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We present a calculating method for the quark and lepton mixing angles. After a general discussion in
field theoretic models, we present a working model from a string compactification through Z,_; orbifold
compactification. It is beyond presenting just three families of the standard model but is the first example
from string compactification successfully fitting to the observed data. Assuming that all Yukawa
couplings from string compactification are real, we also comment on a relation between the CP phases in
the Jarlskog determinants obtained from the Cabibbo-Kobayashi-Maskawa and Pontecorvo-Maki-
Nakagawa-Sakada matrices. The flipped SU(5) model leads to the doublet-triplet splitting and possible
proton decay operators. It is shown that the vacuum expectation values can be tuned such that the proton

lifetime is long enough.
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I. INTRODUCTION

“How is the current allocation of flavors realized?” is the
most urgent and also interesting theoretical problem in the
standard model (SM). Extension of the SM to grand
unification (GUT) and string models [1,2] continues to
require to solve this flavor problem. Gauge symmetries as
family groups should satisfy the anomaly freedom, which
can be achieved in extended GUTs [3] and in models
without anomaly [4]. Not to worry about the gauge
anomalies, sometimes global symmetries are used for the
family groups [5-7]. It has been reviewed at several
places [8,9].

In the SM, the difference of families is manifested in the
Cabibbo-Kobayashi-Maskawa (CKM) matrix in the quark
sector [10,11] and in the Pontecorvo-Maki-Nakagawa-
Sakada (PMNS) matrix in the leptonic sector [12,13]. To
relate the left(L) and right(R) mixing angle parameters, the
flavor group Gy has been introduced to obtain more
relations between flavor parameters [14—17]. In most cases,
a factor flavor group G is introduced in addition to the SM
or GUT. On the other hand, an attractive mechanism is to
unify all the fermion representations in an irreducible set
of SU(N) representations of an extended GUT [3,18-20].
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The Eg x Ef gauge group can be considered to belong to
this class but in ten dimensions. Compactification of six
extra dimensions may be the key to the unification of
families in ten dimensional superstring models.

A notable difference between the CKM and the PMNS
matrices lies in the fact that in the CKM matrix the large
elements are located in the diagonal entries while it is not so
in the PMINS matrix. So, for the CKM parameters the quark
mass ratios were used before [14,15]. On the other hand, for
the PMNS parameters non-Abelian discrete groups are
used [21,22]. One may say that there is one similarity in the
CP phases of the CKM and PMNS matrices. The CKM
phase is close to 90 degrees in the Kim-Seo (KS) para-
metrization [23] and the PMNS phase is —90 degrees (but
with a large error bars) [24]. Even, there exists an attempt to
unify these CP phases [25].

To reduce the number of parameters in the flavor
sector, family symmetries can be used. Simple ones
are U(1) groups. But, to introduce a hierarchy, vacuum
expectation values (VEVs) of the SM singlets are sug-
gested, which is known as the Froggatt-Nielsen (FN)
mechanism [26].

In this paper, we study singlet representations beyond
the SM based on family symmetry groups. For various
reasons in field theoretic models, we consider U(1)? among
which one is anomalous and the other is anomaly free. We
attempt to obtain singlets from the orbifold compactifica-
tion of the Eg x Ej heterotic string [27] based on the
simplest Z,_; lattice [28,29]. Fixed points of 13 prime
orbifolds listed in [30] shows that the Z,_; lattice can be
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considered to be the simplest because there are only three
fixed points.1

Yet the clearest statement to date is that standardlike
models are exceedingly rare [31,32]. The degree of
acceptable standard-like models can be guessed from
minilandscape studies of Zg_;; models [33,34]. In [34],
it was shown that acceptable model is O(1) out of O(10°).
Even in this case, one has to check all elements of the CKM
and PMNS matrices.

In Sec. II, we briefly recapitulate the fermion mass
structure: Dirac fermions of charged leptons and quarks,
and Majorana fermions for the SM neutrinos. We set
up the scheme to use Weyl fermions to express both the
Dirac and Majorana masses pressented in subsequent
sections. Those who are familiar to these can skip this
section. In Sec. III, we present a beyond-SM with two
U(1)’s toward useful fermion mass textures, where one is
U(1),0om global symmetry for the “invisible” axion and
the other is anomaly free gauged U(1). In Sec. IV, we obtain
a successful flavor structure from Z;,_; orbifold compac-
tification. The 3rd family is assumed to be the one from the
untwisted sector U. Section V is a conclusion.

II. FERMION MASSES

For continuous parameters of transformation, let us
begin with the axial-vector currents of fermions

Ji = WytysTW (1)

where " is a charge operator and ¥ is a column vector of
three fermions (families). The divergence of the current is

G'G' + 2uJ} (2)

A
8#‘]11 = 327[2

where A; is the anomaly coefficient of the gauge fields A}

for the gauge group SU(N),, and J3. depends on the masses
of fermions,

1-

where p is a mass scale and M is the mass matrix in the
flavor basis. The anomaly term is a flavor singlet which can
be written in terms of a flavor singlet quark fields in the
O-vacuum, e.g., for two flavors in SU(3), [35],

'The Z5 orbifold, seemingly looking very simple, has 27 fixed
points. Being simple, Z;,_; may not be general enough, but can
present the basic working principles in terms of small number of
fields.

GG M
= \/20059—|— (1+2%)/z

(iysu + diysd) sin @
(4)
i

where Z =m,/m,~5. Obviously, the anomalous and
anomaly free terms give nonzero trace for the fermion
mass matrix. In Ref. [9], two U(l) symmetries were
considered, one anomalous and the other anomaly-free.
The anomalous global symmetry is to introduce the so-
called “invisible” axion. Since the sum of quark masses is
nonzero and large O(m,), we also attempt to have the
anomalous U(1). The anomalous U(1) must be a global
symmetry and the anomaly free part can be a gauge
symmetry. Let us start using two component fermions to
write down mass terms.

A. Weyl fermions

A four component Dirac spinor, e.g., for the electron
field, can be split into two Weyl spinors & and 7,

(@)

Gauge interactions do not change the chirality. Quantum
fild e; destroys a L-handed electron and creates a R-handed
positron. But, ¢; has nothing to do with destroying a
R-handed electron ey and creating a L-handed positron. On
the other hand, the antiparticle of the L-handed electron
ep = (ep1,e5,0,0)7 is

€Rr2

ert ¢
(e,)° = er2 | _ <1—|—_7/5€>" _ i62<1 +75 e*)
0 2 2
0
0
L —ys 0
T2 e}, (6)
—ep

which is a R-handed field. This R-handed field destroys
R-handed positron and creates L-handed electron. With
these two Weyl fields, we can destroy L- and R-electrons
and create L- and R-positrons, which is done by a four-
component Direc electron. Thus, two Weyl fields are
enough at this stage. With the Weyl field &, let us construct
a Lorentz invariant €;;e;;e; ;. It is the mass term but the
electron number is broken by this term. So, for charged
particles, one Weyl field cannot be massive. For neutrinos,
one Weyl field can give a mass term which is known to be
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Majorana mass. In this paper, we will use Weyl fields even
for expressing Majorana masses,

L 0 1
€;(¢")¢ = fT(_l 0)6 =&lioyk =g (7)
For a Dirac mass we use the opposite chirality, i.e.,
ENl = Mg — €6 ir = g (8)

so that (7) becomes

NRrSL- )

Assigning the same charge conjugation for £ fields in (7),
the Majorana mass term breaks C, but the Dirac mass term
(9) can preserve C by assigning the same C’s for £ and 7.
Discussing both Majorana and Dirac masses, using the
Weyl fermion is therefore simple enough.

B. my, ~m_ and Georgi-Jarlskog relation

The observed ratio of the third family masses m,/m, ~
4.5/1.5 =~ 3 hints that m,, ~ m, at the unification scale. The
factor 3 arises by renormalization group evolution [36]. In
the Georgi-Glashow (GG) SU(5) [37], I_OfoSH gives the
same mass to b and 7 by (5) and it is considered to be a
success of the GUT [38]. For the muon and strange quark,
however, there is a big problem in the GG SU(5) model.
The low energy mass ratio at 100 MeV is m,/m, ~ 1 while
the renormalization group evolution expects it to be 3 if
my~m, at the unification scale. If m,/m,~1 at the
unification scale, then the low energy mass ratio is under-
standable. But, this is a big problem with Higgs quintets
only. One way out is the Georgi-Jarlskog relation intro-
ducing a big Higgs representation 45, [39]. If (45y) is the
leading contribution to the second family fermions in the
GG model, then m/m, :% is obtained at the unification
scale. To present a rationale for 45, for the needed mass
matrix texture, two U(1)’s were suggested long time
ago [9].

C. Flipped SU(5)

Our terminology of flipped SU(5) is a rank 5 gauge
group SU(5)g;, = SU(5) x U(1). Representations will be
denoted as SU(S)U(I). In the flipped SU(5) [40,41], masses
of charged leptons and d-type quarks are not related, which
is considered to be a merit in relating masses. In string
compactification, reasonable supersymmetric SM’s are
obtained from compactification of heterotic string. The
reason is the following. For N =1 supersymmetric
(SUSY) massless fields, only the completely antisymmetric
representations are allowed with one compactification scale
from heterotic string [28]. If the Higgs fields breaking a
GUT group appear as massless spectra, then there is no

adjoint representation at the GUT scale which is needed
for breaking the GG SU(5) or SO(10) GUT [42,43] or
some Pati-Salam (PS) [44] gauge groups.” In SU(5)gip the
representation 10.,; @ 10_; can break the rank-5 SU(5)p;,
down to the rank-4 SM gauge group. At the GUT level,

therefore only the flipped SU(S) is actually realized in
several string compactifications [1,29,46,47].

1L U(1),,0m X U(1);; FAMILY SYMMETRY

We introduce supersymmetry and two U(l) gauge
symmetries, U(1),,,, X U(1), where U(1),,,,, is anoma-
lous and U(1);, is free of gauge anomalies. Dangerous
dimension-4 superpotential of the Ist family members
triggering proton decay is

G199 (10)

where the subscript 1 denotes the first family. U(1),_,
allows the above superpotential but U(1),,., or U(1);, may
not allow it. Thus, the extra U(1)’s may be useful forbid-
ding some unwanted proton decay operators. In string
compactification, one has to check the U(1),,,., X U(1)g
quantum numbers of the first family members to see if the
unwanted proton decay operators are forbidden. If the
proton decay problem is safe, one can consider the super-
potentials generating fermion masses.

The mass eigenstates of quarks, ¢, are related to the
weak eigenstates by L- and R-unitary matrices, U and V,

m w
DQiur = Ud,u 9a.uL

‘131.,“13 = Vd,uqr;,uRv (11)

and the charged W, coupling for the L-handed quark
doublets is

W= U,Uy,. (12)
which is the CKM matrix.

A. Effects of U(1),,,m on the texture of mass matrix

To see the essence, let us consider two families of quarks.
Let us choose the basis where Q., = +% quarks are
already mass eigenstates. Then, the mass matrices of weak
and mass eigenstates of Q., = —% quarks are related by

MYy = VI,M "U . Parametrizing the unitary matrices as

The electroweak PS gauge group SU(2), x SU(2)g X
U(1)g_, is broken by a GUT scale VEV to SM x U(1),_,,
needing an adjoint representation not to reduce the rank. Usually,
it is denoted as A = (1,3,0). A VEV of an adjoint representation
does not reduce the rank of the gauge group. But, note that an
adjoint representation is possible in some scenarios in Zg_;; by
introducing two compactification scales for N =2 SUSY in an
interim effective 5 dimensions [45].
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vo= () = (2)
=51 -8 C

where ¢; = cos0; and s; = sin@; for i = 1, 2. Thus, M) is
given by

M= <Clc2md + S182m;,

Slczmd—ﬁszms) (14)
C1852Myg — §1C My,

S182my + c1Camy

where m, and m are eigenvalues of the mass matrix. If any
one element of Eq. (14) is zero, then #; and 0, are related.
Weinberg’s choice [14] is m; — —m, and (M), =0,
leading to sys,/cjco = my/my. Since sin@c ~ /my/m;
numerically, we use the freedom in V and choose
§5/cy = 81/ ¢y, which means that the R-handed fields trans-
formin the same way as the L-handed fields. This implies that
under any extra U(1) gauge group the gauge transformations
of the L- and R-handed fields are identical. Thus, extra U(1)’s
should be free of gauge anomalies. Therefore, if we do not
consider extra quarks beyond the SM the Fritzsch texture
[15], following Ref. [ 14],is not valid with the U(1),,,,, gauge
group. So, itis appropriate to introduce heavy quarks to have
U(1),p0m together with the Fritzsch texture.

Presence of U(1),,,,, gauge group requires a difference
between U, and V,. To reduce one more parameter,
Wilczek and Zee [16] choose (M), =0 with
s5/cy =~ (s1/cy)?, which is consistent with the presence
of U(1),om gauge group. Namely, in the presence of
U(1),0om gauge group, we must choose V differently from
U even for three families.

Similarly, let us consider two families of leptons where
charged lepton mass matrix is already diagonalized. Then,
the mass matrices of weak and mass eigenstates of
Majorana neutrinos are related by MY = U M™U,.
Thus, M}/ is given by

w __
v

< Cimy,, +Sim, ,

-CS,(m, —m,)
191(m,, —m,, >’ (15)
—C151(mz,ﬂ —m,,),

2 2
Slmye—i—ClmU”

where C; =cos®; and S| =sin®;. Since the mixing
angle of the second and the third neutrinos is large, we
can approximate C; ~ S, = 1/4/2. In this case, the mass
matrix is of the form

w= (%)) (16)

-B, A

3This case with two parameters is including the possibility of
family indices carried by Higgs fields. If family indices of Higgs
fields are independent from the family index of quark and
leptons, then there must be one parameter.

TABLE I. Charges of up type quarks.

ug R U3 uy usy, us, c
Qanﬂm +2 + 1 0 +4 +2 0 _3

where A = (m, +m, )/2 and B = (m, —m, )/2, which
has the permutation symmetry S, between the second and the
third family indices. The useful discrete symmetries of
[21,22] contain this S, as a subgroup. In this case of
introducing U(1),,,,» Where we introduced only L-handed
neutrinos, the anomaly freedom must be satisfied by the
quantum numbers of the first family leptons or by heavy
leptons.

B. Quark mass matrices

Let us begin with the diagonalized Dirac masses of the
form (9) for Q. = —i—% quarks,

SV TS

Y im0 om0 |

3R 0 0 m

where iz = g)» and &; = ¢q);. The diagonal form (17)
with the needed hierarchy can be obtained by the U(1)
charges of Table I,

Q

X

0
0. (18)
1

o O
S Q9 O

where « ¢ is a SM singlet field carrying Q = —3. The mass
term for up-type quarks is

—m asdiag - di ,
aML g, = @R ViM, " U,q . (19)

Of course, V, = U, = 1.

The mass matrix for Q., = —% quarks is
_ dic _ di
QMg qy, = quijMdlagqugu (20)
with
mgy 0 0
M,=Vil 0 m 0 |U, (21)
0 0 my,
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In this paper, we use the KS parametrization [23] of the CKM matrix Wyg where dcgy = 5 1S simple,4

Wgs =U,; =

with the unitary matrix for R-handed fields in the diagonalization process parametrized by another 4 parameters

Vi=

Ci, +s1¢3,
_czsl’

—515,€%,

Then, we obtain VMU, as

C4C My + C584Co 8 1M
45455815, A0,
b
§4C6C1 1My — C4C5C6CrS 1N
—S5556CoS € 8m,
+c556515,€0my,
—iA+is

—CyS5CS152€ my,

bl
S486C 1My — C4C586CoS 1N
+55C6Co5 € m
—C5C68152€0my,

—C485565 5, A 0m,

Change the sign m,; - —m,, and to reduce the number of parameters let us choose parameters of R-fields as

C4, —C5S4,
+84Cq,  TC4C5C6 + s5s6eiA,
+54856, +CuCs86 — SsCge’®,
C481C3My — C5854C1CoC3M
—65s4s2s3e_i5ms + 5435c253e_iAmb
—5485C Spcze A0,

§4C6S1C3My + C4C5C6C1CHC3M
+cuC5C65y53€70my
+5556C1Crc3e 8 my + 5556525387
+C556C2 831y, — C556C 1 S2C3€0my,
—C485C6Co83 A my,
+Cy85C6C) Spc3e B o,
S48651C3Myg + C4C586C| CrC3M

+4C5565253¢ " 0m

—85C6C1CoC3e 8 m, — S5C65,53€ 27 0m

—C5C6CrS3My, + cscéclszc3ei5mb
—c4s5s6czs3e_mmb

+Cy8556C1 Sycze AN O,

S4 S
Cy Cl’ Cs

S5 Mg Sy
my 02’

+cicacs + sp53€7"

—Cy83 + C185505€%,

—C585¢ + C485Cq€

+C5C6 + C4555¢6€

iﬁms

S6:0,

2

+S1S3
—id

, TtcCicas3 — sHc3€ s

+C2C3 + CIS2S3€i5

—5455 eiA
—iA

—iA

C4S|S3My — C554C1 CoS3IM
—|—05s4szc3e_"‘5ms - s4356203e_mmb
—5455C o853 A0,
§4C6S1S3My + C4C5C6C 1 CrS3Mg
—C4C5C65,C3¢ 7 0my
+5556C1Ca53€" 0 m — 55565,C5€
—C586C2C3My, — C5S6C1S283€m,,
+eus5C6coc38 " 2my,
+u85C6C, 5253 AT o,
S4865183M g + C4C586C | CrS3M

—C4C55652C3e ™ 0m

—85C6C1Co83e 2 my + s5ces,05e 87 0m

+C5CaCrCaMMy, + C5CeCrSyS3€0m

5C6C2C3M, 5C6C15253 b
+c4s5s6czc3e_mmb

—iA+i6

+C4S5S6C1S2S3€ my,,

A =96.

Note that s4 >> s;s3. Then, keeping the largest terms in the weak basis mass matrix,

-1
—S1C5C1C2 C3ms,

—1
—C5C181Cy S3my,

My = | —ciessicy'my, +cieseiescy ' my, +eyescy53¢5 " my,
—c5515,e0my,,  —cs5caS3my, + cscq5yc3e0my, +cscyc3my,
. 0, —4.43 x 1073, —0.690 x 10~*
~— —4.43 %1073, 1.918 x 1072, 2.99 x 10~
C5CrC3My . )
—0.9008 x 1072, —1.557 x 1072 4+ 3.90 x 1072¢, 1

iA_iﬁms

(23)

(25)

(26)

*As stressed in [23], the CP phase in the CKM matrix is close to 90 degrees if we parametrize it by Wyg. The phase 6 is the phase in

the Jarlskog determinant [48].
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where we used

m, = 93.8 MeV, my, = 4.65 GeV, Ms _ 0.0202,
my

s;=02252, ¢, =09743, s, =0.0400, ¢, =09992,  s3=0.01557,  c3 = 0.9999,

5 _0809x 1075, M=t (27)
Cs Cy Cq
|
In Eq. (26), the (32) element can be 4.2 x 1072¢/ where §i10(2,=1) &.(0,1) &5,(1,0)
tan(z — &) = —0.9286 sin 5. The Yukawa couplings run mr(1,-1) (3,-2) (1,0) (2,-1)

from the compactification scale down to the electroweak _ ) (28)
scale in whicIE) case the dimensionless Yukawa couplings M2r(2.1) (4.0) (2.2) (3.1)
cannot be used directly for assigning the input mass itar(—1,0) (L.-1) (=1.1) (0.0)
parameters. But all Yukawa couplings leading to param- . . o
eters in Eq. (26) are arising from the VEVs of FN singlet ~ Lhus, the quantum numbers of Higgs fields appearing in
fields and we may use those given in Eq. (26) as the input ~ the mass matrix are

parameters determining the CKM matrix.

(=3,42) (-1,0) (=2,+1)

QM) =| (-4.0) (-2.-2) (=3.-1) |. (29)

1. Mass matrix in field theory ( w ) 0.0)
—1,+1 +1,-1 0,0

Let us present a possibility of obtaining a mass matrix
similar to Eq. (26) in field theory. Let the U(1),,,,, X U(1);

quantum numbers are shown as (Qnom» Q). After diag-
=2

To mimic the order appearing in Eq. (26), let us introduce

- i small parameters via the FN SM singlet fields, &;, d,, s,
onalizing the Q.,, = § quark masses, the L- and R-fields of Ay, Ay, €, and €, whose quantum numbers are shown in
Oem = —_% quarks, ¢ and 7, quantum numbers of #& are Table I1.

Let us assume that only §; and A, have complex VEV’s, §,¢’ and A, e’ while all the other FN fields have real VEV’s.
Thus, M4 can be written as

ARG —|5;]e” Sre1, Agel
Md :mb —|Al‘€iA —|A2| |A1|€iA53€2,A2|51|ei6€1 B (30)
—[61]e®e;  (|61]e7 + 83)es 1

where the overall constant is m,, and for simplicity we do not write group theoretic numbers of O(1). The element M, can have
53e3%¢, which we neglected because it is much smaller than the other terms. A negative signed phase in M §2 of Eq. (30) may
need a complex conjugated field, but we do not introduce complex conjugated fields in the mass matrix for a SUSY extension.

C. With SUSY

Not to introduce complex conjugated fields in the mass matrix, let us consider the fields presented in Table III,

1617 ¥€l, Ay|Aslemiel  —|5)]e”,|Azle™ e, 8143, Ayed
M =m, —|Ay e —|A,| |A e 8369, Ay|5y €€y, Ag| Agle®ms |, (31)
—[81 e —|Az]e™s, =53¢, 1

For 8;=0(1) and small A; and €,, and redefine &, — &, ¢, ij, - ij,e 741 By choosing A,y = App; = 6,and § = %, we obtain

F |6 eti —[64] —a;|A, €]
M~m, | —[A |A,| ay|A|63€; + a3y |6 ]er + asBr|As] |, (32)
—[o1leri —[As] + z€i 1

where we introduced O(1) numbers a;,34. Firstly, |A;|=15,|=4.432x1073 and require a;Ae3 =0.690x 10~
(with a; ~1). Let |A,|=0.01918 and |5,]e; =0.9008x1072. Then, we have €, =2.032, |A;|=1.557x1072,
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TABLE II. FN singlet fields. TABLE III. L-handed chiral fields for SUSY extension.
FN fields 51 52 53 Al Az €1 €y FN fields 51 53 Al Az A3 €1 €)
Ounom -1 =2 41 -4 =2 0 0  Quom -1 4+l -4 =2 -1 0 0
O 0 0 0 0o -2 1 -1 0 0 o 0 -2 +1 41 -1
., g 4, 1
S36, =A =3.90 x 1072, Requiring ar|A|55€, + — &) — iu163 + — Aze; =0,
azAs |6, |e; + ag|As||As| = 2.99 x 1074, where all term H H2
are 0(10‘4). To obtain the relations between phases, —H161 + Ay Aze; =0,
Apht = Aph?’ =6, we can consider the following iM3 + il A2+ 2M, A, = 0,
superpotential,
221010y + 1342 + 2M, A, = 0,
. 1 . 3
Wep = —ip16,85 + ;15‘1‘ +iIMGA| + M AT + M)A i1y8365 + 20300 A5 + /751A§€1 —0. (34)
2

1
+ i AL AS + idyAs836; + A3 A0 A3 + /751 Aley,
2
(33)

where parameters are real numbers. The following SUSY
conditions lead to the desired relations:

Clv +S1C3’
Upmns = -G5S, +CC,C5 + 5,837,
—S1S2€i5’“, —C2$3 + C182C3€i(sL,

where the parameters are the leptonic parameters, 0 , 3 and
6. Since the PMNS matrix elements are not known as
accurately as the CKM matrix elements, we do not present
a detail study of the leptonic sector. But note that the phase
o in Eq. (35) is the PMNS phase dpyins-

IV. FROM Eg x E; HETEROTIC STRING

In this section, we attempt to realize the texture of quark
mass matrix discussed in Subsection IIIB. We will not
discuss the texture of neutrino mass matrix since the
PMNS matrix elements are not known very accurately.
Nevertheless, we will comment on the relation of CP
phases in the quark and lepton sectors in this section.

A. Z,_; orbifold compactification
Note that the SM mass matrix

¥, C'Y,, MY + Hee. (36)
gives in general non-symmetric mass matrix of M because
¥¢ and ¥, transform differently under SU(2), x U(1)y.In
the GUT model, Majorana neutrinos in the SU(2),
doublets are embedded in 5, of SU(5) in the GG model

and 53 in the SU(5)g;,. Then, the effective neutrino mass

D. Lepton mass matrices

Again, we use the KS parametrization [23] to specify the
phase d; = dpyns from the (3,1) element of M,. Note that
the preliminary value dpyns ~ —7 [24],

45153
+C1C2S3 - 52C3€_i6’“
+C2C3 + C1S2S3€i5L

(35)

I
matrix in these simple GUTs are symmetric. For the quark
mass matrix, Efﬁfgmggs is the up-type quark mass matrix

in the GG model, which is symmetric. In the GG model, we
usually use diagonalized up-type quark mass matrix, and

consider non-symmetric SfﬁfSHiggS for the down-type
quark mass matrix. On the other hand, in the SU(S)g;,
the down-type quark mass matrix, I_Qfﬁngiggs is sym-
metric and the up-type quark mass matrix 5 fﬁfSHiggs is

non-symmetric. So, we prefer to consider a symmetric
down-type quark mass matrix in SU(S5)g;,. The up-type

quark mass matrix is non-symmetric, and we can assign
different coefficients for M ,;; and M1,

down type quark mass matrix = symmetric

(37)

up type quark mass matrix = asymmetric

The SU(5)g;, GUT gauge group presented in Ref. [2] is
SU(5) x U(1)yx x SU(5) x U(1)®, (38)

where, in the notation of [28],
X =(-2,-2,-2,-2,-2,0,0,0)(0%)". (39)
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TABLEIV. The SU(S)ﬂip

fields. Fields needed in the SM are on the four left columns and SM singlet components needed at the GUT

scale toward the FN mechanism are on the four right columns. Both neutrino components in C;; and C,, develop a GUT scale VEV to

break SU(S5)p;, down to the SM.

SU(S)ﬂip (SymbOD Sect. U(l)anom (Qanom) Ql/2 SU(S)ﬂip (SymbOD Sect. U(l)anom (Qanom) Ql/2
1.5(5)) U +5 -3 14(01) 79 12 —4
1_5(85,) Ty -3 -1 1y(02) 79 -2 -4
1_5(8%,) g -3 -1 1y(o3) Ty -8 +2
10_,(C,) U -13 -3 1y(o4) 7Y +10 +2
5,3(C1) U -1 +3 1y(os) Ts +14 0
5.3(C34) Ty -3 -1 1y(o6) Ts —4 0
5,3(C3) T -3 -1 14(00) 79 -6 )
10_,(Cyy) T -3 -1 1y(c10) T3 -6 -2
E—l (Cap) T3 =3 -1 1y(o13) T 4124 +3
10_,(Cyy) T3 -2 0 10,,(C) Ty +3 0
5,(H,) T 0 0 1y(o15) Ty +30 +3
5,2(Ha) Ts 0 0 1y(021) 0 +4 -1

and six U(1) directions of Ref. [2] are

0, = (0°.12,0,0)(0°)"

0, = (0°.0,12,0)(0°)"

05 = (0°.0,0,12)(0°)"

0, = (08)(0%,0,12, 12,0,

05 = (0%)(0%,0, -6, 6, 12,

Qs = (0%)(—6,—6,—6,-6,18,0,0,6).  (40)

Q.nom 18 given by

1

126 (840, + 1470, — 4203 — 6305 — 9Qy).

(41)

Qanom =

We will use notations of Ref. [2] for the names of the
fields, twisted sectors (79, ..., T¢) and the untwisted
sector (U). We also list %Ql in Table IV such that a
discrete subgroup of U(1), can be used for matter parity
if needed. We choose one gauged U(1) example beyond
U(1),0m» and we checked that any other choice leads to
the same conclusion.

B. Doublet-triplet splitting
In the SU(S)g,, it is well-known that there is a
possibility of doublet-triplet splitting. C;, and C;4 in
Eq. (54) develop the GUT scale VEVs,
(Ci) =(Cn)=V
(Cra) = =Vspe, (42)

where the first equality is for vanishing D-term at
the GUT scale. The renormalizable coupling, including
the Higgs quintet 105,10, ~ ®®®dd%¢,;, ,, might
give the GUT scale mass term to colored scalars by
{de} = {45}, but C;,H,C;, coupling is not allowed by
the nonvanishing Q,,om- A possible higher dimensional
operator consistent with the orbifold selection rules and
U(l) x U(1); gauge symmetry is

anom

T CHlTOL (T H, 5.2 (T Cy (10, (Tl [1(T9)
x 65[1(T¢)]oa [1(TY)]o21 [1(T7))] (43)

By giving GUT to Planck scale VEVs to C, o3, 05, and
051, we obtain a GUT scale mass term for colored scalars,

Mye,; ®PD (44)

afy
where @, 5, y are the color indices. Thus, the color
antitriplet in 10 combines with the color triplet in the
Higgs quintet 5. The colored scalar in the Higgs quintet H;
is removed at the GUT scale, and there remains just the

Higgs doublet from H,. For this doublet-triplet splitting,
we need

(03) #0.  {o5) #0. (021) #0,  (45)

and the color triplet mass is estimated as

My~ V%ﬂ. (46)
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Suppose V~M, 655~10"2M and (6,)>~10"'M.
Then, we obtain M; ~107°M ~ 0.6 x 102 GeV for
M ~6x 107 GeV. 10'? GeV colored scalar with small
Yukawa couplings of the first family is acceptable.
Similarly, considering C,H,Ci, ~10,,5_,10_,

T CallO (To) L[5 5 (TQICl10. (T5))oy [1(T9)
x 09[1(T9)]o15[1(Ty)]o15[1(T5)] (47)

the colored scalar in the Higgs quintet H,, is removed at the
GUT scale and there remains just the Higgs doublet from
H,. For this, we further require

(01) #0,

(09) #0.  (o15) #0.  (48)

C. Proton decay problem

One may consider another gauge symmetry to obtain a
Z, discrete group by breaking U(1), by some VEVs of
singlet fields carrying even quantum numbers of Q,/2 in
Table IV. It can serve as a kind of matter parity since
SU(5)g;, matter fields carry odd Q,/2. But this discrete
symmetry does not work because (o,;) of Eq. (45)
and (oy5) of Eq. (48) carry the odd quantum number
of Q,/2. We do not have any mechanism for matter
parity. The proton decay amplitude must be estimated in
detail.”

In SUSY models, the dimension 5 proton decay
operator must be sufficiently suppressed [50]. The dimen-
sion 5 proton decay operators to electronic and muonic
leptons are from the superpotential ¢'q'q'l'?, i.e.,
C15C15C15C17 and C15C15C15C16. Note that ClS’ Cl7’
and Cy4 are allowed from the sector T9. Therefore, the
Z.,,_; orbifold selection rules forbid the product of these
four fields from 79, and hence there is no serious proton
decay problem from the above dimension 5 operator
multiplied by FN singlets (¢’s) appear at least at dimen-
sion 7 level in our Z,_; model.

If it were the GG SU(5), the cubic superpotential
written in terms of matter parity violating term,
10,5,5,, triggers proton decay as shown in Fig. 1 [51].
In the SU(S)ﬂip also there arise dangerous proton decay
operators

107,107, 57,107, 57,57,17107, (49)

where fields with superscript m are matter fields and 107, is
the field breaking SU(5)g;, to the SM. The above operators
trigger proton decay in our model by products of FN
singlets (o’s) appear at dimension 10 level,

’If an R parity is introduced [49], the proton decay problem is
automatically solved.

u[Ut] e[Uy]
Aev,]

u Vol d[Wg]

FIG. 1. A diagram for AB # 0.

CA[10_, (T2 C4T0_, (T9)]C5[5,5(9)]
1 —

X 276 1€ [10-(75)]o3 [1(T3)]o3 [1(T3)]

x a5[1(Te)]os[1(Ts)lox [1(TT)]}.
C3[5,3(T9)1C5[5,3(T9)1S24[1-5(T3)]

1 -

x 376 {C1l10-1(T3)]o3 [L(T4)]o3 [1(T5)]os [1(T6)]

x a5[1(Ts)|on [L(TY)]}. (50)
All the singlets appearing in Eq. (50) are the needed fields
for the doublet-triplet splitting in Eq. (45). The coupling in
Fig. 1 is estimated, from the first term of Eq. (50) e.g., as,

1 C16206> ? M -2
Mo 110505021 ¢ (Msysy)

2 4.4 2
N 1 Cj030503, <MGUT>2
2 2 .

Mgy~ M

1
Msysy G
Suppose that the SUSY breaking scale Mgygy ~ 10 TeV,
the GUT scale Mgyt~ 3 x 10'® GeV, and the compacti-
fication scale M ~ 6 x 10'7 GeV. Then, the last factor
~(3 x 10'%)? is balanced by M, < 0.5 x 10'® GeV where
M., is some average VEV of C;; and neutral ¢ fields. The
estimate given in Eq. (46) can be fitted to this average.
Thus, the dimension 6 operator of Fig. 1 can be controlled
such that it is not so strong as the dimension 6 operator

derived from the exchange of leptoquark gauge bosons in
SUSY GUTs.

D. Families
There are three 5, 3’s and three 1_5’s in Table IV. These
include all members of three SM lepton doublets three

u‘-type quarks. However, there are four 10_,’s in Table IV.
So, there are a few possibilities of choosing three SM quark

doublets. Out of four 10_,’s, we always choose 10_, in the
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U sector. Then, there are three possibilites of choosing two
remaining quark doublets: (1) the antisymmetric combi-
nation of 10_,’s from the 79 sector and 10_; from the T’
sector, (2) two 10_,’s from the Tg sector, and (3) a linear
combination of 10_, of T; and antisymmetric 10_, from
79, and a linear combination of 10_, of T and symmetric
10_, from Tg. All these are considered by mixing three
1_0_1’5, introducing three angles «, f and 7,

C3[10_(7%),10_,(T5)]

C14[10_,(T9),10_,(T3)] = =Cyy155¢, + Caa(CaCpc, = 545,)
= Cup(secpc, +cu8,),

Ci5[10_,(T9).10_, (T3)] = —C\1 545, + Caa(SaCy + CCps,)
+ Cyp(cqc (52)

=+C 105+ CuoCoSp— CapSaSp,

s = SaCpSy)-

where 5,5, = sin, g, and ¢, 3, = c0s, 43,. We choose two
out of the above three combinations. Similarly, we define

Ci6[5:5(T9)] = (+C34 + C3p),

7_

S8

C17[5,5(T9)] (=C3, + C3p). (53)

Now, let us identify 10, and 10_,’s of Table I as

The down-type quark masses are

MW :C 5[10
MW :C 5(10
MZY<33> = (_0

where we presesented only the antisymmetric part in M

d(22)
quarks, it is enough to show nonzero M and M

]CIS [ET3]Hd(§T6)61 (lrg)%(ln)%(lr(,)
19)C13(1070) Hy(57,){04(170)06(17, ), 015(17, 021 (170) }
v)C2(10y)H (57,05 (17, )03 (170) 04 (179) 04 (179),

and only the component from 7’3 in M},
2p) and the conditions for making the off-diagonal elements vanish,

Ci2[10,1] & C14[10_y]:

The Higgs set for breaking SU(5) x U(1)y, (54)

and

Cis5: 1st family,
13 2nd family,

C,: 3rd family, (55)

and 5,3’s of Table I as

C17: 1st famlly,
Ci6: 2nd family,

C,: 3rd family, (56)

In this paper, it is outside the scope of current analysis to
see the details of superpotential. So, we choose the needed
VEVs by hand.

1. Down-type quarks

Let us scale scalar fields and mass matrices such that
they are made dimensionless by dividing with a mass
parameter, e.g., by M.

09(1T‘2)>613(1T3>013(1T3)’

(57)

0 For the down-type

51 )){02(170)03(159)013(17, ), 06(17, )9 (179)013(17,) } = O,
T(,){ 2( T0)53(1T )01 (ng) 06(1T6)69 1

9 (Ip0)oi3(1r,)} =0,
M} 15 = Ci5(1070)C2(104) H 4(57,){cou(170)04(L10)06(1r,) + ¢'64(179)015(17, )01 (170)} = 0,
M),y = C2(104)Cy5(1070)H (57, ){cou(170)04(L10)a6(1r,) + c'64(L70)015(17, )on (170} = 0,

To satisfy the conditions of Eq. (58), let us choose

(013)

(58)

=0, (59)
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and

c{0406) + c'(01565) = 0. (60)

M5 and My, can be made to vanish.

2. Up-type quarks
Therefore, we consider the W, coupling instead of W, coupling of Eq. (24), ViML*EU x as

u

cyucomy, + 05s402s1mc C4S1C3mu - C5S4C1C2C3mc c4s1s3mu - C5S4C1C2S3mc
+54555, 5,7 A0, —C5854525370m, + 5485¢55e 7 Am, +Cs5845,03670m, — su55c,c3e 7 Am,

’ —5485¢1 53¢~ 0m, —5455C1 5,53 A0,

§4CaC1M,; — C4C5CCRS 1M, §4CS1C3M, + C4C5C6C1CHC3M, 54C6S1853M, + C4C5C6C1CoS3M,
—Ss586Cas 1€ m, +cyc5065053€0m, —c4CsCesyce0m,

+C5856515,00m, 48555601 CaC3e 2 m, + 55565,57 27 0m, 555501 Cr538m, — 555655052 0m,
—C4855C68 S0 A o,

+C5856Co83M, — C556C1S2C3€0m, —C586C)C31M, — C586C15253€0m,

—CyS5C6Cos3e " 0m, +cu55c6Coc3e " Am, (61)
s +C4SSC6C1SZC36_ZA+I§WL¢, +C4SSC6CIS2S36_ZA+I§W!;,
§486C 1M, — C4C55¢CrS 1M, §48651C3Mm, + CyC586C1CoC3M S§48¢8153M1, + CyC586C1Co 83,
+s5C6Cos1€Bm, +cuC5865253¢70m, —C4C585652C3%m,
—c i5 _ iA _ iA—i5 _ iA 4 iA—i5
5CeS1852€ "Ny §5CcC1CrC3€ "M, §5C6S2853€ m,. §5CcC1Cr853€ "N, §5CgSpC3¢€ m.

—C4855651 5, A 0, —C5CCaS3M, + C5C6C 1 S2C3€0m, +Cs5CaCaC3m, + C5CeCy8253€0m,

—C48556CaS3e " Am, +cy8556Cac3e”Bm,
B +C4SSSGC1S2C3€_iA+i5m[’

+C45556C 5253 AT 0m,

’

Change the sign m, — —m,,, and to reduce the number of parameters let us choose parameters of R-fields as

S4 81 S5 me Sy
—=—, === s¢ =0, A =5. (62)
Cy Cq Cs m; cy
Then, we obtain
-1 -1 —1
—C4C1My, + C584C5 S1M,, —C4S1C3M, — C5854C1Cy C3M,, —C48153M, — C5C481C5 S3M,
—S4C1my, —8481C3M1, —8481853m,,
1 p gdia _ -1 -1 -1
VoM, U, = —C4Cs581C5 M, +cyc5c105¢5 my, +cycs5C183¢5 M, (63)
+s562slei5mc —s5clczc3ei5mc — S58,83M, —s5clczs3ei5mc + S58,C3M,
—c5515,€°m,, —C5Cy$3m, + C5C15,C3e0m,,  +cscyc3m, + cscySy55e0m,,
where we require ¢,, ¢3, ¢5 =~ O(1). Also, ss5 can be O(1). Thus, we consider,
— my me — My ne _ me
CyqCq o, + $481 m, CyS81 o, §4Cq m, Cyq8183 m,
i _ " _ me me me
V;M(jmgU” =m, §4C1 P Cy 81 m, +C4C1 m, +C4C153 m, (64)
_ _ me ) ,id Me _ _ me \ io | me
S <s2 §5C» cw’)e e [ s34+ c; (s2 S5C3 Csmt)e } e 1

where we neglected m;s,s3, m.s,, m.ss.
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s;=02252, ¢, =09743, 5, =00400, ¢, =09992,  s3=001557, ¢35 =0.9999,
m,=25MeV,  m,=1280 MeV,  m, =173 GeV, “=145x1075,  €—074x102,  (65)

m; m;

so that M) /m, is approximately given by

+1.67 x 10735, —0.721 x 1072s,, —-2.59 x 107%¢,
—-1.67 x 1073¢y, +0.721 x 1072¢y, +1.12 x 107%¢, (66)
(=0.67 x 1070 + 1.24 x 107¢5)e, —1.15 x 1073 + (2.88 x 10™* — 0.534 x 107*¢5)e™, 1

The up-type quark masses are

M

M}y, = Ci6(570)C13(1070, 107, ) H,, (57, ){04(T5)05(T6). 015(To) 021 (T1); 04(T§)06(T6) 021 (T1) }.

M} 53 = C1(54)C2(10y)H (57, )o5(17, ),

M) = Ci7(579)Ci3(1070.107,)H, (57, ){03(T9)05(Ts). 615(T9) 0 (T1):
oy(179)03(179)013(17,), 06(17, )09 (179)013 (17, ). 621 (1Y) 05 (T4)05(T6) }

M = Ci(570)Cis(1070. 107, ) H (57, ){05(T2)o5(Ts). 615(To) o (T9);
62(1T2)03<1T2)613(1T3>766<1T6)G9(1T2)613(1T3)’521(T?)U3(TQ)GS(T6)}?

M}y = Ci6(570)C2(100) H (57, )03 (170 )oa(170)os (17, )

M) = Ci(55)C13(1070.107, ) H,, (57, ){05(17,)06(17, )09 (179). 62 (170)0a (170 )06 (17, );
513(1T3)52(1T2)66(1T6>59(1T2)’613(1T3)0-2(17‘j)20-3(172)’ 521(IT?)02(173>53(173)05(1T6)2

o2 (1p0)os(1z,)06(1z,)o9(170), 02 (170)015(17, ) 021 (170)* . (67)

:O’

M)
Mff(gl) =C (SU)C13(ET2a 1_0T3)Hu<5T6){65(1T6)66(1Tﬁ)69(1Tg)7 62(17'2)0'4(1T3)66(1T6);
0'13(1T3)02(1T3)66(1T6)0'9(1T(2’)7 613(1T3)U2(1Tg)203 (lrg), 021 (179)62(173>03 (lrg)ds(lrﬁ);

021 (17?)05(1T6)06(1T6)09(1Tg)7 02<173)015(1T9)021 (IT?)Z}‘ (68)

=0,

My 55 is the largest value, and we set (65) = O(1), and automatically we have M1y = My5) = 0 by the unavoidable
antisymmetric property among 5_3(79), viz. Cy; in Eq. (53).

The following example is just showing a possibility. We have chosen 613 = 0 in Eq. (59) to make down-type quark
masses diagonal. Let us further simplify by setting (c,) = 0,

Mvuv(n) =0,
Mw(zz) = CIG(STO)CIB(ET{”ﬁTg)Hu(STﬁ){ ! G4(T2)66(T5), IS(TQ) 21(T(1)),
! ¢ v 05(Ts) s(Ts)
o15(Ty) 031 (TY)?, 03(T9) 02 (T?)}US(TG),
o5(Ts)
M} 5 = Ci(54)C(10y)H (57, )05 (17, ) (69)
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M) = C17(572)C13(ET2’ 10;,)H,(57,) {03(T91),

Moy = Col19) Crs(T0ry 107, 1,51 { (7).

_
0o5(Ts)

ﬁﬁls(n)ﬁzl (T(f)s O}US(Te),

.015(T)021 (TY); 021 (T9) 03 (TY) }05(T6)7

M2 = Cis(570)Co(T00)H, (57,) {03 (1700 (170) Yo (17, ).
MLV(32) =C (SU)CIB(ETgv1_0T3)HL¢(5T6){0;06(1T6)69(1T2)621(IT?)}65(1T6)’

M w

u(13) = 0,

My = Ci(54)Ci5(1070.107, ) H, (57, ){06(17,)00(170): 06(17,) 09 (L70)o1 (170) }os (17, ) (70)

where the antisymmetric combination of 10_, ’s from TQ is written before the semicolon and the symmetric combinations of
10_;’s from Tg is written after the semicolon. Zeros indicate this symmetry properties.

0, (poy + 9 222), 0
2
(003 +d01:§21) +603021, f%+gm;7:2]+hg%?l+k03621), f0304 (71)
6106(79(1 + r0'21), bO'6690'21, 1

To present a simple numerics, let us neglect the o5 terms.
So, consider

0, pos, 0
Co3 + €030)1, f% + k630'21, f630'4 (72)
61060'9(1 + 7021), b0609021, 1

Assuming hierarchies of VEVs with O(1) coefficients,

Oy < 1,

040

—po; = f% + ko305 =~ 0(1073),
5

co3 + €030, ~ O(1073)

(
aceoy =~ 0(1079)

Oy = 0(%) < l,

’
’

roy; = O(1),
pNCNeNkaNfNV20(1)s (73)
we estimate

07 p63’ O
~| cos, [o2, fosoy (74)
ace0y, bogoyoy;, 1

which can be close to Eq. (66). Let all singlet VEVSs are real
except a9 and oy [23],

09 = |0'9|€i9 = |59|€%[, 031 = |621|€i¢- (75)

The phase of ¢/(+%) is fitted to the phase of

—1.15x 1073 4 (2.88 x 107#—0.534 x 107*¢5) ™ ~ /(0 +4)
(76)

In Table V, we list € + ¢ for a few ts. For 6cxm = 5 and
t5 ~ 5.5, we obtain ¢ ~ —0. Irrespective of the value of ¢,
the CP phase in the Jarlskog determinant, dcky, 1S the
phase in M;V(3l) with the KS parametrization given

in Eq. (22).

E. CP phases in the quark and lepton sectors

As done before, let us diagonalize the symmetric fermion
masses first. In the flipped SU(5) model, therefore, we
diagonalize down-type quark masses and neutrino masses.
Then, we consider up-type quarks and charged leptons.
Then, the (3,1) elements of the mass matrices are the key.
For the third family members from U, masses of ¢ quark
and 7 lepton arise from

TABLE V. Phases of M:fm) for 6 =74.

s (—0.2881+'105.0534t5) 0+ ¢

0 -0.250 —14.04°, —0.244r
5.5 0.0054 0.286°, ~0
10 0.214 12.0°, 0.209x
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0,0 o ss@ xsa).

t quark: Z =6, Z Qunom = +14

Sect T; )

5+3(U) < 1—5(U) X g+2(T6)’ <T lepton: Z = 6’ Z Qanom = _4> (77)

The phenomenologically determined leptonic mass
element M? ., can be obtained from Eq. (61) by changing
the quark parameters 0;, 6, A, m,, m., m; to leptonic
parameters of Eq. (35): ©;, 6;,, Ay, m,, m,, m,. Choose the
leptonic V matrix elements such that

Si_S
c, C;’

Ss m, S,
—=—"——= §:=0,
Cs m. G o

Ap=6;. (78)
Then, M}, /m,~~sin®, sin ®,e where §; is the
PMNS phase.

In our model, Table IV, there are three e¢ fields in the
leptonic case (instead of four u¢ fields in the quark case),
and we can choose S5, which is the antisymmetric
combination of S,4, and S,y in T9. So, the leptonic mass
matrix has four zero entries with the antisymmetric 1st row
and antisymmetric 2nd column,

0, My, O
Moy, 0. My, (79)
M7y, 0. My,

. 6
whose phase is 0y,
|

For the lepton phase, we need M 3(3 1)

1

Sect T;

M50 Ci(50)83,(170)Hy(5r,),

( Y =10.) " OQuom = —4) (80)

Sect T;

where S35, is the symmetric combination of Sy, and Syy.
So, the product of FN singlets must satisfy

Z =2 mod. 12,

Sect T;

Z Qanom = 4. (81)

It is satisfied by 650409 and 6,650, . In our vacuum, we
choose 65| somewhat smaller than |6y but large enough
to achieve a successful doublet-triplet splitting, viz.
Eq. (45). Therefore, the phase o; of Mf(m) is mostly given
by the phase of 69 as in M,me). In the leptonic case, this d;,

is Opyns- But, for this interpretation to work, o9 should not
appear in the neutrino mass matrix such that Upyns =

U U, contains 64 only in U,. The neutrino mass matrix is
of the form 5,3M}'S, ;3 which can arise from the following
couplings,

vl C3[5.43(T9)|C5[5.5(T9)|H,,[5_5(T6)|H ,[5_2(T6)] C11 [10_; (T3)]C1 [10_ (T5)]

- o3[1(T) )3 [1(T)]os [1(Ts)]os[1(Ts ) oo [L(TY)] o [L(TT)].

1
M

C3[5.3(T9)IC1[5.453(U)|H ,[5_5(T6)|H,[5_5(T6)]C11 [10_, (T5)]C11 [10_, (T)]

-05[1(T4)]o6[1(T6)] 021 [1(T9)] ooy [1(TY)].
% C1[5:3(U)]C1[5.5(U)H,[5-5(T6)|H,[5-2(T6)]C11[10_, (T5)]Cy; [10_, (T5)]

-0 [1(T9)]05[1(T6)]06[1(T6)] 021 [1(TY)] 021 [1(T9)] (82)

®We have already presented M v 31) with phase dcxy. We have
this definite statement because we used the KS parametrization,
Egs. (22) and (35), of mixing angles [23].

"In Mz’m), we did not include o, in addition to oy for
simplicity. Namely, it is equivalent to assuming (cj9) =0 or
619 = |o10le”. In My 5, also, we consider only oy for simplicity.

|
where o9 does not appear. So, the phase in oq is the PMNS
phase. The generic magnitudes of masses from the above
couplings are (v2,/M)(V/M)37 where V and M are some
scales around/above the GUT scale, and we can obtain
reasonable strength for neutrino masses.

Equation (77) shows that the L-handed up-type quarks,
appearing in 10_,, use charge lowering operators to couple
to W, and the L-handed charged leptons, appearing in 5 3,
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use charge raising operators to couple to Wj. So, we must
consider the same charge charged-gauge boson W, to
compare the signs of dcxy and Spyns. Also, we must
specify the signs of the effective Yukawa couplings in
MLV(31) and M;V(m dictated by string compactification. At
this stage, we allow any sign for M 3(31) and M ;V<3 0 since we

considered only the selection rules. If the signs of M:f(m
and M‘:(Sl) are the same (opposite), then we conclude that

Ockm and dpyns have the opposite (same) Signs.8 The case
of opposite signs is consistent with the currently favored
phases of dcxym [23] and dpyng [24].

In the PS type standard model SU(4) x SU(2),x
SU(2)z, we would have fermion matter spectra, containing
quark and lepton doublets,

(4,2,1), & (4,1,2) + - - (83)

Suppose that the Yukawa coupling (4,2,1), x (4,1,2), x
(1,2,2), via Higgs (1,2,2), is present from the orbifold
compactification. Then, the Yukawa coupling arises from
the L-handed Higgs field doublets €”(1,2,(ij)), =
(1,2,(12)), — (1,2,(21)), where the R-hand index (12)
gives the Higgs doublet coupling to quark doublets and the
R-hand index (21) gives the Higgs doublet coupling to
lepton doublets. We use the same charge W, i.e., W;’, for
coupling to down-type quarks and charged leptons. So,
the relative signs of MZ!V(31) and M;Vm) are opposite if the

product with FN singlet contributions give the same sign.
If we use the mass matrices of MZ(M) and M;Vm) for

asymmetric mass matrices as in the GG model, then dcxy
and Jpyns have the opposite signs. But, here one needs an
example for breaking SO(10) down to SU(4) x SU(2), x
SU(2)z, where the rank is not reduced, from the spectra of
orbifold compactification. One may use the bulk fields for
an adjoint representation as pointed out for Zg_;; in

8In the GG model [37], the symmetric quark mass matrices are
for neutrinos and up-type quarks. The asymmetric quark mass
matrices are for the down-type quarks and charged leptons via the
same coupling 10¢5,H,, and if we had tried the strategy we
chose here then we would have obtained the same sign for dcgy
and Opyng irrespective of the signs of M;V(m and M‘:m). But this

idea is not workable in the GG model because we lack an adjoint
representation for breaking SU(5) down to the SM.

Ref. [45] and for Z, x Z, in Ref. [52] where the N =2
gauge multiplet in an effective 5-dimensional SUSY model
allows an adjoint representation of spin-0 fields.

V. CONCLUSION

In this paper, we presented a theory toward under-
standing the quark and lepton mixing angles. Speci-
fically, we presented a working example obtained from a
string compactification [47] with Q,,,m charge presented in
[2]. Explicit presentations were given for the CKM matrix.
The (3,3) element of quark mass matrix in the weak basis, is
assumed to be close to the 7-quark mass. Because there are
only three L-handed quark doublets in the model, the up-
type quark mass matrix is antisymmetric under the
exchange of a <> b among R-handed flavor indices (or
u¢ fields) obtained from Tg. This is because the multiplicity
2 for 5_; from T9 is generic and there is no way to
distinguish these two. The antisymmetric combination of a
and b is named for the 1st family member of 5 5’s. But,
there are four L-handed up-type quark doublets and the up-
type quark families have a freedom to choose from these
four. We used the freedom of choosing the unitary matrix
for the R-handed quarks to fit to the data, and showed that
this model predicts reasonable mixing angles within
experimental error bounds. Also, we studied the relation
between dcxy and Spyns by the phases of some SM singlet
scalar fields, assuming that all Yukawa coupling constants
from string compactification are real. For the proton decay
problem, a Z, matter parity cannot be introduced consis-
tently with the solution of the doublet-triplet splitting
problem by the GUT scale VEVs, (10_,(73)) and
(10, {(Ty)). But, we showed that the proton decay operator
appears at a dimension 10 level, which can be made small
enough while achieving the doublet-triplet splitting. It will
be interesting if a kind of R parity is found within the
scheme, which will be published soon [53].
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