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As conventional dark matter scenarios have been probed extensively so far, the physics of a light dark
matter charged under a new gauge group (dark gauge group) becomes one of new research avenues in many
theoretical and experimental studies. We examine properties of a dark photon showering, the radiation
process of light gauge bosons from energetic dark matter particles produced at the Large Hadron Collider
(LHC). This showering process provides different signatures at the LHC depending on the property of dark
matter under the dark gauge group. We show that the LHC experiment can identify the chirality of a dark
matter, which leads to understanding the mass origin of particles in the dark sector.
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I. INTRODUCTION

The confirmation of dark matter (DM) existence will be
the one of major milestones toward the physics beyond
the standard model (SM) of the particle physics. Among
various scenarios about dark matter, a weakly-interacting
massive particle (WIMP) [1], often in the supersymmetry
framework [2], has been extensively tested by various dark
matter direct detection (DD) experiments [3,4] together
with collider experiments including the LHC [5]. In near
future, sensitivity of DD experiments will reach the point of
detecting irreducible backgrounds from neutrino-nucleus
coherent scattering [6].
In contrast toWIMP darkmatter, searching for a light dark

matter of sub-GeV mass scale with conventional DD experi-
ments is very challenging due to low nuclear recoil energy
ENR < Oð0.1Þ keVover experimental resolutions andnoises
[7]. There has been growing interest in the sub-GeV dark
matter recently, and new experiments have been initiated and
proposed [8–10]. They include direct searches of a relic dark
matter particle [11] as well as beam experiments that produce

dark matter particles and detect their signals by using low-
energy beam facilities [12,13]. As a contrast to DD experi-
ments, the LHC has provided results of detecting a sub-GeV
darkmatter particle by utilizing initial state radiation (ISR) jet
to tag events with dark matter particles as we have accumu-
lated precise understanding in quantum chromodynamics
(QCD) to suppress SM backgrounds [14].
Togetherwith conventional darkmatter experimentswhich

are sensitive mostly to interactions between dark matter and
SM particles, it would be interesting to consider phenom-
enological effects of dark matter scenarios if there exists an
interaction among dark matter itself [15,16]. One of the
natural methods to implement an interaction among dark
matter particles is to introduce a dark gauge symmetry on
dark matter [17–22]. In particular, a light dark gauge boson
has been spotlighted in the intensity frontier research [23].
The combination of a light dark matter particle and a light
gauge boson fits well, as a light gauge boson can provide a
suitable annihilation channel for the dark matter particles
demanded by the DM relic density constraint [24,25].
In this paper, we investigate generic collider signatures

of a light dark matter particle, which is charged under a
dark gauge group. The collider phenomenology of non-
Abelian dark gauge group has been studied for a composite
dark matter particle [26–28]. Here we focus on an Abelian
dark gauge group, motivated by current efforts in dark
photon searches [23]. Dark photon, as a dark gauge boson,
can be produced through decay processes [29], or final state
radiation [30,31]. Dark photon shower process can be
triggered, once a “dark charged” dark matter particle is
produced with a sufficient energy [32]. Our emphasis is to
explain the difference in collider signatures, depending on
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the chirality of dark matter under a dark gauge group.1

A chiral interaction is induced by a dark Higgs boson if it
provides a mass to a dark photon through dark symmetry
breaking and if dark matter becomes massive via Yukawa
interaction. Thus we point out that recognizing patterns in
dark photon showering can be a good probe to examine the
mass origin of particles in a dark sector.

II. DARK SECTOR

Here we describe a minimal dark sector with a dark
matter under a dark gauge group Uð1Þd. If a dark sector
contains a dark matter as a fundamental particle, the
corresponding Lagrangian will be following;

Lvectorþscalar ∋ −
1

4
F0
μνF0μν þ ε

2
FμνF0μν þ jDμΦj2; ð1Þ

Lmatter ¼ χ̄LiγμDμχL þ χ̄RiγμDμχR þ ψ̄LiγμDμψL

þ ψ̄RiγμDμψR − yχ χ̄LΦ�χR − yχ χ̄RΦχL

− yψ ψ̄LΦψR − yψ ψ̄RΦ�ψL; ð2Þ

withDμ ≡ ∂μ þ ig0Q0A0
μ where A0

μ is the quantum field of a
dark photon γd, g0 is the gauge coupling of the dark gauge
symmetry,Q0 is the dark Uð1Þd charge. Fμν and F0

μν are the
field strength of the SM photon and dark photon respec-
tively, and ε is the kinetic mixing parameter [34]. The SM
particles are not charged under a dark gauge group. Here as
we focus on a light dark photon where the mass of a dark
photon is negligible compared to the mass of Z boson, the
effect of SM electroweak symmetry breaking on a kinetic
mixing becomes irrelevant to interactions between a dark
photon and particles in the SM [35,36]. Φ is a dark Higgs
which may break Uð1Þd depending on its charge under
the dark gauge group. We introduce two pairs of chiral
fermions χ as dark matter and ψ as a heavier particle in a
dark sector for the anomaly cancellation, which is the
model-dependent part. The Yukawa terms in Eq. (2) dictate
the relations of the dark Uð1Þd charges;

Q0
χL −Q0

χR þQ0
Φ ¼ 0; ð3Þ

−Q0
ψL

þQ0
ψR

þQ0
Φ ¼ 0: ð4Þ

For the anomaly cancellation, we take Q0
χL=χR

¼ −Q0
ψL=ψR

,
which allows a mixing between the χ and ψ . In our
analysis, however, we will focus on the phenomenology
of a dark matter χ. As pointed out in [33], nonzero charge
Q0

Φ of a dark Higgs induces the chiral nature of dark matter.
When we rewrite the interaction between a dark matter and
a dark photon,

Lmatter ∋ −g0Q0
VA

0
μχ̄γ

μχ − g0Q0
AA

0
μχ̄γ

μγ5χ; ð5Þ

the axial Q0
A and vector coupling Q0

V are written as

Q0
A ¼ 1

2
ðQ0

χR −Q0
χLÞ ¼

Q0
Φ
2

ð6Þ

Q0
V ¼ 1

2
ðQ0

χR þQ0
χLÞ ¼

Q0
Φ
2

þQ0
χL : ð7Þ

The chirality of a dark matter particle (Q0
A ≠ 0) results in a

significant difference in collider signatures at the LHC as
we will show later.2 Checking the chirality of a dark matter
is directly related to understanding the mass generating
mechanism for a dark matter.
There are several ways to address a small dark gauge

boson mass even when a gauge coupling constant is not
small [39–41]. In this paper we take a small vacuum
expectation value vS of the dark Higgs Φ given by Φ ¼
1ffiffi
2

p ðvS þ Sþ iϕSÞ. The masses of the dark gauge boson

and dark matter are given by the vacuum expectation
value of the dark Higgs boson as mγd ¼ g0Q0

ΦvS and

mχ ¼ yχvS=
ffiffiffi
2

p
.

A. Dependence of dark photon showering
on a mass mechanism in a dark sector

As an accelerated charged particle radiates correspond-
ing gauge particles, energetic dark matter particles which
are produced at a high energy collider will radiate off dark
gauge bosons. The radiation pattern of a dark photon γd
from an energetic dark matter χ, called the showering
process, depends on the mechanism of the mass generation
for a dark matter since dark matter couples differently
with a dark photon as in Eq. (5). This showering process
is characterized by a splitting function Pχ→χγd which
describes an emission process. In a collinear region, the
differential probability of the splitting process χ → χγd is

α0

2π
dx

dt
t
Pχ→χγdðx; tÞ: ð8Þ

Here, α0 ¼ g02=4π, t is the virtuality of incoming χ, and x is
the energy fraction taken by outgoing χ. A detailed analysis
of dark photon showers from vectorlike dark fermion
model has been studied in [32]. As we focus on the
phenomenology of an energetic dark matter production
at colliders, we ignore terms suppressed by m2

χ=t or m2
γd=t.

In this limit, the splitting kernel for vectorlike dark matter is
given [42]

1A systematic analysis of the dark mass origin and its impact
on cosmology and astronomy is given in [33].

2This can be inferred from, for example, the distinct phenom-
enology depending on the chirality of SM fermions on dark gauge
group [37,38] when corresponding dark gauge boson is very
light.
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Pχ→χγdðx; tÞ ≃Q02
V
1þ x2

1 − x
: ð9Þ

This shower pattern is similar to the familiar QED shower
which only includes contributions from transverse polar-
izations of a photon.
The longitudinal polarization vector of a dark photon

will grow as Eγd=mγd , with the energy of a dark photon Eγd .
This artificial enhancement can be tamed by the Goldstone
boson equivalence theorem (GBET) [43]. While the lead-
ing contribution of a longitudinal polarization in high
energy limit is expressed by GBET which is proportional
to mχ=mγd , the remaining part is suppressed by mγd=Eγd
[44–46]. Thus this subleading part can be neglected in our
study as we are interested in the phase space region of
Eγd ≫ mγd . With GBET, we obtain a splitting kernel for the
chiral fermions as following;

Pχ→χγdðx; tÞ ≃ ðQ02
V þQ02

AÞ
1þ x2

1 − x
þ 2Q02

A

m2
χ

m2
γd

: ð10Þ

The first term is from the transverse modes of a dark
photon. The second term is from the longitudinal mode of
a dark photon, which would be significant when a dark
photon is very light compared to dark matter. Unlike the
chiral dark matter, a vectorlike dark matter does not have an
interaction with a Goldstone boson. Thus only transverse
polarization of a dark photon is involved in a showering
process as in Eq. (9). In the next section, we show the
corresponding collider phenomenology by examining dark
photon showering pattern.

III. PHENOMENOLOGY OF THE DARK
SHOWERING AT THE LHC

The parameters that are directly related to a dark photon
showering are ðα0; mχ ; mγdÞ and ðQ0

A;Q
0
VÞ. In a case of

chiral dark matter induced by nonzero Q0
Φð¼ 1Þ, we probe

the case of Q0
χR ¼ 0 which maximizes effects of chirality

with Q0
χL ¼ −Q0

Φ ¼ −1 as in Eq. (3). In terms of axial and
vector coupling, we will have ðQ0

A;Q
0
VÞ ¼ ð1

2
;− 1

2
Þ in this

chiral case. For a vectorlike dark mater scenario, we
consider ðQ0

A;Q
0
VÞ¼ð0;1Þ which comes from ðQ0

χL ;Q
0
χRÞ¼

ð1;1Þ as in Eq. (7). In this case, Q0
Φ becomes 0, which in

turns decouples the origins of dark matter mass and dark
photon mass.
The longitudinal component of a splitting kernel in

Eq. (10) indicates that a large mass hierarchy between
mχ and mγd will induce significant difference in the shower
process from the chiral dark matter compared to the case
of a vector-like dark matter. But in order to keep the
dark Yukawa coupling within a perturbative limit as
ðyχ=

ffiffiffi
2

p Þ2 ≲ 4π, the mass spectrum of mχ and mγd follow
a limit

α0
m2

χ

m2
γd

≲ 1: ð11Þ

To avoid constraints from current dark matter and dark
photon search experiments [3,4,7,8,10–13] we take quite
light benchmark points as in Table I. In our benchmark
points of mγd ¼ 0.4 GeV, a viable kinematic mixing
parameter ϵ can provide prompt decays of dark photons
to the SM particles. More specifically, for our bench mark
points, ϵ2 smaller than 10−7 is still allowed by current
constraints [9]. If ϵ is too small, SM particles from a dark
photon decays would leave displaced vertices for us to
enhance the search power at the LHC [47]. With
ϵ2 > 10−10, the impact parameter of particles from dark
photon is smaller than 1 mm, as particles from dark photon
decays can be treated as prompt [48]. In this case, a dark
photon mostly decays into a pair of light leptons where
these non-conventional signatures are easy to tag over
the QCD backgrounds. The corresponding branching ratios
are BRðγd → μþμ−Þ ≃ 0.45, BRðγd → eþe−Þ ≃ 0.45, and
BRðγd → πþπ−Þ ≃ 0.10. From now on, we fix the mass of
γd to 0.4 GeV.
Particles from dark photon showering processes would

be tagged at collider detectors when they can leave certain
level of energy deposits. Since a dark photon showering
process as a final state radiation of dark matter is insensitive
to a production process, we consider a TeV-scale mediator
Z0 in producing dark matter particles at a collider in Fig. 1.
As null results of the LHC push the possible mass range of
a mediator to be heavy, our set up in the framework of
“hidden valley” [49] is empirically supported.3 For a
phenomenological study in a hadron collider, we take
minimal interactions between the standard model sector
and a dark sector when the mass of Z0 is within the coverage
of the high luminosity (HL) of the LHC

L ∋ −gqZ0
μq̄γμqþ gχZ0

μχ̄γμχ: ð12Þ

here q denotes a SM quark. If the energy of a hadron
collider is not enough to produce a on-shell mediator,
dark matter productions will be described by an effective
operator with a mediator being integrated out [50].

TABLE I. Benchmark points we have chosen. They obey the

perturbative limit of α0 m2
χ

m2
γd
≲ 1.

Benchmark Points (BP) A B C

α0 0.3 0.15 0.075
mχ (GeV) 0.7 1.0 1.4

mγd (GeV) 0.4

3Considering a very heavy Z0 can be introduced as a mecha-
nism to make γd very light through mass a matrix diagonalization
[41].
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L ∋
1

Λ2
ðq̄γμqÞð χ̄γμχÞ: ð13Þ

In this case, a phase space of events with boosted dark
matter is different from our current study as an initial state
radiation jet will be the source of producing boosted dark
matters. Here we focus on a situation where HL-LHC can
reach the mass range of a mediator with MZ0 ¼ 1.5 TeV.
Model parameters of coupling constants are chosen to
be compatible with current LHC searches of dijet and
prompt lepton-jet searches as we show later. We perform
Monte Carlo studies with FEYNRULES2.0 [51] to imple-
ment dark matter models, MADGRAPH_AMC@NLO [52]
and PYTHIA8 [53]. In simulating dark photon showering
processes, we modify a hidden valley model [49,54]
implemented in PYTHIA8 [55,56] to add longitudinal term
in Eq. (10).
To examine a difference in signatures at the LHC from

distinct showering patterns, we check how many changes
occur in the number of produced dark photons at the LHC
depending on the chirality of dark matter. In the left column
of Fig. 2, we plot histograms of the number of showered
dark photons per event. As we observe, with increasing the
mass of dark matter, the number of showered dark photons
is reduced in a vectorlike dark matter case as a dark gauge
coupling α0 is decreasing as in our benchmark points in
Table I. But in a chiral dark matter scenario, the number of
the dark photon is almost unchanged due to the enhance-
ment from the GBET with a large Yukawa coupling in the
second term of Eq. (10).
Once, a dark photon is produced from a dark showering

process, it decays to SM particles through a kinetic
mixing ϵ in Eq. (1). To quantify those signatures, we
use the scalar sum of the muon and electron transverse
momentum pT ;

HT ðlÞ ¼
X

i¼μ�;e�
jpTij: ð14Þ

In the right column of Fig. 2 we observe that a dark photon
shower in the vectorlike dark matter case becomes weak
and most of leptons become soft as a coupling constant α0
gets smaller. In a chiral dark matter case, showering
processes with a longitudinal mode of a dark photon,
which is independent on α0, becomes dominant through an
enhancement from a Yukawa interaction as dark matter
becomes massive. This can be shown in the following limit

lim
α0≪1

α0Pχ→χγd ≃ α0 · 2Q0
A
2
m2

χ

m2
γd

∝
m2

γd

v2S
·
m2

χ

m2
γd

∼ y2χ : ð15Þ

Due to GBET, the energy spectrum of leptons from a
longitudinal mode is larger compared to the case of leptons
from a transverse mode of dark photons.
To consider various factors including isolation of recon-

structed objects and smearing effects on energy deposits,
we use Delphes 3 [57] as a fast detector simulation with the
ATLAS parameter setting. We adopt the concept of lepton-
jet (LJ) [47,58] to cluster collimated muons from a light
dark photon. As a light dark photon decays mostly the
pair of leptons, we only consider a muon-jet ðLJμÞ as a
candidate to suppress QCD backgrounds as we can identify
individual muons in LJμ by utilizing various subdetectors to

FIG. 1. A High energy collider produces dark matter particles,
which get enough energy recoils from a decay of a heavy
resonance to shower dark photons.

(a) (b)

(c) (d)

FIG. 2. To show different dark photon shower pattern, we
demonstrate the number of showered dark photons and corre-
sponding HTðlÞ distributions with parton level Monte Carlo
simulations. The left column is for the comparison of the dark
photon number distribution of our benchmark points between a
vectorlike dark matter and chiral dark matter. Red line and blue
line correspond to vectorlike model and chiral model respectively.
The right column is for the comparison of the HT ðlÞ distribution
of our benchmark points with the same color code as cases in the
left column.
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perform χ2 fitting for muon tracks. Considering electron-jet
(LJe) for a signal object would nontrivial as bremsstrahlung
processes of electrons force us to merge several crystals in
electronic calorimeters, making it difficult to isolate each
electrons in collimated situations and requiring additional
properties to reduce QCD backgrounds [47,59]. Thus we
require at least two muon-jets (LJμ) to tag signals over
backgrounds. After we require an isolation criteria for a
muon-jet, we choose the mass of muon-jet (LJμ) within the
range between 0.3 GeV and 0.5 GeV to consider imperfect
resolution of detectors [60].

A. Constraints from the LHC searches

In this section, we present constraints on our benchmark
scenarios provide by the LHC searches. As we introduce a
heavy leptophobic Z0 as the mediator of a simplified model
for a collider phenomenology, there is a limit from a heavy
resonance search in a dijet signature [61,62]. The difference
between two LHC searches (ATLAS and CMS) for a heavy
Z0 is that they have different coupling structure between a
mediator and each sector (standard model sector and dark
sector). ATLAS search assumes an axial-vector coupling
between Z0 and quarks, dark matter, motivated by negative
results from dark matter direct searches [63], while CMS
analysis takes a vector coupling of a model of Uð1ÞB
associated with gauged baryon number [64]. Different
coupling structure can affect cut-efficiency as an angular
distribution depends on it. But as the difference is propor-
tional to a ratio, m2

d=M
2
Z0 where md is the mass of particles

from Z0 decaying, we can safely combine results from
ATLAS and CMS together in recasting these analyses to
our case with MZ0 ≫ mq, mχ .
To apply constraints from dijet resonance searches,

we consider the invisible branch ratio of Z0. With
MZ0 ¼ 1.5 TeV, the most stringent upper limit on a
coupling gq between Z0 and the standard model quarks q
is from the ATLAS as gq ≲ 0.07. This upper limit comes

from narrow-width case where Z0 decays only to light
quarks. A constraint becomes milder with increasing Z0
width due to losing sensitivity in wider dijet mass window
[61]. Thus our estimation with a narrow-width Z0 is
conservative. Sizable invisible decay partial width from a
coupling gχ between dark matter and Z0, the limit on
ðgq; gχÞ can be imposed by

g2q ×
Nc · Nlf · g2q

Nc · Nf · g2q þ g2χ
≲ 0.072 ×

Nc · Nlf · g2q
Nc · Nf · g2q

; ð16Þ

with Nc ¼ 3 is the color factor of the standard model and
Nlf ¼ 5 is the number of light flavor quarks considered
as the final state jets in the LHC dijet searches. Here

Nf ¼ 5þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

t =M2
Z0

q
≃ 5.97 is the effective number

of quark flavors contributing to the width of Z0 [62]. As we
see in the left side of Eq. (16), the constraint from dijet
searches become weaker as Z0 has non-negligible invisible
decay proportional to g2χ . As the (partial) decay width of Z0

is not sensitive to the mass of sub-GeV dark matter, a
constraint from dijet searches will not depend on mχ .
We also consider constraints from prompt lepton-jet

analysis [65]. Out of various combinations of lepton-jets
as a signal channel, we consider two muon-jets signal as
this channel has the highest tagging efficiency and lowest
backgrounds [65,66]. In recasting a prompt lepton-jet
analysis, we take two extreme cases where (a) the param-
eter space allows the maximum dark photon showering
activities, and (b) we have least dark photon showering
activities within the perturbative limit of α0m2

χ=m2
γd ≲ 1 as

in Table II. These two limiting cases provide the upper and
lower bounds of the signal efficiency ϵS in tagging two
isolated muon-jets as in Fig. 3. Thus we can see the
maximally and minimally allowed range of gχ from the
prompt lepton-jet analyses in our parameter space of
ðα0; mχÞ by considering these two extreme cases.

(a) (b)(a) (b)

FIG. 3. We show the signal efficiency ϵS of tagging two muon-jets as in a search of prompt decaying light bosons of ATLAS [65].
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B. Analysis at the High Luminosity (HL) LHC

In this section, we provide a viable parameter space
to have enough statistics in discriminating two different
hypothesis on the property of dark matter. For the HL-LHC
analysis, we consider a muon-jet as following. First of all, a
candidate muon in the muon-jet needs to have pT > 5 GeV
within jηj < 2.5. Then we use the Cambridge/Aachen jet
algorithm [67] with FASTJET [68] to cluster a muon-jet
with ΔR < 0.1. An isolation variable for a muon-jet is
defined as:

ρ ¼
P

iET;i

pT;μJ
; ð17Þ

with i running over all the ET deposit in the calorimeter,
without the candidate muons, near the muon-jet with
ΔR < 0.3, and the denominator is the pT of the muon-jet.
To suppress the QCD faking rate, we require the isolation
criteria as ρ < 0.3. After that, the major backgrounds in
our case where we require at least two prompt muon-jets
would be low-mass mesons including ρ, ω and ϕ which
decay into muon pair [65,66].4 To reduce these back-
grounds, we require the mass of reconstructed muon-jet
within (0.3,0.5) in the unit of [GeV]. This requirement
reduces backgrounds from low-mass mesons, leaving the
di-photon process (pp → γ�, γ� → 2LJμ) as the major
background. To suppress contribution from a di-photon
process, we requireHTðlÞ ≥ 100 GeV. As we see in Fig. 4,
the most of events in background locate at low mass
region of HTðlÞ. By requiring a cut on HTðlÞ, we have only
3.07 events from backgrounds at 14 TeV HL-LHC. We
show the parameter space of ðgq; gχÞ which has not been
excluded by current LHC analyses and will have enough
statistics to distinguish vectorlike and chiral dark matter at
the HL-LHC of L ¼ 3 ab−1 in Fig. 5. Constraints from
dijet analysis do not depend on α0 as the analysis focuses
on dijet final states. It becomes weak as gχ becomes large

enough to induce a significant invisible decay partial
width of Z0. The number of events Nsig depends on α0 as
the signal tagging efficiency depends on the amount of
dark photon showering which is proportional to α0 in
vectorlike dark matter case. As it is shown in Fig. 5, there
would be viable parameter space where we can see the
relation between the mass of dark matter and the mass of
dark photon by examining the dark photon shower pattern.
Finally, we describe how one can understand the nature
of a dark sector once we observe dark matter signatures at
the LHC. For a collider observable to identify the nature of
dark matter, we compare HT ðlÞ variable in Eq. (14)
distribution with muons of pT ≥ 5 GeV and electrons
of pT ≥ 10 GeV by considering momentums from tracks
and energy deposits in subdetectors. To suppress back-
grounds which populate the lowHTðlÞ region, we consider
only high mass region of HTðlÞ ≥ 100 GeV. In our
simulation, we have Oð1Þ events from backgrounds at
HL-LHC. To deal with a finite luminosity of the LHC, we
generated 200 reconstructed signal events after cuts. We
perform 100 pseudo-experiments to reduce statistical
uncertainties coming from finite statistics of simulations.
We calculate a binned-χ2 of HTðlÞ distributions from a
vectorlike case and chiral case with including corruptions
from backgrounds as we described above. Figure 6 shows
our results from χ2 comparison. The LHC can tell the
origin of the mass of a dark matter particle by discrimi-
nating a vectorlike and chiral dark matter models more
than 2σ significance level, when mass ratio mχ=mγd is
large enough. While with a significant events number, as
in Fig. 6 (c), for parameter region of large α0 and small
mχ=mγd , the vectorlike and chiral dark matter models can
be also distinguished by 2σ significance level because of
the weaker transverse modes shower in the chiral dark
matter case.

TABLE II. Benchmark points to consider ATLAS prompt
lepton-jet (LJ) analysis conservatively. For (a) strong coupling
limit, we take a vectorlike dark matter with ðmχ ; α0Þ ¼
ð0.5 GeV; 0.5Þ and for (b) weak coupling limit, we choose a
chiral dark matter with ðmχ ; α0Þ ¼ ð0.45 GeV; 0.05Þ. Here ϵS is a
signal efficiency in tagging at least two isolated muon-jets (LJμ)
from the ATLAS [65].

Benchmark case α0 mχðGeVÞ Model ϵSð%Þ
(a) Strong coupling limit 0.50 0.5 Vector-like 3.68
(b) Weak coupling limit 0.05 0.45 Chiral 0.41

0 200 400 600 800 1000 1200 1400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

FIG. 4. Distributions ofHTðlÞ after requiring isolation and mass
window on reconstructed moun-jets. The dominant background
is from the diphoton production where off-shell photons γ�
decays into muon pair. The background distribution is shown
with a yellow line. we require a cut on HTðlÞ to suppress
backgrounds accordingly for the HL-LHC study.

4In the parameter space of nonpromptly decaying light particles,
bb̄ production becomes a major background as b-quarks decay
into pairs of muons via double semileptonic decays [69].
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IV. DISCUSSIONS AND OUTLOOK

The standard model had been developed by constructing
gauge structures. At the LHC, we checked its validity from
the discovery of the Higgs particle which provides a mass
to SM particles. Similarly, identifying the gauge structure
of a dark sector together with understanding the mass origin
of dark particles would be the first step toward expanding
the physics of dark matter once we observe a dark matter
signature. With the performance of the LHC which is a
complementary tool to probe a light dark matter, we study
the feature of collider signatures from a dark photon
showering depending on the property of dark matter under
a dark gauge group. With numerical simulations of 14 TeV

LHC, we show that we can identify the nature of dark
matter with Oð100Þ signal events at high energy colliders.
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FIG. 5. We show possible parameter space of ðgq; gχÞ with moderate events after analysis cuts at the HL-LHC of L ¼ 3 ab−1 to
discriminate chiral dark matter from vectorlike dark matter. The blue shaded region is excluded by the ATLAS dijet searches. The red
region is excluded by the ATLAS prompt lepton-jet search. The grey shaded regions are divided by the number of signal events Nsig less
than 100, 200, and 400 after analysis cuts.
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