
 

Flavor-specific scalar mediators

Brian Batell,* Ayres Freitas,† Ahmed Ismail,‡ and David McKeen§

Pittsburgh Particle Physics, Astrophysics, and Cosmology Center, Department of Physics and Astronomy,
University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

(Received 12 July 2018; published 20 September 2018)

New singlet scalar bosons have broad phenomenological utility and feature prominently in many
extensions of the standard model. Such scalars are often taken to have Higgs-like couplings to SM fermions
in order to evade stringent flavor bounds, e.g., by assuming minimal flavor violation (MFV), which leads to
a rather characteristic phenomenology. Here, we describe an alternative approach, based on an effective
field theory framework, for a new scalar that dominantly couples to one specific SM fermion mass
eigenstate. A simple flavor hypothesis ensures adequate suppression of new flavor changing neutral
currents. We consider radiatively generated flavor changing neutral currents and scalar potential terms in
such theories, demonstrating that they are often suppressed by small Yukawa couplings, and also describe
the role of CP symmetry. We further demonstrate that such scalars can have masses that are significantly
below the electroweak scale while still being natural, provided they are sufficiently weakly coupled to
ordinary matter. In comparison to other flavor scenarios, our framework is rather versatile since a single (or
a few) desired scalar couplings may be investigated in isolation. We illustrate this by discussing in detail the
examples of an up-specific scalar mediator to dark matter and a muon-specific scalar that may address the
∼3σ muon anomalous magnetic moment discrepancy.
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I. INTRODUCTION

Despite its many successes, the standard model (SM) is
widely suspected of being incomplete. Along with the
empirical mysteries of dark matter, the matter-antimatter
asymmetry, and neutrino masses, the naturalness of the
Higgs boson is often cited as a motivation for new physics.
In the SM, the Higgs is described as a fundamental scalar
field, and experimental studies of its properties at the LHC
are so far consistent with this description. However, as is
well known, fundamental scalar masses are quadratically
sensitive to new ultraviolet (UV) physics scales, suggesting
that new physics should appear near the electroweak scale.
While this expectation has not yet been borne out by
experiment (hence, the naturalness problem), such reason-
ing has had clear successes in the past, e.g., the charged/
neutral pion mass splitting in QCD.
Against the backdrop of exploration at the energy

frontier, recent years have seen renewed interest in the

possibility of light hidden sectors containing new SM
gauge singlet states with masses well below the weak
scale. In particular, new light scalar particles play a
prominent role in many of these scenarios. To mention a
few examples, light scalars could help resolve outstanding
theoretical issues, such as the strong CP problem [1–4]
(a naturalness question itself), be responsible for hidden
sector mass generation (via a “dark” Higgs mechanism),
mediate interactions between the SM and dark matter (DM)
or even comprise the DM [5–10], or provide an explanation
of various experimental anomalies (e.g., the muon anoma-
lous magnetic moment discrepancy [11–14]). In particular,
light scalars have been explored in multiple contexts and
comprise an interesting class of phenomenologically moti-
vated theories [15–20]. Of course, any additional funda-
mental scalar would suffer from the same naturalness
problem as the Higgs, and for scalars lighter than the
electroweak scale, the required tuning is potentially even
more severe. While light scalars have some advantages over
their spin-1 counterparts, such as the lack of a need to
cancel gauge anomalies which can lead to stringent bounds
[21–26], naturalness suggests that they should not appear in
isolation unless they are sufficiently weakly coupled. In this
paper, we seek to estimate the implications of naturalness
for a generic light scalar coupled to SM fermions.
Along with technical naturalness considerations, a basic

issue that arises in scenarios with light scalars pertains to
the structure of their couplings to SM particles. Often, one
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or a few couplings are postulated for some desired
phenomenological purpose and then studied in isolation
(see, e.g., Refs. [15,27,28]), while other allowed couplings
are neglected. Can such a starting point be justified in an
effective field theory approach, and can it be consistent
with a host of experimental bounds from flavor physics?
Perhaps the simplest way to avoid new flavor changing
neutral currents (FCNCs) is to impose a symmetry principle
such as minimal flavor violation (MFV) [29]. Such a
scenario, while certainly well motivated, implies that the
scalar preferentially couples to the third generation fer-
mions and does not offer the flexibility needed for all
phenomenological applications. Several extensions of
MFV have been considered, often in the context of heavy
new physics which couples only to the third generation of
the SM. Here, we pursue an alternative approach to MFV
by considering couplings that are specific to any one SM
fermion. By treating interactions with nontrivial flavor
structure as spurions, we will see that a single new coupling
can often naturally dominate the phenomenology of a
theory with an appropriate flavor symmetry principle.
Our goal in this paper is not to propose a mechanism
for generating such a single-fermion flavor pattern from a
dynamical origin or a fundamental symmetry, but instead to
study constraints from self-consistency and elucidate the
phenomenological consequences of such a scenario.
Our results have implications for any new light scalar,

which would be badly tuned without satisfying the guide-
lines we present. We show two examples, demonstrating
the applicability of our construction to a scalar that couples
to muons to resolve the discrepancy between the observed
and predicted anomalous magnetic moment of the muon, as
well as a scalar that couples preferentially to up quarks and
mediates interactions with dark matter (a realization of
“leptophobic” dark matter). Often, the range of natural
couplings is only now being probed experimentally.
The remainder of this paper is organized as follows.

In the next section, we study the impact of a new scalar with
a single coupling to a SM fermion. From symmetry
arguments, we estimate the sizes of the scalar’s couplings
to the SM as well as its potential. In Sec. III, we apply our
considerations of naturalness to particular models of light
scalars, comparing the natural regions of parameter space
with the reach of current and future experiments.
Section IV contains our conclusions.

II. EFFECTIVE FIELD THEORY
OF A FLAVOR-SPECIFIC SCALAR

In this section we present an effective field theory
framework describing a new light scalar particle S with
flavor-specific couplings. We use the term “flavor-specific”
to mean that the scalar dominantly couples to a particular
SM fermion mass eigenstate. We will describe how a
simple flavor hypothesis in the effective field theory
ensures the adequate suppression of new FCNCs. We also

investigate the natural sizes of radiatively generated cou-
plings and scalar potential interactions, which will lead to a
naturalness criterion in the physical scalar mass–coupling
parameter space. Following the presentation of the EFT
framework in this section, we will present two phenom-
enological applications in Sec. III.
We begin by reviewing the application of flavor sym-

metries to theories of new physics, using the MFV
hypothesis as a starting point. We write the SM gauge
and Yukawa interactions of the quarks as

LSM ¼ iQ̄L=DQL þ iŪR=DUR þ iD̄R=DDR

− ðQ̄LYuURHc þ Q̄LYdDRH þ H:c:Þ; ð1Þ

where QL ¼ ðUL
DL
Þ and H is the Higgs doublet with

Hc ¼ iσ2H�. For conciseness, we will focus on the quark
sector, pointing out differences from the lepton case as
necessary. Throughout, we use 4-component notation with
implied projection operators, e.g., the right-handed up
quark is UR ≡ PRu, where u is the usual up quark. The
Yukawa interactions break the full Uð3ÞQ ×Uð3ÞU ×
Uð3ÞD global flavor symmetry to Uð1ÞB baryon number
[30]. In the presence of new physics, MFV postulates that
the SM Yukawas are the only couplings which break the
flavor symmetry [29]. To estimate the size of flavor-
violating effects, the flavor symmetry may be formally
restored by treating the Yukawa couplings as bifundamen-
tals under SUð3Þ3, namely Yu ∼ ð3; 3̄; 1Þ and Yd ∼ ð3; 1; 3̄Þ,
and requiring that new physics operators are flavor singlets.
In anticipation of our flavor-specific flavor hypothesis, it

will be instructive to examine the symmetry breaking of Yu
and Yd in isolation. Consider first the case Yu ≠ 0 and
Yd ¼ 0. In this case, the Uð3ÞD symmetry is unbroken,
while general Yu leads to the breaking pattern

Uð3ÞQ ×Uð3ÞU → Uð1Þu ×Uð1Þc ×Uð1Þt
ðYu ≠ 0; Yd ¼ 0Þ: ð2Þ

That is, in the limit Yd ¼ 0, there is a Uð1Þ3 quark flavor
symmetry that acts on the physical up-type quark mass
eigenstates. Since Uð3ÞD symmetry is unbroken, it is
possible to rephase the right-handed down quarks in order
to identify an unbroken Uð1Þ3 baryon flavor symmetry
which rephases the three generations of baryons. Similarly,
in the case Yu ¼ 0 and Yd ≠ 0, the Uð3ÞU symmetry is
preserved, while general Yd leads to the breaking pattern

Uð3ÞQ ×Uð3ÞD → Uð1Þd × Uð1Þs × Uð1Þb
ðYu ¼ 0; Yd ≠ 0Þ; ð3Þ

i.e., there is a Uð1Þ3 quark flavor symmetry that acts on
the physical down-type quark mass eigenstates, which can
be extended to a Uð1Þ3 baryon flavor symmetry. Now,
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consider again the case of both Yu and Yd nonvanishing
(the case of the SM). Because the CKMmatrix is nontrivial,
the remnant Uð1Þ3 quark flavor symmetries preserved by
Yu [in Eq. (2)] and Yd [in Eq. (3)] are different, and only the
full Uð1ÞB baryon number symmetry remains.
We now add a real SM singlet scalar Swhich can interact

with the quarks through dimension-five operators. Broadly
speaking, such couplings can either take place through ∂S
or S itself, viz.

LS ¼
1

2
∂μS∂μS −

1

2
m2

SS
2 −

�
cS
M

SQ̄LURHc þ H:c:
�

þ dS
M

∂μSŪRγ
μUR þ d0S

M
ðSŪR=DUR þ H:c:Þ; ð4Þ

where cS is a complex 3 × 3 matrix and dð0ÞS ¼ dð0ÞS
† are

Hermitian 3 × 3 matrices. Here, we have only written three
possible couplings, though interactions analogous to the
third term in Eq. (4) but with the down-type quarks, as well
as interactions analogous to the fourth and fifth terms in
Eq. (4) but with left-handed quarks or right-handed down-
type quarks are also possible. Including these, for N
flavors, there are 2N2 possible complex couplings of the

cS type and 6N2 real couplings of the dð0ÞS type in the above.
The couplings cS, dS, and d0S carry flavor indices, like the
SM Yukawas, and any flavor hypothesis such as MFV
restricts their form. If S is a flavor singlet, the couplings in
Eq. (4) have the flavor structure

cS ∼ ð3; 3̄; 1Þ;
dS; d0S ∼ ð1; 1; 1Þ ⊕ ð1; 8; 1Þ: ð5Þ

For instance, under MFV, cS ¼ c1Yu þ � � �, while
dS ¼ d11þ d2Y

†
uYu þ � � �.

The three types of operators represented by the inter-
action terms in Eq. (4) can be shown to be related to
each other through appropriate field redefinitions. Starting
from a theory with dS, d0S ≠ 0, we can perform the
transformation,

UR → UR − ðd0S − idSÞSUR=M; ð6Þ

which removes the dð0ÞS terms at the expense of inducing a
cS term with strength cS ¼ −Yuðd0S − idSÞ plus an addi-
tional dimension-six higher derivative operator. Note that
the strength of the induced SQ̄UH coupling is proportional
to the Yukawa coupling and is thus suppressed for light
quarks (i.e., the induced cS has an MFV-like flavor
structure if dS and d0S are proportional to the identity).
Through analogous field redefinitions for the left-handed
quarks and right-handed down-type quarks, we may

eliminate all of the dð0ÞS -type terms of Eq. (4).

Here, we wish to consider flavor-specific flavor struc-
tures which are not found under the MFV hypothesis. In
particular, we will be interested in the possibility that the
dominant couplings of S are to the first or second
generation fermions in the zero momentum limit. We find
it convenient to work with an operator basis where the

dð0ÞS -type terms are eliminated through the field redefinitions
described above. The cS-type terms contain the full
information of the couplings of S to quarks, with the only
considerations for their structure coming from the flavor-
specific flavor hypothesis which we describe in more detail
below. Once we make such a hypothesis, we are no longer
working with the most general version of Eq. (4). Below,
we motivate and describe the particular cS flavor structure
with which we are concerned.
Note that, in the case of a single flavor-specific coupling,

by inverting the field redefinition of Eq. (6) to generate dS
and d0S operators, we see that the real part of cS breaks the
shift symmetry of S, while the imaginary part of cS
seemingly preserves the shift symmetry since the leading
operator to which it leads involves ∂μS. However, this shift
symmetry is broken by a dimension-six operator that is
induced by this field redefinition,

1

2

���� cSYu

����
2
�
S
M

�
2

ðiŪR=DUR þ H:c:Þ; ð7Þ

although a purely imaginary cS preserves a parity sym-
metry under which S → −S. One of our primary goals will
be to understand the natural size and physical consequences
of the induced scalar potential.
Besides MFV, there are other flavor symmetry principles

that can lead to viable flavor phenomenology. One example
is next to minimal flavor violation (NMFV), which assumes
that new physics couples dominantly to the third generation
[31]. This case is distinct from the MFV hypothesis; while
the new physics breaks the Uð3Þ3 quark flavor symmetry in
a way that is not proportional to the SM Yukawas, it
preserves a Uð2Þ3 symmetry that is only broken by the SM.
In general, the chiral symmetry broken by new physics
need not be aligned with that of any of the usual SM
Yukawas. However, assuming a limited set of flavor-
breaking spurions in NMFV ensures that flavor mixing
effects between the third and the first two generations is not
parametrically larger than in the SM [32,33], i.e., the new
physics and Yukawa interactions are quasialigned up to
extra mixing contributions that are not parametrically larger
than the CKM mixing angles.
Here, we wish to explore instead the hypothesis that the

new physics coupling cS involves only a single fermion, in
the mass eigenstate basis. This hypothesis is a more
restrictive case of the alignment hypothesis. Alignment
requires that cS and the Yukawa interactions are simulta-
neously diagonalizable in a single basis. We will further
assume that new physics couples to only one fermion mass
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eigenstate. This implies that the spurion cS breaks the
Uð3Þ3 flavor symmetry in a specific way that is determined
based the particular fermion that couples to S. To see this,
consider the flavor symmetry breaking induced by a scalar
that couples specifically to the up quark in the mass basis,
cS ∝ diagð1; 0; 0Þ. In spurion language, this assumption is
equivalent to assuming that cS breaks the flavor symmetry
as follows,

Uð3ÞQ ×Uð3ÞU → Uð1Þu ×Uð2ÞctL ×Uð2ÞctR: ð8Þ

In particular, it is crucial that the Uð1Þu factor in Eq. (8) is
the same as the one left unbroken by Yu in Eq. (2).
The alignment hypothesis is possibly mysterious from an

bottom up perspective, and raises the specter of significant
fine tuning. We will not endeavor to construct a flavor
model or mechanism which naturally achieves alignment in
this work, although we note that there are some promising
model building approaches in the literature [34,35].
It is worthwhile to compare the flavor-specific hypoth-

esis to MFV. In MFV, the basic assumption is that the
Yukawa couplings are the only spurions that break flavor,
and therefore new FCNCs are generally SM-like. In our
flavor-specific scenario, in addition to the Yukawa cou-
plings, we are adding a new flavor-breaking spurion cS, and
assume that it is aligned with the Yukawa couplings
according to Eqs. (2), (3), and (8). In this sense, the
flavor-specific hypothesis we are exploring rests on
stronger assumptions about how the Uð3Þ3 flavor sym-
metry is broken in the UV.
In this framework, the couplings which violate the flavor

and scalar shift symmetries are the SM Yukawas, cS and
mS. Assuming that these are the leading symmetry-violat-
ing effects, we may estimate the size of any operator in the
effective field theory through spurion analysis. In the
following, we will describe the sizes of the operators Sn

and SQ̄LDRH, respectively. First, however, we consider
corrections to each of our original couplings themselves.

A. Naturalness of leading couplings

Here, we wish to use symmetry arguments to estimate
the sizes of corrections to the SM Yukawas, cS, and mS,
assuming they are the only leading interactions

L ⊃ −
1

2
m2

SS
2 −

�
Q̄LYuURHc þ

cS
M

SQ̄LURHc þ H:c:

�
:

ð9Þ

We first observe that both the couplings cS and Yu break the
up-type quark chiral symmetry, while cS additionally
breaks the S shift symmetry. Yd breaks the down-type
quark chiral symmetry. The S mass breaks the S shift
symmetry only.

By treating cS and Yu as spurions, it follows immediately
that they are technically natural. When S acquires a vacuum
expectation value (vev) vS so that cS and Yu are no longer
distinguished by their S shift symmetry properties, then cS
immediately leads to the induced up Yukawa

δYu ¼
cSvS
M

: ð10Þ

Wewill return to this constraint in Sec. II B, after estimating
the natural size of vS.
Finally, as S is a scalar, its mass is not natural, and suffers

from the usual hierarchy problem. If we assume that new
physics comes in at the scale M to regulate corrections to
the S mass, however, we may still obtain useful naturalness
constraints on the interactions in LS. In particular, the S
mass is corrected by the diagrams of Fig. 1. The two-loop
diagram leads to a mass shift of order

δm2
S ∼

Trc†ScS
ð16π2Þ2M

2: ð11Þ

Requiring that this be less than the S mass squared itself
yields the naturalness criterion

ðcSÞij ≲ ð16π2ÞmS

M
≈ ð3 × 10−3Þ

�
mS

0.1 GeV

��
5 TeV
M

�

ð12Þ

on the elements of cS [36].
The Higgs portal operator S2H2, which is generated from

the one-loop diagram in Fig. 1, also leads to an S mass
correction after electroweak symmetry breaking

δm2
S ∼

Trc†ScS
32π2

v2 ð13Þ

leading to the bound

ðcSÞij ≲ ð4π
ffiffiffi
2

p
ÞmS

v
≈ ð7 × 10−3Þ

�
mS

0.1 GeV

�
: ð14Þ

The relative importance of these two constraints depends
on the size of the cutoff scale M. For M above (below) a
few TeV, the bound in Eq. (12) [Eq. (14)] is stronger.

FIG. 1. Diagrams correcting the scalar mass in the effective
theory of LS in Eq. (4).
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B. Scalar potential

We have estimated the corrections to the operators in
Eq. (4) in the previous section. In general, additional
operators will also be generated. Here, we estimate the
size of radiatively generated Sn terms for arbitrary n,
assuming that they are zero at tree level.
The only interaction involving the new scalar is the cS

coupling, which involves one S field. Consequently, the
radiative generation of Sn requires n insertions of cS. In
addition, since Sn preserves the chiral quark symmetries, if
n is odd we must have at least one quark Yukawa as well (or
an S vev). Therefore, the natural sizes of the Sn operators
are

δS2k ∼
Trðc†ScSÞk
ð16π2Þkþ1

M4−2k; k ¼ 1; 2;…

δS2kþ1 ∼
Trðc†ScSÞkc†SYu

ð16π2Þkþ2
M4−ð2kþ1Þ; k ¼ 0; 1;…: ð15Þ

Note that there are multiple possible flavor contractions in
the above.
As before, we also get a contribution to Sn from the

operators SnH2m. The relevant diagrams may be con-
structed by cutting m Higgs propagators to break loops,
e.g., as in the diagrams of Fig. 1. Each cut gives two extra
Higgs vevs which replace the cutoff scale M, and elimi-
nates one loop, so we expect the correction δSn from the
operator SnH2m to be related to the correction in Eq. (15) by
the factor ð8π2v2M2 Þm. For M larger than a few TeV, this factor
is a suppression, while forM smaller than a few TeV it is an
enhancement.
The radiatively generated SnðH2mÞ terms lead to a scalar

potential which we should minimize to obtain the S and H
vevs. Assuming large M, we neglect operators with m > 0
and minimize VðSÞ alone. If the potential terms involving
both S andH are small relative to VðHÞ after inserting the S
vev, they will not significantly affect the minimization of
the usual Higgs potential. We remark in particular that the
S −H mixing is small for large cutoff scales. In particular,
the radiatively generated SH2 term induces a mixing that is

roughly
Trc†SYu

ð16 ffiffi
2

p
π2Þ vMSH. If the coupling cS satisfies the

naturalness bound of Eq. (12), then the mixing angle in the
scalar sector is at most

sin θSH ≲ Yi
uvmSffiffiffi
2

p
m2

h

ð16Þ

for coupling to a single up-type quark ui, which is small for
light S and especially for a scalar that couples only to a
first- or second-generation quark.
For cS satisfying the naturalness bound in Eq. (12) and a

significant hierarchy M ≫ mS, the linear and quadratic
terms dominate the S potential. This is not surprising since

higher dimension operators are suppressed by factors of the
small cS, as well as additional loops. Given the tadpole term
δSS, which can be estimated using Eq. (15), the resulting
scalar vev is

vS ≈ −
δS
m2

S
∼
Trc†SYu

ð16π2Þ2
�
M
mS

�
2

M: ð17Þ

The scalar vev induces corrections to the quark masses.
From the dimension-five operator involving cS, we have the
mass correction

δmui ¼
ciiSvSvffiffiffi
2

p
M

: ð18Þ

For largeM, inserting the vev of Eq. (17) and requiring that
δmui ≲mui yields an identical bound to Eq. (12).
In principle, vS also leads to a correction to mS from

operators of the form Sn with n > 2, which in turn limits cS.
However, if these operators are only radiatively generated,
these effects are minor since the linear and quadratic terms
dominate the S potential. For a scalar coupling only to the
up-type quark ui, the corrections to the S mass from the Sn

operators go as

δð2kÞ
m2

S
∼δS2kv

2k−2
S ≲m2

S→ðcSÞii≲ð16π2Þ5k−34k−2ðYi
uÞ−2k−2

4k−2

�
mS

M

�
;

δð2kþ1Þ
m2

S
∼δS2kþ1v2k−1S ≲m2

S→ðcSÞii≲ð16π2Þ54ðYi
uÞ−1

2

�
mS

M

�
:

ð19Þ

Because of the loop suppression (and especially in the case
of small Yi

u), the limit from the S2 term, which we have also
written in Eq. (12), is dominant.

C. Flavor violation

Next, we analyze the flavor violation induced by cS in
Eq. (4). Since the same up-type quark rotations diagonalize
Yu and cS, flavor is preserved by all diagrams involving
only the up quarks and the new interaction [37]. We choose
to work in a basis where Yu is diagonal and cS has a single
diagonal nonzero component. In this basis, the misalign-
ment between the SUð2ÞL partners of the up quarks and the
left-handed components of the down quark mass eigen-
states is given by the CKM matrix, which is in turn defined

as Yd ¼ VCKMYD
d where YðDÞ

d is the (diagonalized) down
Yukawa matrix. Any flavor violation must come from terms
involving the down-type Yukawas. As an example, con-
sider the flavor structure of the operator SQ̄LUR. By S
parity, the coefficient of this operator must be proportional
to cS, and its leading component is simply cSvffiffi

2
p

M
. We may

create a flavor-changing neutral current (FCNC) by writing
the simplest contribution to the SQ̄LUR term involving Yd.
Because Yd is the only coupling that breaks the down-type
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quark chiral symmetry, any contribution to the SQ̄LUR
operator must involve an even number of insertions of Yd.
Flavor violation is thus only possible at the expense of two
small Yukawas and an off-diagonal CKM element, as in
ðVCKMYD

d ðYD
d Þ†V†

CKMÞ cSvffiffi
2

p
M
SQ̄LUR, in addition to a loop

factor as indicated by the diagram in the left panel of Fig. 2.
In addition, even if the new scalar couples only to up-

type quarks at tree level, couplings to the down quarks may
be induced at loop level. Again from symmetry arguments,
the induced SQ̄LDR operator must have at least one
insertion of each of cS, Yu and Yd. As above, we need
at least one loop; a diagram leading to the operator is shown
in the right panel of Fig. 2, and the associated flavor matrix
is ðYD

u Þc†SVCKMYD
d .

Rotating to the down quark mass eigenstate basis, the
expected sizes of the off-diagonal elements of the above
operator are typically well below the limits from meson
mixing for OðTeVÞ suppression scales [38,39], due to the
Yukawa and loop suppressions. Nevertheless, it is instruc-
tive to consider the strength of current meson mixing limits.
For instance, for S lighter than the kaon mass, effective
four-quark operators such as

�
1

16π2M
ðV†

CKMðYD
u Þc†SVCKMYD

d Þ12
�

2

×

�
v2

2ðm2
K −m2

SÞ
�
ðd̄LsRd̄LsRÞ ð20Þ

are induced. If cS only couples a new scalar to the charm
quark, the strongest bound comes from K mixing [38], and
is merely ðcSÞ22 ≲M=ð20 GeVÞ. On the other hand, if the
scalar interaction breaks only the up quark chiral symmetry,
the best limit is now even weaker because of the small
first generation Yukawas: D mixing gives ðcSÞ11 ≲
M=ð0.6 GeVÞ. We see that our underlying symmetry
principle has effectively suppressed flavor-violating inter-
actions, rendering FCNC limits irrelevant. The constraints
are much stronger without such a symmetry. For instance,
for a scalar coupling to up-type quarks, ðcSÞ12=M is
bounded at the 1=ð108 GeVÞ level from D mixing bounds.
In addition to models containing a coupling to a

particular flavor of quarks, we will also allow for models
in which S couples to a single lepton flavor at tree level.

To do so in the EFT, we make a straightforward replace-
ment of the quark doublet and singlet with the lepton
doublet and singlet, Q → L, U → E, and the interaction of
the scalar is

L ⊃ −
cS
M

SL̄LERH þ H:c: ð21Þ

In the lepton sector, flavor-specific flavor symmetries can
lead to different flavor observables depending on the
mechanism responsible for neutrino mass generation. For
an interaction of the form SL̄LERH, the above treatment
can be generalized in the case of Dirac neutrino mass terms,
with all flavor violation proportional to small neutrino
masses. Alternatively, instead of Dirac neutrino masses,
heavy right-handed neutrinos with Majorana masses could
be integrated out to produce the effective Weinberg
operator ðLHÞ2. In this case, such an operator would give
neutrino mixing and be the only source of flavor violation
in the lepton sector. It would also induce flavor-violating
contributions to SL̄LERH, but since the S coupling pre-
serves lepton number, such flavor violation would be
suppressed by two powers of the Majorana neutrino mass.

D. Renormalizable models

The dimension-five operators that we have considered
thus far must be resolved at high energies, and in this
section, we consider fully renormalizable theories that can
give rise to the cS term of Eq. (4). We may complete the
interaction by introducing new vectorlike fermions or
scalars. In general, both lead to electroweak precision
bounds, while the latter are also subject to constraints
from mixing with the Higgs. Here, we choose to focus on
the vectorlike fermion completion.
We introduce a vectorlike quark doublet with the same

gauge charges as QL and denote its left- and right-handed
components by Q0

L and Q0
R, respectively [40]. Then, the

operator with coefficient cS may be replaced by the
Lagrangian

LcS ¼ iQ̄0
L=DQ0

L þ iQ̄0
R=DQ0

R − ðySSQ̄LQ0
R

þMQ̄0
RQ

0
L þ y0Q̄0

LHcUR þ H:c:Þ: ð22Þ

The above Lagrangian provides a UV completion of the
SQ̄LURHc operator mediated by the new vectorlike quark,
and we have deliberately used the same variable M for the
vectorlike quark mass as for the loop cutoff scale above,
assuming that the same physics is responsible for both.
In a similar fashion as above, we may ask about the

technical naturalness of the couplings of Eq. (22) and the
resulting scalar potential. Clearly yS is natural because it is
the only interaction term that breaks S parity. y0 is also
natural because it breaks a global Z2 symmetry under
which the fields Q0, S are odd and the remaining fields
are even.

FIG. 2. Flavor violation in the up-type (left) and down-type
(right) quark sectors, for a coupling that is diagonal in the up-type
mass eigenbasis. All flavor violation is provided by the CKM
matrix.
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From a flavor perspective, Eq. (22) motivates the
consideration of an enlarged symmetry group Uð4ÞQ×
Uð3ÞU ×Uð3ÞD ×Uð1ÞQ0

R
, where the left-handed quark

flavor group now includes Q0
L. Keeping S as a flavor

singlet, the couplings (yS,M) form a 4 ofUð4ÞQ, while (Yu,
y0) fall into the ð4; 3̄; 1Þ bifundamental representation. Our
flavor-specific flavor principle may be restated in terms of
the symmetry breaking pattern of the new couplings. For
instance, the up-specific structure of Eq. (8) may be written
as the hypothesis that the new couplings break the full
symmetry group to Uð1Þuþq0×Uð2ÞctL×Uð2ÞctR×Uð3ÞD,
where the former symmetry corresponds to a simultaneous
chiral rotation of the up quark and new vectorlike quark.
However, given the presumably different natures of the

couplings in each 4 of the new Uð4ÞQ above (as hinted by,
e.g., their varying S shift symmetry properties), we choose
to analyze flavor through the standard SM flavor group.
Under the usual Uð3Þ3 of the SM quark sector, the
vectorlike quark is simply a flavor singlet, and the
couplings of Eq. (22) have the flavor structure

yS ∼ ð3; 1; 1Þ;
M ∼ ð1; 1; 1Þ;
y0 ∼ ð1; 3̄; 1Þ: ð23Þ

The up-specific principle is now the statement that the new
couplings break the Uð3ÞQ ×Uð3ÞU × Uð3ÞD ×Uð1ÞQ0

L
×

Uð1ÞQ0
R
symmetry down to the same Uð1Þuþq0 ×Uð2ÞctL ×

Uð2ÞctR ×Uð3ÞD as before. Given this assumption, if we
work in the basis where Yu is diagonal, yS and y0 can each
have only one nonzero element, and as in the effective
theory all flavor violation comes from Yd. Now let us
consider the sizes of the flavor-violating interactions
SQ̄LUR and SQ̄LDR, as we did in Sec. II C for the effective
theory. The simplest way to obtain nontrivial flavor
structure in a term breaking the S shift symmetry is to
use the combination ySy0 with the down-type Yukawas.
While other terms are possible, they involve higher powers
of the new couplings, so to leading order the FCNC limits
are the same as in Sec. II C with cS → ySy0.
Focusing on the scalar potential, we note that for even n,

there is now a one-loop correction to Sn involving n
insertions of yS to make a loop of Q and Q0. For odd n,
there is no one-loop contribution, but we may add a loop
involving a Higgs and containing the vectorlike mass M as
well as the couplings y0 and Yu. We then have

δS2k ∼
Trðy†SySÞk
16π2

M4−2k;

δS2kþ1 ∼
Trðy†SySÞky†Sy0Y†

u

ð16π2Þ2 M4−ð2kþ1Þ: ð24Þ

For sufficiently high cutoff scales, we may again ignore
mixed scalar potential terms involving both S and H. Note
that unlike the nonrenormalizable model we considered
before, there is a one-loop S mass correction. It goes as

δm2
S ∼

Try†SyS
16π2

M2 ð25Þ

so the bound on the elements of yS is

ðySÞij≲ð4πÞmS

M
≈ð3×10−4Þ

�
mS

0.1GeV

��
5TeV
M

�
: ð26Þ

While y0 does not appear in the above expression, it does
give a one-loop correction to the Higgs mass. We require
the Higgs mass correction to be no larger than v itself,
yielding the relatively weaker bound

ðy0Þij ≲ ð4πÞ v
M

≈ ð6 × 10−1Þ
�
5 TeV
M

�
: ð27Þ

The product of the limits in Eqs. (26) and (27) may be
compared with that for the nonrenormalizable theory in
Eq. (12). We see that in the full theory, the constraint on the
size of the effective dimension-five operator is stronger by a
factor v=M.
The corrections to Sn are suppressed by fewer loops in

the full theory than in the nonrenormalizable one. However,
recall that the limit on yS from naturalness of the S mass is
more stringent than the limit on cS, by a factor of 4π or
“half” a loop factor. Consequently, the behavior of the S
potential in the presence of the corrections of Eq. (24) is
similar to that in the nonrenormalizable theory with the
corrections of Eq. (15). The S and S2 terms largely
determine the potential and set the S vev, which is as in
Eq. (17) with the replacement cS → y†Sy

0. Because the
constraint on the product y†Sy

0 from naturalness is mildly
stronger than that on cS by a factor v=M, the natural size of
the S vev tends to be slightly smaller in the fully
renormalizable theory.

E. CP violation

Finally, we discuss the behavior of the scalar interaction
with fermions under charge conjugation, C, and a parity
transformation, P. For definiteness, we assume that the
scalar couples only to one flavor of fermion, in particular
the u quark here. After electroweak symmetry breaking the
relevant interaction is

Lint ¼ −
cSvffiffiffi
2

p
M

SūLuR −
c�Svffiffiffi
2

p
M

SūRuL

¼ −
vffiffiffi
2

p
M

Sū½ReðcSÞ þ iImðcSÞγ5�u: ð28Þ
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Once the u quark mass is made real by a chiral rotation
there is no longer enough freedom to rephase the fields in
Lint because S is a real scalar field. Therefore the phase of
the coupling cS is physical. Under P, ūLuR ↔ ūRuL. Thus,
P can be made a good symmetry if cS is purely real or
purely imaginary by taking S → S or S → −S, respectively,
under P. Note that since C is conserved by Lint, P
conservation implies CP conservation. In the case of purely
real or purely imaginary cS, all CP violation comes from
the CKM matrix, leading to a large suppression by light
quark Yukawas. Moreover, if S is a pseudoscalar, all Sn

potential terms with n odd are forbidden by P invariance,
and in particular S does not acquire a vev.
For a generic value of the phase of cS, however,CP is not

a good symmetry of Lint, leading to CP violating processes
involving S. In our example of a coupling to u quarks, a
neutron electric dipole moment (EDM) develops and
therefore the strong experimental upper limit on the neutron
EDM can be used to constrain the size of the coupling.
Below, we estimate the neutron EDM that results when the
S-u-u coupling has a nontrivial phase.
An imaginary cS in Eq. (28) causes the S to mix with

pseudoscalar mesons. The mixing angle with the π0, for
instance can be estimated to be

θπS ≃
fπffiffiffi

2
p ðmu þmdÞ

m2
π

m2
S −m2

π

ImðcSÞvffiffiffi
2

p
M

≃ 6 × 10−3ImðcSÞ
�
1 GeV
mS

�
2
�
5 TeV
M

�
: ð29Þ

In the last step we have assumed that mS ≫ mπ . The real
part of cS leads to S developing a scalar coupling to
nucleons in the low energy effective theory. In particular, its
coupling to neutrons is

Leff ⊃ −
ReðcSÞvffiffiffi

2
p

M

mnfnu
mu

Sn̄n; ð30Þ

where we have used the matrix element hnjūujni ¼
ðmnfnuÞ=mu with fnu ≃ 0.011 [41]. Now, in addition to its
usual CP-conserving coupling to nucleons, gπ ≃ 13.4, in
the presence of (29) and (30) the π0 obtains a CP-violating
coupling to neutrons, ḡπ ,

Leff ⊃ −
1

2
π0n̄ðḡπ þ igπγ5Þn; ð31Þ

with

ḡπ ≃
ffiffiffi
2

p ReðcSÞv
M

mnfnu
mu

θπS

≃ 2.5 × 10−3jcSj2
�
sin 2β
2

��
1 GeV
mS

�
2
�
5 TeV
M

�
2

;

ð32Þ

and β≡ arg cS. The CP-violating coupling leads to a
neutron EDM. A simple estimate of this can be obtained
by evaluating a one-loop diagram, shown in Fig. 3, with a
pion loop and a photon coupled to the neutron through its
magnetic dipole moment, μn. Cutting this loop off at the
neutron mass gives a simple expression for the EDM,

jdnj ∼
ḡπgπ
32π2

jμnj ≃ 1 × 10−18e cmjcSj2
���� sin 2β2

����
×

�
1 GeV
mS

�
2
�
5 TeV
M

�
2

: ð33Þ

Requiring that this is less than the experimental upper limit
of 0.3 × 10−25e cm [42] results in a limit of

jcSj ×
���� sin 2β2

����
1=2 ≲ 2 × 10−4

�
mS

1 GeV

��
M

5 TeV

�
; ð34Þ

or, in terms of the S coupling to u quarks, guuS ¼ cSv=
ffiffiffi
2

p
M,

jguuS j ×
���� sin 2β2

����
1=2 ≲ 6 × 10−6

�
mS

1 GeV

�
: ð35Þ

In addition to the π0 − S mixing effect outlined above,
there is another contribution to the neutron EDM when S
develops a vev. If there is an imaginary cS in such a case,
then this leads to a phase for the u quark mass. This
contributes to the physical θ angle of QCD through
θ̄ ¼ θ − arg detMq where Mq is the light quark mass
matrix. In the presence of an S vev, hSi ¼ vS, this is

θ̄ ¼ −tan−1
ImðcSÞvffiffiffi

2
p

mu

vS
M

: ð36Þ

A nonzero θ̄ contributes to the neutron EDM [43] and the
present limit can be interpreted as an upper limit on the
magnitude of θ̄ of about 10−10 or

FIG. 3. One-loop contribution to the neutron EDM in the
presence of a CP-violating π0-neutron coupling ḡπ .
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ImðcSÞ≲ 10−10
ffiffiffi
2

p
mu

v
M
vS

: ð37Þ

The real part of cS contributes to an S tadpole which
induces an S vev as described in Sec. II B. Using the
expected vev from Eq. (17) in this expression, we have

jcSj ×
���� sin 2β2

����
1=2 ≲ 3 × 10−7

�
mS

1 GeV

��
5 TeV
M

�
; ð38Þ

which implies for the S-u-u coupling,

jguuS j ×
���� sin 2β2

����
1=2 ≲ 1 × 10−8

�
mS

1 GeV

��
5 TeV
M

�
2

: ð39Þ

For the set of parameters we have normalized on, the limit
from this contribution is a couple of orders of magnitude
stronger than the limit from π0 − S mixing. However, this
limit depends on there being an S vev which one could
imagine is tuned away while the mixing contribution
remains robust.
In any case, for Oð1Þ phases of cS, the neutron EDM

provides a strong constraint on the size of the coupling to
light quarks. Therefore, to obtain an appreciable coupling,
we are led to consider UV theories in which CP is a good
symmetry of the S-u-u coupling, taking S to be either scalar
or pseudoscalar.
We can also ask about CP violation in the case of a

coupling of the scalar to leptons through the interaction of
Eq. (21). First, consider a coupling just to electrons, i.e., we
can write the coupling matrix in the mass basis as cSδi1δj1.
One can then write down a one-loop contribution to the
electron EDM,

jdej ∼
jgeeS j2
8π2

���� 12 sin 2β
����jμejm

2
e

m2
S
log

m2
S

m2
e

≃ 6.4 × 10−19e cmjgeeS j2
���� 12 sin 2β

����
�
1 GeV
mS

�
2

×

�
logm2

S=m
2
e

10

�
: ð40Þ

where μe is the electron magnetic dipole moment,
geeS ¼ cSv=

ffiffiffi
2

p
M, and β is the phase of cS. This must be

less than the experimental upper limit on the electron EDM
of 0.87 × 10−28e cm [44], which means that

jgeeS j
���� 12 sin 2β

����
1=2 ≲ 1.2 × 10−5

�
mS

1 GeV

��
10

logm2
S=m

2
e

�
1=2

:

ð41Þ

In the case of a leading coupling of S to other lepton flavors
(or quarks) that is CP-violating, the constraint from the

electron EDM is much weaker, since the induced electron
EDM occurs only at three loops.
Besides providing insights from technical naturalness,

CP-like symmetries can be instrumental in constructing
phenomenologically viable theories. In the next section, we
will show an application involving dark matter, where
taking a pseudoscalar S naturally avoids direct detection
bounds.

III. APPLICATIONS

We now turn to applications of the framework described
in the previous section. In particular, we consider a model
of a scalar which mediates interactions with DM and
preferentially couples to up quarks. This is distinct from
typical scalar simplified DM models, which usually have
very small couplings to first-generation fermions (for some
recent work, see, e.g., [45–53]. We also consider the theory
of a light scalar which couples only to muons. Such a state
could explain the currently measured value of the muon
g − 2 without running afoul of constraints from electron
couplings.

A. Up-specific scalar mediated dark matter

First, we consider a scalar that couples to the up quark,
corresponding to cijS ¼ cuδi1δj1 (see also [54]). For a GeV-
scale scalar with a cutoff at several TeV, the natural value of
the physical renormalizable Sūu coupling is relatively
small. Such couplings are typically below the Oð1Þ limits
on light dijet resonances from UA2 [55], which LHC
searches are only now starting to improve [56]. For scalar
masses above 100 GeV, collider dijet bounds put more
severe limits on natural couplings [56–61]. For scalars
below roughly 1 GeV, intensity frontier experiments must
be taken into account, as well as astrophysical bounds,
which requires the evaluation of nonperturbative hadronic
and nuclear effects. Thus we here choose to focus on the
intermediate region.
We introduce a new fermionic Dirac DM particle χ with

vector-like mass mχ and assume that it has a coupling to S.
That is, we consider the interactions

Lhidden ¼ iχ̄L=∂χL þ iχ̄R=∂χR − ðmχ χ̄LχR þ yχSSχ̄LχR þH:c:Þ;
ð42Þ

and assume that χ annihilation to up quarks is responsible
for setting the relic abundance. The phases of the S
couplings to the SM and DM, guuS ≡ cSvffiffi

2
p

M
and yχS, affect

the signatures of the theory as real and imaginary couplings
lead to different phenomenology. We now proceed to
describe the potential signatures in terms of the possible
coupling choices.
We begin by recalling from Sec. II E that if guuS contains

both real and imaginary components, a neutron EDM arises
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which is strongly constrained by experiment. Con-
sequently, we consider only purely real or imaginary guuS .
Now, we examine the CP implications of the coupling
between S and DM. If guuS and yχS have the same phase, then
there is still a good CP symmetry, and no EDM is
generated. On the other hand, if yχS has a nontrivial phase
relative to guuS , there is no unique assignment of the S parity
that allows the full action to be preserved under CP.
When guuS is imaginary, a real component of yχS is

dangerous in this regard because it leads to a one-loop
scalar vev

vS ∼
ReyχSmχ

16π2

�
M
mS

�
2

ð43Þ

where we have used the same cutoff scale M as in Sec. II.
Together, the vev and guuS induce a contribution to the QCD
θ angle which is bounded as in Eq. (37), giving

ImguuS ReyχS ≲ ð10−10Þð16π2Þmu

mχ

�
mS

M

�
2

ð44Þ

The limit above essentially enforces that if the S coupling to
up quarks is imaginary in this model, then S should
transform as a pseudoscalar in its hidden sector interactions
as well.
The case of real guuS is less constrained by EDM searches.

To see this, we first note that if S is assigned even parity,
then all CP violation comes from the imaginary component
of yχS. Consequently, any CP-violating operator must be
proportional to an odd number of powers of yχS. To obtain
CP violation involving the SM fields only, we thus need a χ
loop. Since the loop involves γ5, it follows that there must
be at least five scalars attached to it. No EDM in the SM can
arise, then, below five loops. In summary, for real guuS , yχS is
not barred from having an arbitrary phase by EDM
searches alone.
Now, independently of CP violation, an imaginary

component of yχS can be problematic for indirect detection.
This can be seen from the DM annihilation cross section,
which to second order in the DM relative velocity v is [62]

σvðχ̄χ → ūuÞ ≈ 3ðImyχSÞ2jguuS j2m2
χ

2πðm2
S − 4m2

χÞ2
þ v2

�
3jguuS j2m2

χ

8πðm2
S − 4m2

χÞ3
�

× ððImyχSÞ2ðm2
S þ 4m2

χÞ
þ ðReyχSÞ2ðm2

S − 4m2
χÞÞ: ð45Þ

In the above we have neglected the final state quark mass
and ignored hadronization effects, which should be a good
approximation for mχ ≳ ΛQCD. We see that annihilation is
s-wave (p-wave) for imaginary (real) yχS, regardless of the
phase of the scalar-SM coupling. For mχ ≲ 100 GeV,
s-wave DM annihilation to up quarks which produces

the observed relic density with a standard thermal cosmol-
ogy is in tension with Fermi-LAT observations of dwarf
spheroidal galaxies [63]. However, strong limits in the case
of imaginary yχS from DM annihilation can be evaded if the
DM abundance is set by an early χ − χ̄ asymmetry. In
Fig. 4, we thus show the parameter space of a scalar
coupling to up quarks and DM with imaginary couplings.
We plot the naturalness bounds of the previous section in
both the effective theory with the operator SQ̄LHUR and a
possible ultraviolet completion with vectorlike quarks
having the same SM gauge charges as the left-handed
quark doublet. For comparison, we choose a fixed mass
ratio mχ=mS ¼ 3=4 and show the area where the annihi-
lation cross section is the standard thermal value
hσvi ¼ 3 × 10−26 cm3=s, assuming that jyχSj ¼ cSvffiffi

2
p

M
, i.e.,

that the Sūu and Sχ̄χ couplings are equal. The region above
the dotted indirect detection line requires additional physics
such as the aforementioned DM asymmetry to be viable.
A small window remains for the thermal DM scenario at
masses of a few hundred GeV, above which dijet limits
become constraining.
The only remaining case is that of real guuS and yχS.

However, real guuS and yχS would lead to an unsuppressed
spin-independent direct detection cross section

σNSI¼
m2

χm4
N

πm2
um4

SðmχþmNÞ2
ðfNu Þ2ðguuS yχSÞ2; N¼n;p ð46Þ

where fpu ≈ 0.015 and fnu ≈ 0.011 are the same form factors
we used in Sec. II E [41]. The resulting cross section is

FIG. 4. Constraints on a light pseudoscalar coupling to quarks
and DM in the mS − guuS plane. The red line indicates where the
annihilation cross section is equal to the canonical thermal relic
value, hσvi ¼ 3 × 10−26 cm3 s−1. The region above the brown
dotted line labeled is excluded by Fermi-LAT gamma-ray
observations from dwarf spheroidal satellite galaxies [63]. Also
displayed are bounds from dijet searches at the Tevatron [57–59]
and LHC [56,60,61], rescaled using MADGRAPH 5 [64]. Finally,
the region below the black dashed line (black solid line) is natural
according to the EFT (renormalizable model) criterion presented
in Eq. (12) [Eqs. (26) and (27)]. A 2 TeV cutoff scale is assumed.
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tightly limited [65,66]. For guuS ¼ yχS, the coupling that
would be necessary to obtain the observed relic DM
abundance is already excluded.
We thus see that an up-specific scalar is rather constrained

as a DM mediator, by a combination of direct detection,
indirect detection, and EDM searches. With standard
assumptions about cosmology, the only viable scenarios
are a pseudoscalar that mediates interactions between DM
and up quarks for relatively heavy χ, or the alternative case of
secluded annihilation where DM annihilates to S itself.

B. Muon-specific EFT

Here, we show another application of our formalism to a
scalar that couples solely to muons at tree level. A muon-
specific scalar could account for the discrepancy between
the experimentally measured value of the anomalous
magnetic dipole moment of the muon and its theoretical
prediction [11–14], which is currently at the level of 3-4
standard deviations [67,68]. The usual MFV choice is to
postulate a new scalar with leptonic coupling strengths
proportional to ml, which is constrained from the electron
couplings [20]. By contrast, a strictly muon-specific scalar
can easily be long-lived for mS < 2mμ, leading to late
decays with potential signatures at fixed-target experiments
[69]. In this regime, the induced loop-level photon coupling
can still lead to appreciable limits from beam dumps and
supernovae.
We begin with an analysis of the EFT that leads to a

scalar coupled to muons. As we mentioned in Secs. II C and
II E, modifying the interactions to involve leptons involves
a straightforward replacement of the quark doublet and
singlet with the lepton doublet and singlet. The relevant
interactions involving the Higgs and the new scalar are then

−Lint ¼ L̄LYlERH þ cS
M

SL̄LERH þ H:c: ð47Þ

As in the case of an up-specific coupling, we assume that cS
and Yl are aligned, and that in the basis where Yl
is diagonal, Yl ∝ diagðme;mμ; mτÞ, cS takes the form

cS ¼ diagð0; ðcSÞ22; 0Þ. As in the case of quarks analyzed
above, Yl breaks the global lepton family symmetryUð3ÞL×
Uð3ÞE→Uð1Þe×Uð1Þμ×Uð1Þτ while cS breaks Uð3ÞL×
Uð3ÞE → Uð1Þμ ×Uð2ÞeτL ×Uð2ÞeτR. Crucially, to avoid
FCNCs, the Uð1Þμ subgroups left unbroken by Yl and cS
must coincide.
After electroweak symmetry breaking, the interactions

of Eq. (47) lead to a coupling of the scalar to muons,
−Lint ⊃ Sμ̄ðRegμμS þ iImgμμS γ5Þμ with

gμμS ¼ ðcSÞ22vffiffiffi
2

p
M

: ð48Þ

S exchange, as seen on the left of Fig. 5, contributes to the
muon’s magnetic moment with a value proportional to the
square of this coupling [70],

Δaμ ¼
1

8π2

Z
1

0

dx

×
ð1 − xÞ2ðð1þ xÞðRegμμS Þ2 − ð1 − xÞðImgμμS Þ2Þ

ð1 − xÞ2 þ xðmS=mμÞ2
:

ð49Þ

A pseudoscalar coupling to muons gives a negative con-
tribution to Δaμ, worsening the discrepancy. This is
partially why we do not consider the derivatively coupled
operator proportional to dS in Eq. (4), and we will
henceforth assume that gμμS is real. As originally pointed
out in Ref. [71], a scalar with massmS ≲mμ that couples to
muons with SM Higgs strength, gμμS ¼ mμ=v ∼ 4 × 10−4,
gives a contribution to Δaμ that is of roughly the right
size to explain the discrepancy, Δaμ ∼ 3ðgμμS =4πÞ2 ¼
3ðmμ=4πvÞ2 ¼ 35 × 10−10.
In addition to the one-loop S exchange contribution to

Δaμ, there is a two-loop contribution from the exchange of
S and a Higgs shown on the right of Fig. 5. The ratio of this
contribution to the one-loop value is roughly

FIG. 5. One- and two-loop contributions to the muon anomalous magnetic moment in the effective theory of Eq. (47). The two-loop
contribution is related to that of the one-loop by roughly the factor M2=ð8π2v2Þ, cf. Eq. (50).
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ðΔaμÞ2−loop
ðΔaμÞ1−loop

∼
M2

8π2v2
; ð50Þ

where we have again cut the loop momenta off at M. In
other words, for M ≲ 4πv=

ffiffiffi
2

p ¼ 2 Tev, the two-loop
contribution to Δaμ can be neglected in comparison to
the one-loop value.
In Fig. 7, we show in light red the range of couplings gμμS

as a function of mS that bring the measurement and
expectation for ðg − 2Þμ to within 2σ, using the one-loop
expression of Eq. (49) for Δaμ. Above, we also show in
dark red the region where the new scalar’s contribution to
ðg − 2Þμ would bring the muon magnetic moment to 5σ
above its measured value.
As described in Sec. II A, there are corrections to the S2

operator at two loops and to the S2H2 operator at one loop.
Requiring that the shifts δm2

S from each of these operators
(after H attains its vev v=

ffiffiffi
2

p
) are not larger than m2

S itself
leads to an upper bound on the coupling ðcSÞ22. We can
then turn this into an upper bound on the coupling of S to
muons,

gμμS ≲min

�
16π2ffiffiffi

2
p mSv

M2
; 4π

mS

M

�

≃min

�
1 × 10−2

�
mS

0.1 GeV

��
500 GeV

M

�
2

;

3 × 10−3
�

mS

0.1 GeV

��
500 GeV

M

��
: ð51Þ

In Fig. 7, we show the naturalness limit on the coupling as a
solid black line, where for our cutoff choiceM ¼ 500 GeV
the limit comes from the S2H2 operator.

1. UV completion

In Eq. (47), the scalar interacts with leptons through a
dimension-five operator. As we saw in Sec. II D, a UV
complete theory may introduce additional restrictions on
the couplings and masses if we wish to have a natural
theory. As before, we take a simple UV completion with a
vectorlike weak SUð2Þ doublet L0 that has the same
quantum numbers at the SM lepton doublet LL. The
relevant interactions are

−L ⊃ ML̄0
LL

0
R þ ySSL̄LL0

R þ y0L̄0
LHER þ H:c: ð52Þ

Our assumption of a muon-specific coupling means that the
flavor structures of yS and y0 are such that only the second
generation SM lepton fields μL and μR are involved in the
interaction with the vectorlike lepton and Higgs. In what
follows we therefore drop the flavor indices on yS and y0.
In this theory, S and the Higgs receive one-loop

corrections to their (squared) masses. If we require that

these are no larger than the squared masses themselves, we
get upper bounds on the couplings that are analogous to
Eqs. (26) and (27).
Using hats to denote mass eigenstates, after electroweak

symmetry breaking, L0
L ¼ L̂0

L pairs up with L̂0
R ¼

cos θL0
R þ sin θμR to form a Dirac fermion with massffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ y02v2=2
p

where the mixing angle is given by
tan θ ¼ y0v=

ffiffiffi
2

p
M. The orthogonal combination, μ̂0R ¼

cos θμR − sin θL0
R, marries μL ¼ μ̂L to form the light

fermion that we identify with the muon. The couplings
of the scalar can then be expressed in terms of mass
eigenstates,

ySSμ̄LL0
R þH:c: ¼ −yS sin θS ¯̂μ μ̂

þ yS
2
cos θS½ ¯̂μð1þ γ5ÞL̂0 þ ¯̂L0ð1− γ5Þμ̂�:

ð53Þ

The first term here is simply a coupling of the muon to S
with strength

gμμS ¼ −yS sin θ ¼ −
ySy0vffiffiffi
2

p
M

�
1þ y02v2

2M2

�−1=2
; ð54Þ

whichmatches that found in the EFT in Eq. (48) for y0v≪M
with cS ¼ ySy0. Using the naturalness bounds of Eqs. (26)
and (27) leads to an upper bound on this coupling,

gμμS ≲ 16π2mSv2ffiffiffi
2

p
M3

≃ 5 × 10−3
�

mS

0.1 GeV

��
500 GeV

M

�
3

:

ð55Þ

Comparing this to Eq. (51), we see, depending on the value
of the EFT cutoff M, the naturalness bound in the UV
complete theory can be more or less constraining than in the
EFT. For the 500 GeV cutoff in Fig. 7, the limit we have just
derived from the renormalizable completion is no stronger
than that from the EFT above.
The second term in Eq. (53) describes a coupling of the

muon to the heavy lepton that also gives a contribution to
Δaμ as shown in Fig. 6. For M ≫ mS, mμ, y0v, this is

ΔaμjL0 ≃
y2S

96π2
m2

μ

M2
≲m2

μm2
S

6M4

≃ 3 × 10−16
�

mS

0.1 GeV

�
2
�
500 GeV

M

�
4

; ð56Þ

where the inequality comes from the naturalness limit on yS
in Eq. (26). We see, therefore, that additional contributions
to Δaμ from a UV completion are negligible compared to
those captured in the EFT in a natural theory.
In this model, there is an additional constraint from

electroweak precision tests. This comes from the fact that
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the right-handed muon is an admixture of μR and L0
R which

have different electroweak quantum numbers. In particular,
this shifts the coupling of the right-handed muon to the Z,
gR, by an amount proportional to the square of the mixing
angle [83,84],

δgR ¼ sin2θðgSML − gSMR Þ ≃ y02v2

2M2
ðgSML − gSMR Þ; ð57Þ

where gSML;R are the SM values of the couplings of the left-
and right-handed leptons to the Z. The limit on this shift
from precision measurements on the Z pole [85],

y0v
M

≲ 0.05; ð58Þ

can be combined with the naturalness limit on yS (26) to set
an upper limit on gμμS . We show this limit in Fig. 7 as a
brown line. We note that this simple limit rules out most of
the region that can explain the ðg − 2Þμ discrepancy.
However, we stress that this is a model-dependent limit
that can be lessened or is absent in other UV completions,
e.g., a theory with additional vectorlike leptons that have
the quantum numbers of right-handed leptons [19] or UV
completions involving scalars instead of fermions [20].

2. Bounds on gμμS
We now consider generic bounds on a scalar coupled to

muons that come from beam dumps, colliders, and astro-
physical observations. To study these, we first need to
understand the decay channels of the scalar. For a scalar
above muon threshold, its width is dominated by decays to
μþμ− with a rate

ΓS→μþμ− ¼ gμμS
2

8π
mS

�
1 −

4m2
μ

m2
S

�
3=2

: ð59Þ

The S → μþμ− decay is generally prompt in our parameter
space of interest, when kinematically allowed. In addition
to the coupling to muons it is important to consider the

coupling of the scalar to photons that arises due to a muon
loop (the two-loop coupling to electrons is negligible). The
relevant part of the effective Lagrangian containing this
interaction is

Leff ⊃
gμμS α

6πmμ
F1=2

�
4m2

μ

m2
S

�
SFμνFμν; ð60Þ

where

F1=2ðτÞ ¼
3τ

2

�
1þ ð1 − τÞ

�
sin−1

1ffiffiffi
τ

p
�

2
�
: ð61Þ

FormS ≪ mμ, F1=2ð4m2
μ=m2

SÞ → 1. This interaction gives a
rate for S → γγ of

ΓS→γγ ¼
α2ðgμμS Þ2m3

S

144π3m2
μ

����F1=2

�
4m2

μ

m2
S

�����
2

: ð62Þ

When the scalar mass is below the muon threshold, its loop-
induced decay to photons can be quite slow, enabling it to
be long-lived. In addition to mediating light scalar decay,
the two-photon coupling can allow for S to be produced in
electron beam dumps as well as in supernovae. In
Refs. [72,73], the effects of a scalar coupled to photons
through dimension-five operators were studied. The lack of
observation of a signal at the electron beam dump experi-
ment E137 [74] as well as the requirement that scalar
production not lead to excessive cooling of supernova
1987A lead to limits on the strength of this operator. Using
the expression for the coefficient in Eq. (60), we translate
these limits on the strength of the SFμνFμν operator into
limits on gμμS , which we show in Fig. 7. Note that these
limits do not apply to mS > 2mμ since in this region, the
scalar rapidly decays to μþμ−.
Additionally, there are proposals to search for light

scalars produced at the SHiP experiment [79], a proton
beam dump at the CERN SPS, as well as at FASER, which
is a proposal to look for particles produced at the LHC in
the extreme forward direction [80,81]. In both cases, we
estimate the reach for muon-coupled scalars by considering
production through the decay of charged kaons produced in
the collisions, Kþ → μþνS. For SHiP, we take estimates of
the number of kaons and the energy of their decay products
from [79]. For FASER, we follow the procedure of [81] and
simulate forward kaon production using EPOS-LHC [86]
within CRMC [87]. The scalars produced from kaons can
then travel to the detectors where their decays can be seen.
We show the regions of parameter space that can be probed
at these experiments in Fig. 7.
We have also shown in Fig. 7 the estimated reach in the

coupling from production at proposed muon beam dumps
estimated in Ref. [69] as well as by a proposed analysis of
data from the COMPASS muon beam dump [77,78].

FIG. 6. Additional contribution to ðg − 2Þμ in the UV complete
theory of Eq. (52) from the coupling of the muon to a heavy
vectorlike lepton and the scalar in Eq. (53). This contribution is
generically smaller than that involving virtual muons that also
appears in the EFT (see the diagram on the left of Fig. 5).
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Scalars coupled to muons can also be produced in high
energy collisions in association with muons. The BABAR
experiment performed a search for new vectors that couple
to muons through the process eþe− → μþμ−Z0, Z0 → μþμ−
[75], finding no evidence for such a particle. We recast their
search to find the region of parameter space ruled out for
the case of a scalar, which we show in Fig. 7 as a dark
purple, shaded region. The dashed line below this region
shows the possible reach that the future Belle II experiment
will have given its factor of 100 increase in the amount of
data compared to BABAR, assuming dominance of stat-
istical errors. This covers a large part of parameter space
that can explain the ðg − 2Þμ discrepancy.
The scalar S can also be produced in decays of the Z

boson, through Z → μþμ−S which would lead to a Z → 4μ
signal. This decay mode has been measured by both
ATLAS [88] and CMS [76], and in the latter an explicit
search for a Lμ − Lτ gauge boson is performed. We
interpret the CMS result in the context of a muon-coupled

scalar using MADGRAPH 5 [64], deriving an upper bound
on the coupling shown as the light purple shaded region in
Fig. 7. The dashed line below this region shows an estimate
of the potential sensitivity in this mode that could be
achieved with 3 ab−1 of integrated luminosity at 13 TeV,
assuming the same experimental cuts. In particular, this
scaling assumes that high-luminosity LHC triggers will
efficiently be able to capture 4μ events with the leading two
muons having pT above 20 and 10 GeV, respectively.
We see that for mS < 2mμ, E137 and SN 1987A provide

strong bounds. Not only do existing experiments rule out a
muon-specific scalar as an explanation of the measured
muon anomalous magnetic moment, but they also cover
much of the parameter space that will be probed by
proposed experiments in this model. At higher masses,
existing bounds do not constrain the muon-specific scalar
as an explanation of ðg − 2Þμ, but with more integrated
luminosity much of the relevant region of Fig. 7 will be
covered by Belle-II [82], and HL-LHC.
Finally, thus far, we have assumed in this section that theS

interacts only with the muon at tree level. As discussed
above, we can add a coupling to a DM particle, which we
take to be a Dirac fermion χ. Then, it is possible that the Sμ̄μ
coupling is connected to theDMabundance. Ifmχ > mS, the
secluded annihilation channel χ̄χ → SS can annihilate away
the χ population independently of the S coupling to the SM.
On the other hand, for mS > mχ > mμ, the DM undergoes
annihilation to muons. The annihilation cross section is
given by an expression similar to Eq. (45) with an extra
factor of 1=3 for color and appropriate kinematic factors if
the muon mass is not negligible. With this in mind, we
choose the benchmark mass mχ ¼ 1

2
ðmμ þmSÞ. Then, the

curve labeled “Dark matter” in Fig. 7 represents the
minimum Sμ̄μ coupling needed to achieve the observed
DM relic density with a standard thermal cosmology, i.e.,
assuming that the scalar coupling to DM is yχ ∼ 4π [89].
Evidently it is challenging to robustly probe thermal dark
matter that annihilates to muons in this scenario.

IV. CONCLUSIONS

New light scalars are ubiquitous in BSM physics. The
most commonly used framework for avoiding flavor
constraints is to assume that any new scalar has couplings
to the SM fermions that are proportional to the Yukawa
couplings. Theories that satisfy the resulting MFV para-
digm are safe from FCNCs, but represent only a subset of
possible models with underlying flavor patterns that evade
flavor bounds. In this work, by contrast we have considered
an alternative class of flavor-specific scalar models in
which a new scalar couples dominantly to the first or
second generation. At the price of assuming alignment
between the flavor symmetry broken by a single fermion
Yukawa and that broken by the coupling of a new scalar,

FIG. 7. Constraints on a light scalar coupling to muons in the
mS − gμμS plane. The orange band indicates the region of param-
eter space where the current ðg − 2Þμ discrepancy [67,68] is
below 2σ. The red shaded region above this band is excluded
since here the ðg − 2Þμ discrepancy is larger than 5σ. Also shown
are limits from Supernova 1987A (gray shaded) [72,73], SLAC
beam dump E137 (blue shaded) [72–74], BABAR (purple shaded)
[75], and CMS (light purple shaded) [76]. We furthermore
indicate the projected sensitivity of several proposed experiments
and/or analyses, including COMPASS (blue dot-dashed line)
[77,78], SHiP (blue solid line) [79], FASER (blue dashed line)
[80,81], NA64-type muon beam fixed target (green solid line)
[69], Fermilab muon beam fixed target (green dashed) [69],
Belle-II (purple dashed line) [82], and HL-LHC (light purple
dashed line). Assuming a coupling of the scalar to dark matter,
the black dashed line indicates where the annihilation rate to
muons is equal to the canonical thermal relic value, hσvi ¼
3 × 10−26 cm3 s−1 for mχ ¼ ð1=2Þðmμ þmSÞ and yχ < 4π. Fi-
nally, the region below the dark brown solid line (light brown
solid line) is natural according to the EFT criterion (renormaliz-
able model criterion including electroweak precision) presented
in Eq. (51) [Eqs. (26) and (58)]. A 500 GeV cutoff scale is
assumed.
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one obtains symmetry breaking patterns which naturally
suppress FCNCs.
By treating the scalar couplings as flavor symmetry

spurions, we have not only explicitly demonstrated that
they can be naturally small, but also parametrized the
eventual flavor violation in terms of these couplings.
Generally, all FCNCs are suppressed by small Yukawas
in our approach. While we have focused on phenomenol-
ogy, it would be interesting to consider the realization of
our underlying symmetry structure from a UV perspective,
along recent avenues of investigation [34,35]. Nevertheless,
we have gone beyond the use of simple effective operators
to describe the interaction between a new scalar and the
SM, examining possible renormalizable models and their
implications for naturalness.
The new scalarswhichwe have studied are useful inmany

contexts. We have considered a sampling of flavor-specific
scalar models as an application of our framework. In
particular, we have reviewed the potential constraints on a
scalar whichmediates interactions between the up quark and
DM. Between direct detection, indirect detection, and
neutron EDMsearches, it is challenging to choose couplings
of the new mediator to the up quark and DM such that a
signature of thermal DM annihilating to up quarks with a
mass below the electroweak scale would not yet have been
observed. We have also examined a muon-specific scalar,

which offers a potential resolution of the discrepancy
between the observed and measured anomalous magnetic
moment of the muon. If such a scalar weighs less than 2mμ,
existing beam dump and supernova observations sharply
bound its muon coupling, challenging a possible resolution
of the discrepancy. Unlike its spin-1 counterpart, however, a
muon-specific scalar at relatively large mass does not seem
to be limited as strongly by existing constraints, such as
those from B-factories and the LHC.
Models with new spin-0 particles represent a unique

class of new physics theories, and in considering general
flavor symmetries that can set the coupling structure, we
have put flavor-specific scalars on firm theoretical ground.
We hope that our results prove useful in phenomenological
constructions of BSM theories with additional scalars.
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