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If the LHC is able to produce dark matter particles, they would appear at the end of cascade decay chains,
manifesting themselves as missing transverse energy. However, such “dark matter candidates” may
themselves decay invisibly. We propose to test for this possibility by studying the effect of particle widths
on the observable invariant mass distributions of the visible particles seen in the detector. We consider the
simplest nontrivial case of a two-step two-body cascade decay and derive analytically the shapes of the
invariant mass distributions, for generic values of the widths of the new particles. We demonstrate that
the resulting distortion in the shape of the invariant mass distribution can be significant enough to measure
the width of the dark matter “candidate,” ruling it out as the source of the cosmological dark matter.
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I. INTRODUCTION

Events with missing transverse energy, =ET , at the Large
Hadron Collider (LHC) at CERN could be indicative of the
production of dark matter particles; the latter are stable and
weakly interacting, and, once produced in the collision,
will escape without leaving a trace inside the detector.
This causes an imbalance in the transverse momentum of

the event, =⃗PT , whose magnitude is colloquially known as

the “missing transverse energy,” =ET ¼ j=⃗PT j. However, the
reverse statement is not so obvious: if we observe an excess
of =ET events at the LHC, how can one be sure that what we
are seeing is indeed the cosmological dark matter?
The question of proving that a =ET signal observed at the

LHC is indeed due to dark matter, has attracted a lot of
attention in the past [1–8]. The basic idea was to test
whether the newly discovered weakly interacting massive
particle was consistent with being a thermal relic or not.
The general approach was to assume a specific model, most
often some version of low-energy supersymmetry, and then
attempt to measure all relevant model parameters affecting
the thermal relic density calculation. Unfortunately, such an
approach is model dependent, applies only to thermal relics
(for alternative nonthermal scenarios, see Refs. [9,10]),
requires full understanding of the early cosmology, and
typically demands a large number of additional measure-
ments, possibly at future (or futuristic) facilities.

Given that proving the discovery of dark matter at the
LHC is such a difficult task, perhaps one should focus on
the opposite question: how to disprove that the newly found
invisible particle is the cosmological dark matter. One
possibility is to perform a precise measurement of its mass,
and if the mass is consistent with zero, it may just be one of
the Standard Model (SM) neutrinos instead of a brand new
particle [11]. However, this logic is not ironclad either:
there exist examples where the dark matter particles are
very light [12,13] and cannot be ruled out just on the basis
of their small mass.
A much more direct approach would be to test whether

the particle which is the source of the =ET is indeed stable;
after all, we only know that it did not decay inside the
detector. If its lifetime is relatively short, so that it does
decay outside, but not too far from the detector, one could
attempt to build a dedicated experiment to record such
delayed decays. In the past, there were proposals to place
such supplementary detectors near the D0 experiment at
Fermilab [14] and near the LHC [15], and these ideas were
recently revived in Ref. [16]. However, any such experi-
ment is doomed if the dark matter candidate decays
invisibly, e.g., to hidden sector particles [17].
In this paper we address the worst-case scenario, when

the dark matter candidate produced at the LHC is unstable
and decays invisibly. For concreteness, we consider the
standard new physics decay chain shown inside the solid
box of Fig. 1:

A → v1B → v1v2C; ð1Þ

where v1;2 are SM particles (assumed to be massless here
for simplicity), while A, B, and C are new particles, with C
being the dark matter candidate. The canonical example for
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the processes (1) is the neutralino decay χ̃02 → lel� → ll̄χ̃01
in supersymmetry [18], where χ̃02 (χ̃

0
1) is the second-lightest

(lightest) neutralino, l̃ (l̃�) is a charged (anti)slepton and l
(l̄) is a SM (anti)lepton. The masses of the particles A, B
andC are denoted withmA,mB andmC, respectively, and in
general all three particles will have corresponding widths
ΓA, ΓB and ΓC. In particular, we shall pay special attention
to the case when the dark matter “candidate” C is unstable
and thus its decay width ΓC is strictly nonzero. In fact, ΓC
could easily be surprisingly large, e.g., it can be enhanced
by the multiplicity of available decay channels for C in the
hidden sector. Our key idea here is to attempt a direct
measurement of the new particle widths (including ΓC)
from the kinematic distributions of the visible decay
products v1 and v2. If one could unambiguously establish
experimentally that ΓC > 0, then C will be ruled out as a
dark matter candidate. Therefore, our first goal is to derive
the effect of nonzero widths on the observable kinematics.
In particular, we shall demonstrate as a proof of principle
that nonzero particle widths can have an observable impact
on the shape of the distribution of the invariant mass m≡
mv1v2 of the two visible particles v1 and v2. A more detailed
analysis of the exact particle width sensitivity is left for a
future study.

II. PURE ON-SHELL CASE

In the purely on-shell case, where all three particles A, B
and C are exactly on shell, the distribution dN=dm has the
well-known “triangular” shape

dN
dm

∼
�
m=ð128π2m3

AmBΓBÞ for 0 ≤ m ≤ mmax
on m;

0 otherwise;
ð2Þ

which extends up to the kinematic end point mmax
on

mmax
on ðmA;mB;mCÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

A −m2
BÞðm2

B −m2
CÞ

q
=mB: ð3Þ

The validity of Eq. (2) is ensured (at tree level) as long as
the narrow-width approximation holds and there are no
significant polarization effects. We shall now investigate
how the result (2) is modified in the case of non-negligible
widths ΓA, ΓB and, most importantly, ΓC (for studies in
other contexts, see Refs. [19–23]). For simplicity, here we
shall be turning on those widths one at a time, postponing

the discussion of the simultaneous measurement of ΓA, ΓB,
and ΓC to a future publication [24].

III. NON-NEGLIGIBLE ΓB

As a warm-up, we begin with the case when only B is
relatively broad, ΓB ≠ 0. In that case, the narrow-width
result (2) gets modified to [25]

dN
dm

∼
m

128π3m3
A

Z
sþ

s−

ds
ðs −m2

BÞ2 þm2
BΓ2

B
; ð4Þ

where

s� ≡ 1

2
½m2

A þm2
C −m2 � λ1=2ðm2

A;m
2
C;m

2Þ�; ð5Þ

and λðx; y; zÞ≡ x2 þ y2 þ z2 − 2xy − 2yz − 2xz. In the
limit of massless v1 and v2, the lower end point of
Eq. (4) is at m ¼ 0, while the upper end point, mmax

ΓB
, is

obtained by solving the equation s− ¼ sþ, which results in

mmax
ΓB

¼ mA −mC; ð6Þ

a result identical to the one for the direct three-body decay

A → v1v2C: ð7Þ

Note that in the narrow-width approximation limit of
ΓB=mB → 0, the integrand in Eq. (4) becomes

lim
ΓB
mB

→0

1

ðs −m2
BÞ2 þm2

BΓ2
B
¼ π

m3
BΓB

δ

�
s
m2

B
− 1

�
ð8Þ

and we recover the purely on-shell result (2).
Figure 2 illustrates the effect of a finite-width ΓB on the

invariant mass distribution (4). In general, one should
expect sizable effects whenever the width ΓB is comparable
to a relevant mass splitting, e.g., mA −mB (left panel) or
mB −mC (right panel). The solid lines depict the invariant

FIG. 1. The new physics decay chain under study.

FIG. 2. The solid lines represent unit-normalized invariant mass
distributions [Eq. (4)] for ðmA;mB;mCÞ ¼ ð1000; 970; 500Þ GeV
(left panel) and ðmA;mB;mCÞ ¼ ð1000; 530; 500Þ GeV (right
panel), with negligible ΓA and ΓC and several different
choices of ΓB=mB as shown in the legends. The magenta dashed
curve corresponds to the case of a pure three-body decay
(e.g., mB ≫ mA).
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mass distribution (4) for several different values of ΓB=mB,
from 1% (red lines) all the way to 50% (purple lines). For
comparison, the m distribution for the three-body decay (7)
is shown by the magenta dashed curve. We see that initially,
as the width ΓB is relatively small, the shape of the
distribution still resembles the triangular shape (indicated
by the dotted line) of Eq. (2), but there are a certain number
of events which leak out beyond the nominal upper
kinematic end point (3). As the width ΓB increases, so
does the fraction of events which leak out, and very soon,
for ΓB=mB ∼ 5–10%, no discernible end point is visible at
all at the location predicted by Eq. (3). Instead, we obtain a
relatively broad distribution which terminates at the new
kinematic end point (6). Eventually, as the width ΓB further
increases, the distribution asymptotes to the magenta
dashed line corresponding to the case of the three-body
decay (7).
Figure 2 demonstrates that the effect of a finite ΓB on the

invariant mass distribution (4) can be quite significant; for
one, all curves in the figure have shapes which are clearly
different from the triangular shape (2) obtained in the limit
of ΓB ¼ 0. At the same time, unless the B resonance is
extremely broad (ΓB ∼mB), the obtained distribution is
also distinguishable from that of a three-body decay (7). We
thus conclude that the observation of a nontrivial invariant
mass shape like the ones seen in Fig. 2 would not only
suggest a finite value for ΓB, but will also allow its
measurement with a decent precision.
Before we move on to the case of a non-negligible ΓC, let

us briefly comment on the effect of spin correlations. Our
previous results were obtained in the pure phase space
limit, where the width dependence comes only from the B
propagator. However, these results would be valid only if
all involved particles are spin 0, which is unrealistic: the
SM particles v1 and v2 are fermions (leptons or quark-
initiated jets). Therefore, some nontrivial chiralities are
present in the interaction vertices, as shown in the left panel

of Fig. 3, where for concreteness we have chosen the
intermediate particle B to be a fermion. In general, the
fermion couplings are arbitrary mixtures of left-handed
and right-handed chiral couplings proportional to PL ≡
ð1 − γ5Þ=2 and PR ≡ ð1þ γ5Þ=2, respectively. In Fig. 3, we
contrast three special cases: (a) vectorlike couplings,
(b) opposite chiralities at the two vertices and (c) the same
chiralities at the two vertices. Then, the spin-averaged
matrix element squared receives an additional contribution
proportional to

jMj2 ∼

8>><
>>:

ðm2
A − sÞðs −m2

CÞ −m2s for Fig: 3ðbÞ;

m2

�
Γ2
B

4
þm2

B

�
for Fig: 3ðcÞ: ð9Þ

Therefore, the result for vectorlike couplings [Fig. 3(a)] is
simply the sum of these two cases (times a factor of 2 due to
L ↔ R exchange)

jMj2 ∼ 2ðm2
A − sÞðs −m2

CÞ þ 2m2

�
Γ2
B

4
þm2

B − s

�
: ð10Þ

The chirality effects (9)–(10) on the shape of the
invariant mass distribution are illustrated in the right
panel of Fig. 3, for a mass spectrum ðmA;mB;mCÞ ¼
ð1000; 970; 500Þ GeV and ΓB=mB ¼ 1%. For reference,
the black dotted line shows the pure scalar theory result (4).
The green dot-dashed and the red dashed lines represent the
distributions obtained in the presence of spin correlations
as in Fig. 3(b) and Fig. 3(c), respectively. The case of
vectorlike couplings, Fig. 3(a), is then obtained by simply
adding those two distributions (blue solid line). In the
narrow-width approximation, for vectorlike couplings one
would recover the phase space result (2), since the spin
correlations from Fig. 3(b) and Fig. 3(c) would cancel
exactly. However, in the presence of nontrivial width effects
as in Eq. (9), the cancellation is incomplete and even the
case of vector-like couplings is markedly different from the
pure scalar theory result (compare the blue solid and black
dotted lines in Fig. 3) [26,27].

IV. NON-NEGLIGIBLE ΓC

We now consider perhaps the most interesting case,
when the dark matter candidate (particle C) has a non-
vanishing width, ΓC ≠ 0, due to an invisible decay to two
dark sector particles X and x, as shown in the right (dot-
dashed) boxed extension of Fig. 1. Under those circum-
stances, we find that the shape of the invariant mass
distribution is given by

dN
dm

∼
m

2048π4m3
AmBΓB

Z
sþ

s−

ds
s

λ1=2ðs;m2
X;m

2
xÞ

ðs −m2
CÞ2 þm2

CΓ2
C
; ð11Þ

where mX and mx are the respective masses of the hidden
sector particles X and x and

FIG. 3. Left panel: Three different fermion chirality structures
for the boxed decay chain of Fig. 1: (a) vectorlike couplings,
(b) opposite chiralities, and (c) the same chiralities at the
neighboring fermion vertices. Right panel: Unit-normalized
invariant mass distributions for those three cases, compared to
the pure scalar theory result (4) (black dotted line), for
ðmA;mB;mCÞ ¼ ð1000; 970; 500Þ GeV and ΓB=mB ¼ 1%.
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s− ≡ ðmX þmxÞ2; sþ ≡m2
B

�
1 −

m2

m2
A −m2

B

�
: ð12Þ

As before, the upper kinematic end point, mmax
ΓC

, of the
distribution (11) is found from s− ¼ sþ, which yields

mmax
ΓC

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

A −m2
BÞfm2

B − ðmX þmxÞ2g
q

=mB: ð13Þ

Comparing to Eq. (3), we notice that

mmax
ΓC

¼ mmax
on ðmA;mB;mX þmxÞ; ð14Þ

which is easily understood as the limit when C becomes
extremely off shell.
In analogy to Fig. 3, the left panel in Fig. 4 illustrates the

impact of the nonvanishing width ΓC on the shape of the
invariant mass distribution (11). We take the mass spectrum
to be ðmA;mB;mCÞ ¼ ð1000; 520; 500Þ GeV and again
vary the dimensionless ratio ΓC=mC from 1% to 50% as
indicated in the legend. For concreteness, we assume the
hidden sector particles X and x to be massless, i.e.,
mX ¼ mx ¼ 0, in which case the distributions in Fig. 4
have a common upper kinematic end point mmax

ΓC
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
A −m2

B

p
¼ 854 GeV.

Figure 4 demonstrates that the effect of ΓC can be quite
drastic. Even when the width ΓC is as small as 1% of the
resonance mass mC, the shape of the distribution is visibly
distorted from the standard triangular shape (2), and a
sizable fraction of events are already leaking out beyond
the expected kinematic end point (3), which is indicated
with the vertical dashed line. Increasing the width to
ΓC ∼ 0.05mC appears already sufficient to render the
triangular shape unrecognizable and indicate the presence
of off-shell effects.
In order to test the method in the presence of realistic

detector resolution effects, in the right panel of Fig. 4 we

plot the invariant mass distribution of 500 events for the
worst-case scenario when particles v1 and v2 are jets. We
apply Gaussian smearing of 12.5%, which is typical for
jets, and contrast the cases of ΓC ¼ 0 (blue solid line) and
ΓC=mC ¼ 2% for a single experiment (red solid line) or the
average of 100 pseudoexperiments (red dashed line). It is
clear that even in the presence of jet smearing, the two cases
are easily distinguishable: applying a Kolmogorov-
Smirnov test, we find a p-value of 10−7 which is sufficient
for a 5σ discovery of a nonvanishing ΓC.

V. NON-NEGLIGIBLE ΓA

Finally, for completeness we also consider the case
where the decay width of particle A is non-negligible,
ΓA ≠ 0. This case is a little bit more model dependent, since
we must know how to sample the 4-momentum squared,
p2
A, of particle A. One simple possibility is that A is the

decay product of a narrow resonance Y with mass mY ,
Y → yA, as shown in the left (dashed) boxed extension of
Fig. 1. Under those circumstances, the invariant mass
distribution is given by

dN
dm

∼
m

2048π4m3
YmBΓB

Z
sþ

s−

ds
s

λ1=2ðm2
Y; m

2
y; sÞ

ðs −m2
AÞ2 þm2

AΓ2
A
; ð15Þ

where mY and my are the masses of the particles Y and y,
respectively, while

s− ≡m2
B

�
1þ m2

m2
B −m2

C

�
; sþ ≡ ðmY −myÞ2: ð16Þ

The upper kinematic end point, mmax
ΓA

, of the distribution
(15) is again found from s− ¼ sþ:

mmax
ΓA

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðmY −myÞ2 −m2

BÞðm2
B −mCÞ2

q
=mB; ð17Þ

and can be equivalently interpreted as

mmax
ΓA

¼ mmax
on ðmY −my;mB;mCÞ: ð18Þ

Figure 5 shows the effect of a nonvanishing width
ΓA on the shape of the invariant mass distribution (15).
The mass spectrum is chosen as ðmY;mA;mB;mCÞ ¼
ð1500; 1000; 970; 500Þ GeV and the dimensionless ratio
ΓA=mA is again varied from 1% to 50%, as indicated in
the legend. For concreteness, we assume that the
additional final-state particle y is massless, and thus all
distributions in Fig. 5 have a common kinematic end point
mmax

on ðmY;mB;mCÞ ¼ 980 GeV, as predicted by Eq. (18).
Once again, we observe that even a width of only 1% leads
to a noticeable change in the expected triangular shape and
an overflow of events beyond the nominal kinematic end
point of 208.3 GeV predicted by Eq. (3) and denoted by the
vertical dashed line. As the width is further increased,

FIG. 4. Left: Unit-normalized invariant mass distributions for
ðmA;mB;mCÞ ¼ ð1000; 520; 500Þ GeV and several different val-
ues of ΓC=mC as shown in the legend. We assume that particle C
further decays invisibly to two massless particles X and x,
C → Xx, as shown in the dot-dashed box of Fig. 1. Right: the
invariant mass distribution of 500 events, after applying Gaussian
smearing of 12.5% for the case of ΓC ¼ 0 (blue solid line) and
ΓC=mC ¼ 2% (red solid line). The red dashed line represents the
average of 100 pseudoexperiments.
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the shape distortion becomes quite significant, confirming
the sensitivity to the value of ΓA.

VI. SUMMARY AND OUTLOOK

We derived the effects of nonzero particle widths on the
observable invariant mass distribution dN=dm in the case
of the decay chain of Fig. 1. We showed that the shape of
the distribution can be very sensitive to the widths and
therefore can be used to perform a measurement of ΓA, ΓB
and, most importantly, ΓC, thus directly probing the nature
of the dark matter candidate C, which appears invisible in
the detector. Our results for these three cases can be
compactly summarized as

dN
dm

∼m
Z

siþ

si−

ds
1

ðs −m2
i Þ2 þm2

iΓ2
i
FiðsÞ; ð19Þ

where i ¼ fA; B;Cg, the integration limits si� are given by
Eqs. (16), (5) and (12), respectively, while

FiðsÞ ¼

8>>>>><
>>>>>:

λ1=2ðm2
Y; m

2
y; sÞ

s
for i ¼ A;

1 for i ¼ B;

λ1=2ðs;m2
X;m

2
xÞ

s
for i ¼ C:

ð20Þ

The analysis presented here can be readily generalized to the
case of massive SM particles v1 and v2, to three-body
decays, and to a simultaneous measurement of ΓA, ΓB and
ΓC [24].
One should be mindful of the fact that there are other

factors which also affect the shape of the invariant mass
distribution dN=dm. On the theoretical side, there could
be spin correlations [26,28–30], interference [31,32] and
higher-order effects [33,34]. On the experimental side, the
analysis cuts, the detector resolution, and the SM back-
grounds will also play roles in this measurement. However,
these effects are well known and under control, and can be
readily accounted for (see, e.g., the kinematic end point
measurements in Ref. [35]). Furthermore, the width meas-
urement relies mostly on the events above the nominal
kinematic endpoint (3), while all those effects impactmostly
the softer part of the distribution dN=dm. We are therefore
optimistic that such width measurements will be feasible,
once a sufficiently strong and cleanmissing energy signal of
new physics is observed at the LHC.
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