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Impact of vector new physics couplings
on B, —» (K.K*)tv and B — wtv decays
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Experimental measurements of R, Rp- and R,y in B — (D, D*)lv and B, — J/¥lv decays mediated

via b — clv charged current interactions deviate from standard model prediction by 2.3¢, 3.0¢ and 1.30,
respectively. In addition, a deviation of 1.5¢ from the standard model prediction has been witnessed in
B(B — tv) mediated via b — ulv charged current interactions as well. Motivated by the anomalies present
in B and B, meson decays, we analyze the corresponding B, — (K, K*)zv and B — zzv semileptonic
decays within the standard model and beyond. We use an effective field theory formalism in which b — ¢
and b — u semileptonic decays are assumed to exhibit similar new physics patterns. We give the
predictions of various observables such as the branching fractions, ratio of branching ratios, lepton side
forward backward asymmetry, lepton polarization fraction and convexity parameter for B, — (K, K*)tv
and B — zrv decay channels within the standard model and within various new physics scenarios.
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I. INTRODUCTION

The electroweak interactions which are mediated via Z°
and W bosons are categorized into flavor changing neutral
current and charged current interactions. Deviations from
the standard model (SM) predictions are observed not only
in decays mediated via the b — (c,u) charged current
processes but also in decays mediated via the b — s neutral
current process. Most reliable measurements in charged
current interactions include Rp, Rp- and R;/y, where

B(B — DWw)
B(B - DY)’

R — B(B, — J/Y¥v)
YT BB, > T/Pl)

Ry =
(1)

Based on lattice calculations of Refs. [1,2], the SM
predictions for Ry are 0.299 £ 0.011 and 0.300 £ 0.008,
respectively. Combining the two lattice results, the value of
Rp was reported to be 0.300 4+ 0.008 by the FLAG
working group [3]. A more accurate prediction of Ry =
0.299 £+ 0.003 was reported in Ref. [4] with the exper-
imental form factor of B — DIv from BABAR and Belle.
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Similar SM predictions were reported very recently by
many groups. We refer to Refs. [5-7] for the details. The
first SM prediction of Rp- = 0.252 £ 0.003 was reported
in Ref. [8]. However, various new calculations of R are
now available. Based on the calculations performed in
Refs. [5,6,9], the arithmetic average was reported to be
Rp- = 0.258 £ 0.005. Although the range for R,y was
reported to be [0.25, 0.29] obtained using different form
factors [10—12], very recently in Ref. [13], the authors have
reported the new bound of [0.20, 0.39] for R, at
95% confidence level. On the other hand, the average
experimental values reported by HFLAG are 0.407 +
0.039 +0.024 and 0.304 +0.013 +0.007 for R, and
Ry measured from BABAR [14], BELLE [15-17],
LHCb [18] and 0.71 & 0.17 £ 0.18 for R,y from LHCb
[19] measurement. This amounts to a combined deviation
of around 3.78¢ in Rp and Rp- [20] and around 1.3 in
Rj/y from the SM expectations. Similarly, discrepancy
between the measured value and the SM value has been
observed in the b — u quark level transition decays as well.
The average value of the branching ratio (BR) B(B—1v) =
(10.942.4)x 1075 reported in Ref. [21] from BABAR
[22,23] and Belle [24,25] measurements is not in good
agreement with the SM expectations [26-28]. However, the
measured value of B(B — nlv) = (14.5+0.5) x 107>
from BELLE [29-31] and BABAR [32-36] is consistent
with its SM counterpart. The SM prediction, however,
depends on not very well known CKM matrix element
|V.»| and various meson to meson transition form factors.
We define an observable in which the |V,,| dependency
cancels in the ratio. That is
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Rl :TioB(Baw) 2)
" 13- B(B - rxlv)’

where 7 and - are the lifetime of B® and B~ mesons.
Using the measured values of B(B — tv), B(B — zlv) and
the direct measurement of the ratio 7z /75- = 1.076 +
0.004 [21], we get RL =0.698 4 0.155. In the SM, we
obtain R.. = 0.566. This clearly shows a mild deviation from
SM prediction. We also consider another useful observable
which is potentially sensitive to new physics (NP), i.e.,

B(B — ntv)

Re = B(B — nlv)’ (3)
In the SM, we obtain R, = 0.641. Again, a naive estimate
would give R, < 1.784 using the present world average of
B(B — zlv) = (1.45 £ 0.05) x 10~* [21] and the upper
limit on B(B — mrv) < 2.5x 107* reported by Belle
Collaboration [37]. Similarly, by considering the branching
fraction of B — zzv [37] and B(B — zlv) [21], R, =
1.05 £ 0.51 was obtained in Ref. [38]. These indirect hints
of existence of NP led the physics community to look for
various NP scenarios. There exists various model-dependent
and model-independent analysis in the literature in order to
explain these anomalies, details of which can be found in
Refs. [39-89].

In this paper, we are mainly interested in discussing the
NP effects in By — (K, K*)zv and B — z7v semileptonic
decays mediated via b — uzv charged current interactions.
Within the SM, the branching ratio and ratio of branching
ratios of By — (K, K*)7v and B — mrv decays have been
studied extensively by various authors [90-96]. Very
recently, in Ref. [97], the authors have performed a
model-independent analysis of NP effects in B; —
(K, K*)rv decays using the experimental constraints com-
ing from the B — 7zv channel. Similarly, in Ref. [98] the
authors have studied the B, — (K, K*)zv decay modes
using the form factors obtained from the covarient light-
front quark model. Our main aim is to study the implication
of Rp, Rp+, Ry /g, and R’ anomalies in By — (K, K*)zv and
B — nrv semileptonic decays in a model-dependent way.
To this end, we use an effective theory formalism in the
presence of NP and perform a combined analysis of b — u
and b — ¢ semileptonic decays. This is where we differ
significantly from Refs. [97,98]. Again, for various meson
to meson transition form factors, we use very recent lattice
QCD results of Refs. [94-96]. More importantly, we give
the first prediction of various observables such as 7
polarization fraction and convexity parameter for B, —
(K,K*)tv and B — mrv decays within the SM and within
various NP scenarios.

The present discussion in this paper proceeds as follows.
In Sec. II, we first report the most general effective
Lagrangian governing the b — (u, c)lv weak decays in
the presence of NP. We also report all the relevant formulas

corresponding to the various meson to meson form factors in
this section. The relevant expressions for all the observables
in the presence of vector NP couplings obtained using
helicity formalism are reported in Sec. II. In Sec. III, we
report the results pertaining to all the observables within the
SM and within various NP scenarios. Finally we conclude
with a brief summary of our results in Sec. IV.

II. METHODOLOGY

The most general effective Lagrangian for b — ¢'lv
transition decays which includes both SM and beyond
SM contributions is of the form [99,100]

AGpV
Log=——7=12 (OV, + 0aWOy
\/i ‘ W:Si;[’TL
bOY saoy). )
W=38;V,.Tg

where ¢’ denotes a u quark or a ¢ quark and V, is the
relevant CKM matrix element. The four fermion operators
Oy and Oy, are defined as

= (¢'r"P;b)(Iy,PLv)).
5991 (q'r"Prb)(ly, Piv)).
Os, = (q'P;b)(IPLvy),
O5, = (¢'Pgb)(IPw)),
OT (d'0"Pb)(lo,,Pruy),
= (q'0"Pgb)(lo,, Pru)). (5)

Here i = L, R and 6, = i[y,.7,]/2. The left and right
projection are defined by P; r = (1 F y5)/2. We note that
W and W represent the complex Wilson coefficients (WCs)
of NP contribution due to left handed and right handed
neutrino interactions, respectively. We assume that the NP
couples to u and ¢ quarks with equal stregth; i.e., the WCs
W and W are quark flavor universal. The §,; restricts the NP
effects only to the v mode. Assuming the WCs to be real
and considering NP contributions from the vector-type
NP couplings alone, the effective Lagrangian can be written
as [61]

G _ i
Legt = —7qu’b{leh(1 —75)viq'r"b
— Guly, (1 = y5)uiq'v"vsb + Gyly, (1 + ys)viq'v*b
— Galy, (1 +y5)uig'r"ysb} + He., (6)

where

Gy =1+V,+ Vg,
GV:VL—’_VR’

Gy=1+V, = Vg,
GA:VL_VR' (7)
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Using the effective Lagrangian of Eq. (6), the matrix element of the semileptonic decays B — (P, V)lv, where P(V) denotes
pseudoscalar (vector) meson, can be written as

G _ - _ -
M= —7qu/b{len(1 —5)vi{(P,V)|q'r"b|B) = Guly, (1 = ys)vi((P, V)|q'r"ysb|B)

+ Gyly, (1 +75)ui{(P. V)|q'7*b|B) = Galy, (1 + v5)vi (P, V)|q'v"ysb| B)}. (8)

The nonperturbative hadronic matrix elements in the decay amplitude can be parametrized in terms of various B — (P, V)
transition form factors as follows:

_ 2 _ a2 2 a2
EENTPHBE) = 1.6 0+, =R ] g MM g
2iV(q
V0N 1bIB)) = 31

N €'.q . €.
V)1 sblB () = 2o ) gy + (M + M)A ()| =L

*

€*.q )|:(p+p/)#_3q_2

(M + My ©)

—Az(qz)

where g = p — p’ is the momentum transfer. For the B, — (K, K*) and B — = transition form factors we use the formulas
and the input values reported in Refs. [94-96]. The final expressions of f(¢?) and f, (¢*) for By — Klv decays are [94]

3 2
- k
PPI() = Y0 =000+ Y87 2000 - (115007,
k=1 k=0
) k
PP AP) = 30 [ = ()52 . (10)
k=0
Similarly, for the B — # transition form factors, the relevant expressions are [96]
" N1
fi(d?) (1 Z bl [z -(- N:N—ZNZ} folg®) =>_ b0z, (11)
- _ < n=0

where N, = 4 and

Vii—q* =T~ e

dg) = : 2 = ’ t+:(MB<s)+MP)2v tOZ(MB<s)+MP>(\/MB<s)_ Mp)?, P0,+(q2):1_M2 .
otV =l 0.+

(12)

Here M p refers to the mass of K or z meson, My = mp- = 5.6794(10) GeV and M, = 5.32520(48) GeV represent the
resonance masses. Again, for B; — K* form factors, the relevant expressions pertinent for our numerical analysis are [95]

F(1) =%[ao tad, (13)

where t = g% and F(t) refers to the form factors V, Aj, A; and A,,, respectively. Here

(Mg, + Mg )* (M3 — M3 — ¢*)A(¢%) — (1 — 1) (1= — 1)As(q?)

Ap(g?) = 2 14
lZ(q ) 16MBSM%<*<MBS +MK*) ( )

and

z(1,19) = j;i:;;:;z:?; -
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TABLE L

Theory inputs from PDG for B, - Klv, B; - K*lv and B — zlv.

Theory inputs from PDG [21]

Parameters Value Parameters Value Parameters Value Parameters Value

mg, 5.366 89 my, 0.139 57 0.105 6583715 75, 1.519 x 10~12
my 0493677  my,(u)  4.18 9 0.0409(11) Tp, 1.505 x 1012
Mg+ 0.89176 m(p) 091 V.l 0.003 61(22) Gr 1.1663787 x 107
M go 5.279 55 m, 1.776 82

where fo = 12 GeV and 1, = (Mp + My-)*. We refer to
Refs. [94-96] for all the omitted details.

Using the effective Lagrangian of Eq. (6), the three body
differential decay distribution for the B — (P, V)Iv decays
can be written as

dr G|V, 2 |P 2
dg~dcos @ 2 nmy q

where L,, and H" are the leptonic and hadronic current

tensors. Here [Ppy)| = AMmg.mip ). q°)/2mp Wit

Ma,b,c) = a*+b>+ c*>—2(ab + bc + ca)  represent
the three momentum vector of the outgoing meson. One
can use the helicity techniques for the covariant contraction
of L, and H", details of which can be found in
Refs. [101,102]. We follow Ref. [61] and write the
expression for differential decay distribution for B —
(P,V)lv decays in terms of the helicity amplitudes H’s
and A’s as follows:

darr - ~ )
mj 2
+?(HOCOSQ—H,) s (17)
. = N|Py|{ 2A425in%0(G> + G3)
dq*dcos6 v AT TA

2
+ [(1 + cos26) +%sin29] A(Gh+GR)

+ Ai(G%/ + G%/)] —4.A||.Al cos0(G,Gy
2
- 6uG0) + 226+ B gcos0 - AT .
(18)

where @ is the angle between the I_)’P‘V and lepton three
momentum vector in the / — v rest frame and

G2V 122 2\ 2
N = GrlVanla (1—’"’) . (19)

2567 m3 g

By performing the cos @ integration in Egs. (17) and (18),
we get

dr*  8N|P 3 m2\  3m?
= |P|(G2V+G2V){Hg<1+—’>+—lﬂ,2},

d? 3 24%) " 24
(20)
dar’  8N|Py| m? -
o= g+ L, 363+ 69)
+ A%y] + AEW}. (21)

The SM equations can be obtained by setting Gy =G, =1
and Gy = G, = 0. Explicit expressions of the helicity
amplitudes H’s and A’s are presented in Ref. [61].

TABLE II. Form factor inputs for B; — Klv, B; - K*lv and
B — rlv.

B, — Klv [94]
Coefficients Value Coefficients Value
b\ 0.315(129) b 0.3680(214)
3% 0.945(1.305) (" ~0.750(193)
b 2.391(4.671) b 2.720(1.458)

B, - K*ly [95]

P(1;—42 MeV)V(t) Value P(t;—87 MeV)A((¢) Value
ag 0.322(48) ag 0.476(42)
a; —3.04(67) ap —2.29(74)
B, — K*Iv [95]
P(#;350 MeV)A(¢) Value P(#;350 MeV)A,(7) Value
ag 0.2342 ag 0.1954
(122) (133)
aj 0.100(174) a 0.350(190)
B — zlv [96]
Coefficients Value Coefficients Value
b 0.510(19) b 0.419(13)
b9 —1.700(82) bt —0.495(54)
b9 1.53(19) by —0.43(13)
by 4.52(83) b3 0.22(31)
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TABLEII.  The first row reports the average values of the experimental inputs Rp, Rp- [20], Ry [19] and R!. The second row reports

the 20 range of the respective ratio of branching ratios.

Rp-

Rp Ry RL

0.304 £ 0.013 4 0.007
[0.274, 0.334]

Average values
20 range

0.407 £ 0.039 £+ 0.024
[0.315, 0.499]

0.71 £0.17£0.18
[0.21, 1.21]

0.698 £ 0.155
[0.388, 1.008]

The ratio of branching ratio is defined as

B(B(X) - M’L’IJ)

R=—_ "~

(22)

where M = K, K*, 7 and [ = . We also define various g>
dependent observables such as differential branching ratio
DBR(g?), ratio of branching ratio R(g?), forward back-
ward asymmetry Akg(q?), polarization fraction of the
charged lepton P'(¢?) and convexity parameter Ck(g?)
for the decay modes as follows:

2
DBR(g?) = dr’/dq ,
Tot
R() = B(B() — (P,V)w)
B(B() = (P,V)lv)’
*Y)
A(P.V) N (fi)l _f(}>dcosed(j{dcos9
rs (4°) = arPY) ’
dq*
P () = V() dg? = AT () fdg?
(P.V) dF(P,V)(+)/dq2 + dF(P'V)(—)/dqz’
1 d2 dF(P’V)
cl™(g?) = . (23
P ) (dr®V) /dg?) d(cos 0)? quzdcosﬁ} (23)

where dI'"V)(4)/dg* and dI"\""Y)(=)/dq* represent the
differential branching ratio of positive and negative helicity
leptons, respectively. We also give predictions for the
average values of the forward backward asymmetry of
the charged lepton (Al), the convexity parameter (C%),
and the longitudinal polarization fraction of the charged
lepton (P!) which are calculated by separately integrating
the numerator and the denominator over g*. Although the =
momentum cannot be fully reconstructed from its decay
process and the quantities such as A%, (¢?) and P?(g?) are
not directly accessible in the experiments, one can obtain
this information from the subsequent decays of the 7 lepton
such as 7 —» zv, 7 — pv and 7 — lvv [103]. It is worth
mentioning that for the B, — (P, V)zv decays, the forward
backward asymmetry parameter A% ;(g?), the 7 polarization
fraction P?(g?), and the convexity parameter C%(g?) do not
depend on V; NP coupling if we assume that the NP effect
is coming from new vector interactions V; only. The NP
dependency gets canceled in the ratio. On the other hand,
although A%,(g*) and C%(g?) do not depend on V; NP
coupling, the 7 polarization fraction P*(g?), however, does
depend on this NP coupling. Measurement of the 7
polarization fraction P’ for these decay modes in future
will be crucial to determine the exact nature of NP. Now let
us proceed to the results and discussion.

TABLE IV. The central values and 1o ranges of each observable for both ¢ and 7 modes in SM are reported for By, - Klv, B, —» K*lv

and B — zlv decays.

B, - Klv BR x 107* (ALp) (P (ct) Ry
1 mode Central value 1.520 6.647 x 1073 0.982 —1.479
lo range [1.098, 2.053] [0.006, 0.007] [0.979, 0.984] [—1.482, —1.478] 0.636
7 mode Central value 0.966 0.284 0.105 —0.607
lo range [0.649, 1.392] [0.262, 0.291] [—0.035, 0.279] [-0.711, —0.525] [0.586, 0.688]
B, —» K*lv BR x 107 (ALp) (P (C%) Rp k-
1 mode Central value 3.259 —0.281 0.993 —0.417
lo range [2.501, 4.179] [—0.342, —0.222] [0.989, 0.995] [—0.575, —0.247] 0.578
7 mode Central value 1.884 —0.132 0.539 —0.105
1o range [1.449, 2.419] [—0.203, —0.061] [0.458, 0.603] [—0.208, —0.007] [0.539, 0.623]
B — nly BR x 107 (ALp) (P (ct) R,
1 mode Central value 1.369 4.678 x 1073 0.988 —1.486
lo range [1.030, 1.786] [0.004, 0.006] [0.981, 0.991] [—1.489, —1.481] 0.641
7 mode Central value 0.878 0.246 0.298 —0.737
lo range [0.690, 1.092] [0.227, 0.262] [0.195, 0.385] [—0.781, —0.682] [0.576, 0.725]
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III. RESULTS AND DISCUSSION

A. Input parameters

We first list out the theory input parameters in Table I
that are relevant for our numerical analysis. The theory
inputs such as mass of pseudoscalar mesons (K, x), vector
meson (K™*), leptons (m,, m.), and quarks (m;, m.) are in
GeV units. m, (u) and m(u) refer to the masses of b and ¢
quarks evaluated at g = m; renormalization scale. |V |
and |V,,| are the corresponding CKM matrix elements for
b — ¢ and b — u transition decays. The Fermi coupling
constant G and the lifetime of B° (tpo) and By (zp)
mesons are in the units of GeV~2 and seconds, respectively.
The entries in Table II represent the respective form factor
inputs for B, - Klv [94], B, — K*Ilv [95] and B — zlv
[96] decays. For our analysis, we consider the uncertainties
pertaining only to CKM matrix elements and form factor
inputs. The number written within the parenthesis refers to
the corresponding lo uncertainties. We also report the
experimental input parameters Ry, Rp-, R,y and R. with
their uncertainties measured by various B factory experi-
ments such as BABAR, BELLE and LHCb in Table III. In
our analysis, we added the statistical and systematic
uncertainties in quadrature. The 2¢ range of each of the
experimental input parameters is also reported in Table III.

B. Standard model predictions

We first report in Table IV the SM predictions of various
observables such as BR, ratio of branching ratio (R),

TABLE V. Allowed ranges of each observable in the presence
of V; NP coupling of Fig. 2.

R BR x 107
B, — Kww [0.644, 0.891] [0.735, 1.746]
B, —» K*tw [0.593, 0.804] [1.684, 2.993]
B — ntv [0.630, 0.915] [0.793, 1.368]

forward backward asymmetry parameter ((AL)), the
polarization fraction of the charged lepton ((P')), and
the convexity parameter ((C%)) for the B, - Klv, B; —
K*lvand B — nlv decay modes, where [ is either a u lepton
or a 7 lepton, respectively. We find the branching ratio of all
the decay modes to be of the order of 10™*. We also give
first prediction of various observables such as (P') and
(C".) for these decay modes. The central values reported in
Table IV are calculated by considering the central values of
the input parameters reported in Tables I and II, whereas,
for the lo ranges, we perform a random scan over the
theoretical inputs such as CKM matrix elements and the
form factor inputs within 1o of their central values. We
observe that all the observables differ significantly while
going from the y mode to the r mode. The forward
backward asymmetry parameter (A%,) for the B, - Kuv
and B — muv decays is vanishingly small, whereas (P*)
and (C%) are nearly equal to 1 and —1.5, respectively.
Although (P*) for the B; - K*uv decays is quite similar to
B, » Kuv and B — muv decays, the (A%p) and (C%) for
the B, - K*uv decays are quite different from the B; —
Kuv and B — muv decays. In Fig. 1, we show the ¢?
dependency of all the observables for the 4 mode and the =
mode, respectively. We notice that the g> behavior of all the
observables for the y mode is quite different from the
corresponding 7 mode. Again, the forward backward
asymmetry parameter A%, (g?), the 7 polarization fraction
P!(g?), and the convexity parameter C'(¢?) for the B, —
Kupv and B — zuv remain constant throughout the whole
g* region. Similarly, for the B, — K*uv decays, we observe
that the 7 polarization fraction P!(¢*) remains constant in
the whole ¢? region. This is quite obvious because in the
m; — 0 limit, the ¢g*> dependency cancels in the ratio for
these parameters. There is a zero crossing in the A%,(¢?)
parameter for the B, - K*zv decays. However, we do not
observe any zero crossing in the A%z(g?) parameter for
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FIG. 3. Differential ratios R(g?) and differential branching ratios DBR(¢?) for B, — Krv (first column), B; — K*7v (second column)
and B — zzv (third column) decays using the V; NP coupling of Fig. 2 are shown with a violet band, whereas the corresponding SM
ranges are shown with a green band. The omitted plots such as A%z (g?), P*(¢*) and C%(g?) are not affected by V, NP coupling.
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FIG. 4. Inthe left panel we show the allowed ranges in V; NP coupling and the corresponding ranges in R, (violet), Rp- (green), R, /e
(blue), and R’ (yellow) once 26 experimental constraint is imposed. The corresponding ranges in B(B — z7v) and R, are shown in the
right panel.

B, —» Krv and B — zrv decays. Similarly, we observe a C. Beyond the SM predictions

zero crossing in the P7(g?) observable for all the decay We determine the impact of NP on various observables
modes. We now proceed to discuss various NP scenarios. pertaining to B, — (K, K*)tv and B — ntv decays. To this

end, we use an effective theory formalism in the presence of
TABLE VI.  Allowed ranges of each observable in the presence ~ vector-type NP couplings and perform a model-dependent
of V, NP coupling of Fig. 4. analysis based on anomalies present in Rp, Rp+, R; )y, and
R’ as well as the requirement B(B, — 7v) < 10% obtained
from the LEPI1 data [104]. It should, however, be men-
tioned that we assume the NP couplings to be quark flavor
universal. This is, indeed, a strict model-dependent
assumption. The branching ratio of taunic B, decays put

R BR x 107 (P7)

B, - Kz [0.638, 0.898] [0.731, 1.774] [-0.026,0.217]
B, - K*tv [0.582, 0.802] [1.579, 3.098] [0.249, 0.513]
B — v [0.631, 0.926] [0.765, 1.391] [0.117, 0.315]
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FIG. 5. Differential ratios R(q?), differential branching ratios DBR(g¢?) and 7 polarization fraction P?(¢?) for B, — Kzv (first
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band, whereas the corresponding SM ranges are shown with a green band. The omitted plots such as A%;(g*) and C%(g?) are not

affected by V, NP coupling.

a severe constraint on the scalar NP couplings [66]. Hence
we do not consider scalar NP couplings in our present
analysis. We consider only two different NP scenarios
based on NP contribution coming from V; and V, NP
couplings. We consider only one NP WC at a time. We
impose 20 constraint coming from the measured value of
Rp, Rp+, Ryyy, and R. to determine the allowed NP
parameter space. It should be mentioned that the NP
contribution coming from Vi NP couplings cannot simul-
taneously explain the anomalies present in Rp, Rp+, Ry,
and R’ within 26. Similarly, the NP contribution from V
NP coupling is exactly the same as the contribution coming
from V,; NP coupling. Hence, we omit the discussion
related to these NP couplings.

1. Scenario I: For Vi NP coupling

In this scenario, we assume that NP contribution is
coming only from V; NP couplings. We vary V; while
keeping all other NP couplings zero. We show in the left
panel of Fig. 2 the allowed range of V; NP coupling once
the 20 constraints from the measured values of Ry, Rp-,
R; )y, and R'. are imposed. In the right panel, we show the

ranges in B(B — zrv) and R, obtained using the allowed
ranges of V; NP coupling. Allowed ranges of B(B — zzv)
and R, obtained in this scenario are compatible with the
upper bound reported by Belle Collaboration. We also
report the allowed ranges in the branching ratio and the
ratio of branching ratios for the B, - (K, K*)zv and B —
nrv decays in Table V. We see a significant deviation from
the SM prediction in the branching ratios and the ratio of
branching ratios with V; NP couplings. Since the forward
backward asymmetry parameter A}, the 7 polarization
fraction P*, and the convexity parameter C} do not depend
on V; NP coupling, we do not observe any deviation from
the SM prediction for these observables.

We show the ¢ dependence of differential branching
ratio (DBR(g?)) and ratio of branching ratio R(g?) for the
B, — Krv, B, —» K*tv and B — mzv decays in Fig. 3. The
SM range is shown with a green band, whereas the NP band
obtained using the allowed values of V; NP coupling from
Fig. 2 is shown with a violet band. Again, as expected the
remaining observables such as A%, (g?), P*(¢*) and C%(¢?)
exhibit no deviations from SM expectation as the V;
dependency cancels in the ratio.
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2. Scenario II: For V; NP coupling

In this scenario, we vary only V; and set all other NP
couplings to zero. This is to ensure that NP contribution is
coming only from the vector NP operator that involves right
handed neutrinos. The allowed NP parameter space is
obtained by using a 2¢ constraint coming from the measured
values of Rp, Rp+, R;/y, and RL. This is to ensure that the
resulting NP parameter space can simultaneously explain
the anomalies present in Ry, Rp-, R, /s and Rﬁr. We show in

the left panel of Fig. 4 the allowed range of V, in this
scenario. The corresponding ranges in B(B — zrv) and R,
shown in the right panel of Fig. 4, are compatible with the
upper bound reported by Belle Collaboration. We also report
the ranges of the branching ratio, ratio of branching ratios
and 7 polarization fraction for the B, — Kwv, By — K*tv
and B — zzv decays in Table VI. We do not report the range
of the forward backward asymmetry parameter (A},) and
(C%.) since they do not depend on V; NP coupling. We see
significant deviation from the SM expectation in the branch-
ing ratio, ratio of branching ratio, and 7 polarization fraction
for these decay modes in this scenario. Although the
deviation observed in this scenario is quite similar to the
deviation observed with V; NP coupling, there is one subtle
difference. Unlike scenario I, the 7 polarization fraction P?
does depend on V; NP coupling. Measurement of P can, in
principle, rule out either of these two scenarios.

In Fig. 5, we show the ¢* dependence of the ratio of
branching ratio R(g?), differential branching ratio
DBR(g?) and 7 polarization fraction P?(g?) for the
B, - Kwv, By - K*7v and B — m7v decays, respectively.
The remaining observables such as forward backward
asymmetry and convexity parameter are not affected by
the V, NP coupling and hence we omit these results. The
SM range is shown with a green band, whereas the band
obtained by using the allowed V;, NP coupling is shown
with violet. It is evident that we do observe deviations in
R(q?), DBR(g?) and P*(g?) from the SM predictions in the
presence of V, NP coupling. It is worth mentioning that
measurement of 7 polarization fraction plays a crucial role
in distinguishing between these two scenarios.

IV. CONCLUSION

Motivated by the anomalies present in Rp, Rp-, R;/y,
and R, we report the SM and beyond the SM predictions

of various observables in B, - Kzv, B, —» K*7v and
B — zv decays in a model-dependent way. We
perform a combined analysis of the b — ¢ and
b — u charged current interactions using an effective
field theory approach in the presence of vector NP
couplings alone. We start our analysis with the SM
predictions by providing the central values and 1o ranges
of each observable for B; - Klv, B, —» K*lvand B — zlv
decay modes. We give the predictions for both y and 7
modes, respectively. Considerable changes are observed
while going from g mode to z mode. The branching
ratio for each decay mode is of the order of 107*. We give
the first prediction of various observables such as (AL,),
(P"), and (CL) within the SM and within various
NP scenarios. It is also evident that the ¢ dependence
of all the observables for the 4 mode is quite different from
that of the 7 mode. We observe that some observables for
the 4 mode remain constant throughout the whole g?
region.

For the NP analysis, we consider two NP scenarios
with new vector-type operators that involve left handed
as well as right handed neutrinos. We impose 20
experimental constraints from the measured values of the
ratio of branching ratios Ry, Rp+, R,y and R’ and obtain
the allowed ranges in the NP couplings that can simulta-
neously explain all these anomalies. We give prediction of
various physical observables such as the branching
ratio, ratio of branching ratios, forward backward asym-
metry, lepton polarization and convexity parameter for the
By, - (K,K*)tv and B — mrv decay modes in each sce-
nario. The deviation from the SM prediction with V; NP
coupling is quite similar to the deviation observed with V;
NP coupling. However, with V; NP coupling, there is
deviation from the SM prediction in the 7 polarization
fraction P” for all the decay modes.

Although there is a hint of NP in semileptonic B
decays mediated via charged current interactions, it is not
yet confirmed. Study of B; - Klv, B, —» K*Ilv and B —
mlv decay modes theoretically as well as experimentally
is very well motivated as these can provide complemen-
tary information regarding NP. Again, it will have a
direct consequence on predictions or the measurements
of the CKM matrix element |V ,,|. The precise value of
|V.p| will serve as an important step in revalidating the
SM theory.
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