation value
of the emitted radiation flux is computed for this geometry and
used as the source term for the semiclassical Einstein equation in
order to compute the mass loss of the evaporating black hole. In
that case as well, the adiabaticity of mass loss is a crucial
ingredient for guaranteeing the validity of the scheme.
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Eeff ¼
1

2
m _σ2 þ VeffðσÞ ¼

1

2
m _σ2 þ 1

2
mω2⊥σ2 þ

ℏ2

2mσ2
: ð9Þ

The effective potential includes a term in σ2, due to the
quadratic potential Vext, and a term in 1=σ2, which includes
repulsive forces between the atoms and the “quantum
pressure” term that resists localization of the cloud in
space.6 Using our conventions, in a stationary state (i.e.,
_σ ¼ 0), the value of σ is exactly a⊥, as this is the position at
which the potential Veff is minimum.
Using Eq. (2), a careful analysis (see Appendix D) shows

that the energy of the oscillating cloud is proportional to
Eeff . Since the total energy is an extensive quantity, it is also
proportional to the total number of atoms N. There remains
a dimensionless factor which depends on n1as, i.e., on the
coefficient of the nonlinear term in Eq. (7). We can thus
write

Erad ¼ Aðn1asÞNEeff : ð10Þ

The calculation of Aðn1asÞ is done at the end of
Appendix D.

C. Effective one-dimensional equation for ϕðzÞ
To proceed, we use the form of the radial function ψ

described in the previous subsection. Now, using Eq. (4),
we can subtract from the full GPE (1) the equation of
motion satisfied by ψðr; tÞ; see Eq. (7). We then multiply
the remainder by rψ⋆ðr; tÞ and integrate over r, leaving the
following equation for ϕðzÞ:

iℏ∂tϕ ¼ −
ℏ2

2m
∂2
zϕþ g1ðtÞðjϕj2 − n1Þϕ; ð11Þ

where

g1ðtÞ ¼
2ℏ2as
m

Z
∞

0

dr rρ2ðt; rÞ: ð12Þ

It is straightforward to show that the integral over rρ2ðt; rÞ
is proportional to 1=σ2, with a dimensionless constant of
proportionality that depends on n1as:

g1ðtÞ ¼
2ℏ2as
m

Gðn1asÞ
σ2ðtÞ : ð13Þ

As shown in Appendix D, Gðn1asÞ is related to Aðn1asÞ
entering in Eq. (10).
We can also insert the factorization ansatz (4) into the

energy functional (2) and subtract the energy due to the
radial motion, leaving just that part of the energy which is
due to longitudinal excitations. The result (using the fact
that, by definition, n1 is the spatial average of jϕj2) is

Elong ¼
Z

L

0

dz

�
ℏ2

2m
j∂zϕj2 þ

g1ðtÞ
2

ðjϕj2 − n1Þ2
�
: ð14Þ

This clearly vanishes in the z-independent case, where
ϕ ¼ ffiffiffiffiffi

n1
p

. It is also straightforward to show that Eq. (11)
follows from treating Elong of Eq. (14) as the energy
functional. Thus, whenever g1 is constant in time, Elong

is a constant of motion. However, in the case of interest to
us, g1 varies in time due to the radial oscillations, and Elong

is not conserved. Then, because of resonant phonons, Elong

will grow exponentially at early times, thereby correspond-
ingly reducing EradðtÞ, the energy stored in radial oscil-
lations. Accounting for this backreaction (which is the
second kind of nonlinearity in our classification) is the goal
of the next subsection.

D. Backreaction—determining the ODE obeyed by σðtÞ
The longitudinal energy of Eq. (14) can be written in a

synthetic form as

ElongðtÞ ¼
ℏ2

2m

Z
L

0

dzj∂zϕðz; tÞj2 þ
1

2
Ng1ðtÞV longðtÞ; ð15Þ

where V longðtÞ is given by

V longðtÞ ¼
1

N

Z
L

0

dzðjϕðz; tÞj2 − n1Þ2: ð16Þ

By direct inspection, one sees that V longðtÞ quantifies the
departure from translation invariance along the longitudinal
direction. Then, by using Eq. (11), one obtains

∂tElong ¼ ∂tg1
NV longðtÞ

2

¼ −asGðn1asÞN
2ℏ2V longðtÞ

m
_σ

σ3
; ð17Þ

where we have used Eq. (13) to get the second line.
On the other hand, the time-derivative of Erad of Eq. (10)

gives

∂tErad ¼ Aðn1asÞN∂tEeff

¼ Aðn1asÞN _σ

�
mσ̈ þmω2⊥σ −

ℏ2

mσ3

�
: ð18Þ

Imposing energy conservation ðErad þ ElongÞ ¼ cst. implies
that σ obeys mσ̈ ¼ −∂σVBR

eff , where the corrected effective
potential is

6This differs from the corresponding expression in Eq. (5) of
Ref. [18], where the last term in 1=σ2 appears multiplied by
1þ 4n1as. The resolution of this apparent paradox is that Eq. (9)
allows us to renormalize σ → σ=l by dividing the last term of (9)
by l4 and multiplying the total energy in Eq. (10) by l2. Here, we
have chosen σ in such a way that Eeff becomes independent of
n1as, while in Ref. [18] σ had an “absolute” normalization as the
width of the Gaussian profile we assumed for jψ j2.
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VBR
eff ðσÞ ¼

1

2
mω2⊥σ2 þ

ℏ2

2mσ2

�
1þ 2as

Gðn1asÞ
Aðn1asÞ

V longðtÞ
�
;

ð19Þ

the backreaction of longitudinal phonons being governed
by the last term. For benchmark values discussed below, we
get Gðn1asÞ=Aðn1asÞ ¼ 0.43.
An important result of our simulations is that this

backreaction plays hardly any role in the observed early
deviations with respect to BdG predictions. This implies
that they are essentially governed by Eq. (11).

E. Describing the initial phonon state,
benchmark values

Because of the homogeneity of the background con-
densate, the quantum phonon state is conveniently
expressed in terms of the longitudinal momenta ℏk of
the atoms, which correspond to the Fourier modes of the
quantum field ϕ̂:

ϕ̂ðzÞ ¼ 1ffiffiffiffi
L

p
X

k∈2πZ=L
ϕ̂keikz: ð20Þ

The normalization factor 1=
ffiffiffiffi
L

p
is chosen so that the ϕ̂k are

standard bosonic amplitude operators: ϕ̂k and ϕ̂†
k destroy

and create, respectively, an atom of momentum ℏk, and
obey the commutation relation ½ϕ̂k; ϕ̂

†
k0 � ¼ δk;k0 . In the BdG

formalism, the Hamiltonian is not diagonalized by the atom
operators ϕ̂k, but by the phonon operators φ̂k, these being
related by the SUð1; 1Þ linear transformation

�
ϕ̂k

ϕ̂†
−k

�
¼

�
uk vk
vk uk

��
φ̂k

φ̂†
−k

�
; ð21Þ

where uk and vk are normalized so that u2k − v2k ¼ 1. In
strict analogy to the atom operators, the phonon operators
φ̂k and φ̂†

k destroy and create, respectively, a phonon of
momentum ℏk, and obey the commutation relation
½φ̂k; φ̂

†
k0 � ¼ δk;k0 . When neglecting phonon-phonon inter-

actions, the BdG formalism is exact. In addition, when the
two-mode state ðk;−kÞ is homogeneous and Gaussian, it is
completely determined by the expectation values

nph�k ¼ hφ̂†
�kφ̂�ki; cphk ¼ hφ̂kφ̂−ki; ð22Þ

with analogous expressions for the atomic expectation
values nat�k and catk . As is well known, when the phonons
are initially in a thermal state at temperature T, their Wigner
function takes the form [38]

Wðφk;φ⋆
kÞ ¼

1

2πðnphk þ 1=2Þ exp
�
−

jφkj2
nphk þ 1=2

�
;

2nphk þ 1 ¼ coth

�
ℏωk

2kBT

�
: ð23Þ

When using the truncatedWigner approximation (TWA),
the initial state is prepared by randomly selecting the
phonon amplitudes φk (for k ≠ 0) distributed according
to the probability distribution of Eq. (23). We then trans-
form these into (initial) atomic amplitudes via the
Bogoliubov transformation of Eq. (21). Notice that the
k ¼ 0 component ϕ0 is determined by imposing a fixed
total number of atoms N: N0 ¼ N −

P
k≠0nk, where

nk þ 1=2 ¼ jϕkj2 and ϕ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0 þ 1=2

p
is taken to be

real and positive so that u and v are properly defined as real
quantities themselves. Note that we could also have chosen
to fix the number of condensed atoms N0 rather than the
total; we have checked that this makes little difference in
the simulations of interest to us.
Having prepared the initial state assuming the validity of

theBdG formalism, the nonlinearities of the system are taken
into account by letting each configuration evolve under
Eq. (11) for a period of time during which the background is
stationary (i.e., the width σ is constant), allowing the system
to settle in a nearly stationary state before the sudden
increase of the trapping frequency. After some trial and
error, and taking heed of the infrared and ultraviolet
constraints on the spatial discretization encountered in
one-dimensional quasicondensates (see Ref. [25]), we set-
tled on the following “benchmark” values for the parameters:

(i) the initial temperature is fixed at a modest value of
T in ¼ mc2in=2 ¼ g1;inn1=2 (where cin is the initial
value of the speed of low energy phonons);

(ii) the mean one-dimensional atomic density is given
by n1as ¼ 0.6, which is relatively large (3D effects
come into play for n1as ≳ 1) but which is close to
that used in the first experiment reported in Ref. [9]7;

(iii) the radial oscillations commence after a sudden
contraction of the trapping potential, which is fixed
by ω⊥=ω⊥;in ¼

ffiffiffi
2

p
, exactly as in [9] (note that ω⊥

and a⊥, with no clarifying subscript, shall always
refer to their values after the sudden change of the
trapping potential);

(iv) the length of the torus is given by L=a⊥ ¼ 128,
which is considerably larger than in experiments but
which gives reasonable resolution in k and typically

7To avoid any confusion, in this first experiment, pair
production of longitudinal phonons was triggered by a sudden
increase of the radial trapping frequency. As can be understood
from Eq. (9), this sudden increase induced oscillations of the
radial density with an angular frequency equal to 2ω⊥. Their
amplitude was significantly larger than that of the second
experiment of [9], which was induced by the controlled modu-
lation of the trapping frequency.
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gives two discrete values of k within the resonant
window [17];

(v) the harmonic oscillator length is such that, typically,
as=a⊥ ¼ 1.7 × 10−3; combining this with the values
of n1as and L=a⊥ above leads to a typical total atom
number of N ¼ 4.5 × 104, roughly an order of
magnitude larger than in [9];

(vi) the grid spacing is fixed at Δx=a⊥ ¼ 1=2, which
when combined with the value of L=a⊥ above gives
a total number of grid points/phonon modes of 256;
this ensures that Δx is smaller than the healing
length (ξ=a⊥ ≈ 1.15) but considerably larger than
the scattering length, as required for the validity
of the TWA [24];

(vii) the time spacing is fixed at ω⊥Δt ¼ 10−2, which is
such that 1=Δt ≫ ωkmax

, the largest frequency of the
phononmodes, thus ensuring that there arenospurious
resonance effects due to the discretization of time.

Note that the last two of the listed benchmark parameters are
not physical but are required by the numerics. There is thus
some freedom in the choice of these parameters, which
should not lead to any significant changes in the physical
predictions of the simulations. We have checked that this is
indeed the case. We also checked that the coherence length
lϕðTÞ [39] is of the order of 10L which means that, for the
benchmark values, one deals with a quasicondensate before
the sudden increase of the trapping potential. This point shall
be further discussed in Sec. IV C.
In forthcoming simulations, to display the behavior of

nonlinearities neglected in the BdG approximation, we shall
consider threevalues ofas=a⊥, namely,1.7×10−4,1.7×10−3

(which is the above benchmark value), and 1.7 × 10−2.
Instead, T in=mc2in, n1as, ω⊥=ω⊥;in and L=a⊥ will remain
fixed so that the three cases share the same BdG description.
As we shall clearly see, increasing the value of as=a⊥
increases the deviations with respect to BdG predictions.

F. Following the evolution of the state
of longitudinal excitations

Let us now explain which observables we shall use to
follow the state after the sudden change in ω⊥. When
considering in situ measurements, such as in [40–42], one
typically has access to the one-dimensional atomic density
ρ̂ðt; zÞ ¼ ϕ̂†ðt; zÞϕ̂ðt; zÞ in each realization. To have access
to the population and entanglement of the phonon state, it is
useful to consider the normalized equal-time two-point
correlation function in k space [18]:

Gð2Þðt; k; t; k0Þ ¼ 1

N
hρ̂kðtÞρ̂†k0 ðtÞi; ð24Þ

where we have defined

ρ̂kðtÞ ¼
Z

L

0

dz e−ikzρ̂ðt; zÞ: ð25Þ

The usefulness of Gð2Þ stems from its close relationship to
the phonon state: in a statistically homogeneous state, Gð2Þ
is only nonzero when k ¼ k0. Moreover, when the back-
ground is stationary, it always has the form

Gð2Þ
k ðtÞ ¼ ðuk þ vkÞ2ð1þ nphk þ nph−k þ 2Re½cphk e−2iωkt�Þ;

ð26Þ

where nph�k ¼ hφ̂†
�kφ̂�ki is the (constant) number of pho-

nons at wave vector �k, while the complex number cphk ¼
hφ̂kφ̂−ki gives the phase and the strength of the correlation

between k and −k phonons. It should be noticed that Gð2Þ
k

is governed by symmetrized expectation values of operators
(as ρ̂kðtÞ and ρ̂†k0 ðtÞ commute with each other). It is
thus appropriate to use the TWA to evaluate it as this
method, by construction, delivers the expectation values of
symmetrized operators.
From Eq. (26), we see that the time-averaged value of

Gð2Þ
k ðtÞ gives the total phonon number while the amplitude of

the oscillations about the mean gives the strength of the

correlations. Interestingly, the dipping of Gð2Þ
k below its

vacuumexpectationvalue ðuk þ vkÞ2 is sufficient to conclude
that the two-mode state ðk;−kÞ is nonseparable [18,43].8 In
fact, a sufficient criterion for nonseparability is

nphk nph−k − jcphk j2 < 0: ð27Þ

As we shall see in the next figures, this threshold translates

rather simply when following the evolution of Gð2Þ
k in time.

Note that, although the behavior of Gð2Þ
k ðtÞ is closely

related to the phonon state, it is obtained by measuring the
density of atoms. There is thus no need to explicitly

transform into the phonon basis when calculating Gð2Þ
k ðtÞ.

Moreover,Gð2Þ
k ðtÞ is still well defined when nphk becomes so

large that the Bogoliubov approximation becomes invalid.

In otherwords, it is only the reading of theGð2Þ
k ðtÞ in terms of

linear phonon modes which becomes invalid at late times.
In parallel to the study of theGð2Þ, it is also useful to follow

the evolution of the atom content of the state, especially at
late time where the notion of phonons becomes

8The sudden change produces phonons in pairs ðk;−kÞ, which
are entangled if they are seeded principally by vacuum fluctua-
tions (rather than, say, an initial thermal distribution). For mixed
states, the concept of entanglement is ambiguous, and various
definitions have been proposed. We refer to our former work [43]
for a recent comparison between nonseparability and steerability.
In what follows, we shall use the notion of nonseparability. Simply
put, given a natural division of a system into two subsystems (here
the wave vectors k and −k), the state is nonseparable if the
correlations between the two subsystems are so strong that they
cannot be represented by a classically correlated state.
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inappropriate due to the progressive loss of coherence of the
condensate. In this case, we simply use natk and catk , which
give, respectively, the mean occupation number of atoms of
momentum k and their correlation amplitude, in strict
analogy with the above cphk for phonons.

III. EARLY-TIME BEHAVIOR

In this section, we consider the early-time evolution of
the system after the sudden change in the trapping
frequency ω⊥, as was done in the first type of experiment
reported in [9]. The “early-time” period roughly corre-
sponds to the time during which there is an exponential
growth of the phonon number near resonance, as predicted
by the BdG formalism [17,18]. This exponential growth is
described in subsection III A, while in subsection III B we
consider the first observable differences from the BdG
predictions due to phonon interactions, namely the loss
of nonseparability of ðk;−kÞ pairs, as well as a small
reduction of the exponential growth of resonant modes.
In particular, we observe that these deviations from BdG
are governed by two dissipative rates which scale with
different powers of the number of resonant phonons,
nresðtÞ. In other words, the time dependence can be
eliminated by using as parameter the number nres itself.
Moreover, to a good approximation, the dissipative rates
only depend on the combination nres × as=a⊥ when using
the benchmark value (as=a⊥ ¼ 1.7 × 10−3) and ten times
smaller, i.e., in the weak coupling limit.
Before presenting the results, it should be recalled that

during this early period, the radial energy EradðtÞ hardly
varies. Hence, the results we present in this section could
have been obtained by considering only Eq. (11) with a

periodically modulated g1ðtÞ, i.e., by ignoring the back-
reaction governed by the last term in Eq. (19).

A. Parametric amplification of resonant phonon modes

As seen in previous works [17,18], the BdG treatment,
which neglects interactions between phonons, predicts
exponential growth of the number of phonons at and around
wave vectors �kres, where for a background modulated at
frequencyωp, kres is determined by the relation 2ωkres ¼ ωp.
If the trapping frequency isω⊥, it is straightforward to show
[18] that ωp ¼ 2ω⊥, so the resonance condition becomes
ωkres ¼ ω⊥. It should be mentioned here that there is a finite
resonant window (in k-space) wherein the occupation
number grows exponentially in time; see Appendix A of
[17] for an analytical description of this aspect.
In Fig. 2 are shown the atomic number natk and the

density-density correlation Gð2Þ
k , as a function of k for three

different times during the early stage of the evolution, and
with the system parameters set to the benchmark values
given at the end of Sec. II E. We clearly see, at early time,
the growth of the resonant peaks at ka⊥ ≈�1. As shall be
seen later (particularly in Figs. 3 and 9), the growth of the
peaks is not monotonic, but shows significant oscillations.
When considering the atomic number natk ðtÞ, the oscilla-
tions follow from the atom-atom interactions. Instead,

when considering Gð2Þ
k ðtÞ, the oscillations reveal the strong

correlations between phonons of opposite wave number, as
can be seen by the cphk ≠ 0 term in Eq. (26). (The particular
times have been chosen so as to avoid the narrow dips

displayed by Gð2Þ
k ðtÞ and clearly visible in Fig. 3). We also

see, at later times, the growth of peaks at the harmonics
ka⊥ ≈�2 and �3. These are due to the large number of

3 2 1 0 1 2 3
k a

104

nk
at

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
k a

k
2G

1
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1000

0.1

1
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100

1000

FIG. 2. Evolution of the whole system at early times. Shown are the number of atoms (left panel) and the density-density correlation
function (right panel) as functions of k at three different times: Nosc ¼ 0 (green dashed curve), 14.3 (black solid curves) and 28.6 (blue
dotted curves), where the two last values of N have been chosen so as to clearly illustrate the initial growth of the resonant peak followed
by the broadening and the growth of the second harmonic. Note that the peaks do not grow steadily, but show significant oscillations; see
Fig. 3 below. The parameters have their benchmark values given at the end of Sec. II E, averaged over 100 realizations. The red curve on

the right panel shows the form of Gð2Þ
k at an initial temperature T in ¼ mc2in=2, according to the BdG theory. The black solid curves show

the growth of the resonant peak where ωk ¼ ω⊥, as predicted by BdG; the blue dotted curves show deviations from BdG through the
appearance of harmonics and the broadening of the peaks.
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phonons in the resonant mode causing the solution of the
wave equation to become nonlinear (see Appendix C).
Notice also that the peaks have broadened at later time. This
effect shall be further studied in the next section.
Interestingly, a similar sequence of events was recently
described in the context of an unstable two-component
BEC system; see Ref. [27] and footnote 2.
We now focus on values of kwithin the resonant window

[17]. In Fig. 3 is shown, for the same simulation as above,

the evolution of Gð2Þ
kres

ðtÞ as a function of time (parame-
terized by Nosc, the number of oscillations of the con-
densate since the sudden change of ω⊥). Here the
oscillatory nature of the peak growth is manifest. We have

also included the values of Gð2Þ
kres

ðtÞ before the sudden
change, where the steady oscillations show that the phonon
number and correlation are essentially constant. (The
nonvanishing of the correlation seems to be mostly due
to a lack of statistics.) After the change, we see a steady
exponential growth in the mean number of phonons and the
correlation, as predicted by the BdG formalism. We also

note that the minimum of Gð2Þ
kres

ðtÞ is clearly well below its
vacuum expectation value (shown in dashed) for a

significant duration, showing (as explained in Sec. II F)
that the two-mode state ðk;−kÞ is nonseparable during
this time.
However, Fig. 3 also shows a significant departure from

the predictions of BdG in that there is a clear turning

point around Nosc ¼ 10 in the minima of Gð2Þ
kres
ðtÞ. Whereas

BdGpredicts that theminima tend asymptotically to zero, the
actual results show that theminima increase again, eventually
returning above the vacuum expectation value at Nosc ≈ 17.
Nonseparability of the two-modephonon state ðk;−kÞ is thus
lost around this time. Therefore, unlike in BdG [17], the fully
nonlinear theory does not allow the system to reach a
nonseparable state for any initial temperature if one only
waits for a long enough time: the evolution of the state
towards nonseparability is progressively slowed down, and
after a certain time decoherence effects cause the left-hand
side of Eq. (27) to increase.We also observe in Fig. 3 the first

signs of saturation, in that the slope of the maxima ofGð2Þ
kres
ðtÞ

appears to be decreasing by the time we reach Nosc ¼ 22.
It is instructive to further characterize the deviations

between our numerical observations with the outcome
obtained using the BdG approximation. To this end, in

Fig. 4, we dispense with the full evolution of Gð2Þ
kres

ðtÞ and
plot only the maxima and minima of its oscillations. This is
done for three different simulations which coincide using
the BdG description, as they differ only in the value of

10 5 5 10 15 20
Nosc

Gk
2

0.1

1
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100

1000

FIG. 3. Evolution of Gð2Þ
kres

at early times, for k within the
resonant window. The same benchmark parameters as in Fig. 2
are used here. Nosc < 0 corresponds to the initial state before the

sudden change in ω⊥; it shows oscillations in Gð2Þ
kres

because, after
averaging over 100 realizations, the effective correlation ampli-
tude cphk is small but nonzero. The solid black curves indicate the

evolution of the maxima and minima of Gð2Þ
kres

as predicted by
BdG. The dashed horizontal lines show the minimum and
maximum values of ðuk þ vkÞ2 reached during the oscillations
of the condensate (note that this starts at its maximum value when
ω⊥ > ω⊥;in, so that only the maximum is shown for Nosc < 0).

When the minima of the oscillations of Gð2Þ
kres

lie below the dashed
lines (here, for 1≲ Nosc ≲ 17), the two-mode phonon state
ðk;−kÞ is nonseparable. The increase of the minima after Nosc ≈
10 and the subsequent loss of nonseparability are the first
observed deviations from the BdG prediction. We also observe
a decrease in the maxima from their predicted values.

0 5 10 15 20 25
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Gk
2
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1000

FIG. 4. Maxima and minima of Gð2Þ
kres

for k within the resonant
window and for three different values of as=a⊥. For clarity, the full
profiles of Gð2Þ

kres
are removed here, and only the maxima and

minima of its oscillations are plotted. The parameters are the
same as in Figs. 2 and 3 for the green squares, namely
as=a⊥ ¼ 1.7 × 10−3. Instead, red diamonds and blue circles show

the extrema of Gð2Þ
kres

for as=a⊥ ¼ 1.7 × 10−2 and 1.7 × 10−4,
respectively. As in Fig. 3, the dashed horizontal lines show the
maximum and minimum values reached by ðuk þ vkÞ2, and the
solid black curves show the BdG predictions for the maxima and

minima ofGð2Þ
kres

, both of which are common to the three cases since
as=a⊥ drops out of the BdG description. We see clearly that lower
values of as=a⊥ correspond to later deviations from the BdG
prediction and thus to a later loss of nonseparability.
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as=a⊥; indeed, under our scheme of adimensionalization,
this ratio drops out from the BdG equation [18]. The chosen
values of this ratio are as=a⊥ ¼ 1.7 × 10−4 (blue circles),
1.7 × 10−3 (green squares) and 1.7 × 10−2 (red diamonds);
correspondingly, the total number of atoms takes the values
N ¼ 4.5 × 105, 4.5 × 104 and 4.5 × 103. The middle case
(shown in green squares) corresponds exactly to that shown
in Fig. 3. Also shown, in solid black, is the common
prediction of the BdG formalism. As can be seen, the
departures from BdG occur earlier for larger values of
as=a⊥ (smaller values of N). This is clear for both types of
departure, namely, the loss of nonseparability (indicated by
the lower dots), and the reduction of the increase in nk and
jckj (indicated by the upper dots). We verify, therefore, that
the BdG description is better when as=a⊥ is smaller, which
means that the self-interactions so far ignored are weaker
and that there is a larger number of condensed atoms
(relative to the total).9

B. Visibility of nonseparability and effective dissipation

Let us now consider the results of Fig. 4 from a more
phenomenological standpoint. First, we discuss the “vis-
ibility” of nonseparability. By this we mean that at large
nph�k, even within the BdG description, when the two-mode
state ðk;−kÞ is maximally entangled, it is already very
difficult to verify its nonseparability due to the necessity of
taking the difference between two large numbers, namely
nphk nph−k and jcphk j2 in Eq. (27). One can appreciate the

difficulty by examining Fig. 3: as nph�k increases, the amount

of time Gð2Þ
kres

ðtÞ spends below ðuk þ vkÞ2 decreases, and the
precision required of the measuring apparatus to determine

that Gð2Þ
kres

does indeed dip below the threshold becomes
greater. So, while it is theoretically true that nonseparability
is lost when weak nonlinearities come into play, it may no
longer be relevant by that time, so that (as far as non-
separability is concerned) very little has been lost in
practice. We also note here that, when considering the
atom content of the state using time-of-flight (TOF)
measurements, similar problems with visibility of non-
separability are encountered (see the upper right plot of
Fig. 13 in Appendix A and Fig. 17 of Ref. [18] for the BdG
description of the same observable where there is no actual
loss of nonseparability).

To make this notion more concrete, we define the
following “visibility parameter”:

η̃k ¼
jckj2

ðn̄k þ 1=2Þ2 ; where n̄k ¼
1

2
ðnk þ n−kÞ: ð28Þ

This is an appropriate definition when using the TWA
because the extracted value of ðn̄k þ 1=2Þ2 is necessarily
positive, so η̃k is alwayswell defined and necessarily smaller
than 1. Indeed, since n̄2k ≥ nkn−k, Eq. (27) implies that a
sufficient criterion for nonseparability is η̃k − η̃k;th > 0,
where

η̃k;th ¼
n̄2k

ðn̄k þ 1=2Þ2 : ð29Þ

Explicitly, the sufficient condition for nonseparability
becomes

jckj2 − n̄2k
ðn̄k þ 1=2Þ2 > 0: ð30Þ

Being a relative difference, this quantity is more experi-
mentally relevant, and it is for this reason we refer to it as the
“visibility”. We say that nonseparability is “more visible”
when there is a larger difference between η̃k and η̃k;th.
In Fig. 5, the visibility parameter for k at resonance is

plotted for two of the simulations represented in Fig. 4: the
blue circles correspond to as=a⊥ ¼ 1.7 × 10−4, while the

0 5 10 15 20 25 30
Nosc
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0.6

0.8
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, th

FIG. 5. Visibility of nonseparability. Shown is the parameter η̃k
of Eq. (28) for k at resonance (dashed curve and open markers),
and its nonseparability threshold η̃k;th of Eq. (29) (solid curve and
filled markers); the bipartite state ðk;−kÞ is nonseparable when-
ever η̃k > η̃k;th. We use here only two of the simulations shown in
Fig. 4: those corresponding to as=a⊥ ¼ 1.7 × 10−4 (blue circles)
and 1.7 × 10−3 (green squares). The data points are extracted

from the maxima and minima of Gð2Þ
kres

shown in Fig. 4, while the
black curves plot the BdG prediction for the given initial
temperature T in ¼ mc2in=2. This presentation of the data is
valuable as the separation between η̃k and η̃k;th can be taken as
a measure of the visibility of nonseparability.

9The observed damping of phonons with respect to the BdG
predictions is a priori rather surprising. Indeed, it is well known
that the Landau-Beliaev damping vanishes on-shell in one-
dimensional systems, as do some higher-order interactions
[44]. We conjecture that the significant damping seen here stems
from the high occupation number of soft phonons found is
quasicondensates with a finite temperature. We are currently
investigating these effects and plan to present the results in a
forthcoming paper. We thank Andrea Trombettoni for discussions
on this issue, and for pointing out the above reference.
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green squares correspond to as=a⊥ ¼ 1.7 × 10−3. The open
points represent η̃k itself, while the filled points represent
the nonseparability threshold η̃k;th. We observe that, to
begin with, the growth of η̃k and η̃k;th agrees quite well with
the predictions of BdG (shown in black), the discrepancies
shown by the blue circles being likely due to a lack of
statistics. Note that even the BdG prediction shows
decreasing visibility, as η̃k and η̃k;th become arbitrarily
close, and are almost indistinguishable forNosc ≳ 15. When
including nonlinear effects, for both cases shown, the actual
loss of nonseparability occurs after the loss of its visibility,
and is thus no great loss in practical terms. Even the
idealized BdG prediction shows maximum visibility for
Nosc ∼ 4, and both simulations corroborate this result.
Let us now turn to the actual loss of nonseparability,

which is clearly seen in Fig. 4 at Nosc ∼ 17 and ∼20 (for the
two cases considered here). This loss can be considered a
manifestation of an effective dissipative mechanism (see
Ref. [17]) due to phonon-phonon interactions. To further
study this loss, we define the following effective dissipation
rates describing (purely phenomenologically) the damping
of nk, jckj and η̃k with respect to their BdG predictions:�
nk þ

1

2

�
2

¼
�
nk þ

1

2

�
2

BdG
exp

�
−
Z

Γndt

�
;

jckj2 ¼ jckj2BdG exp

�
−
Z

Γcdt

�
;

η̃k ¼ η̃k;BdG exp

�
−
Z

Γη̃dt

�
: ð31Þ

In these expressions, k is again understood to be within the
resonant window. Note that, from the definition of η̃k [see
Eq. (28)], we have Γη̃ ¼ Γc − Γn.
The extracted values of Γn and Γη̃, obtained for the same

two simulations represented in Fig. 5, are shown in Fig. 6,
for the period during which the resonant peak grows
exponentially. (Γc turns out to be very close to Γn, and
has thus not been shown.) Instead of plotting them as
functions of time, the dissipation rates are plotted as
functions of nkas=a⊥. Interestingly, on this plane, the
results of the two simulations lie very close to each other,
which indicates that, for a significant fraction of the
evolution, the effective dissipation rates are simply func-
tions of nkas=a⊥. Moreover, the slopes of the two curves on
the log-log plane are close to 1 and 2, and so to a good
approximation10 we have:

Γn=ω⊥ ∝ nkas=a⊥;
Γη̃=ω⊥ ∝ ðnkas=a⊥Þ2: ð32Þ

These numerical observations call for a physical explan-
ation based on a quantum mechanical treatment (the
Keldysh formalism [45]) of Eq. (11) following the analysis
of Ref. [44]. We are currently studying these effects.
The deviations with respect to the BdG treatment shown

in Figs. 3–6 (and Fig. 13), obtained numerically by
applying the TWA to Eq. (11) when g1ðtÞ is periodically
modulated, constitute the main results of this paper. To our
knowledge they have not yet been reported in the literature.

IV. LATE-TIME BEHAVIOR

In this section, we turn to the behavior of the system at
the end of and after the exponential growth, when nonlinear
effects are strong and the BdG treatment loses all validity.
For this very reason, we now abandon the phononic for the
atomic point of view. Unlike in the previous section, the
second kind of nonlinearity [governed by the last term of
Eq. (19)] here plays an important role as the radial energy
EradðtÞ now significantly decreases. Yet this decrease is
adiabatic in the sense that dðlnĒradðtÞÞ=dt ≪ ω⊥, where
ĒradðtÞ is the mean of EradðtÞ over one oscillation period
π=ω⊥. (We here use this time average in order to extract the
secular effect since, as can be understood from Eq. (17), the
instantaneous value of EradðtÞ displays rapid oscillations
directly linked to those of σðtÞ.)
The interested reader will find in Appendix A a descrip-

tion of the full evolution of the system (both early- and
late-time behavior) in terms of g2ðkÞ [see Eq. (A1)], which

5 4 3 2 1
ln nk as a
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FIG. 6. Effective dissipation. Plotted here are the effective
dissipative rates describing the deviations of the data of Fig. 4
from the BdG prediction, for the same two simulations shown in
Fig. 5: as=a⊥ ¼ 1.7 × 10−4 (blue circles) and 1.7 × 10−3 (green
squares). The filled and open markers, respectively, show Γn and
Γη̃ of Eqs. (31), both adimensionalized by ω⊥, as functions of
nkas=a⊥. Using this combination, as noticed in the main text, the
evolution of Γn and Γη̃ hardly depends on the value of as=a⊥. The
dashed lines have fitted intercepts but fixed slopes of 1 and 2 on
the log-log plane, and show that, for a significant fraction of the
evolution, both of Eqs. (32) are satisfied.

10Figure 6 shows indeed some deviations from the behavior of
Eq. (32) both at early and late time. We conjecture that the
approximately constant value of Γn observed for the benchmark
case (green filled squares) at low values of nk is indicative of a
standard dissipative rate per phonon of wavenumber k, while the
linearity of Γn in nk found when nkas=a⊥ becomes larger than
e−3 shows that the dissipation there is predominantly “induced”
by the macroscopic value of nk ≳ 30.

NONLINEARITIES INDUCED BY PARAMETRIC … PHYS. REV. D 98, 056003 (2018)

056003-11



is the observable commonly used after TOF experiments
[9,46,47].

A. Spectrum and density-density correlator

Figures 7 and 8 show the continuation of the two plots of
Fig. 2: Figure 7 shows the atom number spectrum [as well
as η̃k of Eq. (28)], while Fig. 8 shows the corresponding
density-density correlation function of Eq. (24). We had
already seen in Fig. 2 that the later stages of the exponential
growth were marked by a broadening of the peaks. In
Fig. 7, we see that the peaks continue to broaden, to the
extent that, at very late time, they are almost completely
washed out, having merged into a single, very broad, and
nearly structureless peak centered at k ¼ 0. This broad-
ening is accompanied by a decrease in η̃k, which is
essentially zero at very late time. This means that the
ðk;−kÞ correlations are very small with respect to the
corresponding expectation numbers; roughly speaking, η̃k
is the fraction of the atoms at wave vector k which occur
in ðk;−kÞ pairs. We have already seen the loss of η̃k for k
near kres (see Fig. 5), but now we see that this occurs for
all k.
In Fig. 8, the same information is represented in terms of

the in situ observableGð2Þ
k ðNÞ, which also clearly shows the

broadening of the peaks and their gradual merging into a
single wide peak. As in Fig. 2, the values of N have been
chosen to clearly illustrate the different stages of the
evolution, since there are still sudden dips similar to those
displayed in Fig. 3 that should be avoided. In fact, the
gradual disappearance of the correlations between ðk;−kÞ
pairs manifests itself through the reduction of the dips’
amplitude when increasing N at fixed k.
Note also that the high-k sector (ka⊥ ≳ 3) remains very

close to its initial (vacuum) state even after around 70
oscillations. This agreement for large k after 70 oscillations
provides an a posteriori justification of our use of the TWA
for describing the first kind of nonlinearity encoded in

Eq. (11) while using the corrected potential of Eq. (19) to
account for the damping of radial oscillations.11

The loss of the peak structure is clearly demonstrated in
Fig. 9, which shows the evolution over all time of the
logarithm of the fraction of atoms natk within a set of chosen
wave vector intervals. At early time, there is a very
clear preference for the peak at kres to increase exponen-
tially (as clearly indicated by the yellow curves), while
the others remain largely stationary. After a certain time,
the peak at 2kres also grows exponentially, as was already
seen in Fig. 2. These exponential growths saturate and,
just after the saturation time, we see a marked growth
in the occupation number of the nonresonant modes.
Interestingly, the fraction of atoms in the peak at kres is
found to be around 10% at saturation for the three values of
as=a⊥ we used, in agreement with the rough estimate
discussed above Eq. (49) and used in Fig. 8 of [18]. Finally,
all occupation numbers become (roughly) stationary, and
are larger at smaller wave vectors as would be the case in a
thermal bath.
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FIG. 7. Evolution of the system at late times. In the top row is shown the number of atoms as a function of k at four different times, the
first two of which (Nosc ¼ 14.3 and 28.6) are the latest times shown in Fig. 2; the third and fourth plots thus show the continuation of the
simulation in Fig. 2. One sees clearly the continued broadening of the peaks until they have essentially been smoothed out. In the bottom
row is shown, in solid red, the (atomic) visibility parameter of Eq. (28) for atomic expectation values nat�k and c

at
k , and in dashed blue, the

corresponding nonseparability threshold of Eq. (29). The curves on the lower row have been smoothed by binning the data into groups of
3. Roughly speaking, η̃atk gives the fraction of atoms at each kwhich occur as members of ðk;−kÞ pairs. It is clearly seen that, as the peaks
broaden, the correlations between k and −k gradually disappear.

11It is known that the TWA is unable to properly account for
the thermalization [24,25], as well as being unreliable to describe
some spontaneous processes [48]. It thus behooves us to argue for
its reliability in the present context. The justification is different
depending on whether one considers early-time phenomena
(presented in Sec. III) or those now considered. At early time,
the deviations with respect to the BdG predictions are small and
can be treated to leading order. In this regime, since we start with
a Gaussian ensemble, there is no reason to doubt that the TWA is
able to capture these effects. At late time instead, the physics is
dominated by the exponentially large number of resonant
phonons, and the TWA is still reliable because it is known to
work well in the large occupation number regime; see e.g., [27].
Yet, after 80 oscillations or so, some of our simulations gave signs
that the TWA can no longer be trusted (see, in particular, the end
of Sec. IV D), for reasons probably related to those mentioned in
[24,25]. We therefore stop the numerical integration and make no
claim about the state at later time.
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B. Energy and entropy

The late-time behavior shows significant variation in the
macroscopic properties of the system.We have already seen
that conservation of energy implies a backreaction effect, in
which the radial oscillations are necessarily damped by the
production of longitudinal phonons that they induce.
Moreover, the loss of peak structure observed in
Figs. 7–9 suggests an increase in the entropy of the system.
The evolution of the energy and the entropy, for the same

three simulations represented in Fig. 9, is shown in Fig. 10.
On the left is plotted, as a function of time and as a fraction
of its initial value, E⊥ ≡ Erad − Erad;0, where Erad;0 is the
radial energy of Eq. (10) in the special case when σ ¼ a⊥ is
stationary. E⊥ can thus be thought of as the energy of the
radial oscillations which is available for conversion into
longitudinal phonons (at least initially, for we do not
include here the variation of the potential that describes
the backreaction). We could also have shown the reduction
of the amplitude of the σðtÞ oscillations, as done in Fig. (2)
of [22] in the cosmological preheating scenario; see also
footnote 4. Comparing with Fig. 9, we see that the
saturation of the exponential growth occurs when roughly
50% of the initial oscillation energy has been exhausted.

The entropy [49] we consider is formed only from the
elements of the covariancematrix, i.e., the c-numbersnk and
ck we have used thus far.12 Amongst its virtues, its value is
independent of whether we use the phononic or the atomic
expectation values to compute it; explicitly, it is given by

Scov ¼
X
k

Scov;k

¼
X
k

½ðneffk þ 1Þ ln ðneffk þ 1Þ − neffk lnðneffk Þ�; ð33Þ

where neffk is defined such that

�
neffk þ 1

2

�
2

¼
�
nk þ

1

2

�
2

− jckj2; ð34Þ

and where nk and ck can refer either to phonons or atoms.
neffk thus vanishes when the two-mode state ðk;−kÞ is pure,
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FIG. 9. Evolution of the fraction of the number of atoms within various ranges of k. These correspond to the same three simulations
shown in Fig. 4, with the three different values of as=a⊥ (along with the corresponding values of the total number of atoms, Ntot) written
explicitly. On each plot, the uppermost blue curve shows the content of the k ¼ 0 mode only, while the red curve just below it contains
the two k ≠ 0 modes on either side (i.e., k ¼ �2π=L and k ¼ �4π=L). The other curves correspond to kres=2 (light blue), kres (yellow),
3kres=2 (purple) and 2kres (green), where for each we have included the central mode, two modes on either side, and their counterparts
k → −k (i.e., 10 modes in total). Note that, while the evolution varies quite drastically with as=a⊥, the final fraction of atoms in each
k-range is essentially independent of as=a⊥.
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FIG. 8. Evolution ofGð2Þ
k at late times. Shown here are three snapshots ofGð2Þ

k ðNÞ corresponding to the same simulation, and the same

three late times, as in Fig. 7. The red curve is the same in each plot, and corresponds to the initial form of Gð2Þ
k at the initial temperature

T in ¼ mc2in=2, according to the BdG theory (exactly as in the left panel of Fig. 2). We clearly observe a broadening of the peaks similar to
that visible in the atom number spectra of Fig. 7.

12For simplicity, we here assume that the two-mode state is
isotropic, i.e., that nk ¼ n−k. This is true for the homogeneous
states we consider, but it will only be approximately true when
averaging over a finite number of realizations.
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i.e., when jckj2 ¼ nkðnk þ 1Þ, and the contribution of
ðk;−kÞ to the entropy is then zero.
The growth of this entropy with time is shown in the right

panel of Fig. 10, for the same three simulations represented
in Fig. 9. The monotonic nature of Scov (up to small
oscillations) is apparent, although at late time the growth
rate is reduced, this reduction being more pronounced for a
larger number of atoms (i.e., a smaller value of as=a⊥). Of
particular note is the observation that the rate of depletion of
the oscillation energy tends to decrease when the system
enters the broadening phase of increasing total entropy. We
interpret this behavior as indicating that the entropy increase
is mainly due to energy redistribution among the phonons
which is governed by the first kind of nonlinearity, and not to
the second kindwhich concerns the damping of the coherent
condensate oscillations due to production of longitudinal
phonons (as studied e.g., in [50]). The disconnection of
these two kinds of nonlinear process is very clear in the case
studied in Appendix B: see the red curve on the left panel of
Fig. 14, where the smallness of the damping of the coherent
oscillations manifests itself by the constancy of the radial
oscillation energy during the phase where the peaks are
broadening and the entropy growth rate is maximal. Finally,
by comparing Figs. 9 and 10, one notices that the significant
increase in entropy occurs at around the same time that the

peaks in nk andG
ð2Þ
k broaden, when themany-peak structure

starts to degenerate into a single broad peak.

C. First-order coherence

Another relevant quantity that sheds light on the late-
time evolution of the system is the equal-time first-order
coherence function

g1ðt; x; t; x0Þ ¼ hψ†ðt; xÞψðt; x0Þi: ð35Þ

Since the system is spatially homogeneous, this should be a
function of the distance Δx ¼ x − x0 rather than of x and x0
separately. We exploit this fact by fixing Δx and averaging
over x, as well as over all realizations.
The evolution of g1ðt;ΔxÞ for the same three simulations

represented in Figs. 9 and 10 is shown in Fig. 11. Its most
salient feature is the rather sudden drop that coincides with
the broadening of the peaks (Fig. 7) and the increase of the
entropy (right panel of Fig. 10). This occurs both for Δx ¼
L=2 and Δx ¼ L=4, showing that the effective coherence
length reduces markedly and quite suddenly from the entire
length of the condensate to a value somewhat less than L=4.
To relate our observations to known theoretical

results concerning the coherence length in one-dimensional
quasicondensates, we give here the three values of lϕðTÞ,
the correlation length at temperature T defined by
g1ðt; lϕðTÞÞ ¼ 1=e; see Eq. (14) in [39]. Namely, for
as=a⊥ ¼ 1.7 × 10−4, 1.7 × 10−3 and 1.7 × 10−2, we cor-
respondingly have lϕðTÞ=L ¼ 100, 10, and 1. The last
value indicates that for the largest value of as=a⊥ we
consider, on distances comparable to L the spatial corre-
lation will be imperfect even before the sudden change, in
agreement with the early value of g1 shown by the red curve
in Fig. 11.
It is also worth pointing out that, after the sudden drop of

g1ðt;ΔxÞ, the observed coherence length can be used to
define an effective temperature via the following expression
given in [39],

lϕðTÞ ¼
ℏ2n1
mT

¼ n1ξ2
mc2

T
; ð36Þ

where we have set kB ¼ 1. We find Teff=mc2fin ≈ 400, 50
and 3 for as=a⊥ ¼ 1.7 × 10−4, 1.7 × 10−3 and 1.7 × 10−2,
respectively. We shall see that these values are in qualitative
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FIG. 10. Evolution of energy and entropy. On the left is shown the energy of the radial oscillations of the condensate as a function of
time, while on the right is shown the entropy as a function of time, for the same parameters as in all previous figures (see the caption of
Fig. 2) and the same values of as=a⊥ as in Fig. 9: 1.7 × 10−4 (blue), 1.7 × 10−3 (green) and 1.7 × 10−2 (red). Note that the energy plots
(particularly the blue and green curves) show three distinct phases of the evolution, which roughly correspond to an initial phase of
constant entropy (where BdG is valid), an intermediate phase where the entropy is increasing, and a final phase where the entropy is
roughly constant and the energy in the oscillations decreases very slowly.
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agreement with those one can extract from the low k

behaviors of final plots of Gð2Þ
k shown in Fig. 12 below.

D. Late-time evolution

After the increase in entropy that coincides with the
broadening of the peaks and the drop in the first-order
coherence, the system continues to evolve, but at a much

slower rate. In Fig. 12 are plotted the final profiles of Gð2Þ
k

and Sk, along with the thermal predictions at the initial
temperature. In the plot of the entropy, we also show the
thermal prediction at the “final” temperature that would

correspond to the total available energy in the system.
Notice that remnants of the resonant peaks are still visible
and continue to broaden; we expect that, if we allow the
simulation to run for a long enough duration, they will
eventually disappear.

There is a clear trend for the late time profiles ofGð2Þ
k and

Sk to increase with decreasing as=a⊥ or, equivalently, with

increasing total number of atoms N. Indeed,Gð2Þ
k appears to

be directly proportional to N and, since Gð2Þ
k approaches

Teff=mc2 in the limit k → 0 [18], it can be concluded that
the late time effective temperatures should be proportional
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FIG. 11. The (absolute value of the) first-order coherence function g1ðΔx; tÞ ¼ hψ̂†ðx; tÞψ̂ðxþ Δx; tÞi, as a function of time, for the
same parameters as in previous plots and the same three values of as=a⊥: 1.7 × 10−4 (blue), 1.7 × 10−3 (green) and 1.7 × 10−2 (red). On
the left Δx ¼ L=2, so that the correlation is between antipodal points on the torus; on the right Δx is only half this value, yet the curves
behave in a similar manner. We have exploited homogeneity of the state by averaging over x as well as over the number of realizations
(here, there are 100 realizations for each of the three curves). Of particular note is the sharp decrease in g1 at a well-defined time, which
occurs later for smaller as=a⊥ and which corresponds to the loss of ðk;−kÞ correlations (through the decrease of the parameter η̃ in
Figs. 5 and 7) and the increase of the entropy on the right of Fig. 10. Note also that, whereas the blue and green curves start with jg1j
close to 1, the red curve starts with jg1j significantly lower (around 0.8), in agreement with the fact that the correlation length
lϕðTÞ=L ∼ 1 for this case.
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FIG. 12. The final (i.e., at Nosc ¼ 66.8, the last time shown in Figs. 7 and 8) profiles of the density-density correlation function Gð2Þ
k

(left panel) and the entropy Sk (right panel), for the same parameters as in previous plots and the same three values of as=a⊥: 1.7 × 10−4

(blue), 1.7 × 10−3 (green) and 1.7 × 10−2 (red). The dashed black curves show the theoretical profiles for the initial state at temperature
T in ¼ mc2in=2. On the right plot, the dashed colored curves show the theoretical predictions for the entropy in a thermal state, with a final
temperature Tfin determined by the total available energy in the oscillations of the condensate after the sudden change of ω⊥. The
corresponding values of Tfin=mc2fin are 94 (blue), 21 (green) and 4.7 (red). Note that Sk has been binned into groups of 4 modes each with

respect to the raw numerical data, while the Gð2Þ
k has not been binned at all.

NONLINEARITIES INDUCED BY PARAMETRIC … PHYS. REV. D 98, 056003 (2018)

056003-15



to N. This trend is corroborated by the effective temper-
atures given by the drop of the coherence lengths discussed
at the end of Sec. IV C.
This trend is also predicted by a straightforward mapping

of the available energy in the oscillations of the condensate
to what should be the final temperature Tfin of the system.
The steady increase with N of the corresponding thermal
entropy profiles are shown in dashed in the right panel of
Fig. 12. It should be noticed that the values of Tfin are
significantly lower than those of the effective temperatures
Teff , in accord with the fact that the energy is mainly
distributed in the low frequency modes when we stopped
our numerical integration. This out-of-equilibrium reparti-
tion is most clearly seen in the plot of the entropy, where we
see an excess at low k and a deficit at high k. It indicates
that energy redistribution from the low-k to the high-k
regime is still taking place. Indeed, when the number of
condensed atoms is sufficiently large (blue and green
curves), the high-k modes are still essentially in their
ground state, in qualitative agreement with the findings
of Refs. [21,51] where it was noticed that high-k modes
thermalize slowly.
Instead, when the number of condensed atoms is small

(red curve), Sk appears to be close to the equilibrium curve
after 67 oscillations. We also notice that, for the same

system (red curve), Gð2Þ
k dips below the thermal curve of

BdG at high k. This behavior seems to be generic when a
significant fraction of the atoms are not condensed, as it
appeared in the large set of simulations (based on the TWA)
we have performed but not shown. This phenomenon is
probably related to the well-known fact that the TWA is
unable to properly describe the thermalization of an atomic
cloud [24,25]; see footnote 11.

V. SUMMARY AND CONCLUSIONS

We studied the sequence of dynamical processes taking
place in an elongated effectively one-dimensional con-
densed atomic cloud when the trapping frequency ω⊥
governing the two narrow perpendicular directions is
suddenly increased. This causes the radial atomic density
to oscillate with a high frequency equal to twice the final
value of ω⊥. These coherent oscillations induce a modu-
lation of the frequency of longitudinal excitations which in
turn leads to an exponential amplification of the phonon
modes in a frequency band centered around ω⊥. In our
numerical simulations, the initial temperature of the homo-
geneous phonon bath is taken to be relatively low (equal to
half the initial value of mc2) so that, in effect, the resonant
modes are initially in their ground state.
We used the large scale separation between the longi-

tudinal length L and the perpendicular width a⊥ of the
cloud, namely L=a⊥ ¼ 128, to identify two kinds of
nonlinearity that are treated in a self-consistent manner.
The first describes the mutual interactions of longitudinal

excitations, which propagate in a time-dependent homo-
geneous background governed by the scale factor σðtÞ
describing the radial oscillations. We restrict ourselves to
statistically homogeneous states, and we use the truncated
Wigner approximation to numerically solve the corre-
sponding nonlinear field equation. The second kind of
nonlinearity concerns the adiabatic reduction of the radial
oscillations caused by the increase in the mean energy of
the resonant modes. This second type is governed by the
“semiclassical” equation of motion for σðtÞ, in the same
spirit as what is done in semiclassical gravity [52]. To
obtain this equation, which here reduces to an ODE, we
have taken the ensemble average over the various realiza-
tions of longitudinal excitations, and because our ensemble
is statistically homogeneous, this is expressed via the
spatial integral of their energy density. Then, by construc-
tion, the total energy of the system is conserved. The two
equations of motion are numerically integrated in time in a
single code. In practice, the identification of the two kinds
of nonlinearity is implemented by postulating that the
three-dimensional wave function factorizes; see Eq. (4).
It should be stressed that this identification and the
subsequent numerical integration closely follow the pro-
cedure which is used in numerical studies of the preheating
scenario in cosmology [22].
Having adopted this description, we first paid attention

to the initial phonon state. We set the random initial
conditions of phonon fluctuations well before the sudden
jump so as to let the quasicondensate (governed by a one-
dimensional Gross-Pitaevskii equation) settle into a nearly
stationary state. After the sudden jump of ω⊥ we observed,
as expected, an exponential growth of resonant phonon
modes and the entanglement (nonseparability) of the two-
mode phonon states comprising opposite wave vectors.
Both of these observations are in good agreement with the
predictions obtained using the BdG equation. Yet we
rapidly observed two deviations with respect to this linear
treatment. The main one concerns the loss of nonsepar-
ability of ðk;−kÞ phonon pairs while the number of these
phonons is still exponentially growing; see Fig. 3. The
other deviation is the progressive reduction of the (expo-
nential) growth rate of the phonon occupation number.
Moreover, we numerically verified that the strength of

these two deviations (at any given time) is reduced when
decreasing the ratio as=a⊥. This can be explained by noting
that, while in our scheme of adimensionalization (in which,
in particular, the number n1as is held fixed) as=a⊥ does not
enter in the BdG description, it does govern the fraction of
depleted atoms with respect to the total atomic number. We
numerically observed that, for a significant period during
the exponential growth of the resonant peak, the reduction
of the growth rate of the phonon occupation number scales
linearly with nkas=a⊥ (where nk is the number of resonant
phonons), while the parameter governing the loss of non-
separability increases like ðnkas=a⊥Þ2; see Fig. 6.
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In parallel to the study of the loss of nonseparability, we
addressed the important issue of the visibility of non-
separability, i.e., the ability to distinguish separable from
nonseparable states given some observables. As previously
noticed [18], we recovered that both in situ measurements
of the two-point correlation function and statistical proper-
ties of the atomic numbers after TOF (see Appendix A) are
unable to distinguish between these two classes of states
when the mean occupation number (of phonons or atoms)
becomes larger than ∼10. With our “benchmark” values for
the system parameters, the visibility is maximal after only
∼4 oscillations of the atomic cloud.
In the second part of the paper, we studied the late-time

behavior, where nonlinear effects are essential in the
evolution of the system. Since the BdG description is no
longer valid, it is then appropriate to use atomic (rather than
phononic) occupation numbers. As clearly seen in Fig. 7,
the expected saturation of the exponential growth of
resonant atoms is accompanied by a series of interesting
effects. First, we observed new peaks at harmonics of the
wave number kres (and not of the frequency ωkres ), whose
appearance and amplitudes are explained in Appendix C.
Second, we observed a rapid broadening of all peaks,
including the central one at k ¼ 0. Third, the coherence of
resonant phonon pairs of opposite wave vector is essentially
washed out, as can be seen from the lower panels in Fig. 7.
These observations are corroborated by the temporal
behavior of the two-point function shown in Fig. 8, and
by the time dependence of the atomic occupation numbers
in various wave number bands; see Fig. 9. We conjecture
that these decoherence effects are due to frequent
exchanges with the large bath of soft phonons which is
known to be present in one-dimensional quasicondensates
at a finite temperature, and which is the origin of their finite
correlation length.
The analysis of late-time effects is completed by a study

of the energetic and entropistic aspects. One clearly sees
that there is an almost complete energy transfer from the
cloud oscillations to the various longitudinal excitations.
However, some of our observations suggest an interplay
between the growth of energy and entropy, in that when one
varies rapidly, the other less so, and vice versa; see, in
particular, the blue curves in Fig. 10 and the red curves in
Fig. 14 (in Appendix B). This seems to indicate that the
damping of the coherent radial oscillations is governed by
nonlinear processes which are distinct from those respon-
sible for the broadening of the peaks. In addition, by
computing the equal-time first-order coherence function
evaluated at some large distance comparable to the length
of the torus, we observed that the cloud is well described
by a quasicondensate up to a certain moment which
roughly coincides with the moment at which the peaks
broaden and the entropy increases. After this moment, the
spatial coherence is suddenly lost. As could have been
expected, we observed that this time occurs later when

there is a larger fraction of condensed atoms initially, i.e.,
when as=a⊥ is smaller.
Altogether these results suggest that the system is on its

way to thermalization. They also indicate that the last
stages of the energy redistribution, both within the bath
of longitudinal phonons and from the coherent radial
oscillations to the phonon bath, are rather slow. These
observations are clear when examining the occupation of
high-frequency modes. From the right panel of Fig. 12, it is
seen that after many oscillations of the condensate, the
high-frequency modes are still far away from their thermal
values, in agreement with the slow increase of the entropy
observed at late time in the right panel of Fig. 10.
These slow late-time processes, here observed in a one-

dimensional system, are very reminiscent of the outcome of
studies of the three-dimensional processes (involving
turbulence and vortices) of the (p)reheating scenario of
primordial cosmology [20,21], where it was also seen that
high-frequency modes thermalize long after the broadening
of the spectrum involving low-frequency modes. We hope
that the dynamical origins of these similarities will be
clarified in the near future.
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APPENDIX A: ALTERNATIVE DESCRIPTION
OF WHOLE HISTORY IN TERMS OF g2ðkÞ

We remind the reader that after TOF, the observables are
the statistical properties of the atomic occupation numbers
with wave number k; see e.g., [53]. For simplicity, we here
assume that the expansion of the cloud is such that the atom
occupation numbers after the opening of the trap are equal
to the phonon occupation numbers beforehand, which
amounts to assuming that the trap is opened adiabatically
with respect to the relevant atom or phonon frequencies.
Since the natural expansion rate of the cloud on the
switching-off of the harmonic potential is on the order
of ω⊥, this assumption is valid for atoms of wave numbers
close to or higher than the resonant window. (The reader
interested in the residual effect induced by a more accurate
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description of the expansion of the cloud during the
opening of the trap is invited to consult Ref. [18].)
We recall that the g2ðkÞ function, which has been used in

Refs. [9,46,47], is given by

g2ðkÞ ¼
hϕ̂†

kϕ̂
†
−kϕ̂−kϕ̂ki

hϕ̂†
kϕ̂kihϕ̂†

−kϕ̂−ki
¼ ðnatk Þ2 þ jcatk j2

ðnatk Þ2
: ðA1Þ

In the second equality, we assumed that the state is isotropic
(natk ¼ nat−k) and Gaussian, so that the expectation value of
the quartic operator can be expressed in terms of expect-
ation values of quadratic operators via Wick contraction.
This is much the same philosophy adopted when using Scov
as a measure of the entropy in Eq. (33), and it here means
that the connected part of the four-point function has not
been taken into account. The study of non-Gaussianities of
the quantum state is beyond the scope of the present paper.
In Fig. 13, we have adopted four plots in order to

distinguish four stages illustrating the successive processes
at play. Before describing them, we state the following
preliminary facts. First, we have added a regulator on the
average squared number of phonons (equal to 1=10) so as
to avoid large fluctuations of g2 for low occupation

numbers which occur at high k. These fluctuations are
due to the finite number of realizations, here (as throughout
this paper) equal to 100.
Second, as far as k is concerned, we have partially

smoothed out the curves by taking the following weighted
average:

ḡ2ðk; tÞ≡ 1

8
ðg2ðk− δ; tÞ þ 6g2ðk; tÞ þ g2ðkþ δ; tÞÞ; ðA2Þ

where δ is equal to 2π=L and L ¼ 128a⊥. We have adopted
this smoothing-out because it preserves the detailed proper-
ties while erasing high resolution oscillations that are
present even in vacuum, the latter observation indicating
that these oscillations partially stem from the finite number
of realizations as they are present even before the onset of
the condensate oscillations at Nosc ¼ 0.
Finally, we emphasize that the curves are snapshots taken at

a series of specified times. When comparing curves at two
times separated by about π=2ω⊥, significant modifications
on the order of 10% are observed for all values of k except
for ka⊥ ≲ 1=4. Moreover, without the smoothing-out of
Eq. (A2), thesemodifications can be significantly larger (more
than a factor of 2 with respect to those of the smoothed ḡ2).

Nosc 0, 1, 2, 3

0 1 2 3
k a

1

2

g2 k, k

Nosc 4, 6, 12

0 1 2 3
k a

1

2

g2 k, k

Nosc 14, 22, 25

0 1 2 3
k a

1

2

g2 k, k

Nosc 25, 30, 60

0 1 2 3
k a

1

2

g2 k, k

FIG. 13. Evolution in time of g2ðk; tÞ, with the upper and lower plots, respectively, showing the early- and late-time behavior described
in the main text. In each plot, the curves are time-ordered as follows: (solid green), dotted red, dashed blue, solid black, (dot-dashed
black). Note that the solid green and dot-dashed black curves appear only in the first (upper left) plot. The green curve corresponds to the
input state, assumed to be a thermal state of phonons at temperature T ¼ mc2=2, at Nosc ¼ −10, i.e., before the sudden change in the
trapping frequency. The red curve in the first plot shows the form of g2 at Nosc ¼ 0, after having evolved the system according to the full
quartic Hamiltonian.
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Let us now turn to the curves themselves. The two upper
plots represent the early-time evolution. In the left panel,
we show the growth of the maximum value of g2 at very
early times. For the modes within the resonant window (of
which there are two in the present simulation), the
maximum g2;max ∼ 3 occurs at Nosc ¼ 3 and hardly varies
fromNosc ¼ 2 toNosc ¼ 4. Note that the maximum value is
well above the nonseparability threshold g2 ¼ 2. Also
notice that the black curve at Nosc ¼ −10 and the red
curve at Nosc ¼ 0 describe the nonlinear evolution of the
phonon vacuum under Eq. (11). (Had we used the BdG
equation these two curves would coincide and describe the
thermal phonon state at temperature mc2=2.) The discrep-
ancy between these curves decreases when increasing the
total number of atoms at fixed n1as.
In the upper right plot is shown the loss of visibility due

to the exponential growth of the occupation number, and
has nothing to do with the loss of coherence, as can be
understood from the fact that this evolution is accurately
described by the linear BdG equation. The sideband
oscillations are also predicted by the BdG equation; see
Fig. 17 of [18]. Furthermore, we notice the appearance of a
peak at ka⊥ ∼ 1.7 associated with the second harmonic in
frequency. Here, its presence is due to the anharmonicity of
the oscillation of the condensate, and is thus also in
agreement with BdG.
Instead, the two lower plots show consequences of

nonlinear effects absent from the BdG description. The
left one displays both the loss of the visibility of non-
separability and the loss of nonseparability itself occurring
near Nosc ∼ 17. These two observations are in full agree-
ment with what is displayed in Fig. 3. We also notice the
growth of the peak at ka⊥ ∼ 2, which is present due to the
nonlinear nature of the resonant mode at large amplitudes
as discussed in Appendix C. The last plot shows the gradual
disappearance of all peak structure for ka⊥ ≳ 1, and

therefore the approach to a thermal-like state, in agreement
with the growth of g2 for ka⊥ ≲ 1. However, as noted in
the main text, the TWA becomes unreliable at very late
time, and moreover, the use of the phonon mode basis
becomes ambiguous when nonlinearities are strong; we
must therefore be cautious when interpreting the last plot
of Fig. 13.

APPENDIX B: VARYING THE AMPLITUDE
OF THE OSCILLATIONS

Variation of the oscillation amplitude can be achieved
by varying the ratio of the initial to the final trapping
frequency. Through its effect on the amplitude of the
oscillations of the scale factor σ, this controls the amplitude
of the oscillations of ω2

k=hω2
ki, the relevant quantity from

the point of view of the phonon response. As shown in [17],
this affects the system in two ways: it increases the growth
rate of the resonant modes, and it increases the size of the
resonant window in k-space so that more of the discrete
modes on the torus are parametrically amplified.
In Fig. 14 are shown the time evolution of the energy in

the radial oscillations (see Sec. IV B for the definition of
E⊥) and the entropy Scov of Eq. (33). This is just as in
Fig. 10, except that as=a⊥ is fixed at the benchmark value
of 1.7 × 10−3 while ω⊥=ω⊥;in varies, taking the values 1.2
(blue),

ffiffiffi
2

p
(green) and 2 (red). These values lead to

different numbers of discrete modes occurring within the
resonant window: 1 (blue), 2 (green) and 4 (red). As
expected, the increased rate of phonon production at larger
amplitudes leads to the radial energy being used up more
quickly. There are, however, some interesting features: the
red curve shows a plateau in the energy lasting over about 4
oscillations at the transition between early-time and late-
time behavior (i.e., where the peaks broaden and the
entropy grows most rapidly); while the blue curve shows

20 40 60 80
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FIG. 14. Evolution of energy and entropy, with varying ω⊥=ω⊥;in. On the left is shown the energy of the radial oscillations of the
condensate as a function of time, while on the right is shown the entropy as a function of time, for the same parameters as in all previous
figures except that as=a⊥ is fixed at 1.7 × 10−3 while ω⊥=ω⊥;in takes the values 1.2 (blue),

ffiffiffi
2

p
(green) and 2 (red). The number of

discrete resonant modes is 1 for the blue curve, 2 for the green curve and 4 for the red curve.
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long-time oscillations in the radial energy, meaning that
energy is recuperated by the radial oscillations at the
expense of longitudinal phonons. The latter is most likely
a pathological feature due to there being only one discrete
mode at resonance, while the former is a particularly clear
indicator that the entropy increase at broadening is pri-
marily due to energy redistribution among the longitudinal
phonon modes themselves, having little to do with back-
reaction on the oscillating cloud, i.e., on the damping of
the coherent radial oscillations. We tested this interpretation
by performing an extra simulation with the last term
removed from Eq. (19) so that no backreaction occurs.
This new simulation displayed essentially the same plateau
(both in height and duration) in the longitudinal energy
acquired by the phonons, thereby confirming that this
particular process is unrelated to the reduction of the radial
oscillation energy.
Despite the interesting features in the evolution of the

energy, the entropy (shown in the right panel of Fig. 14)
behaves essentially as expected, increasing sooner and
most rapidly for larger oscillation amplitudes. It is quite
clear that the blue curve evolves so slowly that it is very far
from its final state even after ∼85 oscillations, and the
small dips in entropy it shows near Nosc ∼ 14 and ∼37 are
again likely due to there being only one discrete resonant
mode.

APPENDIX C: HARMONICS
IN NONLINEAR SOLUTIONS

In this Appendix, we estimate the order of the amplitude
of the harmonics for small nonlinear perturbations. To this
end, we look for solutions of the one-dimensional Gross-
Pitaevskii equation (GPE) of the form ϕðt; zÞ ¼ ϕ0ðt; zÞ×
ð1þ uðt; zÞÞ, where ϕ0 is a solution corresponding to a
homogeneous flow and u is a small but finite perturbation.
Here wework in units where ℏ ¼ 1, and in the presence of a
nonvanishing background velocity v0. The one-dimen-
sional GPE becomes

ið∂tþv0∂zÞu¼−
∂2
zu
2m

þg1ρ0ðuþu�þ2uu�þu2þu2u�Þ;
ðC1Þ

where v0 ¼ Imðð∂zϕ0Þ=ϕ0Þ and ρ0 ¼ jϕ0j2. Notice that
this differs from the BdG equation by the inclusion of the
nonlinear terms. Let us look for solutions of the form:

uðt; zÞ ¼
X
n∈Z

un exp ðinðkz − ωtÞÞ; ðC2Þ

where k and ω are two real numbers. Plugging this into
Eq. (C1) gives, for all n ∈ Z:

�
nðω−v0kÞ−

n2k2

2m

�
un−g1ρ0ðunþu�−nÞ

¼ g1ρ0
X
l∈Z

ð2unþlu�l þunþlu−lÞþg1ρ0
X

ðl;pÞ∈Z2

unþlup−lu�p:

ðC3Þ

Let ϵ be a small parameter. We consider solutions where
u0 and u�1 are of order ϵ or smaller. When working to
linear order, we can set u�n ¼ 0 for all n ≥ 2 and we
recover the solutions of the BdG equation. When comput-
ing the nonlinear corrections, the right-hand side of
Eq. (C3) will be in Oðϵ2Þ for n ¼ �2, in Oðϵ3Þ for
n ¼ �3, and so on. In fact, one can easily see (using that
jnþ lj þ jlj ≥ jnj for any ðn; lÞ ∈ Z2) that the system is
consistent, in the sense that the linear terms in un are of the
same order as the leading nonlinear term, if ul ¼ OðϵjljÞ for
any l ∈ Z. Assuming there is no fortuitous cancellation, the
nth peak will thus have an amplitude in OðϵjnjÞ, where ϵ is
the order of magnitude of the amplitude of the first peak.
This prediction is validated by the numerical results

presented in Fig. 15, which shows the amplitude of the
second harmonic at k ¼ 2kres relative to that of the
fundamental at k ¼ kres, for two of the simulations con-
sidered in the main text (the “benchmark” case with
as=a⊥ ¼ 1.7 × 10−3 and that with as=a⊥ ten times
smaller). The key result is that there is a period during
which the peak at k ¼ 2kres grows exponentially with an
amplitude proportional to the square of the amplitude of the
peak at k ¼ kres, in agreement with the nonlinear theory
described above.
We also note that the evolution can be divided into three

regimes. During the first regime, Nkres grows exponentially
while N2kres remains essentially constant because of the
smallness of nonlinearities. In the mean, the initial value
of N2kres is simply the quantum depletion, i.e., the vacuum
expectation value v22kres , where vk is the antidiagonal
element of the Bogoliubov SUð1; 1Þ matrix entering
Eq. (21). This expectation value is represented by the
dashed horizontal lines in the right plot of Fig. 15.13 The
second regime is that during which both grow exponen-
tially with the square relationship mentioned above.
Moreover, we note that, when rescaling each Nk by
as=a⊥, the plots in this regime are practically the same
for the two values of as=a⊥, as was already noticed in
Fig. 6. The third and final regime, which is also common to
both values of as=a⊥, is where the peaks become saturated,
no longer growing in time and migrating slightly from the
black line in the right panel.

13The discrepancies seen at early time are due to a lack of
statistics (here 100 simulations). The lack of early-time data for
the green dots is due to the fact that the ensemble average ofN2kres
is a small negative number for this particular run, and therefore
cannot be shown when representing lnN2kres .
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APPENDIX D: EXACT SOLUTIONS FOR A
CYLINDRICALLY SYMMETRIC CONDENSATE

We here provide a fairly detailed account of the
z-independent solutions of the Gross-Pitaevskii equation
in a cylindrically harmonic potential, following the treat-
ment of Ref. [35]. The usefulness is in the derivation of
approximate expressions for Aðn1asÞ and Gðn1asÞ appear-
ing in Eq. (19).

1. Adimensionalization

Under the same assumptions adopted in Sec. II A, we
arrive at Eq. (7) as our starting point. However, it is
convenient to work with adimensionalized quantities. To
this end, we choose an arbitrary fixed reference length
a⊥;0, and define its associated frequency ω⊥;0 ¼ ℏ=ma2⊥;0.
This allows us to define the following adimensionalized
quantities:

T ≡ ω⊥;0t; R≡ r
a⊥;0

;

ΩðTÞ≡ ω⊥ðtÞ
ω⊥;0

¼ a2⊥;0

a2⊥ðtÞ
≡ 1

A2⊥ðTÞ
;

χðR; TÞ≡ a⊥;0ψðr; tÞ; ðD1Þ

upon which Eq. (7) becomes

i∂Tχ ¼ ½− 1

2R
∂RR∂R þ 1

2
Ω2⊥ðTÞR2 þ 2n1asjχj2�χ; ðD2Þ

with χ normalized according to the adimensionalized form
of the first of Eqs. (5), i.e.,

Z
∞

0

RjχðR; TÞj2dR ¼ 1: ðD3Þ

2. Time-independent case

Whenever Ω⊥ is constant, a stationary state of the time-
independent GPE can be written as χðR; TÞ ¼ e−iMT χ̃ðRÞ,
where

Mχ̃ ¼
�
−

1

2R
∂RR∂R þ 1

2
Ω2⊥R2 þ 2n1asjχ̃j2

�
χ̃: ðD4Þ

Here, M is the adimensionalized chemical potential, i.e.,
M≡ μ=ℏω⊥;0. There are many solutions of Eq. (D4), but
we always assume the ground state, in which (for the given
parameters) M takes its lowest value. For a given value of
n1as, we take the solution at Ω⊥ ≡ 1 as a reference
solution, i.e., we define M0 and χ̃0 such that

M0χ̃0 ¼
�
−

1

2R
∂RR∂R þ 1

2
R2 þ 2n1asjχ̃0j2

�
χ̃0: ðD5Þ

The dependence of M0 and χ̃0 on n1as is implicitly
determined by this equation. Straightforward algebra shows
that, for a general Ω⊥ ¼ 1=A2⊥, Eq. (D4) is satisfied if M
and χ̃ are set equal to

M ¼ M0

A2⊥
; χ̃ðRÞ ¼ 1

A⊥
χ̃0

�
R
A⊥

�
: ðD6Þ

Note that the scaling of χ̃ðRÞ with A⊥ ensures that the
normalization condition (D3) is respected for χ̃ if it is
respected for χ̃0.
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FIG. 15. Emergence of nonlinear solutions. On the left is plotted N2kres=ðN2
kres

as=a⊥Þ as a function of time, where Nk is the number of
atoms summed over k and −k, including the two nearest neighbors on either side (just as was done in Fig. 9), and having averaged over
the oscillation period to make the curves smooth. On the right is plotted ln ðN2kresas=a⊥Þ as a function of ln ðNkresas=a⊥Þ. The blue and
green points correspond, respectively, to numerical results for as=a⊥ ¼ 1.7 × 10−4 and 1.7 × 10−3, and we note that these two cases
agree quite closely at intermediate and late times. In the right plot, the black line has slope 2, and its intercept has been fitted to the
intermediate-time behavior of the numerical data. The horizontal dashed lines show the quantum depletion times as=a⊥. The deviations
seen particularly for the green dots are due to a lack of statistics.
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3. Time-dependent case

So far we have dealt with the stationary ground state
solutions described by Eq. (D4). Let us now return to the
time-dependent solutions described by Eq. (D2). It turns
out that, for a fixed value of n1as and assuming cylindrical
symmetry, the time-dependent solutions can also be
described by a straightforward rescaling of the reference
solution χ̃0, where the scale factor is now time-dependent.
Let us introduce the dimensionless scale factor ΣðTÞ, and
make the following ansatz:

χðR; TÞ ¼ 1

ΣðTÞ χ̃0
�

R
ΣðTÞ

�
exp

�
iθ0ðTÞ þ i

Σ0ðTÞ
ΣðTÞ

R2

2

�
:

ðD7Þ

Plugging this into Eq. (D2) and using Eq. (D5) for the
reference solution, we find that it reduces to the following:

�
θ00ðTÞ
ΣðTÞ þΣ00ðTÞ R2

2Σ2ðTÞ þ
M0

Σ3ðTÞ

þΩ2⊥ðTÞΣðTÞ
R2

2Σ2ðTÞ−
1

Σ3ðTÞ
R2

2Σ2ðTÞ
�
χ̃0

�
R

ΣðTÞ
�
¼ 0:

ðD8Þ

Since this equation must hold for all R, the coefficients of
R0 and R2 must vanish separately, yielding the following:

θ00ðTÞ ¼ −
M0

Σ2ðTÞ ; Σ00ðTÞ ¼ −Ω2⊥ðTÞΣðTÞ þ
1

Σ3ðTÞ :

ðD9Þ

The second of these equations fully determines the time
evolution of the scale factor Σ once initial conditions have
been specified. Note that it can be written in the form

Σ00ðTÞ ¼ −
∂
∂Σ ṼeffðΣðTÞ; TÞ

where ṼeffðΣ; TÞ ¼
1

2
Ω2⊥ðTÞΣ2 þ 1

2Σ2
: ðD10Þ

WheneverΩ⊥ is time-independent, Ṽeff has no explicit time
dependence and the total (adimensional) effective energy

Ẽeff ¼
1

2
_Σ2 þ ṼeffðΣÞ ¼

1

2
_Σ2 þ 1

2
Ω2⊥Σ2 þ 1

2Σ2
ðD11Þ

is conserved. (Note that, since Σ ¼ σ=a⊥;0, it is straightfor-
ward to show that Ẽeff ¼ Eeff=ℏω⊥;0, where Eeff is the
effective energy of Eq. (9)). Given this fact, and assuming
Ω⊥ is T-independent, it can be shown that

∂2
T

�
Σ2 −

Ẽeff

Ω2⊥

�
¼ −ð2Ω⊥Þ2

�
Σ2 −

Ẽeff

Ω2⊥

�
; ðD12Þ

and hence that Σ2 varies sinusoidally in timewith frequency
2Ω⊥. We can thus write the following general form for
Σ2ðTÞ:

Σ2ðTÞ ¼ Ẽeff

Ω2⊥
þ A2 cos ð2Ω⊥T þ ϕÞ: ðD13Þ

The effective energy and A2 are algebraically related.
Straightforward algebra yields the following relation:

2ẼeffΣ2 ¼ 1

4
ð∂TðΣ2ÞÞ2 þ Ω2⊥ðΣ2Þ2 þ 1

¼ 1þ Ω2⊥A4 −
Ẽ2
eff

Ω2⊥
þ 2ẼeffΣ2: ðD14Þ

We thus have

Ẽeff ¼ Ω⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω2⊥A4

q
⇔ A2 ¼ 1

Ω⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ẽ2
eff

Ω2⊥
− 1

s
: ðD15Þ

Finally, then, we can write the general form for Σ2ðTÞ,
knowing the effective energy Ẽeff which determines both
the mean value and the amplitude of the oscillations:

Σ2ðT; ẼeffÞ ¼
1

Ω⊥

�
Ẽeff

Ω⊥
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ẽ2
eff

Ω2⊥
− 1

s
cos ð2Ω⊥T þ ϕÞ

�
:

ðD16Þ

Note that the minimum possible value of Ẽeff is Ω⊥, at
which value the amplitude of the oscillations vanishes and
Σ ¼ 1=

ffiffiffiffiffiffiffi
Ω⊥

p
is constant in time.

4. Form of the energy

Here we consider the expression for the total energy in
Eq. (2). Using the factorization ansatz (4) with ϕ≡ ffiffiffiffiffi

n1
p

,
and the relationship g ¼ 4πℏ2as=m, the total energy E3D ¼
Erad where

Erad¼Nℏω⊥a2⊥
Z

∞

0

drr

�
1

2
j∂rψ j2þ

r2

2a2⊥
jψ j2þn1asjψ j4

�
:

ðD17Þ
Using the adimensionalized quantities of Eqs. (D1), this
can be written as

Erad ¼ Nℏω⊥;0

Z
∞

0

dRR

�
1

2
j∂Rχj2

þ 1

2
Ω2⊥R2jχj2 þ n1asjχj4

�
: ðD18Þ
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Finally, we plug in the exact time-dependent solution (D7),
extracting any dimensionless integrals that depend only on
the form of the reference solution χ̃0. The result is

Erad ¼ Nℏω⊥;0

��
1

2
_Σ2 þ 1

2
Ω2⊥Σ2

�
Aðn1asÞ

þ 1

2Σ2
Bðn1asÞ

�
; ðD19Þ

where

Aðn1asÞ≡
Z

∞

0

dRR3jχ̃0ðRÞj2;

Bðn1asÞ≡
Z
0

dRRj∂Rχ̃0ðRÞj2 þ 2n1as

Z
∞

0

dRRjχ̃0ðRÞj4:

ðD20Þ
Using Eq. (D11), we can rewrite Eq. (D19) in the form

Erad ¼ Nℏω⊥;0

�
ẼeffAðn1asÞ þ

1

2Σ2
ðBðn1asÞ−Aðn1asÞÞ

�
:

ðD21Þ
Recalling that Ẽeff is also constant in time, we conclude that
conservation of Erad implies the identity Aðn1asÞ≡
Bðn1asÞ, and hence that the total energy is

Erad ¼ Nℏω⊥;0ẼeffAðn1asÞ ¼ NEeffAðn1asÞ; ðD22Þ
which is exactly Eq. (10). Aðn1asÞ is thus the same here as
in Sec. II, and we have an expression for it in Eqs. (D20),
albeit an implicit one since jχ̃0ðRÞj2 is not explicitly known.
We are also able to write a similar expression for Gðn1asÞ
using Eqs. (12), (13) and the adimensionalized quantities of
Eqs. (D1):

Gðn1asÞ ¼
Z

∞

0

dRRjχ̃0ðRÞj4: ðD23Þ

5. Form of the chemical potential

To find an explicit expression for Aðn1asÞ and Gðn1asÞ,
it will prove useful to turn our attention to the chemical
potential, for which (as shown in Refs. [18,54]) a very good
analytic approximation is known. To this end, we multiply
Eq. (D5) by Rχ̃⋆0ðRÞ and integrate over R. The normaliza-
tion condition (D3) ensures that the integral on the left-
hand side is equal to 1, leaving just M0. The first term on
the right-hand side can be integrated by parts, and we find

M0 ¼
1

2

Z
∞

0

dRRj∂Rχ̃0ðRÞj2 þ
1

2

Z
∞

0

dRR3jχ̃0ðRÞj2

þ 2n1as

Z
∞

0

dRRjχ̃0ðRÞj4

¼ Aðn1asÞ þ n1asGðn1asÞ; ðD24Þ

where we have used Eqs. (D20) and (D23), as well as the
identity Aðn1asÞ≡ Bðn1asÞ. Since χ̃0ðRÞ is a reference
stationary (ground state) solution corresponding to
Ω⊥ ¼ 1, it has effective energy Ẽeff ¼ 1 and hence its
total energy is

E0 ¼ Nℏω⊥;0Aðn1asÞ ¼ Nℏω⊥;0A

�
N
as
L

�
: ðD25Þ

The chemical potential μ0 ¼ ∂E0=∂N, and on adimension-
alizing and differentiating, we find

M0 ¼ Aðn1asÞ þ n1asA0ðn1asÞ: ðD26Þ

Comparing with Eq. (D24), we see that we must have

Gðn1asÞ≡ A0ðn1asÞ ðD27Þ

as an identity.

6. Approximate form of Aðn1asÞ
It has been checked (see Fig. 12 of Ref. [18]) that, for the

ground state solution and up to a maximum error of less
than 2.5%, the chemical potential of the ground state is
given by

μ

ℏω⊥
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4n1as

p
: ðD28Þ

Indeed, as seen in Ref. [18], this is an excellent
approximation both in the Gaussian limit when n1as is
small and in the Thomas-Fermi limit when n1as is
large. We can thus use this to get an approximation for
Aðn1asÞ. It is straightforward to show that this is
solved by

Aðn1asÞ ≈
1

6n1as
ðð1þ 4n1asÞ3=2 − 1Þ: ðD29Þ

This approaches 1 as n1as → 0, as required by the Gaussian
limit; and it approaches 4

3

ffiffiffiffiffiffiffiffiffi
n1as

p
when n1as is large, as

can be calculated explicitly in the Thomas-Fermi limit.
It is Eq. (D29), and its derivative with respect to n1as, that
have been used to determine Gðn1asÞ=Aðn1asÞ of Eq. (19)
in the numerical simulations described in the main body of
this paper. When working with n1as ¼ 0.6, as in our
numerical simulations, one finds that Aðn1asÞ ¼ 1.46
and Gðn1asÞ ¼ 0.63.
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