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We construct a texture where the seesaw matrix is diagonalized by the tribimaximal (TBM) matrix with a
phase. All angles of the Cabibbo-Kobayashi-Maskawa matrix and Pontecorvo-Maki-Nakagawa-Sakata
matrix are consistent with particle data group values, and the mass relations of quarks and charged leptons
extrapolated to the grand unified theory scale are satisfied, including the Gatto relation. The novel
ingredient is the asymmetry of the down-quark and charged lepton Yukawa matrices. Explaining the reactor
angle requires a CP phase in the TBM matrix, resulting in the Jarlskog-Greenberg invariant at jJj ¼ 0.028,
albeit with an undetermined sign. While SOð10Þ restrains the right-handed neutrino Majorana matrix, the
neutrino masses are left undetermined.
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I. INTRODUCTION

The Standard Model evocates simplicity at a smaller
scale, both in gauge couplings (grand-unified theories) and
in the mass patterns of down quarks and charged leptons.
Yet the mixings of leptons and quarks are starkly different:
neutrino oscillations [1] require two large lepton mixing
angles.
Quark-lepton mixing disparity, anticipated in the

SOð10Þ-inspired seesaw mechanism [2], yields tiny neu-
trino masses through the ratio of the electroweak to the
grand-unified scale.
Aprettymatrix [under thename: tribimaximal (TBM)] [3],
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diagonalizes the seesawmatrix. Its two large angles near their
particle data group (PDG) values suggest a discrete crystal-
line flavor symmetry at the grand unified theory (GUT) scale
(see [4] for recent reviews). TBM simplicity comes at a cost:
the reactor angle θ13 generated from the seesaw is zero.

The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton
mixing matrix is an overlap of seesaw and charged lepton
mixing matrices. The latter, derived from the charged
lepton Yukawa matrix, may generate enough “Cabibbo
haze” [5] to explain the data, but symmetricYukawamatrices
with TBM diagonalization underestimate the reactor angle
[6]. Authors who assume symmetric Yukawa matrices
require seesaw diagonalization beyond TBM [7].
In this paper we argue for seesaw simplicity of TBM

diagonalization by seeking textures where the value of the
reactor angle [8] is fully explained by Cabibbo haze.
Our objective is to search for asymmetric Yukawa

matrices that satisfy all experimental constraints: the
Cabibbo-Kobayashi-Maskawa (CKM) matrix, the Gatto
relation [9] tanθC¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md=ms

p
≈λ where θC is the

Cabibbo angle and λ is a Wolfenstein parameter, and the
down-quark and charged lepton mass relations at the GUT
scale using the renormalization group [10] mb ¼ mτ,
md ¼ 3me,ms ¼ mμ=3 together with the values of the three
lepton mixing angles [11]. Our bottom-up approach makes
extensive use of the patterns suggested by the SUð5Þ and
SOð10Þ grand-unified groups.
Themain result of this paper is the constructionof a specific

3 × 3Yukawamatrix that has a simple asymmetry ofOðλÞ in
the (31) matrix element. The Cabibbo haze generated by this
texture, together with TBM seesaw diagonalization, leads us
to a slight overestimation of the reactor angle. However, the
introduction of a single CP phase in the TBM matrix fits
the reactor angle to data, while simultaneously bringing the
atmospheric and solar angles within their PDG bound. This
nontrivial TBMphase generates theCP phase δCP ¼ �1.32π
in the PMNS matrix, resulting in Jarlskog-Greenberg invari-
ant [12] jJj ¼ 0.028. The sign comes from the seesaw; it is not
specified by our texture.
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After a review of the salient Yukawa patterns suggested
by SUð5Þ and SOð10Þ, we discuss a symmetric Georgi-
Jarlskog texture to motivate our procedure. We then
construct our asymmetric texture. A discussion of its
implications for further theoretical construction follows.
The uniqueness of the asymmetry in explaining the data is
extensively discussed in the Appendices.

II. THE ELECTROWEAK SECTOR

Quarks and charged lepton masses and mixings stem
from the Standard Model’s Yukawa matrices. We use the
basis where the up-quark matrix is diagonal: Yð2=3Þ∼
mtdiagðϵ4; ϵ2; 1Þ, with ϵ ≈ λ2 implying the large top quark
mass. The down-quark and charged lepton Yukawa matri-
ces are diagonalized by

Yð−1=3Þ ¼ Uð−1=3ÞDð−1=3ÞVð−1=3Þ†;

Yð−1Þ ¼ Uð−1ÞDð−1ÞVð−1Þ†; ð2Þ

where UðqÞ and VðqÞ are unitary matrices. In this basis
Uð−1=3Þ ¼ UCKM. At the GUT scale (1015 GeV), renorm-
alization group running yields simple diagonal mass
matrices of the form

Dð−1=3Þ ∼mb

0
B@

λ4=3 0 0

0 λ2=3 0

0 0 1

1
CA;

Dð−1Þ ∼mτ

0
B@

λ4=9 0 0

0 λ2 0

0 0 1

1
CA;

up to signs; all entries are expressed in terms of λ, the
tangent of the Cabibbo angle θC. A direct consequence of
grand unification is mb ¼ mτ at the GUT scale. The Gatto
relation linking a mixing to a ratio of eigenvalues is explicit
from the above mass matrices. Also from memμ ≈mdms,
we notice that

detYð−1=3Þ ≈ detYð−1Þ: ð3Þ

In SUð5Þ, the particles of each family are assigned to
5̄ ¼ ½d̄; ðνe; eÞ�, 10 ¼ ½ðu; dÞ; ū; ē� so that the up-quark

masses reside in 10 · 10 ¼ 5̄s þ 50s þ 45a while the
charged lepton and down-quark masses are in 5̄ · 10 ¼
5þ 45.
There are four Yukawa matrices Y 5̄, Y5, Y45, Y45, so that

Yð−1=3Þ and Yð−1Þ are related to Y45 and Y5 as

Yð−1=3Þ ¼ Y5 þ Y45; Yð−1Þ ¼ Y5T − 3Y45T: ð4Þ
A simple combination of vacuum values due to Georgi and
Jarlskog [13] yields the Gatto relation and

mb ¼ mτ;
md

ms
¼ 9

me

mμ
; mμ ¼ 3ms; ð5Þ

all at the grand-unified scale.
In SOð10Þ a right-handed neutrino N̄ is appended to each

family, fitting in its spinor representation 16 ¼ 5̄þ 10þ 1.
Masses are generated by three couplings, since 16 · 16 ¼
10s þ 126s þ 120a, and three Yukawa matrices Y10, Y126,
Y120. The new features are the following:

(i) a ðΔIw ¼ 0Þ Majorana mass matrix M with cou-
plings M · N̄ N̄, and

(ii) a ðΔIw ¼ 1
2
Þ Yukawa matrix Yð0Þ for neutrino

Dirac masses. Minimal models of SOð10Þ predict
Yð2=3Þ ∼ Yð0Þ

The resulting mass structures are summarized in Table I.
The second column of Table I shows fermion-fermion

couplings in the SUð5Þ language, with the subscripts
denoting Uð1Þ quantum numbers. The next three columns
show possible Brout-Englert-Higgs (BEH) boson quantum
numbers, coming from 10, 126, or 120 of SOð10Þ. For
example, down-quark and charged lepton masses are
generated by coupling 5̄3 · 10−1 fermions to either a 5̄−2
[contained in 10 of SOð10Þ] or a 45−2 [contained in 120 or
126 of SOð10Þ] BEH boson.
Having done a general analysis of the electroweak input

to the flavor jungle, we now proceed to the brief discussion
of a symmetric texture that shows its inconsistency with
TBM mixing.

III. A GENERIC GEORGI-JARLSKOG
SYMMETRIC TEXTURE

Our analysis of textures will follow a bottom-up
approach that relies heavily on the grand-unified structures
evocated by the Standard Model. All parameters are

TABLE I. Masses from couplings.

Masses SOð10Þ ⊃ SUð5Þ × Uð1Þ 10 126 120

Majorana singlet M 1−5 · 1−5 � � � 110 � � �
Majorana triplet 5̄3 · 5̄3 � � � 15−6 � � �
Dirac ν mass 1−5 · 5̄3 52 � � � 52
Up-quark 10−1 · 10−1 52 � � � 452
Down-quark and charged lepton 5̄3 · 10−1 5̄−2 45−2 45−2
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expressed à la Wolfenstein in terms of the Cabibbo
angle λ.
In SUð5Þ there are two types of Yukawa couplings, 5 and

45. In Appendix A, we derive their forms

Y5 ¼

0
B@

0 aλ3 bλ3

aλ3 0 gλ2

bλ3 gλ2 1

1
CA; Y45 ¼

0
B@

0 0 0

0 cλ2 0

0 0 0

1
CA;

ð6Þ

where the prefactors a, b, c, g ∼Oð1Þ. The down-quark and
charged lepton couplings follow:

Yð−1=3Þ ¼

0
B@

0 aλ3 bλ3

aλ3 cλ2 gλ2

bλ3 gλ2 1

1
CA;

Yð−1Þ ¼

0
B@

0 aλ3 bλ3

aλ3 −3cλ2 gλ2

bλ3 gλ2 1

1
CA: ð7Þ

The prefactors (neglecting for now the CP phase) are
identified with the Wolfenstein parameters [14],

a ¼ 1

3
; c ¼ 1

3
; b ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ η2

q
¼ 0.306;

g ¼ A ¼ 0.811; ð8Þ

in such a way as to reproduce the CKM matrix, the Gatto
relation, and the GUT scale mass ratios Eq. (5). A
systematic way to calculate the prefactors has been dis-
cussed in detail in Appendix A.
Since the Yukawa matrices are symmetric, the mixing

matrix of the left-handed charged leptons is closely related
to the CKM matrix,

Uð−1Þ ¼ UCKMðc → −3cÞ; ð9Þ

according to SUð5Þ. The lepton mixing angles of the
PMNS matrix are now extracted, assuming TBM seesaw
diagonalization

UPMNS ¼ Uð−1ÞTUTBM; ð10Þ

where, neglecting the CP phase,

UPMNS

¼

0
B@

c12c13 s12c13 s13
−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13
s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13

1
CA:

ð11Þ

Here cij ≡ cos θij and sij ≡ sin θij. Then, Eqs. (9) and (10)
yield

j sin θ13j ¼
1ffiffiffi
2

p jUð−1Þ
21 þ Uð−1Þ

31 j ð12Þ

¼ λ

3
ffiffiffi
2

p ð1 − Aλ2Þ ≈ λ

3
ffiffiffi
2

p ¼ 0.051; ð13Þ

one-third of its PDG value 0.145.1 Symmetric Yukawa
matrices and TBM seesaw diagonalization are incompat-
ible with data.

IV. ASYMMETRIC TEXTURES

Seesaw TBM diagonalization requires asymmetric cou-
plings in the input Yukawa matrices to be compatible with
neutrino mixing angle data. Equation (12) indicates that
TBM with a larger reactor angle demands larger Uð−1Þ

21 and/

or Uð−1Þ
31 . Furthermore, Uð−1Þ

21 describes mixing between the
two lightest families that is already large, so that increasing

Uð−1Þ
31 is most likely to yield the desired effect in θ13.
The link between Uð−1Þ and the CKM matrix of Eq. (9)

must be loosened. This readily occurs for asymmetric
matrices,

Uð−1Þ ¼ Vð−1=3Þðc → −3cÞ; ð14Þ

with unknown Vð−1=3Þ.
The asymmetry may be in the 45 and/or 5 couplings.
(i) The analysis of Appendix A indicates that the 45

coupling in the (22) position of Y45 leads us to the
correct mass ratios and CKM angles at the GUT
scale, as in the Georgi-Jarlskog construction.The 45
couplings in different places fail in one way or
another, in particular for symmetric or antisymmet-
ric off-diagonal couplings.

(ii) With off-diagonal 45 couplings ruled out, the asym-
metry must be in the 5 couplings.

Asymmetries split into three generic cases, along the
(12)–(21), (23)–(32), and (13)–(31) axes. Assume for
simplicity that it appears in only one. In Appendix B we
show that an asymmetry along (12)–(21) or (23)–(32) does
not alleviate the θ13 deficiency. The asymmetry must then
reside in the (13)–(31) axis of the 5 couplings.
To make it as large as possible, we insert a term of OðλÞ

in the 31 position,

Y5 ¼

0
B@

bdλ4 aλ3 bλ3

aλ3 0 gλ2

dλ gλ2 1

1
CA; Y45 ¼

0
B@

0 0 0

0 cλ2 0

0 0 0

1
CA;

ð15Þ

1The addition of the CKM phase will give anOðλ5Þ correction.
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where now a, b, c, d, and g are Oð1Þ prefactors. These are
the input parameters of our texture. Note that the 11 term is
explicitly inserted as it is of lower order than in the
symmetric case, as well as to make the determinant with
a cofactor in the 22 position vanish. The Yukawa deter-
minant equality Eq. (3) is now satisfied.
The Yukawa matrices of the down quarks and charged

leptons follow:

Yð−1=3Þ ¼

0
B@

bdλ4 aλ3 bλ3

aλ3 cλ2 gλ2

dλ gλ2 1

1
CA;

Yð−1Þ ¼

0
B@

bdλ4 aλ3 dλ

aλ3 −3cλ2 gλ2

bλ3 gλ2 1

1
CA: ð16Þ

The prefactors are expressed in terms of the Wolfenstein
parameters so as to reproduce the CKM matrix, the GUT
scale mass ratios, and the Gatto relation,

a ¼ 1

3
; c ¼ 1

3
; g ¼ A; b ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ η2

q
;

d ¼ 2a
g

¼ 2

3A
: ð17Þ

The new charged lepton mixing matrix,

Uð−1Þ ¼

0
B@

1 − ð 1
18
þ 2

9A2Þλ2 1
3
λ 2

3A λ

− 1
3
λ 1 − 1

18
λ2 Aλ2

− 2
3A λ −ðAþ 2

9AÞλ2 1 − 2
9A2 λ2

1
CA

þOðλ3Þ; ð18Þ

has extra elements ofOðλÞ, which bring the reactor angle to
a new value

sin θ13 ¼
λ

3
ffiffiffi
2

p
�
1þ 2

A

�
¼ 0.184 ð19Þ

that is above its PDG value by 2.26°.2

The other two lepton mixing angles are also off their
PDG values,

θ12 ¼ 39.81° ð6.16° above PDGÞ;
θ23 ¼ 42.67° ð2.90° below PDGÞ: ð20Þ

The distinguishing feature of this asymmetry is a reactor
angle above its experimental value. The addition of a CP
phase [15] in the TBMmatrix can be used to lower [16] θ13
to its PDG value.

What makes this particular texture noteworthy is that by
lowering the reactor angle to its experimental value, we not
only find an amount of CP violation that is consistent with
experiment but also align both solar and atmospheric angles
to their PDG values.
We do not need to include the Majorana phases [17]

which enter only in total lepton-number violating physics.
Of the many ways to insert phases in the TBM matrix, we
choose

UTBMðδÞ ¼

0
BBBBBBBB@

ffiffi
2
3

q
1ffiffi
3

p 0

− 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

eiδffiffi
6

p − eiδffiffi
3

p eiδffiffi
2

p

1
CCCCCCCCA
: ð21Þ

Neglecting the CKM phase,

UPMNS ¼ Uð−1ÞTUTBMðδÞ: ð22Þ

The value of θ13 is lowered by the TBM phase3 to

j sin θ13j ¼
1ffiffiffi
2

p jUð−1Þ
21 þ Uð−1Þ

31 eiδj ≤ 1ffiffiffi
2

p ðjUð−1Þ
21 j þ jUð−1Þ

31 jÞ

ð23Þ

or, in terms of the Wolfenstein parameters,

j sin θ13j ¼
λ

3
ffiffiffi
2

p
����1þ 2eiδ

3A

����þOðλ3Þ: ð24Þ

We fit θ13 to its central PDG value by using Eq. (24), and
we find

cos δ ≈ 0.2; δ ¼ �78°: ð25Þ

The sign is undetermined at this stage.
A straightforward computation yields the remaining

PMNS angles,

θ12 ¼ 34.16° ð0.51° above pdgÞ;
θ23 ¼ 44.91° ð0.66° below pdgÞ; ð26Þ

to be compared with Eq. (20).
The phase in TBM is carried to the PMNS matrix and

generates the CP phase

δCP ¼ �1.32π: ð27Þ

2An asymmetry of Oðλ2Þ leaves the reactor angle well below
its PDG value.

3The CKM phase gives an Oðλ3Þ contribution, which is too
small to affect the result.
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This leads to the Jarlskog-Greenberg invariant

jJj ¼ 0.028: ð28Þ

Both δCP and jJj are consistent with the current PDG value.
It should be noted that the sign of δCP and J cannot be
determined from our texture but rather by the hitherto
unknown physics of the seesaw sector.
A numerical summary of the texture can be found in

Appendix C.

V. THEORETICAL OUTLOOK

The asymmetric TBM texture we just constructed
provides an experimentally successful link between the
electroweak Yukawa matrices and the seesaw scale
Majorana mass matrix of the right-handed neutrinos.
Both structures present new theoretical patterns which
we briefly address below.

A. Yukawa couplings

The crucial ingredient is an asymmetric OðλÞ term in the
31 element of the SUð5Þ quintet Yukawa matrix Y 5̄.
It can arise from the vacuum value of one BEH boson

H5̄, with the symmetric and antisymmetric couplings
canceling (adding) in the 13 (31) position. However,
this is not technically natural in the absence of further
symmetries.
One simple remedy is to introduce two BEH bosons H5̄

and H05̄, with a Z2 exchange symmetry H5̄ ↔ H05̄. This
ensures equality between the symmetric and antisymmetric
couplings. The desired cancellation occurs when the two
vacuum values respect the Z2 symmetry.
The next step is to single out the (13)–(31) axis in the

Yukawa matrix. One can simply add only this specific
coupling to the Lagrangian or seek a symmetry-based
explanation that points those BEH bosons in the right flavor
direction.
A possible understanding appears naturally with a T7

discrete symmetry [18]: the three families form a T7 triplet,
and thus the Kronecker product of two fermions yield the
antitriplet of T7 in off-diagonal combinations. In the
simplest renormalizable case, this requires both BEH

bosons H5̄ and H05̄ to transform as triplets of T7. The
details are beyond the scope of this paper and will be
discussed elsewhere.

B. Seesaw sector

In the TBM texture, the seesaw neutrino mass formula
becomes

Mν ¼ Yð0Þ 1

M
Yð0ÞT ¼ UTBMDνUT

TBM; ð29Þ

where M is the Majorana mass matrix of the right-handed
neutrinos, and Dν ¼ diagðm1; m2; m3Þ is the diagonal light
neutrino mass matrix. The numerator Yð0Þ is the neutral
lepton Dirac Yukawa matrix that, in SOð10Þ, is most simply
related to the up-quark Yukawa matrix Yð0Þ ∼ Yð2=3Þ.
Yð0Þ inherits the large hierarchy of the up-quark sector.4

This hierarchy is not replicated by the light neutrino data,
and Eq. (29) implies a correlated squared ϵ hierarchy in the
Majorana matrix.
We therefore separate out the hierarchy from the

Majorana matrix

M ¼ Yð0ÞM0Yð0ÞT: ð30Þ

By using Eq. (29), we can express the Majorana matrix in
terms of neutrino masses and the CP phase,

M0 ¼ U�
TBMD

−1
ν U†

TBM: ð31Þ

The light neutrino masses are not yet known, although
they are bounded by cosmology [19] and oscillations,

m1 ≤ 71.17; 8.68 ≤ m2 ≤ 71.70;

50.3 ≤ m3 ≤ 87.13 ðmeVÞ ð32Þ

with

58.9 ≤ m1 þm2 þm3 ≤ 230 ðmeVÞ ð33Þ

for the normal hierarchy.
Equation (31) yields

M0 ¼ 1

3m1m2m3

×

0
B@

m3ðm1 þ 2m2Þ m3ðm1 −m2Þ e−iδm3ðm2 −m1Þ
m3ðm1 −m2Þ 1

2
ð3m1m2 þ 2m1m3 þm2m3Þ e−iδ

2
ð3m1m2 − 2m1m3 −m2m3Þ

e−iδm3ðm2 −m1Þ e−iδ
2
ð3m1m2 − 2m1m3 −m2m3Þ e−2iδ

2
ð3m1m2 þ 2m1m3 þm2m3Þ

1
CA:

4Whiffs of ϵ ≈ λ4 in the seesaw sector are too small to affect seesaw simplicity in generating the reactor angle.
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It depends on the phase and its sign, although its matrix
elements are not yet fixed by experiment. Equation (33)
shows that less than 1 order of magnitude improvement on
the cosmological bound will (hopefully soon) result in an
actual measurement.
It is a challenge to theories to predict the neutrino

masses. For example, all it takes is a Gatto-like relation
between the solar angle and m1=m2 [20] to determine that
physics.

VI. CONCLUSION

This paper has presented a grand-unified asymmetric
texture for the Yukawa matrices of the Standard Model.
With five free parameters in the input Yukawa matrices, it is
designed to reproduce the three CKM angles, the Gatto
relation, and the GUT scale relations between three down-
quark and three charged lepton masses.
Here neutrino masses are generated by the seesaw

mechanism. In the belief that gauge simplicity at the
GUT scale should be matched by “seesaw simplicity”
where only large angles appear, we assume TBM diago-
nalization of the seesaw neutrino matrix. Seesaw simplicity
requires the small PMNS reactor angle θ13 to be generated
through the charged lepton mixings.
Symmetric electroweak textures fall short of seesaw

simplicity. However, in this asymmetric texture the reactor
angle θ13 exceeds its PDG value, while the charged lepton
mixing contribution to the solar and atmospheric angles
yield values outside their PDG allowances.
A CP phase in the TBM matrix reduces the reactor angle

value and drives the solar and atmospheric angles in the
right direction. It is noteworthy that it provides one solution
for three problems:

(i) A CP phase with δ ¼ �78° in the TBM matrix
lowers θ13 to its experimental value.

(ii) This corresponds to the PMNS phase δCP ¼ �1.32π
and Jarlskog-Greenberg invariant J ¼∓ 0.028,
with magnitude in perfect agreement with experi-
ment [21].

(iii) The very same CP phase adjusts the solar and
atmospheric neutrino angles to within one degree
of their PDG values.

Therefore, introducing three input parameters (two non-
zero angles and one phase) in the form of a complex TBM
matrix enables us to explain four parameters (three mixing
angles and one CP phase) in the PMNS matrix. The sign of
the phase is a property of the Majorana mass matrix of the
right-handed neutrinos and is not determined by the texture.
We expect that the electroweak side of our texture can be

applied to the golden ratio [22] seesaw diagonalization as
well. The next step is to find a common organizing
principle that relates the seesaw Majorana matrix to the
Standard Model Yukawa matrices. We hope to address this
question in a future work.
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APPENDIX A: SYMMETRIC-ANTISYMMETRIC
TEXTURES

We first consider textures with only symmetric and/or
antisymmetric 5 and/or 45 couplings. Our objective is to
find out textures based on SUð5Þ grand unification that can
reproduce mass relations and mixing angles in down-quark
and charged lepton sectors.
For simplicity,
(i) consider all couplings are real;
(ii) let a single parameter c0 denote one diagonal or a

pair of off-diagonal 45 coupling(s); all other cou-
plings are 5, denoted by a0, b0, d0, g0, etc. Off-
diagonal symmetry/antisymmetry is denoted by sign
parameters ςa0 ¼ �1, etc. All couplings will be
expressed in integer powers of the Wolfenstein
parameter λ with a prefactor a0 ¼ aλn, etc.

(iii) taking a hint from mb ≈mτ at GUT scale, the (33)
coupling is assumed to be 5 and all other couplings
are normalized by this.

An important observation is that detYð−1=3Þ should be
independent of c0 so that it approximates detYð−1Þ at the
GUT scale.
Classify these textures as follows: (i) 45 couplings in

off-diagonal entries, (ii) 45 coupling in diagonal entry.

1. Off-diagonal 45 couplings

Consider a pair of off-diagonal 45 couplings, either
symmetric or antisymmetric. There can be three such
textures.
(12)–(21) 45 texture

Yð−1=3Þ ¼

0
B@

a0 c0 b0

ςc0c0 g0 d0

ςb0b0 ςd0d0 1

1
CA; ðA1Þ

detYð−1=3Þ ¼ −ςc0c02 − ςb0b02g0 þ a0ðg0 − ςd0d02Þ
þ b0c0d0ðςb0 þ ςc0ςd0 Þ:

This cannot be made independent of c0; thus this texture
cannot yield correct mass relations and will not be pursued
further.
(13)–(31) 45 texture

Yð−1=3Þ ¼

0
B@

a0 b0 c0

ςb0b0 g0 d0

ςc0c0 ςd0d0 1

1
CA; ðA2Þ
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detYð−1=3Þ ¼ −ςb0b02 − ςc0c02g0 − ςd0a0d02 þ a0g0

þ b0c0d0ðςc0 þ ςb0ςd0 Þ;

which would be independent of c0 if g0 ¼ 0 and
ðςb0 ; ςd0 ; ςc0 Þ ¼ ð1;�1;∓ 1Þ or ð−1;�1;�1Þ. With these
constraints the texture takes the form

Yð−1=3Þ ¼

0
B@

a0 b0 c0

ςb0b0 0 d0

ςc0c0 ςd0d0 1

1
CA: ðA3Þ

Then,

Yð−1=3ÞYð−1=3ÞT ¼ Uð−1=3ÞDð−1=3ÞDð−1=3ÞUð−1=3ÞT

¼

0
B@

a02 þ b02 þ c02 c0d0 þ ςb0a0b0 ςc0a0c0 þ c0 þ ςd0b0d0

c0d0 þ ςb0a0b0 b02 þ d02 d0 þ ςb0ςc0b0c0

ςc0a0c0 þ c0 þ ςd0b0d0 d0 þ ςb0ςc0b0c0 c02 þ d02 þ 1

1
CA: ðA4Þ

In our chosen basis, Uð−1=3Þ ¼ UCKM. Then, the Wolf-
enstein parametrization of the CKM matrix, ignoring the
CP phase,

UCKM ¼

0
B@

1 − λ2

2
λ Aλ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ ρ2

p
−λ 1 − λ2

2
Aλ2

Aλ3 −Aλ2 1

1
CA ðA5Þ

yields, up to leading order,

Yð−1=3ÞYð−1=3ÞT ¼ UCKMDð−1=3ÞDð−1=3ÞUT
CKM ðA6Þ

¼

0
BB@

λ6

9
A2λ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ ρ2

p
Aλ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ ρ2

p
A2λ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ ρ2

p
A2λ4 Aλ2

Aλ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ ρ2

p
Aλ2 1

1
CCA:

ðA7Þ

Comparing this with Eq. (A4) we observe that c0 ¼ cλ4,
d0 ¼ dλ2, a0 ¼ aλ3, and b0 ¼ bλ3, where c, d ∼Oð1Þ and a,
b≲Oð1Þ parameters.
The eigenvalues of Yð−1=3ÞYð−1=3ÞT are the mass squared

of the down-quarks: m2
d, m

2
s , and m2

b. These are related by

m2
d þm2

s þm2
b ¼ 1þ 2d2λ4 þ ða2 þ 2b2Þλ6 þ 2c2λ8;

ðA8Þ

m2
dm

2
s þm2

sm2
b þm2

bm
2
d ¼ ða2 þ 2b2Þλ6 þ d4λ8 þOðλ10Þ;

ðA9Þ

m2
dm

2
sm2

b ¼ b4λ12 þOðλ13Þ: ðA10Þ

Interestingly, Eqs. (A8)–(A10) do not contain any sign
ambiguity; therefore, irrespective of sign, we derive

m2
b ¼ 1þ 2d2λ4 þ ð2c2 − d4Þλ8 þOðλ10Þ; ðA11Þ

leaving

m2
d þm2

s ¼ ða2 þ 2b2Þλ6 þOðλ8Þ: ðA12Þ

Eigenvalues of Yð−1ÞYð−1ÞT , labeled by m2
e, m2

μ, m2
τ ,

can be derived from those of Yð−1=3ÞYð−1=3ÞT by replacing
c → −3c. This predictsm2

dþm2
s¼m2

eþm2
μ from Eq. (A12),

which is unsatisfactory. Therefore, this texture with off-
diagonal 45 couplings in the (13)–(31) position does not
yield correct masses for charged leptons and down quarks.
(23)–(32) 45 texture
Proceeding as the previous case, this texture has the

following form:

Yð−1=3Þ ¼

0
B@

0 bλ3 dλ4

ςbbλ3 gλ2 cλ2

ςddλ4 ςccλ2 1

1
CA ðA13Þ

subject to the constraints ðςc0 ; ςb0 ; ςd0 Þ ¼ ð1;�1;∓ 1Þ or
ð−1;�1;�1Þ. Here c, d ∼Oð1Þ and g, b≲Oð1Þ. Solving
the eigenvalues of Yð−1=3ÞYð−1=3ÞT yields

m2
b ¼ 1þ 2c2λ4 þ 2ςc0c2gλ6 þ ð2d2 − c4Þλ8 þOðλ9Þ:

ðA14Þ

This leaves

m2
d þm2

s ¼ g2λ4 þ ð2b2 − 2ςc0c2gÞλ6 þ c4λ8: ðA15Þ

The dominant term in Eq. (A15) is g2λ4. This suggests that
m2

s ≈ g2λ4 ¼ λ4=9 at the GUT scale, with g ¼ 1=3. Then,
for Yð−1Þ, we will derive m2

μ ≈ g2λ4 ¼ λ4=9, much smaller
than the expected value λ4 at the GUT scale. This shows
that the off-diagonal 45 in the (23)–(32) position also fails
to generate the correct mass relations.
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2. Diagonal 45 coupling

Next, we discuss textures with a single 45 coupling in
either the (11) or the (22) position of Yð−1=3Þ.
(11) 45 texture

Yð−1=3Þ ¼

0
B@

cλ3 aλ3 bλ4

ςaaλ3 ςgg2λ4 gλ2

ςbbλ4 ςggλ2 1

1
CA; ðA16Þ

where b, g ∼Oð1Þ and a, c≲Oð1Þ.
Solving the eigenvalue equations of Yð−1=3ÞYð−1=3ÞT gives

m2
b ¼ 1þ 2g2λ4 þ ð2b2 þ g4Þλ8 þOðλ9Þ; ðA17Þ

m2
d þm2

s ¼ ð2a2 þ c2Þλ6 þOðλ8Þ; ðA18Þ
irrespective of signs of prefactors.
Since a, c≲Oð1Þ, Eq. (A18) is unable to produce

ms ¼ λ2=3 at the GUT scale. This will, in turn, predict a
lower mass of mμ. Therefore, this texture cannot generate
correct masses for down quarks and leptons.
(22) 45 texture
An analysis parallel to the (13)–(31) 45 texture results in

the following form:

Yð−1=3Þ ¼

0
B@

0 aλ3 bλ3

ςaaλ3 cλ2 gλ2

ςbbλ3 ςggλ2 1

1
CAþOðλ6Þ; ðA19Þ

where b, g ∼Oð1Þ and ac≲Oð1Þ.

Irrespective of the sign of prefactors, this texture pro-
duces the same mass relations and mixing angles as the
Georgi-Jarlskog texture discussed in Sec. III. It should be
noted that the PMNS angles θ23 and θ12 are not too far off
from PDG values in this texture.
The above discussion of this Appendix shows that the

texture with 45 coupling in the (22) position can, unlike the
others, generate the correct mass relations. This implies that
the asymmetry must lie in the 5 couplings.

APPENDIX B: ASYMMETRIC TEXTURES

Following Appendix A, we discuss how to introduce
asymmetry in the 5 couplings. Decomposing the charged
lepton diagonalizing matrix into rotation matrices

Uð−1Þ ¼ R23ðϕ23ÞR13ðϕ13ÞR12ðϕ12Þ;
we recall that in the symmetric texture,

ϕ23 ¼ Aλ2; ϕ13 ¼ bλ3; ϕ12 ¼ −
λ

3
;

where b ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ η2

q
:

Asymmetry can be incorporated by changing these
relationships.
For simplicity, let us change one angle at a time and

inspect how the PMNS matrix is affected.
(i) Change ϕ23

In this case we keep ϕ13 ¼ bλ3 and ϕ12 ¼ − λ
3
, while ϕ23

is unspecified,

Uð−1Þ ¼

0
B@

1 0 0

0 c23 s23
0 −s23 c23

1
CA
0
B@

1 0 bλ3

0 1 0

−bλ3 0 1

1
CA
0
B@

1 − λ2

18
− λ

3
0

λ
3

1 − λ2

18
0

0 0 1

1
CA

¼

0
BB@

1 − λ2

18
− λ

3
bλ3

c23λ
3
− s23bλ3 c23 −

c23λ2

18
þ 1

3
s23bλ4 s23

− s23λ
3
− c23bλ3 −s23 þ s23λ2

18
þ 1

3
c23bλ4 c23

1
CCAþOðλ5Þ; ðB1Þ

where c23 ¼ cosϕ23, s23 ¼ sinϕ23.
Together with TBM seesaw diagonalization, this yields the reactor angle

j sin θ13j ¼
1ffiffiffi
2

p
����
�
c23λ
3

− s23bλ3
�
þ
�
−
s23λ
3

− c23bλ3
����� ≈ λ

3
ffiffiffi
2

p jc23 − s23j ≤
λ

3
;

which is much smaller than the experimental value (0.145), no matter how we change ϕ23. Therefore modifying ϕ23 does
not help much.
(ii) Change ϕ12

Uð−1Þ ¼

0
B@

c12 s12 bλ3

−s12 c12 Aλ2

s12Aλ2 − c12bλ3 −c12Aλ2 − s12bλ3 1

1
CAþOðλ5Þ; ðB2Þ
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where c12 ¼ cosϕ12, s12 ¼ sinϕ12.
Fitting

j sin θ13j ¼
1ffiffiffi
2

p j − s12 þ s12Aλ2 − c12bλ3j

to the experimental value, we obtain two solutions
s12 ¼ 0.210 or − 0.217.
Plugging s12 into Eq. (B2) and using TBM seesaw

diagonalization, the other two angles are now fully deter-
mined. For s12 ¼ 0.210,

θ12 ¼ 26.41° ð7.24° below pdg valueÞ;
θ23 ¼ 42.03° ð3.55° below pdg valueÞ:

For s12 ¼ −0.217,

θ12 ¼ 44.71° ð11.06° above pdg valueÞ;
θ23 ¼ 42.03° ð3.55° below pdg valueÞ:

With these large discrepancies in both cases, modifying
ϕ12 does not alleviate the problem.
(iii) Change ϕ13

Uð−1Þ ¼

0
BB@

c13−
c13λ2

18
c13λ
3

s13

− λ
3
− s13Aλ2þ s13Aλ4

18
1− λ2

18
− s13Aλ3

3
c13Aλ2

−s13þ s13λ2

18
þAλ3

3
− s13λ

3
−Aλ2þAλ4

18
c13

1
CCA

þOðλ5Þ; ðB3Þ

where c13 ¼ cosϕ13, s13 ¼ sinϕ13.
Following the same procedure, fitting

j sin θ13j ¼
1ffiffiffi
2

p
����
�
−
λ

3
− As13λ2 þ

As13λ4

18

�

þ
�
−s13 þ

s13λ2

18
þ Aλ3

3

�����
to the PDG value yields s13 ¼ −0.267 or 0.128.
For s13 ¼ −0.267, both θ12 and θ23 fall short of their

experimental value by 12.15° and 1.29°, respectively.
For s13 ¼ 0.128, θ12 is 3.44° above the experimental

value and θ23 is 3.02° below its experimental value.
To conclude,
(i) θ13 is too small if we only change ϕ23.
(ii) If we only change ϕ12, θ13 can be fitted to its PDG

value. But then θ12 is very far away from experiment
(7.24° or 11.06°).

(iii) If we only change ϕ13, θ13 can be fitted to experi-
ment. Choosing ϕ13 to be in the first quadrant, θ12
and θ23 deviate much less from their PDG values.

None of these seem particularly correct, although the
third one looks more promising.

Another way of looking at this phenomenon is to go
directly to the Yukawa matrices. There are three generic
asymmetries in the Yukawa matrices, and as we will see
that changing ϕ13 is connected to a particular type, in which

Yð−1=3Þ
13 ≠ Yð−1=3Þ

31 dominate the asymmetry.

1. Asymmetric Yukawa matrices

For simplicity, consider one asymmetry at a time.
(12)–(21) asymmetry
Consider

Yð−1=3Þ ¼

0
B@

0 aλm bλ3

a0λn cλ2 gλ2

bλ3 gλ2 1

1
CA; ðB4Þ

where a, a0, b, c, g ∼Oð1Þ.
Diagonalizing Yð−1=3ÞYð−1=3ÞT , we find that the Cabibbo

angle is given by a
c λ

m−2, and the mass squared of the down
quark is approximately ðaa0c λmþn−2Þ2. Fitting these to the
correct order of λ requires m ¼ n ¼ 3. Now the Yukawa
matrix becomes

Yð−1=3Þ ¼

0
B@

0 aλ3 bλ3

a0λ3 cλ2 gλ2

bλ3 gλ2 1

1
CA; ðB5Þ

where a ≠ a0. Comparing the eigenvalues and eigenvectors
of Yð−1=3ÞYð−1=3ÞT with ðDð−1=3ÞÞ2 and UCKM, respectively,
yields

a ¼ 1

3
; c ¼ 1

3
; a0 ¼ −

1

3
; and g ¼ A;

b ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ η2

q
: ðB6Þ

The lepton masses are acquired by c → −3c.
The eigenvectors of Yð−1ÞYð−1ÞT generate Uð−1Þ, which,

with a TBM seesaw matrix, yields

j sin θ13j ¼
λffiffiffi
2

p
���� 13 −

A
3
λ2
���� ≈ λ

3
ffiffiffi
2

p ;

again, one-third of the experimental value.
(23)–(32) asymmetry

Yð−1=3Þ ¼

0
B@

0 aλ3 bλ3

aλ3 cλ2 gλm

bλ3 g0λn 1

1
CA; ðB7Þ

where a, b, c, g, g0 ∼Oð1Þ.
Comparing the eigenvalues and mixing matrix of

Yð−1=3ÞYð−1=3ÞT to GUT scale down-quark masses and
UCKM yields
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a ¼ 1

3
; c ¼ 1

3
; g ¼ A; m ¼ 2; b ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ η2

q
:

ðB8Þ

In the charged lepton sector, diagonalizing Yð−1ÞYð−1ÞT , we
get Uð−1Þ, together with TBM seesaw diagonalization
which yields

j sin θ13j ¼
λ

3
ffiffiffi
2

p
���1 − g0λn − 3Aλ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ η2

q ��� ≈ λ

3
ffiffiffi
2

p ;

still one-third of the experimental value, no matter what
values g0 and n take.
(13)–(31) asymmetry

Yð−1=3Þ ¼

0
B@

0 aλ3 bλm

aλ3 cλ2 gλ2

b0λn gλ2 1

1
CA: ðB9Þ

In this texture m ¼ 3 is fixed by the (13) angle of CKM.
Furthermore, it can be shown that if n > 1, the reactor
angle

j sin θ13j ¼
1ffiffiffi
2

p
���� λ3þ b0λn

���� ≈ λ

3
ffiffiffi
2

p

is again one-third of its PDG value.
Considering m ¼ 3 and n ¼ 1, this texture has been

discussed in detail in Sec. IV.
None of these three types of asymmetries yields sat-

isfactory values for the PMNS angles. However, there are
important differences.
In the first two cases, when the asymmetries are along

(12)–(21) or (23)–(32), the reactor angle is much lower than
its PDG value. In these cases TBM diagonalization does
not agree with experiment, unless we deviate from it by
introducing a new parameter.
However, when the asymmetry is along (13)–(31), θ13 is

larger than its experimental value. As shown in Sec. IV,
introducing a phase in TBM reduces θ13, while bringing the
other two angles even closer to their PDG central values.

APPENDIX C: NUMERICAL SUMMARY

The asymmetric texture is expressed in a basis where the
up-quark Yukawa matrix is diagonal. The two input
Yukawa matrices stem from the 5 and 45 SUð5Þ couplings,
which yield the two electroweak matrices,

Yð−1=3Þ ¼

0
B@

bdλ4 aλ3 bλ3

aλ3 cλ2 gλ2

dλ gλ2 1

1
CA ¼

0
B@

0.251λ4 0.333λ3 0.306λ3

0.333λ3 0.333λ2 0.811λ2

0.822λ 0.811λ2 1

1
CA; ðC1Þ

Yð−1Þ ¼

0
B@

bdλ4 aλ3 dλ

aλ3 −3cλ2 gλ2

bλ3 gλ2 1

1
CA ¼

0
B@

0.251λ4 0.333λ3 0.822λ

0.333λ3 −λ2 0.811λ2

0.306λ3 0.811λ2 1

1
CA; ðC2Þ

where we have used Eq. (17) to express the prefactors in terms of the Wolfenstein parameters. Note numerical coincidences
between prefactors as A ≈

ffiffiffiffiffiffiffiffi
2=3

p
. We summarize their numerical outcomes.

(i) Masses of charged leptons and down quarks up to one overall constant:

mb ¼ 1.019; md ¼ 0.849 × 10−3 ¼ 0.994
λ4

3
; ms ¼ 0.016 ¼ 0.951

λ2

3
;

mτ ¼ 1.019; me ¼ 0.259 × 10−3 ¼ 0.912
λ4

9
; mμ ¼ 0.052 ¼ 1.036λ2:

(ii) CKM and charged lepton mixing matrices:

UCKM ¼ Uð−1=3Þ ¼

0
B@

0.9751 0.2215 0.0036

−0.2215 0.9743 0.041

0.0055 −0.0407 0.9992

1
CA; Uð−1Þ ¼

0
B@

0.9814 0.0628 0.1816

−0.0709 0.9967 0.0384

−0.1786 −0.0505 0.9826

1
CA: ðC3Þ

(iii) CKM angles:

Uð−1=3Þ
12 ¼ 0.985λ; Uð−1=3Þ

13 ¼ 1.041Aλ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ ρ2

q
; Uð−1=3Þ

23 ¼ 0.998Aλ2: ðC4Þ
The Gatto relation holds: md=ms ¼ 1.045λ2.
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(iv) Reactor angle:

j sin θ13j ¼
1ffiffiffi
2

p j0.0709þ 0.1786eiδj → δ ¼∓ 78°:

(v) PMNS matrix (δ ¼∓ 78°):

UPMNS ¼

0
B@

0.8156� 0.0714i 0.5463 ∓ 0.1010i −0.0754� 0.1237i

−0.3598� :0202i 0.6176 ∓ 0.0286i 0.6977� 0.0350i

0.2128 ∓ 0.3930i 0.0135� 0.5559i 0.1661 ∓ 0.6808i

1
CA:

(vi) PMNS angles:

θ13 ¼ 8.33°; θ12 ¼ 34.16°ð0.51° above PDGÞ; θ23 ¼ 44.91° ð0.66° below PDGÞ:

(vii) PMNS CP-violating phase and Jarlskog-Greenberg invariant:

δCP ¼ �1.32π; J ¼∓ 0.028; near PDG:
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