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We examine the necessity of requiring that relaxion dynamics is dominated by classical slow roll and not
quantum fluctuations. It has been recently proposed by Nelson and Prescod-Weinstein [Phys. Rev. D 96,
113007 (2017)] that abandoning this requirement can lead to a unified solution of the hierarchy and strong
CP problems in QCD relaxion models. In more general models this results in a higher value of the allowed
cutoff. In this work we find, however, that relaxing this condition can result in the Universe being
dominated in physical volume by regions arising from large quantum fluctuations of the relaxion. These
regions turn out to be problematic for the relaxion mechanism because either the relaxion does not stabilize
at all or it stabilizes at vacua which cannot reproduce the observed properties of our Universe. The size of
these undesirable regions is moreover ambiguous because of the measure problem. For instance, we show
that if one chooses to use the scale-factor cutoff measure such dangerous regions occupy a negligible
volume and these issues do not arise.
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I. INTRODUCTION

The relaxion mechanism, proposed by Graham, Kaplan
and Rajendran (GKR) [1], presents a third way of address-
ing the electroweak hierarchy problem that uses neither
symmetries nor anthropics. The Higgs boson mass in these
models is scanned by a slowly rolling field during inflation.
The scanning stops when the Higgs mass is close to zero
because of a feedback mechanism thus explaining the
hierarchy between the electroweak scale and a much higher
cutoff scale.
A nice feature of relaxion models is that it can be unified

with solutions to other naturalness problems like the strong
CP problem and the StandardModel flavor puzzle [1–4]. In
the very first relaxion model proposed by GKR in Ref. [1],
the QCD axion is itself the relaxion. As the relaxion stops at
anOð1Þ phase, however, this model gives anOð1Þ value for
the strongCP phase, θQCD, and is thus ruled out. An elegant
improvement of this model has been recently proposed by
Nelson and Prescod-Weinstein (NP) [2]. In this work the
authors show that the original GKR model can be com-
patible with the experimental constraints on the strong CP
phase if the Hubble scale during inflation is larger than the
QCD scale. As we will soon describe in more detail, this
leads to a suppression of the axion potential during inflation
but as the Hubble scale becomes smaller at the end of

inflation, the axion potential becomes larger, and the
relaxion stabilizes at a very small value of θQCD.
Taking a large Hubble scale, however, means that one

has to relax the condition that the Hubble induced quantum
fluctuations of the relaxion field are small enough so that its
dynamics can be approximated to be classical. As we
discuss in the present work allowing such large quantum
fluctuations of the relaxion field can be problematic. This is
despite the fact that regions where the relaxion spreads far
from its classical (expectation) value can be shown to be
exponentially small in volume during inflation. The subtle-
ties arise after the inflaton stabilizes when some of the
above regions expand exponentially because they have a
high energy density. As we will show, this exponential
expansion can potentially compensate for the initial expo-
nential suppression if the so-called quantum vs classical
(QvsC) requirement is not imposed. To know whether this
can spoil the relaxion mechanism, one needs to compute
ratio of the volume where the relaxion dynamics success-
fully explains a small weak scale (and in the case of the NP
model a small θQCD) to the volume generated by these large
fluctuations where this might not be achieved. There is no
unambiguous way to carry out this computation, however,
because both these volumes are generally infinite. The only
way to regulate these infinities depends on how we choose
time slices across causally disconnected regions of space-
time which is ultimately arbitrary. This is a statement of the
“relaxion measure problem” that we will explain in more
detail in what follows.
Our conclusions would be relevant not just for the NP

model but also for more general relaxion models where
relaxing the QvsC requirement leads to a larger value of the
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allowed cutoff. More importantly it conceptually clarifies
the need for the QvsC requirement in general relaxion
models. Many of the issues raised in this paper were
already qualitatively anticipated in Refs. [1,2]. The purpose
of this work is to examine these ideas in more quantitative
detail and take them to their logical conclusion. In
particular we confirm the suggestion of NP that these
problems do not arise if one uses the scale-factor cutoff
measure.

II. REVIEW OF THE RELAXION MECHANISM

Let us first present a very brief review of the relaxion
mechanism focusing especially on the models of GKR and
NP where the relaxion is also the QCD axion. In relaxion
models the value of μ2, the mass squared term in the Higgs
potential, changes during the course of inflation as it
depends on the relaxion, ϕ,

VðH;ϕÞ ¼ μ2ðϕÞH†H þ λðH†HÞ2 þ Λc − gM2ϕþ � � �
μ2ðϕÞ ¼ M2 − gϕþ � � � ; ð1Þ

which slowly rolls because of the potential due to the linear
potential above [5]. Here g is a dimensionful coupling
and M is the scale where the Higgs quadratic divergence
gets cut off. The field ϕ starts rolling from an initial
field value ϕ < M2=g, such that μ2 is positive and electro-
weak symmetry is unbroken. After crossing the point,
ϕc ¼ M2=g, μ2 becomes negative and the Higgs gets a
vacuum expectation value (VEV), v2ðϕÞ ¼ −μ2ðϕÞ=λ. This
triggers the so-called backreaction potential that leads to
the barriers in Fig. 1,

ΔVbrðh;ϕÞ ≃ −Λ4
br cos

�
ϕ

f

�
; ð2Þ

where Λ4
br ¼ mjv4−j with 0 ≤ j ≤ 4. In the QCD relaxion

models where the relaxion is also the QCD axion and has
the coupling

ϕ

f
GμνG̃

μν; ð3Þ

the nonzero Higgs VEV turns on the leading term of the
zero temperature axion potential,

Λ4
br ≃ yuvf3π; ð4Þ

where yu is the Yukawa coupling of the up quark. As ϕ
continues rolling, jμ2ðϕÞj becomes larger, resulting in a
monotonically increasing Higgs VEV, thus increasing the
size of the barriers. Eventually the barriers become large
enough and the relaxion stops rolling at an arbitrary Oð1Þ
value of the phase ϕ0=f where ∂ϕVðh;ϕÞ ¼ 0,

gM2 ¼ Λ4
br

f
sin

�
ϕ0

f

�
: ð5Þ

TheOð1Þ phase ϕ0=f is precisely θQCD and thus this model
is ruled out by experiments which require θQCD < θubQCD ∼
10−10 [6,7]. We will soon discuss how the NP model
attempts to resolve this issue. If g is small enough the cutoff
can be raised much above the electroweak scale. Note that
a small g is radiatively stable as in the limit g → 0, the
discrete symmetry ϕ → ϕþ 2πkfðk ∈ ZÞ is recovered. As
it was pointed out in Ref. [8], however, the coupling g is
very problematic because the Peccei Quinn (PQ) axion is
usually identified with the angular part of a complex scalar
field having a periodicity 2πf, making the nonperiodic
terms proportional to g impossible. The only known way of
resolving this issue is to imagine that the PQ symmetry has
a large nonanomalous discrete subgroup ZN so that the
periodicity that appears in the axion potential is smaller

FIG. 1. Here is a schematic representation of the relaxion
potential in Eq. (6) after setting hHi2 ¼ −μ2ðϕÞ=λ. The region
marked Σ shows the vacua where the relaxion stabilizes during
inflation taking into account its quantum spreading in Eq. (11).
Even after its expectation value stabilizes, there can be regions
where the relaxion has undergone a large quantum fluctuation to a
generic point in field space such as ϕi above. While such
fluctuations are rare during inflation, the fact that the vacuum
energy at ϕi is much larger compared to that in the Σ region can
amplify these fluctuations in volume after the inflaton settles
down. In the NP model the size of the backreaction changes after
inflation and this figure shows the backreaction potential before
this happens. In this model, ϕj is the position of the minima that
have an Oð1Þ relaxion stopping phase after the inflaton stabilizes
and the barriers become large.
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than the original periodicity, say F, by a factor N, i.e.,
f ¼ F=N [8] (see also Ref. [9]). However, as we must have
F larger than the typical distance, M2=g, the relaxion
travels, Eq. (5) implies that we need an extremely large
N ∼M4=Λ4

br. Such large values of N can be successfully
realized in the so-called clockwork models with multiple
axions [10–12]. In such a scenario the Lagrangian terms
proportional to g are also secretly periodic but with a much
larger periodicity,

VðH;ϕÞ ¼ μ2ðϕÞH†H þ λðH†HÞ2 þ κ2M4 cos
ϕ

F
þ Λc

μ2ðϕÞ ¼ −M2 þ κ1M2 cos
ϕ

F
ð6Þ

where we must have κ1 ≳ 1 to ensure μ2 changes sign
during the relaxion slow roll and κ2 ∼ 1. We can recover
Eq. (1) from Eq. (6) by expanding about ϕ0 ¼ πF=2,
identifying

g ∼M2=F ð7Þ
and redefining Λc. As we will see, taking the rolling
potential to be Eq. (6) instead of Eq. (1) will be crucial for
another reason: a periodic potential puts an automatic upper
bound on the size of quantum fluctuations of ϕ. Otherwise,
Eqs. (1) and (6) are equivalent in the sense that they yield
the same results parametrically. In particular, unless the
above mentioned subtleties are relevant, the equations in
this paper can be written interchangeably [up to Oð1Þ
factors] in terms of either g or F using Eq. (7).
We now list the conditions GKR imposed on the

parameter space to ensure that the above picture is con-
sistent cosmologically. First of all, we must assume that the
relaxion energy density is a negligible contribution to the
total energy density during inflation, i.e.,

M4 ≲H2
IM

2
pl ð8Þ

so that the Hubble scale, HI , and other details related to
inflation are independent of relaxion dynamics. HereMPl is
the reduced Planck mass. In this work we will assume that
the Hubble expansion rate HI is due to the vacuum energy
of a single inflaton σ. Furthermore as we would be
interested only in the large quantum fluctuations of the
relaxion and not the inflaton, we will assume as in the
original GKR paper, that the dynamics of the inflaton is
dominated by classical slow roll. Now we come to the all
important quantum vs classical (QvsC) condition. So far
the description of the dynamics of ϕ has been completely
classical. If quantum fluctuations during inflation are
included, the relaxion field will have a quantum spread
about its classical expectation value. If we require that the
quantum spreading the relaxion undergoes in one e-fold is
smaller than the distance it classically rolls down in the
same time, we obtain

HI ≲ V 0ðϕÞ
H2

I
: ð9Þ

One can check that the slow roll conditions are always
satisfied if both Eqs. (8) and (9) are true. Together Eqs. (5),
(8) and (9) imply an upper bound on the cutoff scale,

M ≲
�
Λ4
br

f
sin

ϕ0

f

�1
6 ffiffiffiffiffiffiffiffi

MPl

p
ð10Þ

which gives M ≲ 100 TeV (M ≲ 109 GeV) taking f ≳
109 GeV and sin ϕ0

f ∼ 10−10 (taking Λ4
br ∼ v4; f ≳M and

sin ϕ0

f ∼ 1) for the QCD (non-QCD) case.
Coming to the central issue of this paper, it has been

argued in Ref. [2] that Eq. (9) may be too strict a condition.
This is because, as we will soon see in more detail, the total
quantum spread after Ne e-folds is δϕ ∼

ffiffiffiffiffiffi
Ne

p
H. The

typical number of e-folds is given by Ne ∼HIΔϕ= _ϕ ∼
H2

I =g
2 ∼H2

IF
2=M4 where Δϕ ∼M2=g ∼ F is the typical

field excursion. Finally we obtain for the variation in ϕ
and μ,

δϕ ∼
H2

I

g
∼
FH2

I

M2

δμ2 ∼H2
I ð11Þ

where to obtain the second line one needs to use Eq. (1) or
Eq. (6). Thus at the end of inflation the relaxion field is
spread over many vacua but the variation in the electroweak
scale is Oð1Þ as long as,

HI ≲ v: ð12Þ

This region is marked as Σ in Fig. 1.
In the NP model a high Hubble scale is used to evade the

problem of an Oð1ÞθQCD and thus provide a unified
solution to the hierarchy and strong CP problems. The
authors use the fact that if the Hubble scale during inflation
is larger than a few GeV, the associated Gibbons-Hawking
temperature [13] suppresses the usual axion potential of
Eq. (2) by a factor of 1=θubQCD ∼ 1010 or more (the same idea
was already proposed in Ref. [14] but not considered
further as it violates the QvsC condition). As a result, once
the Hubble becomes smaller towards the end of inflation,
the backreaction wiggles become larger and the relaxion
settles down at a point where the strongCP phase is smaller
thanOð10−10Þ [see Eq. (5)]. A similar solution to generate a
small θQCD, also involving a change in the relaxion
potential after inflation, was proposed already in Ref. [1]
but that mechanism is less elegant as it involves somewhat
ad hoc couplings of the relaxion to the inflaton [15].
Another advantage of relaxing the QvsC condition, true for
both the NP model as well as more general non-QCD
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models, is that the only bound on the cutoff would now be
independent of the backreaction scale and weaker than
Eq. (10),

M ≲ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HIMpl

p
∼ 1010 GeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HI

102 GeV

r
ð13Þ

where we have used Eq. (8). As we discuss in the next
section, however, large quantum fluctuations become
problematic after the “end” of inflation.

III. THE RELAXION MEASURE PROBLEM

In this section we give a more careful treatment of the
effect of quantum fluctuations which will lead us to a
precise statement of the “relaxion measure problem.” We
will closely follow the presentation of the measure problem
of usual eternal inflation in Refs. [16–18] except that here
we would be concerned with the quantum fluctuations
of the relaxion and not the inflaton. Quantum effects are
usually incorporated as a stochastic noise term that pro-
vides a Hubble sized kick, �HI, to the field value in every
e-fold. With these quantum effects included the time
dependance of ϕ is identical to a particle undergoing
Brownian motion in a potential gradient. The probability
at a given instant, Pcðϕ; tÞ, for the field to lie in an interval
½ϕ;ϕþ dϕ� in unit comoving volume, thus obeys the
diffusion equation (see e.g., Refs. [19–21]),

∂Pc

∂t ¼ ∂
∂ϕ

�
H3=2ðϕ;σÞ

8π2
∂
∂ϕðH

3=2ðϕ;σÞPcÞþ
V 0ðϕÞ

3Hðϕ;σÞPc

�
:

ð14Þ

The differential equation for the total proper volume,
Vðϕ; tÞ, [22] having ϕ in the range ½ϕ;ϕþ dϕ� has the
same form [23–25],

∂V
∂t ¼ ∂

∂ϕ
�
H3=2ðϕ; σÞ

8π2
∂
∂ϕ ðH3=2ðϕ; σÞVÞ þ V 0ðϕÞ

3Hðϕ; σÞV
�

þ 3Hðϕ; σÞV ð15Þ

apart from the last term above that takes into account the
Hubble expansion of the volume element per unit time.
This last term will play crucial role in this work as it will
allow regions with large quantum fluctuations and a small
Pcðϕ; tÞ to still have a large volume, Vðϕ; tÞ, if the vacuum
energy in these regions is large. Without this term Vðϕ; tÞ
would be proportional to Pcðϕ; tÞ, as is the case during
inflation when the relaxion has a subdominant contribution
to the energy density and the Hubble scale is independent
of ϕ. We thus find that solutions to Eqs. (14) and (15) are
related in a simple way,

Vðϕ; tÞ ¼ Pcðϕ; tÞ
e
R

t

0
3HðhσðtÞiÞdt

H3
I

ð16Þ

for t < ti, ti being the time when the inflaton stabilizes. To
obtain the above relationship we have assumed that the
whole Universe emerges from a single Hubble patch of size
1=H3

I at t ¼ 0 and ignored any quantum fluctuation of the
inflaton about its classical trajectory hσðtÞi. For simplicity
from here on we will assume a constant Hubble scale
HðhσðtÞiÞ ≈HI for t≲ ti. Note that the relaxion stabilizes
at a time, tr, that is intermediate between 0 and ti and both
tr;i ∼ Ne=HI ∼HI=g2 ∼HIF2=M4. We want to now solve
for Pcðϕ; tÞ and thus Vðϕ; tÞ for t≲ ti. We first attempt to
find the solution ignoring the backreaction. It is still very
difficult to obtain analytically a solution for the cosine
potential in Eq. (6) but it is straightforward in the case of
the linear potential in Eq. (1) (see Ref. [2]),

Pcðϕi; tiÞ ¼
ffiffiffiffiffiffiffiffi
2π

H3
I t

s
exp

�
−2π2ðϕi − hϕðtiÞiÞ2

H3
I t

�
ð17Þ

where we have taken Pcðϕi; 0Þ to be a delta function about
a generic initial field value. The expectation value hϕi
obeys the classical equation of motion (EOM) for ϕ. It
might seem that using the linear potential is a bad
approximation as the relaxion travels a distance in field
space ∼F. Using the full potential would, however, give us
a smaller suppression in Pc for large ðϕi − hϕðtiÞiÞ as the
potential gradient, V 0ðϕÞ would be smaller than the linear
case (for any ϕ ≠ πF=2). Thus we can obtain an estimate
for Pcðϕi; tiÞ for the periodic potential in Eq. (6) that is
conservative for our purposes by substituting g ∼M2=F
[see Eq. (7)] in Eq. (17) above.
The solution in Eq. (17) strictly applies only for t≲ tr, that

is it applies until the time hϕi reaches the backreaction
barriers and eventually stabilizes at a vacuumwithweak scale
HiggsVEV (in the regionmarkedΣ in Fig. 1). For tr ≲ t≲ ti
while the form ofPc above is still reliable if ðϕi − hϕðtiÞiÞ is
large as is the case for any point far from thewiggles such as
the point ϕi in Fig. 1, the effect of the backreaction can
become significant in the region with the wiggles. Note,
however, that if the Hubble scale,HI, is taken to be large (as
in the NP model) and the QvsC condition in Eq. (9) is
violated, the second term in Eq. (15) becomes irrelevant even
in the presence of the wiggles. Therefore even though hϕi
stops evolving, the quantum spreading of the relaxion
continues as before controlled by the first term in Eq. (15).
The bottom line is that the quantum spread of the relaxion
field at t ∼ ti is not expected to exceed the square root of the
variance of the above Gaussian evaluated at t ¼ ti, i.e.,
δϕ ∼

ffiffiffiffiffiffiffiffiffi
H3

I ti
p

∼H2
I =g ∼ FH2

I =M
2, the region marked Σ in

Fig. 1, and thus the variation in μ2 isOð1Þ as already derived
in Eq. (11). It follows from our definition of the region Σ
that
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Z
Σ0
Pcðϕi; tiÞdϕ ¼ 1 −

Z
Σ
Pcðϕi; tiÞdϕi ≪ 1; ð18Þ

where Σ0 is the whole region in field space outside Σ. From
here on we will abbreviate PΣ;Σ0 ¼ R

Σ;Σ0 Pcðϕi; tiÞdϕi.
A more detailed treatment of how the backreaction affects
Pc can be found in Ref. [2].
Let us now analyze what happens for t > tr. Consider the

patches where ϕ has undergone huge quantum fluctuations
and the relaxion field sits at a point such as ϕi in Fig. 1. The
key point is that after the inflaton stabilizes, the relaxion
energy density is no longer a subdominant component of
the total energy density in such patches. While the
probability of such a large quantum fluctuation at t ¼ ti
is exponentially suppressed [see Eq. (17)], the volume of
such patches would grow exponentially driven by the
OðM4Þ relaxion energy density. As we will soon see if
the QvsC condition is not imposed the exponential growth
can overcome this exponential suppression. This is the
central point of this work: one cannot neglect patches with
large seemingly unlikely quantum fluctuations, i.e., if
Pcðϕ; tÞ is small, as they can grow exponentially in
physical volume, i.e., Vðϕ; tÞ can still become large.
Furthermore, in such an eternally inflating universe, the

volume fraction of patches with a given property is
ambiguous and depends on regularization. Let us under-
stand this point more carefully in our context. We want to
compare, for t > ti, the relative size of the four volume
where the relaxion has stabilized to a vacuum with a small
Higgs VEV (and in the case of the NP model also a small
θQCD) to the four volume where this is not true; we define
the ratio of the latter to the former as follows:

ξ ¼ lim
tc→∞

V 04ðv ≪ M; θQCD ≪ 1; ti < t < tcÞ
V4ðv ≪ M; θQCD ≪ 1; ti < t < tcÞ

ð19Þ

where the four volumes are defined as the integral over the
invariant volume element

ffiffiffiffiffiffiffiffiffiffiffiffiffij det gjp
d4x in the relevant

regions. As both these volumes are generally infinite, to
define their ratio we have to use a time regulator above, i.e.,
we compute the ratio first restricting ourselves to t < tc and
then take the limit tc → ∞. There is, however, no unam-
biguous way to introduce the time regulator above and this
leads to the measure problem. This is because there is no
unique way to choose global time slices across casually
disconnected regions of spacetime. The most natural way to
define time slices across the different patches is to take the
proper time elapsed, t, along the geodesics starting from the
initial Hubble patch at t ¼ 0. This is called the proper time
cutoff measure and was first used in [16]. While the proper
time cutoff measure seems like the most natural choice, it is
known to lead to many paradoxes in the usual case (unlike
here) of eternal inflation driven by quantum fluctuations of
the inflaton. One of the most promising alternatives is the
scale-factor cutoff measure [17,18,21] which manages to

evade many of these issues by choosing constant scale-
factor time slices [26–28].
For the NP model we can rewrite Eq. (20) in an

interesting way where the denominator in Eq. (20) corre-
sponds to the four volume, V4

Σ, generated by the expansion
of regions where the field value lies in the Σ region at t ¼ ti
whereas the numerator corresponds to the four volume, V4

Σ0 ,
generated from the region outside Σ at t ¼ ti (see Fig. 1).
This is because, as we will show in the following sections,
for the NP model V4

Σ0 contains regions where either the
Higgs VEV does not stabilize at all or regions where
θQCD ∼ 1. Thus we obtain

ξ ¼ lim
tc→∞

V4
Σ0 ðtcÞ

V4
ΣðtcÞ

ðNP modelÞ: ð20Þ

As we will see later, in general relaxion models even V4
Σ0

can contain regions with weak scale Higgs VEV so that for
such cases Eq. (19) does not imply Eq. (20).
In the following sections we will compute ξ in both these

measures and for both the NP model as well as more general
(non-QCD) relaxion models where the size of the back-
reaction does not change after the inflaton stabilizes. If ξ≲ 1 it
will indicate that the relaxion mechanism can overcome the
issues raised in this work. Before going into the details of the
calculation let us clarify an important issue about thedefinition
of ξ in Eq. (19). Note that in our definition we have not
required that the denominator of Eq. (19) contain patcheswith
a small cosmological constant (CC) in addition to having a
smallHiggsVEV(and in the case of theNPmodel also a small
θQCD). This is because in relaxion models the CC problem is
solvedby tuning, i.e.,Λc inEq. (1) or Eq. (6) is tuned to almost
exactly cancel the vacuum energy in one of the vacua in the Σ
region, and this happens to be the vacuum we live in. Thus as
long as ξ≲ 1, it means that most of the physical volume has a
weak scale VEV (and in the case of the NP model also an
acceptable θQCD) and the further requirement of having the
correct CC is achieved by brute force tuning.

IV. PROPER TIME CUTOFF MEASURE

We now estimate ξ in the proper time cutoff measure.
Our computation will depend on whether the relaxion
dynamics is classical or quantum for t≳ ti. This splits the
parameter space into two regions depending on the Hubble
scale that now gets a contribution only from the relaxion
vacuum energy,

HðϕÞ ¼ 1

Mpl

ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞ
3

r
: ð21Þ

The two regions are

Case ðiÞ∶ HðϕmÞ ≲ ðVðϕÞÞ1=3
Case ðiiÞ∶ HðϕmÞ ≳ ðVðϕÞÞ1=3 ð22Þ
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where ϕm ¼ 0 is the point with maximal vacuum energy. In
the first regime, the dynamics of the relaxion is always
classical and the first term in Eq. (15) can be ignored
whereas in the second regime quantum diffusion effects
encoded in this term cannot be ignored. The condition,
HðϕmÞ ≲ ðVðϕÞÞ1=3, can be rewritten as the upper bound
on the cutoff in Eq. (10) which applies to Case (i) whereas
the cutoff is bounded only by Eq. (13) for Case (ii) and can
thus be much higher.

A. CASE (i): Classical dynamics for t > ti
NP model. Let us first estimate denominator in Eq. (20),

V4
ΣðtcÞ. To compute this volume we need to know the

expansion rate of a typical vacuum in the Σ region. Recall
that the CC is tuned to the observed value in one of the
vacua in the Σ region (our vacuum). This implies that
regions in the vacua below this particular one in Fig. 1 will
have a negative CC and would thus collapse and not
contribute to V4

ΣðtcÞ for large tc. On the other hand the
vacuum energy of a typical vacuum with positive CC in this
region is δμ2M2 ∼H2

IM
2 [see Eq. (11)] and the corre-

sponding Hubble scale is thus HΣ ∼HIM=Mpl. We thus
obtain

V4
ΣðtcÞ ∼

e3NePΣ

H3
I

Z
tc

ti

e3HΣtdt ¼ PΣe3Nee3HΣðtc−tiÞ

3H3
IHΣ

; ð23Þ

where the prefactor before the integral is the three dimen-
sional volume of the Σ region at t ¼ ti [see Eq. (16)]. We
have omitted in our estimate above an Oð1Þ factor to
account for the fact that the fraction of vacua in Σ with
negative CC do not contribute to V4

ΣðtcÞ.
Now we compute the four volume, VΣ0 in the NP model.

The first term in the right-hand side of Eq. (15) is negligible
for this case and the relaxion dynamics is classical for
t≳ ti. The relaxion will classically slow roll but now with a
field dependent Hubble friction given by Eq. (21). For the
NP model one can check that HðϕÞ ≪ ΛQCD for all ϕ, so
that the barriers are now large given by Eq. (4). As a result
if the relaxion field starts to roll from the point ϕi in a
Hubble patch at t ¼ ti, it stops at a point ϕj at a later time
tjðϕiÞ (see Fig. 1), where θQCD ¼ ϕj=f is Oð1Þ and the
Higgs VEV, hHi < θubQCDv ∼ 10−10v by Eq. (5). At this
point the Hubble scale Hj ¼ HðϕjÞ ∼ vM=Mpl. One can
verify that the slow roll conditions are satisfied in the full
range while the field rolls from ϕi to ϕj. Once the
subdominant quantum corrections are taken into account
the relaxion in these patches would stop in a small region
around hϕi ∼ ϕj. Assuming a homogeneous universe
where the relaxion field takes its classical value every-
where, the total four volume that a single patch at t ¼ ti
with ϕ ¼ ϕi inflates into by the time tc ≫ ti;j is given by

δVΣ0 ðϕi; tcÞ ¼ exp

�
3

Z
tjðϕiÞ

ti

HðhϕðtÞiÞdt
�
e3Hjðtc−tjðϕiÞÞ

3H3
IHj

¼ exp

�
9

Z
ϕi

ϕj

H2ðϕÞ
V 0ðϕÞ dϕ

�
e3Hjðtc−tjðϕiÞÞ

3H3
IHj

ð24Þ

where the first exponential factor is due to the volume
growth as the field rolls from ϕi to ϕj and the second
exponential factor is the volume growth due to the fixed
cosmological constant for t > tj. hϕðtÞi is the solution to

the EOM, _ϕ ¼ −V 0ðϕÞ=3HðϕÞ, a fact we use to arrive at
the second line above. The 1=Hj factor arises from the
integral of the three dimensional volume over time in the
large tc limit. The argument of the first exponential factor
can be evaluated for the periodic potential in Eq. (6),

9

Z
ϕi

ϕj

H2ðϕÞ
V 0ðϕÞ dϕ ¼ 3F2

M2
pl

Z
ϕj=F

ϕi=F

cos xþ α

sin x
dx ¼ 3F2

M2
pl

I

�
ϕi

F

�

ð25Þ

where α ¼ Λc=κ2M4. As the four volumes arising from the
different Hubble patches at t ¼ ti are casually discon-
nected, we can find the four volume V4

Σ0 simply by
convoluting δV4

Σ0 ðϕi; tcÞ with the probability distribution
Pcðϕi; tiÞ in Eq. (17),

V4
Σ0 ðtcÞ ¼ e3Ne

Z
Σ0
Pcðϕi; tiÞδV4

Σ0 ðϕi; tcÞdϕi: ð26Þ

Mathematically this is true because, being a linear equation,
Eq. (15) can be first solved with the initial condition that
Vðϕi; tiÞ is a delta function around ϕi and the solutions for
the different ϕi can then be superposed. For Pcðϕi; tiÞ we
will use Eq. (17) replacing g ∼M2=F as explained in the
previous section. Now using Eqs. (20), (23)–(26) we obtain
for tc ≫ ti the lower bound,

V4
Σ0 ðtcÞ

V4
ΣðtcÞ

≳K
Z
Σ0
exp

�
3F2

M2
pl

IðxiÞ −
� ffiffiffi

2
p

πM2

H2
I

�2

Δx2i

�
dxi

×
HΣ

Hj

e3Hjðtc−tjðϕmÞÞ

e3HΣðtc−tiÞ ð27Þ

whereK ¼ ffiffiffiffiffiffi
2π

p
M2=ðPΣH2

I Þ andΔxi ¼ xi − hxii. The first
line on the right-hand side above denotes the ratio of the
total number of patches that end up in vacua near ϕj to the
number of patches that end up the region Σ. The second line
is a lower bound on the ratio of the four volume generated
from a single patch at ϕj to that generated from a single
patch in the Σ region; here we have used the fact that
the time it takes for the field value to roll down from the
maxima of the potential, ϕm ¼ 0, to ϕj is greater than the
corresponding time for any other starting field value, i.e.,
tjðϕmÞ ≥ tjðϕiÞ. We now show that both these factors are
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greater than unity in the NP model so that ξ > 1. Taking
f ≳ 109 GeV and using Eq. (5), one can check that a trans-
Planckian F ≫ Mpl is required to achieve a cutoff above
weak scale in the NP model. Thus the coefficient of IðxiÞ
above is much larger than 1. Therefore, as both Δx2i and
IðxiÞ are Oð1Þ, the factor in the first line of Eq. (27) is
exponentially large unless the coefficient of the Δx2i is
larger than the coefficient of IðxiÞ. The latter condition can
be rewritten as follows:

H2
IM

2

Mpl
≲M4

F
∼
yuvf3πθQCD

f
ð28Þ

where we have used Eq. (5) for the last step. If the QvsC
condition is violated, to the extent it is in the NP model
where we must have HI > 3 GeV, Eq. (28) is never
satisfied for any cutoff value larger than the weak scale.
Thus the number of patches where the relaxion eventually
stabilizes around ϕj is exponentially larger than the number
where it stabilizes in the Σ region in Fig. 1. Let us now
come to the factor in the second line. Note that althoughHΣ
can be of the same order asHj for the maximal valueHI∼v
[see Eq. (12)], one always has Hj > HΣ as the region
around ϕj where θQCD ∼ 1 can strictly not overlap with the
region Σ where θQCD ≪ 1. Thus clearly the second line in
Eq. (27) is also greater than unity for a large enough tc.
To summarize, for this case using the proper time cutoff

measure we find that the NP model predicts that the number
of patches where the relaxion stabilizes in the vacua near ϕj
(where θQCD ∼ 1) are exponentially larger than the patches
where the relaxion stabilizes in the Σ region. Subsequently
the patches with field value around ϕj expand at a faster rate
because of the larger value of theHubble scale relative to that
in the Σ region increasing further the ratio in Eq. (27). This
gives a divergent ξ in Eq. (20) so that the relaxionmechanism
does not work as intended for this case.
General relaxion models. We now consider the fate of

more general relaxion models if there is no restriction onHI
such as the QvsC condition. Consider first the four volume
emerging from the Σ0 region. As we are in the classical
regime with HðϕmÞ ≲ ðVðϕÞÞ1=3, after the time t ¼ ti the
relaxion field value starts classically rolling down from theΣ0
region towards the minima in the Σ region. Even though the
dynamics is well approximated classically, the final fate of
the relaxion depends in an important way on the quantum
spread of the relaxion, δϕ ∼M4=ðgM2

PlÞ ∼M2F=M2
Pl, that

nevertheless exists. The relaxion can stop at any vacuum
above the vacuum with the tuned CC, as long as the vacuum
energy is large enough to ensure that the slow roll conditions

ε ¼ M2
Pl

2

�
V 0ðϕÞ
VðϕÞ

�
2

≪ 1

η ¼ M2
pl
V 00ðϕÞ
VðϕÞ ≪ 1 ð29Þ

are not violated. It cannot, however, stop at the minimum
with the tuned CC. This is because as it approaches this
minimum the total vacuum energy and thus the Hubble
friction vanishes leading to a violation of the slow roll
conditions above. As a result the relaxion field shoots past
this minimum with nonzero kinetic energy. Parts of the
Universewhere this occurs keep inflating and the total energy
keeps decreasing until it becomes zero. Thereafter these
regions collapse [29]. Thus eventually V4

Σ0 contains only the
regions where the relaxion stabilizes at a vacuum in the Σ
region with weak scale Higgs VEV but a large CC as it stops
at a point necessarily above the vacuum where the CC is
tuned; this may be interpreted as a worsening of the CC
problem as the total volume with the correct CC is now a
smaller fraction of the total volume compared to the GKR
picturewhere onlyV4

Σ survives. Therefore, onemightwant to
limit the volume, V4

Σ0 (as it necessarily leads to a large CC)
and require that the only volume that survives in the far future
is V4

Σ as in the original GKR picture. To derive the condition
for this, note that we can get an upper bound on V4

Σ0 by
assuming that it contains only regionswhere the relaxion gets
stuck at a vacuum above the one with the tuned CC and by
ignoring the possibility that it can reach the region with
negative CC. This allows us to recast the computation in
Eqs. (24)–(26) for this scenario if we keep in mind that the
relaxion stops at a field value ϕΣ ∈ Σ and thus replace
ϕj → ϕΣ. Thus we obtain in the large tc limit,

V4
Σ0 ðtcÞ

V4
ΣðtcÞ

≲K
Z
Σ0
exp

�
3F2

M2
pl

IðxiÞ −
� ffiffiffi

2
p

πM2

H2
I

�2

Δx2i

�
dxi

where we must again replace ϕj → ϕΣ in the definition of
IðxiÞ and Δxi. For V4

Σ we have directly used the result in
Eq. (23) which holds here also. The above ratio is definitely
small if

H2
IM

2

Mpl
≲M4

F
∼
Λ4
br

f
: ð30Þ

The above inequality is automatically satisfied if we use the
condition in Eq. (8), HI > M2=MPl in conjunction with the
QvsC condition, HI < ðV 0ðϕÞÞ1=3. Equation (30) implies
further that the QvsC condition can be violated but this gives
a new bound on the cutoff M. Taking f ≳M, a necessary
requirement for theoretical consistency [30], andHI ≲ v [see
Eq. (12)], we obtain this upper bound,

M ≲
�
MplΛ4

br

v2

�
1=3

∼
�
Λbr

v

�
4=3

108 GeV ð31Þ

which is just an order of magnitude smaller than that from
Eq. (10). This suggests that as long as we satisfy this
marginally stronger bound on the cutoff, we can saturate
the bound on the Hubble scale in Eq. (12), and haveHI ∼ v.
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The possibility of having a larger Hubble scale than that
considered byGKR can be interesting from the point of view
of model building of the inflation sector in relaxion models.
Note that a higher Hubble scale implies a larger Gibbons-
Hawking temperature during inflation a fact that may lead to
finite temperature effects that can alter, for instance, the
backreaction potential.

B. CASE (ii): Quantum dynamics for t > ti
NP model. We now examine the second regime in

Eq. (22) and estimate ξ. In this regime the cutoff can be
higher, bounded only by the relation in Eq. (13). Note first
of all that the computation of V4

Σ in the previous subsection
is again equally valid in this regime and we can use directly
the result in Eq. (23).
To find V4

Σ in this case we have to solve the full
differential equation in Eq. (15). We solve this equation
numerically in the range ϕm < ϕ < ϕj. Give the ϕ → −ϕ
symmetry of the potential it is natural to take reflecting
boundary conditions at ϕ ¼ ϕm ¼ 0, i.e., we impose that
the diffusion current (see Ref. [18]) at the peak vanishes,

JðϕmÞ ¼
�
H3=2

8π2
∂
∂ϕ ðH3=2VÞ þ V 0

3H
V
�����

ϕ¼ϕm

¼ 0: ð32Þ

On the other end there is a classical minimum at ϕ ¼ ϕj

for t > ti as explained above Eq. (24). One can check that
around ϕj, HðϕjÞ is small enough such that quantum
fluctuations can be ignored. As the current must vanish for
a classically rolling field at a minimum, we impose the
boundary condition JðϕjÞ ¼ 0. We find that irrespective of
the initial conditions at t ¼ ti, the solution to Eq. (15) soon
reaches a steady state with a uniform rate of expansion that
is nearly the peak value corresponding to the highest
possible energy density, 3Hm ¼ 3HðϕmÞ. Thus if we start
from a volume of size 1=H3

I with ϕ ¼ ϕi at t ¼ ti, solving
for Vðϕ; tÞ we obtain

Vðϕ; tjϕiÞ ¼
ψðϕiÞπðϕÞ

H3
I

exp ðð3 − δÞHmÞtÞ ð33Þ

for any t > tkðϕiÞ where (tkðϕiÞ − ti) is the relaxation time
it takes to reach the above steady state. This is exactly what
has been observed for other potentials in the context of
inflationary models [16–18]. The universal functions ψðϕiÞ
and πðϕÞ in Eq. (33) are positive functions normalized such
that their integral over the whole field range is unity; we
have kept the original notation for ψðϕiÞ; πðϕÞ from
Refs. [17,18]. Here δ ≪ 1 leads to the small difference
in the expansion rate from the maximal value 3Hm and its
precise value depends on the parameter g ∼M=F. This
result can be understood as follows. For a Hubble patch
with an initial field value ϕi at ti, that evolves to the value ϕ
at the time t, the history that gives maximal contribution to

Vðϕ; tjϕiÞ is one where the field first migrates to the highest
point ϕm, and stays there for the maximal possible amount
of time before coming down to ϕ at the time t. [16–18]. In
this regime it, therefore, makes a big difference whether we
use the linear potential of Eq. (1) or the potential in Eq. (6)
where the energy is bounded from above. Indeed, with
Eq. (1) even quantum fluctuations of the relaxion for t < ti
might become problematic. This is because, as already
pointed out in Ref. [1], for the unbounded potential in
Eq. (1), the relaxion might fluctuate to points where its
energy density exceeds that of the inflaton even before the
inflaton stabilizes.
To obtain the four volume a single patch at t ¼ ti with

ϕ ¼ ϕi grows into by a time tc ≫ ti;k we integrate Eq. (33)
over time,

δV4
Σ0 ðϕi; tcÞ ¼

Z
tc

ti

Z
ϕj

ϕm

Vðϕ; tjϕiÞdϕdt

¼ ψðϕiÞe3H̃mðtc−tmax
k Þ

3H3
I H̃m

; ð34Þ

where H̃m ¼ ð1 − δ=3ÞHm. To obtain the final expression
above, we have used the fact that the contribution to the
time integral between ti and tmax

k ¼ maxðtkðϕiÞÞ can be
ignored in the large tc limit. We can again find V4

Σ0 ðtcÞ with
Eq. (26) and using Eq. (23) finally obtain

ξ ∼ lim
tc→∞

e3H̃mðtc−tmax
k Þ

e3HΣðtc−tiÞ
HΣe3Neη

H̃m
; ð35Þ

where

η ¼
R
Σ0 ψðϕiÞPcðϕi; tiÞdϕiR

Σ Pcðϕi; tiÞdϕi
: ð36Þ

The first term diverges in the limit tc → ∞ whereas the
other terms are independent of tc. Clearly ξ → ∞ and we
conclude, that for the NP model, the relaxion mechanism
does not work in this regime either if we use the proper time
cutoff measure.
General relaxion models. For more general relaxion

models one can solve Eq. (15) for t > ti in the range
ϕm < ϕ < ϕe. Here ϕe is the point in field space beyond
which the rolling relaxion field exits the slow roll regime
defined by Eq. (29) [18] and thus inflation ends. For the
cutoff values in this regime [see Eq. (22)], ϕe turns out to be
a point just above the minimum with the tuned CC, and
hence the region ϕ < ϕe includes almost the whole of the
region in Σ with positive CC. The boundary conditions at
ϕm are same as in Eq. (32) whereas the boundary conditions
to be applied at ϕe are discussed in detail in Ref. [18].
Again the solution reaches a steady state as in Eq. (33) in
the region ϕm < ϕ < ϕe. The ratio ξ in Eq. (19) now
depends on the profile of πðϕÞ, i.e.,
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ξ ¼
R
Σ0 πðϕÞdϕR

Σ;ϕ<ϕe
πðϕÞdϕ : ð37Þ

The function πðϕÞ is sharply peaked close to ϕm [16–18]
and suppressed in the Σ region as can one can anticipate
from the qualitative discussion below Eq. (33). Thus even
here we obtain ξ ≫ 1 and conclude that the relaxion
mechanism fails to achieve its desired goal in this scenario.

V. SCALE-FACTOR CUTOFF MEASURE:
A POSSIBLE SOLUTION?

Now we calculate ξ in a different time regularization the
so-called scale-factor cutoff measure. In this measure we
take global time slices of constant scale factor, t̂ ¼ log a.
While the definition of this time coordinate is subtle in full
generality [26], for uniform expansion driven by vacuum
energy, as is the case in the various scenarios we consider
here, we simply have

t̂2 ¼ t̂1 þ
Z

t̂2

t̂1

HðtÞdt ð38Þ

that is the time elapsed in these coordinates is just the
number of e-folds elapsed. In particular at the proper time
instant ti time coordinate, t̂i ¼ Ne. The invariant four
volume element that we need to compute V4

Σ;Σ0 in these
coordinates, is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
d4x ¼ d3x

dt̂
Hðx; t̂Þ : ð39Þ

Let us now try to find in these coordinates the expression
for ξ in the various scenarios considered in the previous
section. For this, as an intermediate step, we will need to
compute the volume V4

Σðt̂cÞ. It is easy to recast the
expression of Eq. (23) in these coordinates,

V4
Σðt̂cÞ ¼

PΣe3t̂c

3H3
IHΣ

ð40Þ

to obtain an expression valid in all the different scenarios
we will consider.

A. CASE (i): Classical dynamics for t̂ > t̂i
NP model. The expression for V4

Σ0 ðt̂cÞ in Case (i)
simplifies significantly in scale-factor coordinates. As
described earlier, the expansion of the Universe in this
case is completely determined by the classical evolution of
the relaxion field which is initially distributed across
various Hubble patches following Eq. (17). The Hubble
scale in a volume emerging from a single patch at t̂ ¼ t̂i is
completely determined in terms of the starting field value
ϕ ¼ ϕi. This implies a unified expression, V4

Σ0 ðt̂cÞ, that

includes both stages of time evolution before and after
t̂jðϕiÞ (discussed in the previous section) for the NP model,

V4
Σ0 ðt̂cÞ ¼

e3Ne

H3
I

Z
Σ0

Z
t̂c

t̂i

Pcðϕi; tiÞe
R

t̂c
t̂i

3dt̂ dt̂
Hðϕi; t̂Þ

dϕi

¼ PΣ0e3t̂c

3H3
IHj

ð41Þ

where we have taken t̂c to be larger than all other timescales
and used the fact thatHðϕi; t̂Þ → Hj as t̂ → ∞ to obtain the
final expression. Finally using Eqs. (18), (40) and (41), we
obtain

ξ ∼
PΣ0HΣ

PΣHj
≪ 1 ð42Þ

which implies a successful unified relaxion explanation of
the strongCP and hierarchy problems as intended in the NP
model if we use the scale-factor cutoff measure.
General relaxion models. In the more general relaxion

models while the time evolution after t̂i can still be
described classically in this regime, for regions that are
part of V4

Σ0 , the final fate of the rolling relaxion field
depends on its quantum spreading as described earlier.
There are two possibilities: in some regions the relaxion
might cross the vacuum where the CC is tuned causing the
collapse of these regions while in others it might stabilize at
a minimum in the Σ region with a weak scale Higgs VEV
but a CC larger than the observed one. Ignoring any
possibility of collapse and assuming that the second
possibility is what always happens will thus give us an
upper bound,

V4
Σ0 ðt̂cÞ≲ PΣ0e3t̂c

3H3
IHΣ

: ð43Þ

Using Eqs. (18), (40) and (43) we obtain

V4
Σ0 ðt̂cÞ ≪ V4

Σðt̂cÞ; ð44Þ

where we have used the first line of Eq. (41) which applies
to this scenario as well. Although Eq. (20) does not apply to
this case, it is still true that ξ ≪ 1 given Eq. (44); this is
because while V4

Σ0 contributes to both the numerator and
denominator in Eq. (19), V4

Σ only contributes to the
numerator. Another way of stating this is that in the far
future the Universe is dominated by V4

Σ as intended in the
original construction of GKR and the problems discussed
in this work do not arise.

B. CASE (ii): Quantum dynamics for t̂ > t̂i
NP model. We now turn to the quantum diffusion regime

in Eq. (22). For the NP model, we can again solve Eq. (15)
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in this time parametrization (see Ref. [18]) with the same
boundary conditions as before at ϕ ¼ ϕm;j, i.e., requiring
that the probability current vanishes at these two points. For
an initial volume 1=H3

I at t̂ ¼ t̂i with field value ϕ ¼ ϕi, the
solution again approaches a steady state after a time t̂k̂,

Vðϕ; t̂ ≥ t̂k̂jϕiÞ ¼
ψ̂ðϕiÞπðϕ̂Þ

H3
I

expðð3 − κÞt̂Þ: ð45Þ

Here κ ≪ 1 and again its value depends on g ∼M2=F.
Again ψ̂ðϕiÞ and π̂ðϕÞ in Eq. (33) are positive functions
normalized such that their integral over the whole field
range is unity; this implies in particular that ψ̂ðϕiÞ < 1 for
all ϕi, a fact we will soon require. We obtain the four
volume, a single patch at t̂ ¼ t̂i with ϕ ¼ ϕi grows into by a
time t̂c ≫ t̂i;k̂ by integrating Eq. (45) over time,

δV4
Σ0 ðϕi; t̂cÞ ¼

Z
t̂c

t̂i

Z
ϕm

ϕj

Vðϕ; t̂jϕiÞdϕ
dt̂

HðϕÞ

≲ ψ̂ðϕiÞe3ðt̂c−t̂
max
k̂

Þ

3H3
IHϕ

ð46Þ

where t̂max
k̂

¼ maxðt̂k̂ðϕÞÞ, H−1
ϕ ¼ R ϕm

ϕi

π̂ðϕÞ
HðϕÞ dϕ ∼MPl=M2,

and we get the upper bound in the second line because we
ignore κ. For obtaining the final result we have ignored the
contribution to the integral in the finite interval between t̂i
and t̂k̂ that is negligible given t̂c ≫ t̂i;l. We can again
convolute with the initial probability distribution,
Pcðϕi; t̂iÞ ¼ Pcðϕi; tiÞ as in Eq. (26) to obtain

V4
Σ0 ðt̂cÞ ¼

e3t̂ce−3ðt̂
max
k̂

−t̂iÞ

3H3
IHϕ

Z
Σ0
ψ̂ðϕiÞPcðϕi; t̂iÞdϕi ð47Þ

which gives using Hϕ > HΣ, t̂max
k̂

> t̂i, ψ̂ðϕiÞ < 1,
Eqs. (18) and (40),

ξ <
HΣ

Hϕ

R
Σ0 ψ̂ðϕiÞPcðϕi; tiÞdϕiR

Σ Pcðϕi; tiÞdϕi
≪ 1 ð48Þ

so that again the relaxion mechanism works successfully
for this case. To obtain Eq. (47) we have used t̂i ¼ Ne.
General relaxion models. For general relaxion models

our strategy will again be the same as described below
Eq. (44): we will show V4

Σ0 ≪ V4
Σ in the far future and thus

ξ ≪ 1. In order to compute V4
Σ0 , we solve Eq. (15) in the

scale-factor parametrization (see Ref. [18]) in the range
ϕm < ϕ < ϕe, as we did for the proper time cutoff measure,
however at t̂ ¼ t̂i we turn on the probability distribution
Pcðϕi; t̂i) only in the Σ0 region. The boundary conditions at
ϕ ¼ ϕe have again been discussed in Ref. [18]. Taking
ϕj → ϕe, the expressions in Eqs. (45) and (46) are also
valid for this case albeit with a different ψ̂ ; π̂, κ and t̂max

k̂
.

We obtain again using Hϕ > HΣ, ψ̂ðϕiÞ < 1, t̂max
k̂

> t̂i,
Eqs. (18) and (40),

V4
Σ0 ðt̂cÞ ¼

e3t̂ce−3ðt̂
max
k̂

−t̂iÞ

3H3
IHϕ

Z
Σ0
ψ̂ðϕiÞPcðϕi; tiÞdϕi

≪ V4
Σðt̂cÞ ð49Þ

for large t̂c. Again only the original GKR region V4
Σðt̂cÞ

survives in the far future, ξ ≪ 1 and the relaxion mecha-
nism can be successful. This is especially interesting
because in this regime the allowed cutoff [see Eq. (13)]
can be higher and independent of the backreaction.

VI. CONCLUSIONS

In this work we explored the implications of not
imposing the QvsC condition on relaxion dynamics and
thus allowing large quantum fluctuations. The specific
issue we investigate can be understood by considering a
patch where the relaxion field has undergone a large
quantum fluctuation and has a field value, such as ϕi in
Fig. 1, far from its classical expectation value in the Σ
region. While the probability of such large quantum
fluctuations are exponentially suppressed, the vacuum
energy of the relaxion field in such patches is larger than
that in “typical” patches (in the Σ region). After the inflaton
stabilizes this vacuum energy is no longer subdominant and
can lead to an exponentially large expansion rate in such
“atypical” patches which can eventually compensate for the
initial exponential suppression. The regions arising from
expansion of such patches may not have desirable proper-
ties such as a small Higgs VEV (or in the NP model a small
θQCD) and thus this feature can potentially derail the
relaxion mechanism. Furthermore, the relative size of this
dangerous volume depends crucially on the way we
regulate the time coordinate and this leads to the relaxion
measure problem.
We first investigate this issue in the proper time cutoff

measure for both general relaxion models and the NP
model of Ref. [2]. In general models, we find that the
original QvsC condition imposed by GKR is sufficient to
make this dangerous volume negligible. A positive out-
come of our study is that it suggests that the QvsC can be
violated without compromising the success of the relaxion
mechanism if we accept a marginally stronger bound on the
cutoff. This can potentially allow a Hubble scale as large as
the weak scale in general relaxion models which can be
interesting for model building of the inflation sector of
these models. In the NP model, where a high Hubble scale
is required, we find that the relaxion mechanism does not
seem to work if one adopts the proper time cutoff measure.
This fact was already anticipated by NP and thus they
proposed using the scale-factor cutoff measure to resolve
this issue. We confirm this suggestion and find that, in the
scale-factor cutoff measure, the issues raised here indeed

RICK S. GUPTA PHYS. REV. D 98, 055023 (2018)

055023-10



do not arise either for the NP model or in more general
relaxion models where the QvsC condition is violated. This
has the important implication that both for the NP model
and in the more general case, the allowed cutoff can be
independent of the backreaction scale and higher (around
1010 GeV) than the usual bound derived assuming the
QvsC condition. While it is very interesting that the
problems highlighted in this work are rendered harmless
in the scale-factor cutoff measure, one should keep in mind

that this does not resolve these issues completely as at
present there is no a priori reason to choose one measure
over another.
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