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Gauge coupling unification and the stability of the Higgs vacuum are among two of the cherished
features of low-energy supersymmetric models. Putting aside questions of naturalness, supersymmetry
might only be realized in nature at very high energy scales. If this is the case, the preservation of gauge
coupling unification and the stability of the Higgs vacuum would certainly require new physics, but it need
not necessarily be at weak scale energies. New physics near the unification scale could, in principle, ensure
grand unification, while new physics below 1010 GeV could ensure the stability of the Higgs vacuum.
Surprisingly however, we find that in the context of a supersymmetric SO(10) grand unified theory, gauge
coupling unification and the Higgs vacuum stability, when taken in conjunction with existing phenomeno-
logical constraints, require the presence ofOðTeVÞ-scale physics. This weak-scale physics takes the form of a
complex scalar SUð2ÞL triplet with zero hypercharge, originating from the 210 of SO(10).
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I. INTRODUCTION

One of the most conspicuous null results of the LHC run
I and run II so far has been the lack of discovery of
supersymmetry (SUSY) [1] near the electroweak scale.
There are at least three possible implications of this result.
First, perhaps the supersymmetric mass scales are just
around the corner at the multi-TeV scale which may or may
not be within the reach of the LHC. Second, supersym-
metry could be broken at a very high energy scale [though
below the grand unified theory (GUT) scale], in which case
the supersymmetric particle spectrum would not be directly
accessible at the LHC. Finally, it is also possible that
supersymmetry is not manifest below the Planck scale and
is an exact symmetry only at the string or Planck scale. In
this case, it is unlikely that there are any experimental
consequences of supersymmetry. While there have been
many studies of supersymmetry at the multi-TeV scale, we
instead examine the second alternative, namely that of
high-scale supersymmetry [2,3]. This is partly motivated by
the possibility that an EeV mass gravitino may provide the
correct relic density of dark matter [4] if the supersym-
metry-breaking scale lies above the inflationary scale,
mI ≃ 3 × 1013 GeV. Thus while high-scale supersymmetry

may still provide a viable dark matter candidate, it is less
clear whether or not supersymmetry can still provide
successful gauge coupling unification or the stability of
the Higgs vacuum. It goes without saying that the super-
symmetric solution to the hierarchy problem will not be
available.
Gauge coupling unification can be achieved in non-

supersymmetric GUT models such as SO(10) [5] which
break through an intermediate scale gauge group [6–11].
The running of the gauge couplings can be deflected at the
intermediate scale when new particle degrees of freedom
appear. These same SO(10) models can also stabilize the
Higgs vacuum [11] and provide for a dark matter candidate
if the intermediate scale is broken by a 126 dimensional
representation [9,10]. Gauge coupling unification in super-
symmetric models of SO(10) has also been studied exten-
sively [12–15]. In this case, since supersymmetry alone is
sufficient for the focusing of the gauge coupling running
[16], care in the construction of the GUT model is needed
to avoid spoiling the success achieved in the minimal
supersymmetric standard model (MSSM) if new states
remain light below the GUT scale. One of the main
objectives of this paper is to discuss the implications of
the spectrum of states in an SO(10) GUT on obtaining
satisfactory high-scale SUSY SO(10) unification.
A viable dark matter candidate is one of the many

motivations for low-energy supersymmetric models. Often
this candidate is a neutralino [17,18] whose relic density is
obtained when thermal annihilations or coannihilations
[19] freeze out. However, as the neutralino mass scale is
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increased (e.g., due to LHC lower limits), annihilation and
coannihilation cross sections become too weak to maintain
equilibrium and an excess relic density is left behind.
Certainly for neutralino masses in excess of Oð10Þ TeV,
this thermal picture breaks down. Alternatively, the grav-
itino is also an excellent dark matter candidate [18,20–28]
produced primarily during reheating in processes such as
gluonþ gluon → gluinoþ gravitino. A combination of
limits from big bang nucleosynthesis [29] and decays from
a next-to-lightest neutralino [30–32] place an upper bound
ofm3=2 ≲ 4 TeV. However if the SUSY spectrum is pushed
to very high scales (above mI), single gravitino production
is kinematically cut off, and the suppressed two gravitino
channels dominate opening a new window for gravitino
dark matter with masses between 0.1 and 1000 EeV
[4,33,34]. Indeed, in [34], an integrated model of super-
symmetry breaking and inflation was constructed with
supersymmetry-breaking masses, m̃ > mI . Possible neu-
trino signatures of this model if R-parity is not exact were
discussed in [35].
As noted above, such a model has little chance in

addressing the hierarchy problem, but should be able to
still address other features commonly associated with low-
energy SUSY. These include obtaining a Higgs mass of
125 GeV, gauge coupling unification, stability of the Higgs
vacuum and dark matter. In [34], the question of the dark
matter abundance through reheating in a specific inflationary
model was addressed and solutions to these other questions
were outlined. Here, we address these issues inmore detail in
the context of a supersymmetric SO(10) GUT.
In particular, we consider the so-called minimal super-

symmetric GUT based on SO(10) described in detail in
[15,36–39]. The Higgs sector contains a 210 to break
SO(10), a 126 and 126 pair to break the intermediate scale
gauge group, and a 10 to break the standard model (SM).
Matter fields of each generation are neatly contained in a
fundamental 16. As we see, in general, vacuum expectation
values (VEVs) for the 210 and 126 and 126 occur
simultaneously so that in effect SO(10) is broken directly
to the MSSM. Depending on the pattern of VEVs, some
states may remain light, i.e., below the GUT scale. Since
m̃ > mI , all R-parity −1 states (except perhaps the grav-
itino) also retain masses in excess of mI . Indeed, non-
negligible supersymmetry-breaking effects alter the mass
spectra produced in GUT symmetry breaking as we discuss
in detail below.
It is often noted that whereas gauge coupling unification

is absent in the standard model, it occurs quite naturally in
the MSSM [16] with supersymmetric states near the TeV
scale. However, it has recently been emphasized [40] that
unification is also achievable with high-scale supersym-
metry. Depending on the GUT gauge group and the
superheavy mass spectrum, unification may still occur
where the mismatch between the low-energy gauge cou-
plings and the GUT (unified) gauge coupling is accounted

for by threshold corrections [40–42]. Indeed for a suitably
complicated GUT such as SO(10) with an extensive GUT
Higgs structure, these threshold corrections may in fact be
quite significant. In the present context of high-scale
supersymmetry, we expect SM running of the gauge
couplings up to the inflationary scale which is only slightly
below the GUT scale. Nevertheless, as we see, gauge
coupling unification can still be achieved when properly
taking into account the predicted mass spectrum of super-
heavy states. This does depend on the supersymmetry-
breaking mechanism, and for simplicity we assume that all
the MSSM superpartners are approximately degenerate in
mass at the scale m̃ to highlight the effect of the threshold
corrections at the GUT scale, while the gravitino mass is
implicitly assumed to be 0.1–1000 EeV. Besides gauge
coupling unification the resolution of the Higgs stability
question presumably requires some modification to the SM
below the scale of 1010 GeV (where the Higgs quartic
coupling runs negative), and it is quite possible that some
component of either the 210 or 126 may remain light.
However as we argue below, there is only a single candidate
for this light state in the minimal SO(10) model. This state
is an SUð2ÞL triplet, color singlet with zero hypercharge
contained in the 210, labeled S. As is shown, the threshold
corrections for each of the three SM gauge groups, though
large, are similar in magnitude and therefore some focusing
of the gauge coupling running, beyond what occurs in the
SM, remains necessary. The state S has a small yet
important focusing effect on the running of the gauge
couplings and together with the large threshold effects from
GUT states gives rise to precise unification. In contrast,
every other charged (or singlet) component of the GUT
representations, if light, would negate unification due to the
contribution of threshold effects from the light states and
the GUT states.
Interestingly, when phenomenological constraints on the

S state are taken into account, we find that it should not
have too large a mass. This is due to the long lifetime of the
state, which is such that it contributes a subcomponent of
the dark matter abundance. Thus, we show how the SO(10)
GUT provides a viable embedding of high-scale super-
symmetry, with a stable Higgs vacuum and correct gauge
coupling unification, but only as long as there is a TeV-
scale particle in the spectrum.
In what follows, we first go over the minimal field

content in Sec. II, and discuss known solutions for breaking
SO(10) while preserving GSM ¼ SUð3Þc × SUð2ÞL ×
Uð1ÞY in a supersymmetric context. There are a number
of solutions that break SO(10) to GSM directly, many of
which have states much lighter than the GUT scale. We
discuss the running of the gauge couplings in Sec. III, and
our treatment of threshold corrections in Sec. IV. In Sec. V,
we discuss specific solutions where gauge coupling uni-
fication is achieved and the running of the Higgs quartic
coupling is discussed in Sec. VI. Our conclusions are
summarized in Sec. VII.
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II. THE MINIMAL GUT FIELD CONTENT,
INTERACTIONS, VEVS AND MASSES

We follow the analysis of [15,38,39] and include only the
following Higgs superfields [with SO(10) representation in
parentheses]:

Φð210Þ; Σð126Þ; Σ̄ð126Þ; Hð10Þ: ð1Þ
The most general renormalizable superpotential in terms of
this field content is

W ⊃
μΦ
4!

Φ2 þ μΣ
5!

ΣΣ̄þ λ

4!
Φ3 þ η

4!
ΦΣΣ̄

þ μHH2 þ 1

4!
ΦHðαΣþ ᾱ Σ̄Þ; ð2Þ

where μΦ, μΣ, μH are mass parameters and λ, η, α, ᾱ are
dimensionless couplings. In addition, the theory contains
three generations of matter representations Ψð16Þ which
couple to the Higgs fields H and Σ̄. Given the relatively
large representations we are forced to utilize, it is useful to
decompose them down to smaller representations given in
terms of the SUð2ÞL × SUð2ÞR × SUð4Þ subgroup of
SO(10). These are

10 ¼ ð1; 1; 6Þ þ ð2; 2; 1Þ; ð3Þ

126 ¼ ð1; 3; 10Þ þ ð3; 1; 10Þ þ ð1; 1; 6Þ þ ð2; 2; 15Þ; ð4Þ

126 ¼ ð1; 3; 10Þ þ ð3; 1; 10Þ þ ð1; 1; 6Þ þ ð2; 2; 15Þ; ð5Þ

210 ¼ ð1; 1; 15Þ þ ð1; 1; 1Þ þ ð1; 3; 15Þ þ ð3; 1; 15Þ
þ ð2; 2; 6Þ þ ð2; 2; 10Þ þ ð2; 2; 10Þ: ð6Þ

We further recall the SU(4) decomposition in terms
of its SUð3Þc × Uð1ÞB−L subgroup: 6¼3ð2=3Þþ3̄ð−2=3Þ,
10¼ 6ð−2=3Þþ3ð2=3Þþ1ð2Þ, and 15¼8ð0Þþ3ð−4=3Þþ
3̄ð4=3Þþ1ð0Þ.
Since only MSSM singlets can obtain GUT-scale VEVs,

there is a limited number of fields which are allowed to
obtain VEVs and break SO(10). These are defined as

v1;1;1 ¼ hΦð1; 1; 1Þi; v1;1;15 ¼ hΦð1; 1; 15Þi;
v1;3;15 ¼ hΦð1; 3; 15Þi; ð7Þ

σ1;3;10 ¼ hΣð1; 3; 10Þi; σ1;3;10 ¼ hΣ̄ð1; 3; 10Þi; ð8Þ

which means the superpotential for the VEVs can be
written as

W ⊃ μΦðv21;1;1 þ 3v21;1;15 þ 6v21;3;15Þ
þ 2λðv31;1;15 þ 3v1;1;1v21;3;15 þ 6v1;1;15v21;3;15Þ
þ μΣσ1;3;10σ1;3;10 þ ησ1;3;10σ1;3;10

× ðv1;1;1 þ 3v1;1;15 − 6v1;3;15Þ: ð9Þ

Imposing the condition of vanishing D-terms implies
jσ1;3;10j ¼ jσ1;3;10j, and imposing the condition of vanishing
F-terms leads to the following equations:

2μΦv1;1;1 þ 6λv21;3;15 þ ησ1;3;10σ1;3;10 ¼ 0; ð10Þ

2μΦv1;1;15þ2λðv21;1;15þ2v21;3;15Þþησ1;3;10σ1;3;10¼0; ð11Þ

2μΦv1;3;15þ2λðv1;1;1þ2v1;1;15Þv1;3;15þησ1;3;10σ1;3;10¼ 0;

ð12Þ

σ1;3;10ðμΣ þ ηðv1;1;1 þ 3v1;1;5 − 6v1;3;15ÞÞ ¼ 0: ð13Þ

There are several solutions to this set of equations
including the trivial one with all VEVs equal to 0, for
which SO(10) is preserved. Other solutions include the
breaking of SO(10) to either SUð5Þ×Uð1Þ, flipped SUð5Þ×
Uð1Þ, SU(5), SUð3Þc × SUð2ÞL × SUð2ÞR × Uð1ÞB−L, or
SUð3Þc × SUð2ÞL × Uð1ÞR × Uð1ÞB−L. It is also possible
to break SO(10) directly down to the SM. As we are
primarily interested in this class of solutions, we quote the
general solution to these conditions from [39]

v1;1;1 ¼ −
μΦ
λ

xð1 − 5x2Þ
ð1 − xÞ2 ; v1;1;15 ¼ −

μΦ
λ

ð1 − 2x − x2Þ
ð1 − xÞ ; v1;3;15 ¼ −

μΦ
λ
x;

σ1;3;10σ1;3;10 ¼
2μ2Φ
ηλ

xð1 − 3xÞð1þ x2Þ
ð1 − xÞ2 ; −8x3 þ 15x2 − 14xþ 3 ¼ ðx − 1Þ2 λμΣ

ημΦ
: ð14Þ

Given the parameters μΦ, μΣ, λ, and η, the final equation in
(14) determines x which in turn determines each of the
five VEVs.
Ignoring for the moment the effects of supersymmetry

breaking, the value of x also determines the mass spectrum

of the SM components in Φ, Σ, and Σ̄. The masses of these
states have been determined in [39]. Some of the mass
eigenstates reside purely in either Φ or Σ, and Σ̄, while
others correspond to mixed states. The mass spectrum of
the unmixed SM components as a function of x, given in
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Table I of [39], is reproduced here for convenience in
Table I, with the coupling conventions labeled as in [15].
The mixed scalar states are given in Table II. For the
fermionic superpartners of the mixed scalar states, gauginos
also participate in the mixings in the J, F, E, X, and G
states. For instance, the number of G boson states is five
(G1−5), while that of G fermion states is six (G1−6) as the
fermionic superpartner of the (1,1,0) gauge boson should
also be counted. We use these label conventions to easily
distinguish between different possible solutions for light

states. Note, however, that in our notation, we have defined
hypercharge as Y ¼ T3R þ ðB − LÞ=2 and Q ¼ T3L þ Y.
For a generic value of x, one would expect that all of the
Higgs states (other than the SM Higgs doublet which must
be tuned to a weak-scale value) have masses of order the
GUT scale. However, when x is a root (or close to a root) of
one of the polynomials listed in the third column of Table I,
that state is light. The mass eigenvalues of the mixed states
in the absence of supersymmetry breaking can also be
found in [15,39]. Note that the massless states correspond
to the Nambu-Goldstone bosons which combine with the
gauge bosons to give them masses.1

The spontaneous symmetry breaking of SO(10) to the
SM consumes 33 massless Nambu-Goldstone bosons,
yielding 33 massive gauge bosons as calculated in [15],
which we reproduce in Table III. In the table and elsewhere,
gU refers to the SO(10) unified gauge coupling.
An important difference between the present analysis

and the previous works in [15,39] is the scale of super-
symmetry breaking. In previous works, the supersymmetry
breaking scale, m̃ was assumed to be very small compared
with the mass scales associated with the 126 and 210 Higgs

TABLE I. Spectrum of unmixed states from the scalar representations. We have defined rc ¼ 2η=λ, and li is the Dynkin index of each
state (×2when there is a conjugate field) for the SM gauge group i, with GUT normalization for l1. The mass expressions correspond to
the fermion masses, and the scalar masses are obtained from Eq. (15). The state which we are ultimately most interested in, S, is
highlighted in bold.

Field ðSUð3Þc; SUð2ÞL; Uð1ÞYÞ FermionMass=μΦ l1 l2 l3

Φ ð3; 1; 5=3Þ þ h:c: (I) 8xð2x − 1Þ=ðx − 1Þ2 10 0 1
ð8; 1; 1Þ þ h:c: (Z) 4ðx2 − 3xþ 1þ 3x3Þ=ðx − 1Þ2 48

5
0 6

(1; 3; 0) (S) −2ðx2 − 5xþ 1þ 7x3Þ=ðx − 1Þ2 0 2 0
ð3; 3;−2=3Þ þ h:c: (U) −4xð−1þ 3x3Þ=ðx − 1Þ2 24

5
12 3

(8,3,0) (Q) −4ð−x2 þ 2x − 1þ 2x3Þ=ðx − 1Þ2 0 16 9
ð1; 2; 3=2Þ þ h:c: (V) −4ð−1þ xþ 3x2Þ=ðx − 1Þ 27

5
1 0

ð6; 2;−1=6Þ þ h:c: (Y) 4ð−1þ xþ x2Þ=ðx − 1Þ 2
5

6 10
ð6; 2; 5=6Þ þ h:c: (B) 4ð2x − 1Þ=ðx − 1Þ 10 6 10

Σ; Σ̄ ð1; 3;−1Þ þ h:c: (O) −4rcxð4x2 − 3xþ 1Þ=ðx − 1Þ2 18
5

4 0
ð3; 3;−1=3Þ þ h:c: (P) −2rcð7x3 − 7x2 þ 5x − 1Þ=ðx − 1Þ2 6

5
12 3

ð6; 3; 1=3Þ þ h:c: (W) −4rcð3x − 1Þðx2 − xþ 1Þ=ðx − 1Þ2 12
5

24 15
ð1; 1; 2Þ þ h:c: (A) −12rcx 24

5
0 0

ð3̄; 1; 4=3Þ þ h:c: (K) −2rcð3x2 − 6xþ 1Þ=ðx − 1Þ 32
5

0 1

ð6̄; 1; 2=3Þ þ h:c: (M) −4rcð1 − 3xÞ=ðx − 1Þ 16
5

0 5

ð6̄; 1;−1=3Þ þ h:c: (L) −2rcðx2 − 7xþ 2Þ=ðx − 1Þ 4
5

0 5

ð6̄; 1;−4=3Þ þ h:c: (N) −4rcðx2 − 4xþ 1Þ=ðx − 1Þ 64
5

0 5
ð3; 2; 7=6Þ þ h:c: (D1) −2rcð6x3 − 10x2 þ 7x − 1Þ=ðx − 1Þ2 49

5
3 2

ð3̄; 2;−1=6Þ þ h:c: (E1) −2rcð4x3 − 6x2 þ 5x − 1Þ=ðx − 1Þ2 1
5

3 2

ð3̄; 2;−7=6Þ þ h:c: (D2) −2rcð5x3 − 8x2 þ 6x − 1Þ=ðx − 1Þ2 49
5

3 2
ð8; 2; 1=2Þ þ h:c: (C1) −2rcð3x3 − 7x2 þ 8x − 2Þ=ðx − 1Þ2 24

5
8 12

ð8; 2;−1=2Þ þ h:c: (C2) −2rcð4x3 − 9x2 þ 9x − 2Þ=ðx − 1Þ2 24
5

8 12

TABLE II. Mixed states from the scalar representations and
their Dynkin indices li, with GUT normalization for l1. There
are no compact expressions for the masses of the mixed states.

Field ðSUð3Þc; SUð2ÞL; Uð1ÞYÞ l1 l2 l3

H, Φ, ΣΣ̄ ð1; 2; 1=2Þ þ h:c: (h1–4) 3
10

1
2

0
H, Φ, ΣΣ̄ ð3; 1;−1=3Þ þ h:c: (T1–5) 1

5
0 1

2

Φ, ΣΣ̄ ð3; 1; 2=3Þ þ h:c: (J1−3) 4
5

0 1
2

Φ, ΣΣ̄ ð1; 1;þ1Þ þ h:c: (F1−2) 3
5

0 0
Φ (8,1,0) (R1;2) 0 0 3
Φ, ΣΣ̄ ð3; 2;þ1=6Þ þ h:c: (E2−4) 1

10
3
2

1
Φ, ΣΣ̄ ð3; 2;−5=6Þ þ h:c: (X1−2) 5

2
3
2

1

Φ, ΣΣ̄ (1,1,0) (G1−5) 0 0 0

1Note that the expressions given in Table II of Ref. [39] are
incorrect. The values for the masses of the mixed states are
obtained by diagonalizing the matrices given in [15].
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bosons.2 In contrast, here we are interested in the case
where the supersymmetry-breaking scale is very high, to
the point that it can be as large as m̃ ∼ 0.1μΦ. As a result,
we must account for non-negligible supersymmetry break-
ing corrections to the GUT sparticle spectrum. This alters
the results for the spectra considered above [15,39] as we
now discuss.
The unmixed fermion masses (listed in Table I) remain

the same as in [15,39], since these are the Higgsinos
associated with the GUT scalar Higgs bosons, and therefore
do not receive corrections from SUSY breaking. Rather,
because the “μ-term” parameters, μΦ, and μΣ are GUT
scale, they generically lead to large Higgsino masses. If we
could ignore supersymmetry breaking, then tuning x so that
a particular unmixed state becomes light would result in
both a light scalar and a light fermion. However, when
supersymmetry breaking is comparable (or at least non-
negligible) to μΦ, the tuning of x resulting in a light scalar is

altered and the fermion partner in general remains heavy.
To see this, recall that unmixed scalar masses receive
corrections of the following form:

mSi ¼ ðm2
Fi
ðxÞ þ m̃2Þ1=2; ð15Þ

so that now minimizing x to set a particular scalar mass to 0
does not simultaneously set the accompanying fermion
mass to 0.
Determining the masses of the mixed states is somewhat

more complicated. Mixed fermion masses are no longer
obtained by simply diagonalizing the matrices given in [15],
since there are soft SUSYmass terms for the gauginos. Thus,
the diagonal entry of the matrices in [15] corresponding to
mG̃ G̃ receives a correction of sizem1=2 ∼ m̃. For example, let
us consider the matrix for the fermion states, with charges
ð1; 1;−1Þ under SUð3Þc, SUð2ÞL and Uð1ÞY which becomes

FF ¼

0
BBB@

2ðμΣ þ ηðv1;1;1 þ 3v1;1;15ÞÞ −2i
ffiffiffi
3

p
ησ1;3;10 −gU

ffiffiffi
2

p
σ�
1;3;10

2i
ffiffiffi
3

p
ησ1;3;10 2ðμΦ þ λðv1;1;1 þ 2v1;1;15ÞÞ

ffiffiffiffiffi
24

p
igUv�1;3;15

−gU
ffiffiffi
2

p
σ�1;3;10 −

ffiffiffiffiffi
24

p
igUv�1;3;15 m1=2

1
CCCA; ð16Þ

in the (ΣΣ̄ð1; 3; 10Þ;Φð3; 1; 15Þ, W̃�
R ) basis. Mixed scalar

masses are also shifted, but now they are obtained by
diagonalizing ðM†MÞn×n þ m̃21n−k×n−k, where k is the
number of Nambu-Goldstone states, while ensuring that
the Nambu-Goldstone bosons remain massless. Once again,
tuning a scalar to be light leaves its fermionic partner heavy
(of order μΦ or m1=2). We assume universal soft SUSY-
breaking masses for the scalars. The masses of the gauge
bosons from the GUT spectrum do not change in the
presence of SUSY breaking. In the following, with the

exception of the G state, we use the mixed states (and their
masses) only in the threshold corrections necessary for
obtaining gauge coupling unification, and they will not be
considered as candidates for a possible light scalar. We,
however, examine the case that one of the fiveG states listed
in Table II is left light.
As we have noted above, the massless spectrum is

obtained by varying x such that one or more states are
massless. Numerically, we proceed by solving for x0, the
value of x for which a particular unmixed scalar state is
massless. Without taking SUSY-breaking effects into
account, there might have been multiple states for which
the same x0 solved miðx0Þ ¼ 0. However, after accounting
for SUSY breaking, there is only ever one scalar which is
massless for a particular choice of x0. Two distinct sets of
solutions for massless states are found, depending on

TABLE III. The mass spectrum of GUT gauge bosons, and their Dynkin indices under each SM gauge group, li.

Field ðSUð3Þc; SUð2ÞL; Uð1ÞYÞ Mass=μΦ l1 l2 l3

W0
R (1,1,0) ffiffiffiffiffi

10
p

gU
�

2
ηλ

xð1−3xÞð1þx2Þ
ð1−xÞ2

�
1=2 0 0 0

XPS ð3; 1; 2=3Þ þ h:c: gU
�
4
��� ð1−3xÞxðx2þ1Þ

ð1−xÞ2ηλ

���þ 8
��� −x2−2xþ1

ð1−xÞλ
���2 þ 16j xλ j2

�
1=2 4

5
0 1

2

W�
R ð1; 1;þ1Þ þ h:c: gU

�
4
��� ð1−3xÞxðx2þ1Þ

ð1−xÞ2ηλ

���þ 24j xλ j2
�
1=2 3

5
0 0

X0, Y 0 ð3; 2; 1=6Þ þ h:c: gU
�
4
��� ð1−3xÞxðx2þ1Þ

ð1−xÞ2ηλ

���þ 4
��� xλ − −x2−2xþ1

ð1−xÞλ
���2 þ 2

��� xð1−5x2Þð1−xÞ2λ − x
λ

���2�1=2 1
10

3
2

1

X, Y ð3; 2;−5=6Þ þ h:c: gU
�
4
��� − x

λ −
−x2−2xþ1
ð1−xÞλ

���2 þ 2
��� − x

λ −
ð1−5x2Þx
ð1−xÞ2λ

���2�1=2 5
2

3
2

1

2SO(10) unification in the context of split supersymmetry was
considered in Ref. [43]. In split supersymmetry, while scalar
superpartners are heavy, fermionic superpartners remain near the
weak scale, and thus our setup is quite different as all super-
partners are heavy.
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whether we take the SUSY mass-squared contribution to
the SO(10) scalars to be positive or negative. We consider
both possibilities in our analysis. Negative SUSY mass-
squared contributions to the SO(10) scalars do not lead to
tachyons as long as the GUT-scale mass is larger, which it
invariably is.
Additionally, one might have worried that a particular

choice of x0 would simultaneously set a GUT gauge boson
mass to 0, which could be dangerous for proton decay. The
values of x0 for which a proton-decay-mediating GUT
gauge boson is massless are

x×0 ¼
�
−1;

1

3
;
1

2

�
: ð17Þ

However, since the SUSY breaking shifts the scalar masses
but not the GUT gauge bosons, this never occurs, and the
perturbation away from a value x×0 due to SUSY breaking is
sufficiently large such that the GUT gauge bosons have
masses of OðμΦÞ.
Note that a second tuning is also required in this model to

obtain a light Higgs scalar doublet [equivalent to the SU(5)
doublet-triplet splitting]. In the supersymmetric limit the
Higgs doublets Hu;d are identified as a linear combination
of the SUð2ÞL doublets appearing in the representations

(3)–(6), by requiring that the corresponding mass matrix in
the scalar potential has zero determinant. Using the super-
potential (2), this leads to a condition [15,39]

μH ¼ μΦ
αᾱ

2ηλ

p10

ðx − 1Þp3p5

; ð18Þ

where p3;5;10 are polynomials of x defined in Appendix C of
[39]. This condition is modified when we consider super-
symmetry breaking, since the scale of supersymmetry break-
ing in our model is large m̃ ≃ 0.03μΦ ≃ 3 × 1013 GeV. In
principle,wemust tune the4 × 4mass-squaredmatrix for the
Higgs doublets inH;Σ; Σ̄, andΦ with Y ¼ 1=2 correspond-
ing to state (h) in Table II. Note that only the doublet in the
ð2; 2; 10Þ mixes with the doublet with Y ¼ 1=2 in H as the
other doublet in the (2,2,10) has hypercharge Y ¼ 3=2.
In principle, the second tuning should involve B-terms

which are responsible for the splitting between the lightest
Higgs doublet and the other doublets. In the superpotential,
the “μ” term for the Higgs doublets may be written as
W ⊃ h̄Bhh, where h collectively denotes the ð2; 1; 1=2Þ
components and h̄ denotes the ð2; 1;−1=2Þ states in the
(Hð2; 2; 1Þ, Σ̄ð2; 2; 15Þ,Σð2; 2; 15Þ, Φð2; 2; 10Þ) basis, and
Bh is the 4 × 4mass matrix for the Higgs boson doublets in
H;Σ; Σ̄ and Φ states, given by

Bh¼

0
BBBBBB@

−μH ᾱ
ffiffiffi
3

p ðv1;3;15−v1;1;15Þ −α
ffiffiffi
3

p ðv1;3;15þv1;1;15Þ −ᾱσ1;3;10
−ᾱ

ffiffiffi
3

p ðv1;3;15þv1;1;15Þ 0 −ð2μΣþ4ηðv1;1;15þv1;3;15ÞÞ 0

α
ffiffiffi
3

p ðv1;3;15−v1;1;15Þ −ð2μΣþ4ηðv1;1;15−v1;3;15ÞÞ 0 −2ησ1;3;10
−ασ1;3;10 −2ησ1;3;10 0 −2μΦþ6λðv1;3;15−v1;1;15Þ

1
CCCCCCA
:

ð19Þ

The mass term originating from this superpotential term
may then be written as

ðh†h̄Þ
�
Bh†Bh 0

0 BhBh†

	�
h

h̄†

	
; ð20Þ

which can be diagonalized by unitary matrices U and V
defined by h ¼ U†h0 and h̄† ¼ V†h̄0† so that UBh†BhU† ¼
VBhBh†V† ≡ ðBh†BhÞdiag in the ðh0h̄0†Þ basis. There are,
however, additional mass terms which depend on soft
supersymmetry breaking A- and B-terms, which collec-
tively we write as C̃ ¼ fðAv; BμÞ where f is some
(derivable) function of A-terms multiplied by one of the
VEVs in Eqs. (7) and (8), and B-terms multiplied by one of
the μ terms in Eq. (2). In our analysis, soft SUSY-breaking
scalar mass terms are introduced in the diagonal entries in
this basis, represented by m̃2, whereas soft supersymmetry

breaking A- and B-terms represented by C̃ are given to the
off-diagonal components, i.e.,

Vsoft ∼ ðh†h̄Þ
�
m̃2 C̃†

C̃ m̃2

	�
h

h̄†

	

¼ ðh0†h̄0Þ
�
m̃2 C̃0†

C̃0 m̃2

	�
h0

h̄0†

	
; ð21Þ

where we have redefined C̃0 ¼ VC̃U† in the second equal-
ity. The masses for h and h̄ are given by diagonalizing the
8 × 8 matrix (20) together with Eq. (21), and thus the
nonzero C̃0 results in the mass splitting between h and h̄ of

order
ffiffiffiffiffi
C̃0p

∼
ffiffiffiffiffiffiffi
m̃μ

p
∼ 0.2μΦ, assuming A ∼ B ∼ m̃. In other

words, once a doublet in h is tuned to be light, all the other
doublets in h and h̄ obtain a mass of order m̃ or μΦ (GUT
scale) due to the presence of the bi- and trilinear
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supersymmetry-breaking terms.3 In practice, we impose the
zero-determinant condition detðBh†Bh þ m̃21Þ ¼ 0 so that
only one doublet becomes light,4 and the mass of the other
MSSM Higgs doublet is taken to be m̃ by implicitly
assuming nonzero B-terms whose size is ∼m̃. Thus, at
scales below m̃, we include all SM particles including one
Higgs doublet, and one light GUT scalar representation in
the renormalization group evolution of the gauge coupling.
The lightest Higgsino partner of the light Higgs doublet has
a mass of m̃, and therefore only contributes to the gauge
coupling running above that scale. All other MSSM
particles, and the fermion partners of the lightest GUT
scalar state must also be included in the running above
this scale.

III. RUNNING OF GAUGE COUPLINGS

One of the motivations for low-energy supersymmetry is
the unification of the gauge couplings at high energy [16].
In the absence of large threshold corrections, running up the
gauge couplings in the SM does not lead to unification, or
alternatively, running down a unified gauge coupling in the
SM leads to low-energy gauge couplings which do not all
agree with experiment. Additional states in a supersym-
metric theory, which are not in complete SU(5) multiplets,
alter the running in such a way that allows for gauge
coupling unification. Of course as the scale of supersym-
metry breaking approaches the GUT scale, we recover the
SM limit and lose the unification prediction. In a large GUT
such as SO(10), the size of the representations needed to
break SO(10) down to the SMwould indicate that threshold
corrections cannot be ignored. For a given value of x [and
couplings η, λ and mass parameters μΦ, μΣ, though they are
related through the last expressions in Eq. (14)], the
superheavy spectrum is known and the threshold correc-
tions can be computed. As we show below, these are
sufficiently large such that unification can be achieved even
in high-scale supersymmetry models. However, if all states
beyond the SM are superheavy, there is no possibility to
prevent the Higgs quartic coupling from running negative.
Instead, Higgs vacuum stability and gauge coupling

unification may be achieved if a state in one of the
Higgs representations remains relatively light. If the light
GUT state is not a SM singlet, we expect two changes in the
gauge coupling running. First the running proceeds via the
SM β-functions up to the mass threshold of the light GUT
state. Above this threshold we then have modified β-
functions from the extra degrees of freedom of the light

GUT state which are run up to the supersymmetry-breaking
scale. Above this scale, the renormalization group equations
(RGEs) are further modified and the now twice modified
RGEs are then run up to theGUT scale, which can be defined
once GUT threshold corrections are included.
The running of the SM couplings is well known up to

three loops, and the β-functions can be found in e.g.,
[44,45]. At one loop, the SM gauge coupling β-function
coefficients are

bSM1 ¼ 41

10
; bSM2 ¼ −

19

6
; bSM3 ¼ −7: ð22Þ

At the mass threshold of the light GUT state, the running
of the gauge couplings is altered, such that at one loop, the
β-function coefficients are

bLS1 ¼ 41

10
þ1

3
li
1; bLS2 ¼−

19

6
þ1

3
li
2; bLS3 ¼−7þ1

3
li
3;

ð23Þ

where li
a is the Dynkin index under the gauge group a of

the ith GUT state, and the factor of 1=3 is because the GUT
state is a complex scalar.
Once one crosses the threshold of the SUSY states, the

running is again changed. The first change is due to
the necessary switch from the MS regularization scheme
to the DR scheme, since the former does not preserve
SUSY. Additionally, one notes that the fermionic super-
partner of the light GUT state will have a mass of order m̃,
and must therefore also be taken into account.5 This leads to
an additional factor of 2

3
li
a, since the GUT state super-

partner is a Weyl fermion. At one loop, the β-function
coefficients are now

bSUSY
1 ¼ 33

5
þli

1; bSUSY
2 ¼ 1þli

2; bSUSY
3 ¼−3þli

3;

ð24Þ

where we have included the superpartner contribution to all
SM states. Note that in the following analysis the MSSM
superpartners are assumed to be nearly degenerate in mass
so that their threshold corrections at m̃ can be neglected.
The Dynkin indices of each of the scalar GUT states are
listed in Tables I and II, so that the modifications to the
running of the gauge couplings for each of the solutions in
the previous section can be implemented with ease.

IV. GUT-SCALE THRESHOLD CORRECTIONS

As noted above, once the supersymmetry-breaking
threshold is passed, running to the GUT scale proceeds
including the MSSM and the light scalar determined by a

3In principle, all the other mixed scalar states also have A- and
B-term contributions in their mass matrices. However, since these
mixed states have GUT-scale masses with no fine-tuning re-
quired, and the A- and B-terms are assumed to be sufficiently
small (given m̃ ∼ 0.03μΦ), these contributions can be neglected in
our analysis.

4In this condition, m̃ is regarded as the net SUSY-breaking
contribution including A- and B-terms. 5Typically, we assume m̃ ≥ mI ¼ 3 × 1013 GeV.
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given value of x0. The precise value of the GUT scale
depends on additional threshold corrections from the
remaining states in the 126 and 210 Higgs bosons (and
Higgsinos) and GUT-scale gauge bosons (and gauginos).
More specifically, high-scale states for a given value of x0
tend to have nondegenerate masses, and as such result in
nonzero threshold corrections at the GUT scale which must
be taken into account. The threshold corrections λi are
defined in terms of the gauge coupling at a given scale μ�
(taken to be μΦ), and the putative unified coupling at such a
scale, in the appropriate regularization scheme,

�
1

g2i ðμ�Þ
	

MS;DR
¼
�

1

g2Uðμ�Þ
	

MS;DR
−
�

λi
48π2

	
MS;DR

; ð25Þ

where one can then calculate λi in terms of the masses of
the heavy states, and is found to be [41,42]

ðλiÞMS ¼ lV
i − 21lV

i ln
MV

μ
þ cSlS

i ln
MS

μ
þ cFlF

i ln
MF

μ
;

ð26Þ

ðλiÞDR¼−21lV
i ln

MV

μ
þcSlS

i ln
MS

μ
þcFlF

i ln
MF

μ
; ð27Þ

where lx
i are the Dynkin indices corresponding to ultra-

heavy massive vector bosons (V), scalars (S) or fermions
(F). The coefficient cS ¼ 1, 2 for real and complex scalars
respectively, while cF ¼ 4, 4, 8 for Weyl, Majorana and
Dirac fermions respectively.
Unfortunately, given that gU is a deep UV quantity, and

we live in the IR, we cannot unambiguously define gU from
our perspective. Any number of definitions can be pro-
posed, such as choosing gUðMUÞ ¼ g2ðMUÞ ¼ g1ðMUÞ, or
gUðMUÞ ¼ g2ðMUÞ ¼ g3ðMUÞ, but none of these are nec-
essarily correct. Instead gU can only be correctly defined
from the UV perspective in the GUT phase of the theory.
Then, at a given scale M�, one can match to the broken-
GUT phase with the couplings g1, g2 and g3. This matching
likely involves substantial changes from the threshold
corrections, such that any giðM�Þ may be quite different
from gUðM�Þ. Therefore, for an analysis of how unification
is achieved as calculated in the IR, without knowledge of a
specific UV completion, one would prefer to abstain from
defining the unified coupling.
We may use the prescription proposed in [40], which

allows one to assess the quality of gauge coupling uni-
fication in the presence of threshold corrections, without
substantial impact from the definition of gU. This pre-
scription calls for the definition of quantities which are
independent of the unified gauge coupling at a scale μ,
gUðμÞ. We define these quantities as

�
ΔλijðμÞ
48π2

	
MS;DR

≡
�

1

g2i ðμÞ
−

1

g2jðμÞ
	

MS;DR

¼
�
λjðμÞ − λiðμÞ

48π2

	
MS;DR

; ð28Þ

such that only two need be defined so as to specify the GUT
matching conditions. Thus, in the IR we may calculate the
requiredΔλij at any scale, and compare with theΔλij which
are obtained in the UV for a specific GUT spectrum. If the
Δλij in the IR and the UV match, then it is possible that
unification is achieved. The differences in the required
threshold corrections, as viewed from the IR, contain an
ambiguity since they may not account for a constant term
which cancels. Therefore matching the IR and UV calcu-
lations of Δλij specifies

1

g2UðμÞ
þ C and

λiðμÞ
48π2

þ C; ð29Þ

where C is a constant shift. Since both of these quantities
are a priori known from the UV perspective, specifying the
UV theory allows for the ambiguity to be resolved.
Our prescription for finding solutions which lead to

potentially acceptable gauge coupling unification is out-
lined as follows. We start with the SM at low energies,
supplemented with a light GUT state corresponding to one
of the possibilities listed in Table I or II. At each
renormalization scale μ, we can calculate the quantities
Δλij using the left-hand side of Eq. (28). We assume that
the supersymmetric particle spectrum lies at 3 × 1013 GeV,
and above that scale the Δλij are computed in the MSSM
plus the additional light scalar (and fermion superpartner).
Next, we scan over the couplings λ, η. Recall that x is fixed
by requiring that one of the scalars is light using Eq. (15)
with mF being a function of x taken from Table I. We are
then left with three unknowns, μΦ, m̃, and gU, all of which
are needed to determine the masses of the heavy states
participating in the threshold corrections.6 For given values
of these three parameters, the threshold corrections in
Eq. (27) can be computed, as can their differences given
in the right-hand side of Eq. (28). Comparing these two
results for Δλij, we can determine the degree to which a
solution is acceptable. In other words, viability is deter-
mined by scanning Δλij in the allowed η − λ parameter
space for each of the light state solutions in Sec. II above,
and comparing with the required Δλij calculated in the IR
from the running of the gauge couplings towards the UV.
To find viable unification solutions, we search a set of

parameters ðgU; μΦ; m̃; mχÞ, for a given ðλ; ηÞ so that the
function χ2 defined by

6Once x is determined to obtain a light state, the remaining
superpotential parameter μΣ is fixed by Eq. (14) when λ, η, and μΦ
are input.
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χ2ðgU; μΦ; m̃; mχÞ

≡X3
i¼1



g−2i ðμΦÞ −

�
g−2U −

λiðgU; μΦ; m̃; mχÞ
48π2

	�
2.

σ2i

ð30Þ

is minimized, where mχ is the mass of the light scalar state,
and σ2i ≡ σ2g−2i

þ σ2th;i with σ2g−2i
and σth;i being the exper-

imental errors for g−2i ðmZÞ and theoretical uncertainties,
respectively. For the theoretical uncertainties, arising from
the matching scale dependence of gi and λi, we assume 1%
of ½g−2i þ λi=ð48π2Þ�≡ λ̂i, as an estimate of the next-order
corrections to the couplings and thresholds. We summarize
in Table IV, taken from [46], the values of the input
parameters we have used for the tree level couplings
given by

g1 ¼
ffiffiffi
5

3

r
gY; gY ¼ 2ð

ffiffiffi
2

p
GFÞ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Z −m2
W

q
;

g2 ¼ 2ð
ffiffiffi
2

p
GFÞ1=2mW; yt ¼ 2ðGFm2

t =
ffiffiffi
2

p
Þ1=2: ð31Þ

In our analysis, we have used the two-loop corrected
couplings at μ ¼ mt [45],

g1ðmtÞ ¼ 0.4626; g2ðmtÞ ¼ 0.6478;

g3ðmtÞ ¼ 1.166; ytðmtÞ ¼ 0.9379; ð32Þ

with uncertainties σg−2
1
¼2.434×10−3; σg−2

2
¼ 1.191×10−3;

σg−2
3
¼7.437×10−3, which are however minor contributions

in σi compared to the 1% theoretical uncertainties. Note
that our definition of χ2 represents an underdetermined
system and we might expect that there are multiple (or
continuous families of) solutions giving χ2 ¼ 0.
As noted above, the values of the gauge couplings

are also affected by m̃ and mχ through the changes of the
β-functions. The threshold corrections λi evaluated at μ ¼
μΦ are now the functions of gU, μΦ, λ, η and m̃, and include
all the contributions from the GUT-scale Higgs boson,
Higgsino and gaugino, except for one Higgs doublet and
the lightest GUT scalar state. It is worth noting that any
parameter sets that make χ2 close to 0 also satisfy the
second equality in (28).

V. UNIFICATION SOLUTIONS

In this section, we discuss the few solutions which lead
to acceptable gauge coupling unification, as described
above. The numerical procedure for the analysis is as
follows: we run the gauge, top and Higgs quartic couplings
up in the SM at the two-loop level inMS. At the scale of the
light GUT state, we match to the new running in MS. In
principle this matching should be done including both log
and finite one-loop threshold corrections. However, for all
the solutions for the unmixed states listed above, there is
only one light state, so that any log effects are 0, sincewe can
match at the scale of the new state exactly. We have not
implemented any possible finite threshold corrections. We
then run up from the light state scale inMS at the two-loop
level, using the modified one-loop β-function coefficients as
defined in Eq. (23). We then match to the SUSY scale, m̃,
assuming all SUSY states are approximately degenerate in
mass, so again there are no logarithmic threshold correc-
tions. We match giMS to giDR at this scale, and perform the
calculations of the running and threshold corrections above
this scale in DR to preserve supersymmetry. We use the
usual MSSM two-loop RGEs, with the modified one-loop
β-functions as in Eq. (24). The GUT-scale thresholds are
computed using Eq. (27).
Among 21 unmixed scalar states, only the (1,3,0) state in

Φ labeled by S, and shown in boldface in Table I, can serve
as a promising light state to achieve phenomenologically
viable unification. For this state to have mass as low as
Oð0.1 − 1Þ TeV, the solution with x ≃ 0.63 in the m̃ ¼ 0
limit leads to a viable parameter space. We have also
examined the case that one of the five G boson states listed
in Table II is light aswell as the casewith no extra light states,
even though the latter cannot help resolve the problem of
the Higgs quartic coupling and vacuum stability. Under the
restriction that m̃ > 3 × 1013 GeV, other than S, none of the
other light state solutions leads to unification within 3σ
[where σ is determined from Eq. (30)].

TABLE IV. The physical constants we have used for the input
parameters are summarized.

W boson mass mW 80.385(15) GeV
Z boson mass mZ 91.1876(21) GeV
Higgs boson mass mh 125.18(16) GeV
Top quark pole mass mt 173.5(1.1) GeV
Fermi constant GF 1.166387ð6Þ × 10−5 GeV−2

Strong coupling constant αsðmZÞ 0.1182(16)

FIG. 1. Δλ plot for S (Φð1; 3; 0Þ) as the only light state. We
have set x0 ∼ 0.63. The lowest branch shows the evolution after
matching to SUSY at 1013.5 GeV. The red circle corresponds to
the nearly best fit point (with acceptable proton lifetime).
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In Fig. 1, we show the values of Δλ12 and Δλ23
parametrically as a function of the renormalization scale
corresponding to the state S. The upper line shows the
evolution assuming only SM content. The left-hand side of
Eq. (28) is used to calculate Δλij with the SM running of
the gauge couplings g2i and g

2
j . Branching from the SM line

is a line appearing steeper in the (Δλ12, Δλ23) plane, which
is computed assuming the SM plus the single light scalar
for which we have assumed mχ ¼ mS ¼ mt, though the
results are very insensitive to the exact value of mS. This
line is deflected at μ ¼ jm̃j due to the appearance of SUSY
states, so that above this scale the Δλij are computed using
the full MSSM spectrum plus our light scalar (shown as a
blue line). The black-filled circles tracking the lines show

the value of the renormalization scale μ in units of GeV,
which varies from 103 to 1018 GeV. The larger red-filled
circle, surrounded by a pink shaded region, corresponds to
a point very near the best fit found by minimizing the χ2

function in Eq. (30) and shown in the (λ, η) plane in Fig. 2.
The values for the threshold corrections for this point are
λ1 ¼ 2741.3, λ2 ¼ 2733.7 and λ3 ¼ 2655.0 and thus this
point sits at Δλ12¼−7.36�58.9 andΔλ23 ¼ −78.6� 58.9,
with the errors determined from 0.01ð48π2Þðλ̂2i þ λ̂2jÞ1=2
and are reflected in the size of the pink shaded region. In
Fig. 2, the white circle corresponds to the actual best fit but
has a proton lifetime which is slightly below the exper-
imental limit (see below for more detail). The fact that this
point lies on the parametric line indicates a near perfect fit
(with χ2 ¼ 0, as we anticipated from an underdetermined
system). The parameters associated with the red point are
given in Table V. Since the value of η at the best fit point is
large and close to the nonperturbative limit, we also show in
Fig. 2 a sample point with a smaller value of η, corre-
sponding to the value listed in Table V. As seen in Fig. 2
and discussed in Sec. VA, points with smaller, more
perturbative values of η also exhibit satisfactory gauge
coupling unification, and the value of η turns out to be
irrelevant for the issue of the Higgs stability and radiative
breaking of electroweak symmetry, as is discussed in
Sec. VI.
Figure 3 illustrates how the gauge couplings evolve and

are unified into a single coupling gU when accounting for
the threshold corrections for the best fit point using
parameters given in Table V. The dashed lines in the figure
show the running gauge couplings in the SM. When the
renormalization scale μ > μΦ, all chiral and vector multip-
lets participate in the running, and the RGE for gU at the
one-loop level is given by

dα−1U
d log μ

¼ −
bU
2π

; ð33Þ

where αU ≡ g2U=4π and the β-function coefficient,
bU ¼ 109. It is particularly interesting to note that although

FIG. 2. A plot of the ðλ; ηÞ plane showing the allowed region (in
white) for gauge coupling unification with a light S state. The
light gray region is not allowed because gU becomes non-
perturbative below the mass scale of the heaviest state. The dark
gray regions hatched by diagonal lines are disfavored due to the
presence of the heaviest GUT state being greater than MPl. The
dark gray region hatched by crossed lines is excluded by limits on
proton decay. The white (red) circle indicates the best fit (viable)
points, and the green diamond corresponds to the sample point
given in Table V exhibiting smaller values of λ and η.

TABLE V. The parameter values for three sample cases corresponding to the light states S, E, and the SM. The best fit has a proton
lifetime in conflict with the experimental limit. Therefore we also give the best fit which respects this constraint. In the light S state case,
since the best fit value for η is large and close to the nonperturbative limit, a sample point with smaller η is given to show that a
perturbative η value is also a viable solution.

ðλ; ηÞ χ2 mχ=GeV m̃=1013 GeV μΦ=1015 GeV gUðμΦÞ τp=1034 years

Best fit (S) (w= τp limit) (0.9082, 9.663) 8.2 × 10−3 173.5 3.16 1.3 0.3373 1.8
Best fit (S) (w/o τp limit) (1.063, 5.713) 0 173.5 3.17 1.3 0.3489 0.84
Sample point (S) (0.7, 1.0) 0.35 173.5 3.16 1.3 0.3789 4.1
Best fit (E) (w= τp limit) (1.245, 9.663) 11.37 1010 3.16 1.0 0.3697 1.8
Best fit (E) (w/o τp limit) (9.169, 9.663) 7.035 3.2 × 1011 3.16 1.0 0.4104 6.5 × 10−4

Best fit (SM) (w= τp limit) (0.1170, 3.753) 12.46 � � � 3.16 1.0 0.3324 2.05
Best fit (SM) (w/o τp limit) (0.01589, 0.4352) 1.023 � � � 3.16 1.0 0.3301 4.2 × 10−4
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gauge coupling unification occurs for this point, the unified
coupling gU does not match the value of the three gauge
couplings at μΦ due to the large threshold corrections at the
GUT scale. Though a large number of states participate in
the running of gU, it remains perturbative up to the scale
of the heaviest state, Mheaviest, due to the relatively large
threshold corrections. There are regions in the λ, η parameter
space where gUðMheaviestÞ becomes much larger than
unity and therefore nonperturbative. A nonperturbative
bound is obtained from the condition 1=g2UðμΦÞ < bU=
ð8π2Þ logðMheaviest=μΦÞ, which corresponds to the light gray
regions in Fig. 2. We also note that with a light S state, the
gauge couplings, giðμΦÞ appear to focus much more com-
pared to the SM-only case. This focusing is actually
preserved by the large threshold corrections λi, since the
corrections are very similar in magnitude. Thus the gauge
couplings remain unified, but at a value gU that differs from
the focused value at μΦ, as shown in the figure. It should also
be noted that the unified coupling becomes nonperturbative
below the reduced Planck scale, MPl ≃ 2.4 × 1018 GeV.
In the relevant figures, we have set the couplings

α ¼ ᾱ ¼ 0.58, and let η and λ vary between 5 × 10−3

and 4π. This value of α ¼ ᾱ is chosen to obtain the correct
Higgs quartic coupling as is explained in Sec. VI. For all
other states considered, we use α ¼ ᾱ ¼ 1. Smaller values
of η or λ result in one of several possible problems as seen
in the appropriate figures. Note that in all of our solutions,
we have taken m̃2 < 0. However, despite the choice of a
negative soft supersymmetry-breaking mass squared, there
are no tachyonic states in the spectrum as the μ-terms which
are of order μΦ > jm̃j ensure positive mass terms for all of
the scalars.
For each choice of ðλ; ηÞ, we take gU, μΦ, m̃ and mχ as

free parameters, and find their values such that the function

χ2 is minimized. Figure 2 shows the result when the S state
is kept light and the white regions are free from theoretical
and experimental constraints. Note that in Fig. 2, we restrict
the parameters to be m̃ > 1013.5 GeV, μΦ > 101.5m̃ and
mχ > mt. In this figure the two thin, solid grey lines show
contours of χ2 ¼ 6.18 (lower line) and 2.3 (upper line)
demarking regions corresponding to >2σ (below the lower
line), between 1 and 2σ, and <1σ above the upper line.
There is also a dashed line with χ2 ¼ 0.1 and our best fit
point (shown as a white circle) at large η has χ2 close to 0
(as does the solid red circle very near at slightly lower λ).
Thus most of the viable white region has χ2 < 2.3 and is
within 1σ of perfect unification. The values for the four
solved parameters are given in Table V for both the best
fit (ignoring the proton lifetime constraint), and the nearby
point with sufficiently long proton lifetime. Notice that the
values of mχ , m̃, and μΦ are all at the edge of our prior
selection. However, relaxing these priors to m̃ > 1013 GeV,
μΦ > 100.5m̃ at the viable best fit point leads to an undesir-
able tachyonic state, which in this case, is one of the five T
states listed in Table II, since μΦ is too close to m̃. One
eventually finds that μΦ ≳ 101.6m̃ is needed, and our best fit
point is sitting in close proximity to this boundary.
The dark gray regions hatched by diagonal lines in Fig. 2

are excluded by the appearance of a state with mass greater
than the reduced Planck scale. In this case, there is no
reason to believe our spectrum is reliable and we discard
such solutions. The light gray regions indicate that gU
becomes nonperturbative below μ ¼ Mheaviest, where
Mheaviest is the mass of the heaviest state in the spectrum.
The dark gray regions hatched by crossed lines show the
limit imposed by the proton lifetime, where the main decay
channel is p → π0eþ through the ðX; YÞ and ðX0; Y 0Þ gauge
bosons,7 and the current limit given by [48]

τðp → π0eþÞ > 1.6 × 1034 years ð34Þ

is applied. The proton lifetime τp ≡ τðp → π0eþÞ is
proportional to M4

X;Y and M4
X0;Y 0 with MX;Y and MX0;Y 0

being the mass of the ðX; YÞ and ðX0; Y 0Þ gauge bosons,
respectively. Since those masses are proportional to λ−1 as
shown in Table III, smaller values of λ lead to a longer τp.
Note that around the red circle in the figure, although a
larger η may lead to a smaller MX0;Y 0, the proton lifetime
becomes longer in this parameter region, since the scale of
μΦ becomes larger when minimizing χ2, and thus the
proton decay limit is relaxed. It should also be noted that for
jm̃j≳ 1010 GeV the proton decay induced by dimension-5
operators is sufficiently suppressed. However, the decay
channel p → π0eþ is also induced by a color triplet Higgs
boson, and the lifetime is given by

FIG. 3. The running of the gauge coupling is illustrated for the
given parameter values. The dashed lines are the pure SM case,
while the solid lines account for the inclusion of the light GUT
state S. The parameters, mS, m̃, μΦ and gUðμΦÞ are taken at the
best fit point, and the values are shown in Table V. The disparity
between gUðμΦÞ and giðμΦÞ is due to approximately universal,
large threshold corrections as explained in the text.

7See, e.g., Ref. [47] for more detail.
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τðp → π0eþÞ ≃ 2 × 1034 years ×

�
MT

1.2 × 1011 GeV

	
4

;

ð35Þ

where MT is the mass of the lightest color triplet Higgs
boson in H;Σ; Σ̄ and Φ, and we have assumed that the
Yukawa couplings are the same as in the SM. In the
parameter space presented in Fig. 2, we find that the limit
on MT from proton decay overlaps with the other con-
straints considered, and thus it is not shown explicitly in the
figure.

A. Best fit point

We now take a closer look at our viable best fit point in
Fig. 2 by varying the relevant parameters. The left (right)
panel of Fig. 4 shows χ2 as a function of m̃ (gU) with fixed
λ, η, gU and μΦ (λ, η, m̃ and μΦ). In both panels,mS is taken
to be mS ¼ 173.5 GeV and 2.5 TeV, and as one sees χ2 is
relatively flat along the variation of mS, indicating that
larger mS gives a similar χ2 with the rest of the parameters
being the same. In the left panel of Fig. 4, the gray shaded
region is excluded due to the presence of an undesirable
tachyonic state which breaks the SM gauge symmetry.8

We note that one should not interpret these figures as
providing the true uncertainty in either m̃ or gU. We have
held fixed the remaining parameters rather than having
marginalized over them, and we expect that as a function of
either m̃ or gU, allowing the remaining parameters to vary

freely, χ2 would become quite a bit flatter allowing a
broader range in m̃ or gU. Nevertheless, these curves give us
an idea of the shape of the χ2 function in certain directions
of parameter space.
Figure 5 shows the 1σ and 2σ regions in the ðm̃; μΦ=m̃Þ

plane, where the light and dark gray regions are excluded
by the proton lifetime limit and the presence of a tachyonic
state (only in the left panel), respectively. The left panel of
the figure shows the best fit point, while for comparison,
the right panel shows the sample point listed in Table V.
Once again, the remaining parameters are held fixed.
Concerning the presence of a tachyonic state, although
there is no such parameter region in Fig. 2, it appears in the
left panel of Fig. 5 as we have fixed μΦ. When we take
larger μΦ, none of the GUT Higgs fields become tachyonic.
Our viable best fit point is indicated by the red circle, while
the best fit point without the proton decay constraint is
depicted by the white circle. In the right panel of Fig. 5, the
sample point is indicated by the green diamond, while
the true best fit point for this choice of λ and η appears as
the white circle which is inside the proton decay constraint.
Note that a tachyonic state does not show up for the plotted
range of μΦ due to the smaller value of η. We also exhibit
how the best fit point moves by varying gU andmS in Fig. 6,
where the upper-left panel includes our viable best fit point.
The meaning of the white circles is the same as in the
previous figures. The dark gray region is excluded by the
appearance of a tachyonic state. Note that in the upper-left
panel, there is no white circle, and the red circle corre-
sponds to the true best fit point since we have fixed m̃ ¼
3.16 × 1013 GeV and μΦ ¼ 1.3 × 1015 GeV, and the dark
gray region eliminates the smaller χ2 region. While the best

FIG. 4. The left (right) panel shows the value of χ2 as a function of m̃ (gU) around the best fit point. The red solid and blue dashed lines
depict the case of mS ¼ mt and 2.5 TeV, respectively. The gray region in the left panel is excluded due to the presence of an undesirable
tachyonic state.

8One of the T states becomes tachyonic in this case.
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FIG. 5. The1σ and2σ regions are shownby taking m̃ andμΦ as free parameters. The light anddark gray regions are excluded by the proton
lifetime limit and the presence of an undesirable tachyonic state (only in the left panel), respectively. In the left panel, the red circle is our best
fit point, while the white circle indicates the best fit point without the proton decay constraint. In the right panel, the green diamond
represents the sample point listed in Table V, while the white circle shows the best fit point without the proton decay constraint.

FIG. 6. The best fit points for ðgU;mSÞ ¼ ð0.3373; 173.5 GeVÞ, ð0.3373; 2.5 TeVÞ, ð0.34; 173.5 GeVÞ, ð0.34; 2.5 TeVÞ are shown.
The red circle in the upper-left panel is our viable best fit point, while the white circles in the figure correspond to the best fit points
without the proton decay limit. The light and dark gray regions are excluded by the proton lifetime limit and the appearance of a
tachyonic state, respectively. The red solid, blue dashed and green dot-dashed lines represent the 1σ, 2σ and 3σ regions, respectively. The
rest of the parameters are taken to be the same as for our best fit point; i.e., m̃ ¼ 3.16 × 1013 GeV, μΦ ¼ 1.3 × 1015 GeV.
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fit point is not sensitive to mS as expected, larger gU moves
the point toward the smaller η, which indicates that the
threshold corrections also become smaller as g−2U and
λi=ð48π2Þ should be balanced to get χ2 smaller. In the
smaller η region, on the other hand, the larger gU easily
reaches the nonperturbative region as indicated in Fig. 2.
With the exception of the proton lifetime constraint and the
appearance of a tachyonic state, we have suppressed the
other constraints seen in Fig. 2 for clarity.
Finally, we note that if S is the lightest state, it is very

long-lived and hence becomes another (in addition to the
gravitino) viable dark matter candidate. The relative sta-
bility of S is ensured by the absence of any linear and cubic
terms for S due to SUð2ÞL.9 Instead, the coupling Sh̃ h̃
arising fromΦΣΣ̄ ⊃ ð3; 1; 15Þ × ð2; 2; 15Þ × ð2; 2; 15Þmay
induce the decay of S → γγ at one loop since the Higgsinos
h̃ are much heavier than S. Its decay however, is greatly
suppressed due to the large mass difference between mS ∼
Oð1Þ TeV and mh̃ ≃ m̃. The phenomenology of hyper-
charge-zero, scalar triplets has been considered widely in
the literature (see e.g., [49–53]).10 In fact, such a scalar is
known as one of the minimal dark matter candidates
[50,51], and the upper bound on mS is given by mS ≲
2.5 TeV by demanding its present relic density should be
smaller than the observed value [51]. However, in the
majority of previous studies, the triplet is taken to be real,
which is not the case in our construction. For a complex
scalar triplet with zero hypercharge, we expect that the
observed relic density would be obtained for a scalar mass
of a similar order. In what follows, we also keep this upper
bound in mind. A more detailed phenomenological study of
S and its potential for observation of TeV γ-rays is treated
elsewhere.

We have also tested for unification solutions for the other
states listed in Table I as well as theG state listed in Table II
by taking α ¼ ᾱ ¼ 1. Surprisingly, despite the large num-
ber of potential candidates, no reasonable solutions were
found. The E state (Σð3̄; 2;−1=6Þ þ h:c:) was the second
best candidate, with all others yielding higher values of χ2.
For comparison, we show in Figs. 7 and 8 results for the E
state and the SM. The Δλ planes for E and the SM model
are shown in Fig. 7. As one can see from the left panel, the
best viable point for the E state lies well off the SUSY line
with μ ¼ 1015 GeV. In the right panel for the SM, although
the point lies on the line, unification would require it to sit
on the line at μ ¼ 1015 GeV. Both solutions are acceptable
at the 3σ level. Figure 8 shows the corresponding ðλ; ηÞ
planes. In both cases, there are regions where all constraints
considered are viable; however unification at the best fit
point occurs at no better than the 3σ level.11 In order for E
to remain light, the value of x in the SUSY limit is
x ¼ 0.6133þ 0.7339i. As one can see from the figure
and Table V, the true best fit point (white circle) lies at
higher λ than the best viable point (red circle) with an
acceptable proton lifetime. In the right panel of Fig. 8 for
the SM, there is no unique value for x as no state is tuned to
be light. Instead, we have scanned over x and in fact at each
point shown there is a different value of x (and hence the
heavy particle spectrum) which minimizes χ2. As a result a
best fit point (white circle) is found with x ¼ −0.9955. In
fact as one can see from Table V, the value of χ2 at this point
is of order 1.12 However at this particular value of x, the
proton lifetime is far too small. The best viable point (red
circle) has x ¼ −0.6828, but has a significantly larger value

FIG. 7. Δλ plot for E (Σð3̄; 2;−1=6Þ þ h:c:) as the only light state (left), and only the SM below m̃ (right).

9For instance, the cubic terms vanish because tr½σaσbσc� ¼
2iϵabc, where σa are the Pauli matrices.

10See e.g., [54] for a fermionic triplet accompanying a light
scalar triplet.

11We remind the reader that the meaning of σ in Figs. 7 and 8 is
not exactly the same. In Fig. 7, σΔλij ¼ 0.01ð48π2Þðλ̂2i þ λ̂2jÞ1=2 as
discussed above and determines the size of the ellipses, whereas
in Fig. 8, σ is determined from the value of χ2.

12Because the value of x differs at each point, the χ2 boundary
is complicated and contains islands as seen in the figure.
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of χ2. Of course the SM on its own cannot resolve the Higgs
stability question discussed in the next section.
Finally, we mention one additional case of potential

interest, that of a SM singlet, G which remains light if
x ¼ −0.9796 (corresponding to x ¼ −1 in the SUSY-
preserving limit) at the best fit point. In principle, one
might expect this case to be as good as the SM, while still
providing a possible solution to the Higgs vacuum stability
by virtue ofG coupling to the SMHiggs. However there are
no solutions in the ðλ; ηÞ plane with a small χ2 value
equivalent to a significance less than 3σ, and since x is fixed,
the spectrum cannot be adjusted to obtain a better fit.
Furthermore the singlet G case is plagued by proton decay
constraints since theGUTgauge bosons are light. Thus in the
following discussion on vacuum stability, we restrict our-
selves to the case of the light S state, and denote mχ ¼ mS.
Before closing this section, we briefly comment on the

SM fermion masses within our framework. While the quark
and lepton mass spectrum in the minimal SO(10) model has
been extensively studied [55], it turns out that the pre-
diction for the fermion masses is sensitive to the MSSM
spectrum as well, and a particular choice of the MSSM
spectrum may also help to achieve consistent masses of the
quarks and leptons [43]. Nevertheless, we have taken a
universal mass scale for the MSSM particles in our
analysis, and since predicting the quark and lepton masses
requires further study involving the detailed MSSM spec-
trum, it is beyond the scope of this paper.

VI. ELECTROWEAK VACUUM STABILITY

As we have seen, gauge coupling unification is in
general possible even when all the Higgs multiplets are
heavy, and the supersymmetry-breaking scale is large.
However, in order to correct the running of the low-energy

Higgs quartic coupling, we must require some deviation
from the SM at energies below roughly 1010 GeV. In this
section, we concentrate on the unification model with a
light state S.
The light SUð2ÞL triplet scalar couples to the SM Higgs

field, and its effect on RGE evolution may keep the Higgs
quartic coupling from running negative. The relevant part
of the scalar potential is given by

VðH; SÞ ¼ VF þ VD þ VMSSMðHu;HdÞ; ð36Þ

VF ¼ 1

2
ðjαj2 þ jᾱj2ÞðSaSa�ÞðjHuj2 þ jHdj2Þ

þ 17

3
jλj2ðSaSaÞðSbSbÞ�; ð37Þ

VD ¼ −
1

2
g22½ðSaSaÞðSbSbÞ� − ðSaSa�Þ2�: ð38Þ

Note that because the SM Higgs doublets are actually a
linear combination of doublets in the 10, 126, 126, and 210,
the full F-term coupling of S to Hu;d is significantly more
complicated. However, we have checked explicitly for the
best fit point that the components of the 126, 126, and 210
inHu;d are extremely small and we can approximateHu;d as
being derived solely from the 10.13 The heavy components
of the 10 should be integrated out below m̃. In order to
work in a basis which simplifies the connection to the

FIG. 8. As in Fig. 2, viable regions for the coupling unification are indicated by the white region. The left (right) panel of the figure
shows the case of the light state E (SM). The white (red) circles indicate the (viable) best fit points whose detailed parameters are listed in
Table V.

13Note that this remains a good approximation as long as α=λ,
ᾱ=λ, α=η, and ᾱ=η are smaller than Oð1 − 10Þ, and for larger
values for those ratios, the fraction of the components of the 126,
126, and 210 in Hu;d increases as the off-diagonal entries of Bh

given by Eq. (19) turn out to be proportional to those ratios.
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phenomenology in the IR, we perform a rotation on the
Higgs doublets to the so-called “Higgs basis” [3],

�
H

A

	
¼

�
cos β sin β

−sin β cos β

	�−ϵH�
d

Hu

	
; ð39Þ

where H is identified as the light Higgs doublet, while A
remains at the SUSY scale. The rotation angle β differs
from the usual tan β ¼ vu=vd by Oðm2

Z=m̃
2Þ in an appro-

priately chosen scheme. This simplifies the matching
between the broken and unbroken SUSY phases.
The scalar potential of the light Higgs and scalar triplet

below the SUSY scale m̃ can be written as

VðH;SÞ⊃m2
HjHj2þm2

SðSaSa�ÞþλHjHj4þλHSðSaSa�ÞjHj2
þλSðSaSa�Þ2þλSS�ðSaSaÞðSbSbÞ�; ð40Þ

where mH should not be interpreted as the physical Higgs
boson mass, mh, but rather as the potential mass parameter,
which after electroweak symmetry breaking (EWSB) is
related to the Higgs mass by m2

h ¼ 2λHv2 ¼ −m2
H. The

matching conditions between the broken and unbroken
SUSY phases are

λHðm̃Þ ¼ 1

8

�
3

5
g21ðm̃Þþ g22ðm̃Þ

	
cos22β;

λHSðm̃Þ ¼ 1

2
ðjαj2þ jᾱj2Þ;

λSðm̃Þ ¼ 1

2
g22ðm̃Þ; λSS� ðm̃Þ ¼ 17

3
jλj2− 1

2
g22ðm̃Þ; ð41Þ

where we have assumed an approximately degenerate
SUSY spectrum so that the one-loop threshold corrections
(given in [3]) can be ignored. The matching conditions are
in effect boundary conditions for the RGE running of the
quartic couplings. Thus, we must check that there are
solutions to the RGEs satisfying the boundary conditions at
m̃, which we take for definitiveness to be 3 × 1013 GeV,
and the weak scale (or mt). This is, in fact, nontrivial, as
there are few adjustable parameters at our disposal: λ,
α ¼ ᾱ, mS, and tan β.
In the broken SUSY phase, the RGE for the Higgs

quartic coupling and mass term can be found e.g., in [45],
and at one-loop level they are given by14

ð4πÞ2βð1ÞλH
¼ 24λ2H − λH

�
9

5
g21 þ 9g22

	
þ 3

4
g42

þ 3

8

�
3

5
g21 þ g22

	
2

− 6y4t þ 12λHy2t ; ð42Þ

ð4πÞ2βð1Þ
m2

H
¼

�
12λH −

9

10
g21 −

9

2
g22 þ 6y2t

	
m2

H: ð43Þ

There is however a modification due to the inclusion of the
operator coupling H to S with coupling λHS. At one loop,
this modification is given by

ð4πÞ2δβð1ÞλH
¼ 3λ2HS; ð44Þ

ð4πÞ2δβð1Þ
m2

H
¼ 6λHSm2

S; ð45Þ

which should be added to the usual one-loop β-function

coefficient for the Higgs quartic coupling βð1ÞλH
and the

Higgs quadratic term βð1Þ
m2

H
, respectively.

The RGEs for the new scalar potential couplings at one
loop are

ð4πÞ2βð1Þ
m2

S
¼ 4λHSm2

H þ ð16λS þ 8λSS� − 12g22Þm2
S; ð46Þ

ð4πÞ2βð1ÞλHS
¼ 4λ2HSþ12λHλHSþ8λHSλSS� þ16λHSλS

þ6λHSy2t −
9

10
g21λHS−

33

2
g22λHSþ6g42; ð47Þ

ð4πÞ2βð1ÞλS
¼ 28λ2S þ 2λ2HS þ 16λ2SS� þ 16λSS�λS

− 24g22λS þ 9g42; ð48Þ

ð4πÞ2βð1ÞλSS�
¼ 12λ2SS� þ 24λSS�λS − 24g22λSS� þ 3g42: ð49Þ

With the exception of the g21λHS term in βð1ÞλHS
, these are

consistent with the RGEs for type-II seesaw models that
have a triplet Higgs field charged under Uð1ÞY [56]. For the

FIG. 9. The renormalization group running of each quartic
coupling for the given fixed parameters. The black dashed line
indicates the 0 of the vertical axis. The red line, showing the
running of λH , never goes below 0, ensuring a stable Higgs
potential. The boundary value of λH at mt is seen to agree
with λexpH ðmtÞ.

14We define dx=dt ¼ βð1Þx where t ¼ log μ as opposed to t ¼
log μ2 in [45].
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boundary condition of λH at low energy, we take λexpH ðμ ¼
mtÞ ¼ 0.1261� 0.0007 [45] where the uncertainties in mh
and mt given in Table IV are taken into account. Figure 9
shows one of the viable cases for the vacuum stability,
where mS ¼ 1 TeV, tan β ¼ 1.5, λðm̃Þ ¼ 0.19, αðm̃Þ ¼
ᾱðm̃Þ ¼ 0.58. The red solid, blue dashed, green dot-dashed,
and orange dotted lines are the running of λH, λHS, λS, and
λSS� , respectively. The horizontal black dashed line indi-
cates the 0 of the vertical axis, and λH never goes below
this line.
The renormalization group evolution of the quartic cou-

plings is sensitive to the boundary values of the couplings,
tan β, and mS. Of particular concern is the value of λHðmtÞ,
and the fact that λH (and indeed all of the quartic couplings)
remain positive and perturbative over the renormalization
scale range of mt to m̃. Generally, the values of α ¼ ᾱ at
μ ¼ m̃ has a strong effect on λHðmtÞ and so those values are
adjusted to give λHðmtÞ ¼ λexpH ðmtÞ. The left panel of Fig. 10
shows the viable region for λH as a function of tan β and mS
with the other parameters being the same as in Fig. 9. The red
line represents the central value of λexpH , and the darker and
lighter pink regions indicate 1σ and 2σ values, respectively.
At small tan β, λHðm̃Þ approaches 0, and thus λH becomes
negative at μ < m̃ since the β-function of λH at μ ¼ m̃ is
positive. Therefore, tan β ≲ 1.23 is disfavored in this case,
which is shown as the gray shaded region labeled by λH < 0.
For the running of λS, since its β-function is always positive
for μ ¼ mt to m̃ in the parameter space of interest, it often
becomes negative at low energy. To prevent the negative λS at
μ ¼ mt, the S state should be decoupled before λSðμÞ drops
below 0,which is indicated by the gray shaded region labeled
by λSðmtÞ < 0 in the figure.
The middle panel of Fig. 10 shows the viable region in the

mS − λðm̃Þ plane. The meaning of the gray region labeled by
λSðmtÞ < 0 is the same as the left panel of the figure.
Similarly, λSS� also provides a constraint if it runs negative
at low energy. Since λðm̃Þ fixes thevalue of λSS� ðm̃Þ, the latter

can easily run negative at low μ for small λðm̃Þ. This gives the
limit indicated by the gray region labeled by λSS� ðmtÞ<0.
Moreover, when jλðm̃Þj< ffiffiffiffiffiffiffiffiffiffi

3=34
p

g2ðm̃Þ, λSS�ðm̃Þ becomes
negative, and thus this condition is considered as a lower
bound on λðm̃Þ. Therefore, although the running of λH is not
overly affected by λðm̃Þ, the viable parameter space is
sensitive to this coupling since the running of λS and λSS�
strongly depends on it. Note that from this figure, we see that
our best fit value of λ ¼ 0.9082 is excluded by these stability
arguments. However, we also see that from Fig. 2, the value
of χ2 ≈ 0.2 when we adjust λ ¼ 0.19 and η ¼ 1 (which has
no effect on the running of the quartic couplings).15 Thus
gauge coupling unification for this choice of couplings
remains perfectly acceptable. At these shifted values of λ,
η, the proton lifetime exceeds the experimental limit, but is
perhaps within the range of current experiments.
We next consider the RGE sensitivity to αðm̃Þ and ᾱðm̃Þ

which has been implicitly assumed to be equal to αðm̃Þ. The
value of αðm̃Þ ¼ ᾱðm̃Þ determines the value of λHSðm̃Þ. In
addition, the running of λHS plays an important role in the
running of λH, and hence λHðmtÞ is strongly dependent on
αðm̃Þ. For large αðm̃Þ, λH runs negative as seen in the right
panel of Fig. 10 by the shaded region for large α. In this
region, the contribution of λHS to the β-function of λH is too
strong, and λH quickly runs negative. On the other hand, the
effect of αðm̃Þ in the running of λS and λHS is small, andmS
can take a wide range of values. Nevertheless, for smallmS,
large αðm̃Þ also causes λS to run negative as seen by the
lower shaded region. Irrespective of stability criteria, we
also see that obtaining the correct value for λHðmtÞ
requires αðm̃Þ ¼ ᾱðm̃Þ ¼ 0.57–0.64.

FIG. 10. The sensitivity of the viable region to tan β (left), λðm̃Þ (middle), and αðm̃Þ ¼ ᾱðm̃Þ (right). The red line shows the central
value of λexpH ðmtÞ, and the dark and light pink regions represent the 1σ and 2σ range, respectively. The gray regions are excluded due to
any of λH , λS, and λSS� running negative.

15We note that the comparison to Fig. 2 is only approximate
since λ in that figure should be evaluated at μΦ whereas the value
of λ ¼ 0.19 to ensure vacuum stability is evaluated at m̃. In
addition, λðμΦÞ > λðm̃Þ ¼ 0.19.
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Finally, we consider the running of the soft Higgs mass.
As stated in Sec. II, we have imposed the zero determinant
condition, namely, detðBh†Bh þ m̃21Þ ¼ 0, which fixes the
value of μH to make mHðm̃Þ ¼ 0. In practice, however, this
condition can be relaxed to mHðm̃Þ ≠ 0 as long as
mH=m̃ ≪ 1, since the value of μH is only affected by an
OðμΦm2

H=m̃
2Þ term, and thus we take mHðm̃Þ as a free

parameter. Figure 11 shows the running of mH and mS,
where the values of the relevant parameters are the same as
in Fig. 9, except for mS. The black dashed line in the figure
indicates the 0 of the vertical axis. The red solid and blue
dashed line represent the evolution of mH and mS,
respectively, and in the figure we take two different
boundary values for mHðm̃Þ and mSðm̃Þ. In both cases,
the electroweak symmetry is broken at μ ¼ Oð103 −
104Þ GeV as mH runs negative, while mS maintains a
positive value so that S does not obtain a VEV. For radiative
EWSB to occur, the value of mHðm̃Þ should be smaller
than that of mSðm̃Þ, which is shown in Fig. 12 where
we define the ratio R ¼ mHðm̃Þ=mSðm̃Þ. The blue line
shows the parameter region that satisfies the condition
sgnðm2

HðmtÞÞjmHðmtÞj ¼−131.6�0.49GeV [45]. Above
this line m2

HðmtÞ becomes larger than the required value,
and even remains positive. The red solid line corresponds to
the central value of λexpH ðmtÞ, and the pink shaded region
shows the 1σ range. The value of mSðm̃Þ favored by
vacuum stability can increase if we take a smaller value
for tan β, as expected from the left panel of Fig. 10. In any

case, R≲ jαj should be satisfied for radiative EWSB to
occur, as we explain below.
If we consider the RGE of the Higgs potential mass-

squared parameter, given here at one loop by

ð4πÞ2βð1Þ
m2

H
¼ m2

H

�
6y2t þ 12λ2H −

9

10
g21 −

9

2
g22

	
þ 6λHSm2

S;

ð50Þ

more closely, we can understand that radiative EWSB
always occurs as long as the ratio R is less than a specific
value which is determined almost entirely by the super-
potential parameters α and ᾱ. The RGE is dominated by the
y2t , g22 and λHSm2

S terms, since 12λ2H and ð9=10Þg21 are small
at all energy scales. For simplicity, as in our numerics, we
take λHS ¼ jαj2, which corresponds to choosing jαj ¼ jᾱj.
Given this choice, we can rewrite the above β-function for
the Higgs potential mass-squared parameter as

ð4πÞ2βð1Þm2
H
≃m2

H

�
6y2t −

9

2
g22

	
þ 6jαj2m2

S; ð51Þ

which we can then use to solve the linearized RGE. Given
the input parameters specified at the SUSY scale m̃, the
solution of the linearized RGE for the Higgs potential mass
parameter at mS is

m2
HðmSÞ ≃m2

Hðm̃Þ
�
1 −

1

ð4πÞ2

�

6y2t ðm̃Þ − 9

2
g22ðm̃Þ þ 6jαj2R−2

	
log

m̃
mS

��
;

where we have replaced mSðm̃Þ by using R ¼ mHðm̃Þ=mSðm̃Þ. Then we find that

FIG. 11. The renormalization group evolution of sgnðm2
HÞjmHj

and sgnðm2
SÞjmSj with tan β ¼ 1.5, λðm̃Þ ¼ 0.19 and αðm̃Þ ¼

ᾱðm̃Þ ¼ 0.58. The black dashed line indicates the 0 of the vertical
axis. The Higgs mass-squared parameter m2

H runs negative at
μ ¼ Oð103 − 104Þ GeV, while m2

S remains positive.

FIG. 12. A plot of the ratio R as a function of mSðm̃Þ. The
favored region for radiative electroweak symmetry breaking to
occur is indicated by the blue solid line. The red solid line shows
the required value of mS for the chosen value of λðm̃Þ to obtain
vacuum stability, and the pink region is its 1σ range.
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m2
HðmSÞ ≃ −m2

Hðm̃Þ
�
y2t ðm̃Þ − 3

4
g22ðm̃Þ

	
; ð52Þ

as long as the following condition for R is satisfied:

R2 ≃ jαj2
3 log m̃

mS

8π2
: ð53Þ

This quantity is quite close to being jαj2, since for the range
of mSðm̃Þ which is phenomenologically viable, the fraction
on the right of the above equation is ∼1.
We must then account for the running of the SM

couplings properly to get m2
HðmtÞ. Since yt runs to large

values in the IR, while g2 does not run substantially, we find
that as long as R≲ jαj, m2

HðmtÞ < 0, and radiative EWSB
is achieved. Indeed, as evidenced in Fig. 13, we find that as
long as R is given by Eq. (53), almost precisely the correct
amount of symmetry breaking is achieved, with the low-
scale boundary condition of

m2
HðmtÞ ¼ −2λHv2jμ¼mt

¼ −131.6 GeV: ð54Þ

This result changes slightly for variations in λðm̃Þ. This is
due to the fact that the running of λHS depends on λðm̃Þ, and
mSðμÞ depends on λðm̃Þ through λSS� directly, as well as
through the running of λS. Thus, the SM domination in the
relations above cannot be assumed to hold at all scales, and

a full RGE analysis must be performed to find the exact
value of R which achieves the correct amount of radia-
tive EWSB.

VII. CONCLUSIONS

Despite the lack of discovery at the LHC [1], weak-
scale supersymmetry remains viable even in simplified
models such as the constrainedMSSM (or its variants) [57].
Nevertheless, it is also quite possible that supersymmetry is
manifest only at very high energies. If that is the case, it is
important to consider whether any or all of the problems
with cures normally attributed to weak-scale supersym-
metry can still be resolved. With the exception of the
hierarchy problem, we have argued that gauge coupling
unification can occur at the same time we ensure the
stability of the Higgs vacuum, obtain radiative electroweak
symmetry breaking, and provide a dark matter candidate in
a supersymmetric version of SO(10) when supersymmetry is
broken above the inflationary scale, 3 × 1013 GeV. In fact
these issues can all be resolved in the context of non-
supersymmetric SO(10) [8–11]. Because of the constraints
on the vacuum structure imposed by supersymmetry (even if
broken at a high scale) solutions to these problems are not
obvious.
While part of our initial motivation for high-scale

supersymmetry was tied to gravitino dark matter with a

FIG. 13. Contours (black) where m2
HðmtÞ ¼ −2λHv2, for chosen input values of mHðm̃Þ and mSðm̃Þ. In dashed green are lines of

constant R defined by Eq. (53), corresponding to two choices of α, showing how the estimated ratio corresponds quite closely to the
numerical result, up to corrections depending on λðm̃Þ. In the left panel we have chosen tan β ¼ 1.65 and λðm̃Þ ¼ 0.19 as a point
corresponding to the lower end of themSðm̃Þ preferred band in the left panel of Fig. 10. In the right panel we have chosen tan β ¼ 3 and
λðm̃Þ ¼ 0.22 to illustrate a point which does not correspond to the preferred band from Fig. 10, but shows that up to small corrections,
the semianalytic estimate for m2

HðmtÞ holds quite well. In both panels we have fixed m̃ ¼ 1013.5 GeV.
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large reheating temperature [4,34,35], our high-scale super-
symmetric SO(10) solution may provide a second candi-
date, namely the neutral component of a TeV scale scalar
triplet, S, which is a remnant of the 210 Higgs field
breaking SO(10). While not expected to be stable, its long
lifetime may render it an acceptable (and perhaps detect-
able) dark matter candidate.
That some additional fields remain light is a necessary

component of the model. Unlike nonsupersymmetric
SO(10), the supersymmetric version of SO(10) does not
have the luxury of choosing breaking patterns and inter-
mediate scale to ensure gauge coupling unification. The
requirement of vanishing F- andD-terms effectively breaks
SO(10) directly to the SM with no intermediate scale to
affect the running of the gauge couplings. This means that
some state must remain (be tuned to be) light. As we have
seen, although there are many possible representations
within the 210 or 126 and 126, the only representation that
achieves satisfactory gauge coupling unification is the
(1,3,0) component of the 210, our weak scalar triplet S.
It is also clear that to resolve the problem of the stability

of the Higgs vacuum in the SM, some state must remain
light (at least below 1010 GeV) in order to deflect the
running of the Higgs quartic coupling so that it remains
positive as it runs towards the ultraviolet. Thus our S state
serves to assist in gauge coupling unification, protect the
Higgs vacuum and due to its long lifetime, perhaps provide

a dark matter candidate. This may explain why a second
tuning beyond having a light Higgs boson is needed.
A resounding issue surrounding high-scale supersym-

metry is verifiability. The sparticle spectrum is all assumed
to be so heavy that sparticles were never part of the thermal
background after inflationary reheating. The only R-parity
odd state below the inflationary scale is a gravitino with
mass in excess of 0.1 EeV [4] and thus one would expect
that accelerator and direct detection searches would come
up empty. If R-parity is violated, a long-lived gravitino may
provide an indirect signal through very high-energy mono-
chromatic neutrinos [35]. In the current model, we have
shown that retaining most of the advantages of weak-scale
supersymmetry in high-scale supersymmetry requires a
weak-scale state SUð2ÞL triplet scalar S. Therefore, this
state may provide a window into high-scale supersym-
metry, and its cosmology and phenomenology will be
studied more fully in future work.
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