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A precise lattice determination of the equation of state in SU(3) Yang-Mills theory is carried out by
means of a simulation algorithm, based on Jarzynski’s theorem, that allows one to compute physical
quantities in thermodynamic equilibrium, by driving the field configurations of the system out of
equilibrium. The physical results and the computational efficiency of the algorithm are compared with
other state-of-the-art lattice calculations, and the extension to full QCD with dynamical fermions and to
other observables is discussed.
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I. INTRODUCTION AND MOTIVATION

The phenomenology of the strong interaction at high
temperatures and/or densities remains one of the most
interesting (yet somehow elusive) research areas in the
physics of elementary particles. As nicely summarized by
B. Müller in his lecture at the 2013 Nobel Symposium on
LHC Physics [1], the novel state of matter produced in
nuclear collisions at LHC and RHIC reveals unique
features: it is strongly coupled, but highly relativistic; at
high temperature it displays the distinctive collective
phenomena of a liquid, whereas at low temperatures it
turns into a gas of weakly interacting hadrons; while its
shear viscosity η is nearly 18 orders of magnitude larger
than the one measured for superfluid helium and even 26
orders of magnitude larger than the one of ultracold atoms
[2], the ratio of the shear viscosity over the entropy density
s is actually lower than for those substances, and close to
the fundamental quantum-mechanical bound 1=ð4πÞ [3];
moreover, it thermalizes in a very short time, close to the
limits imposed by causality. Finally, the quark-gluon
plasma (QGP) is not simply a “rearrangement” of ordinary
nuclear matter: rather, it “creates” its own ground state, in
which two characterizing features of the hadronic world,

color confinement and dynamical chiral-symmetry break-
ing, are lost.
At the temperatures reached in present heavy-ion-colli-

sion experiments—which, when expressed in natural units
ℏ ¼ c ¼ kB ¼ 1, are of the order of hundreds of MeV [4]—
the QGP is strongly coupled: this demands a theoretical
investigation by nonperturbative tools, and the regulariza-
tion of quantum chromodynamics (QCD) on a Euclidean
lattice [5] is the tool of choice for this purpose. Over the
past few years, several physical observables relevant for
finite-temperature QCD have been studied on the lattice
(see Refs. [6] for reviews): one of the most prominent
among them is the QCD equation of state [7], which
determines the evolution of the Universe shortly after the
big bang, as well as the evolution of the matter produced in
the “little bang” at ultrarelativistic nuclear colliders.
While state-of-the-art results for the QCD equation of

state, obtained by different collaborations using slightly
different types of lattice discretizations, are now consistent
with each other, it is worth remarking that such compu-
tations still require large computational power, and the
multiple extrapolations to the physical limit are far from
trivial. For example, in the standard “integral” method [8],
the fact that quantum fluctuations at the lattice cutoff scale
induce a strong ultraviolet divergence in the free energy
associated with the QCD partition function, implies that
bulk quantities at thermal equilibrium, such as the pressure
p at a finite temperature T, have to be extracted by
subtracting the corresponding quantities evaluated in vac-
uum, and are encoded in numbers that scale like OðaDÞ (a
being the lattice spacing, and D the Euclidean spacetime
dimension, i.e., four): this constrains the values of a that
can be probed in these simulations and, as a consequence,
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the control over systematic uncertainties affecting the
extrapolation to the continuum. Similarly, in simulations
with staggered fermions, residual taste-symmetry-breaking
effects can have an impact on the extrapolation of the quark
masses to the physical limit.
Due to these challenges, in the past few years there has

been renovated interest in alternative methods to compute
the equation of state. In particular, we would like to
mention two recent studies, based upon the gradient flow
[9] (see also Ref. [10], which reported the first calculation
of thermodynamic quantities using this method, and the
very recent Ref. [11], for an application in SU(2) Yang-
Mills theory) and on the formulation of the theory in a
moving reference frame [12]: both of them have been
successfully tested in SU(3) Yang-Mills theory without
quarks, and can be extended to full QCD without major
obstructions [13]. The thermal properties of a purely
gluonic theory, albeit not relevant for a quantitative
comparison with experiments, can reveal important uni-
versal features, shared by theories with different gauge
symmetry [9,10,12,14–19] and/or in different dimensions
[20], and, by virtue of the limited computational power
required for their numerical Monte Carlo simulation,
provide a useful benchmark for new algorithms.
In this manuscript, we present yet another method to

compute the SU(3) equation of state, which is based on
Jarzynski’s theorem [21,22]: as will be discussed in detail
in Sec. II, this theorem encodes an exact relation between
the ratio of the partition functions associated with two
different ensembles (which, in this case, are defined as
those of the theory at two different temperatures) to an
exponential average of the work done on the system during
a nonequilibrium transformation driving it from one
ensemble to the other. As will be discussed in detail below,
calculations of the pressure based on this technique still
require the subtraction of ultraviolet vacuum contributions,
as with the integral method; however, they strongly reduce
the computational costs associated with thermalization,
since, in contrast to the integral method, only the field
configurations at the first temperature in each trajectory
need to be thermalized. Jarzynski’s theorem is closely
related to a set of powerful mathematical identities in
nonequilibrium statistical physics, which have been devel-
oped since the 1990s [23]. A first example of application of
Jarzynski’s theorem in numerical simulations of lattice
gauge theory was presented in Ref. [24], but the technique
is quite general and versatile, and can be used for a variety
of different lattice QCD problems (at zero or at finite
temperature). In Sec. III, after laying out the setup of our
numerical calculations, we report a set of high-precision
results for the SU(3) equation of state obtained using this
method, along with a detailed discussion of the underlying
physics, and with a comparison to studies based on
different methods [9,12,17]. Section IV is devoted to a
discussion of the computational efficiency of our method

and to some concluding remarks. A summary of this work
has been reported in Ref. [25].

II. JARZYNSKI’S EQUALITY

In this section, after stating Jarzynski’s theorem,
we first demonstrate it in a Hamiltonian-evolution frame-
work, following Ref. [21], in subsection II A. Then, in
subsection II B, we present a different derivation [22],
based on a master-equation formalism, which is more
directly relevant for a practical implementation in
Monte Carlo calculations.
Jarzynski’s equality [21,22] is a theorem in statistical

mechanics, that relates equilibrium and nonequilibrium
quantities.
Consider a classical statistical system, which depends on

a set of parameters λ (defined in a space Λ), and let H
denote its Hamiltonian, which is a function of the degrees
of freedom (d.o.f.) ϕ. When the system is in thermal
equilibrium at temperature T, the partition function,
defined as

Z ¼
X
fϕg

exp

�
−
H
T

�
ð1Þ

(where
P

fϕg denotes the sum over all possible ϕ configu-
rations, and, depending on the nature of ϕ and on the
theory, may be a finite or an infinite sum, a multiple
integral, or a suitably defined functional integral), is related
to the Helmholtz free energy F via Z ¼ expð−F=TÞ. In
Eq. (1), both the partition function and the free energy, like
H, are functions of λ. Let λin and λfin denote two distinct
values of λ in parameter space, and let Zλin and Zλfin denote
the partition functions of the system in thermodynamic
equilibrium, when its parameters take values λ ¼ λin and
λ ¼ λfin, respectively. For a given physical observable O,
let hOiλ denote the statistical average of O in thermal
equilibrium in the ensemble with parameters fixed to λ.
Consider now the situation in which the parameters of

the system are varied as a function of time t in a certain
interval (which can be either finite or infinite) of extrema tin
and tfin, according to some, arbitrary but well-specified,
function λðtÞ (or “protocol” for the parameter evolution),
with λðtinÞ ¼ λin and λðtfinÞ ¼ λfin. Assume that, starting
from an initial equilibrium configuration at t ¼ tin, the
parameters are let evolve in time, according to the λðtÞ
function; accordingly, the dynamical variables ϕ respond to
the variation in the λ parameters, and themselves evolve in
time, spanning a trajectory in the field-configuration space.
In general, the configurations at all t > tin are not ther-
malized, i.e., the λðtÞ parameter evolution drives the system
out of equilibrium (except when tfin − tin is infinite, so that
the switching process is infinitely slow). Let W denote the
total work done on the system during its evolution from tin
to tfin; since the system is driven out of equilibrium, the
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mean value of the work W obtained by averaging over an
ensemble of such transformations, is in general larger than
or equal to the free-energy difference ΔF ¼ Fλfin − Fλin of
equilibrium ensembles with parameters λ ¼ λin and
λ ¼ λfin:

W ≥ ΔF: ð2Þ

Note that W − ΔF is the amount of work dissipated during
the parameter switch, which is directly related to the
entropy variation, hence the inequality (2) is nothing but
an expression of the second law of thermodynamics. Also,
when the parameter switch is infinitely slow (i.e., for
Δt ¼ tfin − tin → ∞) the system remains in thermodynamic
equilibrium throughout the switching process, the trans-
formation is reversible, and the equality sign holds.
However, if one considers the exponential average of the

work, then it is possible to prove that it is directly related to
ΔF through the following equality:

exp ð−W=TÞ ¼ exp ð−ΔF=TÞ: ð3Þ

Equation (3) is the main statement of Jarzynski’s
theorem [21].
Before discussing the proof of Eq. (3) for generic Δt, we

observe that whenΔt → ∞, the equality holds: in this limit,
the parameter switch from λin to λfin is infinitely slow, the
transformation becomes quasistatic, the system remains in
equilibrium for the whole duration of the process, so that
the work done on the system is equal to

W ¼
Z

λfin

λin

�∂H
∂λ

�
λ

dλ ð4Þ

for every trajectory interpolating between the initial and
final ensembles. Hence, in this limit one has W ¼ W.
Moreover, in this limit one also has W ¼ ΔF, thus the
left-hand side of Eq. (3) can be written as

exp ð−W=TÞ ¼ exp ð−W=TÞ ¼ exp ð−ΔF=TÞ; ð5Þ

and Eq. (3) is trivially recovered.

A. Derivation in a Hamiltonian-evolution framework

To prove Eq. (3) for finite Δt, let us first consider the case
in which the system is initially in thermal equilibrium with a
heat reservoir at temperature T, but is isolated from it during
the switching process from tin to tfin. Then, one can express
the average over the ensemble of trajectories appearing
on the left-hand side of Eq. (3) in terms of the time-
dependent probability density in the space of configurations,
that we denote as ρ ¼ ρðϕ; tÞ. Given that at t ¼ tin the
system is in thermal equilibrium at temperature T, ρ satisfies
the initial condition ρðϕ; tinÞ ¼ exp ½−HλðtinÞðϕÞ=T�=ZλðtinÞ;

moreover, since the system is in isolation during the
switching process, the time evolution of ρ at t > tin is given
by Liouville’s equation _ρ ¼ fHλ; ρg, where the quantity
appearing on the right-hand side is the Poisson bracket
of Hλ and ρ. The evolution law expressed by Liouville’s
equation is fully deterministic, and a one-to-one mapping
exists between each configuration at a generic time t and a
configuration ϕin at the initial time t ¼ tin. As a conse-
quence, the work accumulated along a trajectory going
through a configuration ϕ at a generic time t is well-defined
and equal to

wðϕ; tÞ ¼ HλðtÞðϕÞ −HλðtinÞðϕinÞ ¼
Z

t

tin

∂Hλ

∂λ _λdτ: ð6Þ

Thus, the work accumulated during the evolution starting
from t ¼ tin and leading to a final configuration ϕ at t ¼ tfin
is simply wðϕ; tfinÞ, and the average appearing on the left-
hand side of Eq. (3) can be expressed as

exp ð−W=TÞ ¼
X
fϕg

ρðϕ; tfinÞ exp ½−wðϕ; tfinÞ=T�: ð7Þ

Liouville’s theorem implies the conservation of the trajectory
density in phase space: hence, ρðϕ; tfinÞ ¼ ρðϕin; tinÞ ¼
exp ½−HλðtinÞðϕinÞ=T�=ZλðtinÞ, so that Eq. (7) can be
rewritten as

exp ð−W=TÞ ¼ 1

ZλðtinÞ

X
fϕg

exp

�
−
HλðtinÞðϕinÞ

T

�

× exp

�
−
HλðtÞðϕÞ −HλðtinÞðϕinÞ

T

�

¼ 1

ZλðtinÞ

X
fϕg

exp

�
−
HλðtÞðϕÞ

T

�

¼ ZλðtfinÞ
ZλðtinÞ

¼ exp ð−ΔF=TÞ: ð8Þ

If the system remains coupled to a heat reservoir doing
the parameter switch (and the coupling of the system to the
reservoir is sufficiently small), then this argument can be
repeated for the union of the system and the reservoir,
which can be thought of as a larger system, that remains
isolated during the process. Then, the work performed on
the system equals the difference of the total energy,
evaluated on the final and on the initial configuration.
This difference does not depend on the switching time,
therefore it can be evaluated in the Δt → ∞ limit, in which,
as we discussed above, Eq. (3) holds. Actually, one can
prove that the assumption of weak coupling between the
system and the reservoir can be relaxed, if the reservoir is
mimicked by a Nosé-Hoover thermostat [26] or a
Metropolis algorithm, as is the case in Monte Carlo
simulations.
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B. Derivation in the master-equation formalism

Equation (3) can also be derived using a master-equation
approach, and assuming a completely stochastic (rather
than deterministic) evolution for the trajectory [22]. Here
and in the following, we will use the symbol ϕ to denote a
field configuration of the system, and ϕðtÞ will denote a
field configuration at time t. Here, the time evolution of ϕ is
assumed to be given by a stochastic process; as a result of
this stochastic process, the field configuration changes with
time, and, following Ref. [22], we will call this process a
“trajectory” in the space of the possible configurations of
the system. Let Pðϕ0; tjϕ; tþ ΔtÞ denote the conditional
probability of finding a field configuration ϕ at time tþ Δt,
given that the system was in configuration ϕ0 at time t, and
define the instantaneous transition rate from ϕ0 to ϕ as

Rλðϕ0;ϕÞ ¼ lim
Δt→0þ

∂
∂ðΔtÞPðϕ

0; tjϕ; tþ ΔtÞ: ð9Þ

Note that this quantity depends on time only through the
time-dependence of λ. Consider now an ensemble of
stochastic, Markovian temporal evolutions (or trajectories)
of the system, given a certain, fixed time-evolution of its
parameters, λðtÞ: the distribution density of these trajecto-
ries in the space of configurations of the system, denoted as
fðϕ; tÞ, obeys

∂
∂t fðϕ; tÞ ¼

X
fϕ0g

fðϕ0; tÞRλðϕ0;ϕÞ ¼ R̂λf; ð10Þ

where the last equality is the definition of the R̂λ operator.
If λ does not depend on time, then the formal solution of
Eq. (10), with the boundary condition that at t ¼ tin the
distribution density equals finðϕÞ, can be written as

fðϕ; tÞ ¼ exp ½ðt − tinÞR̂λ�finðϕÞ: ð11Þ

In this case, ϕðtÞ reduces to a standard, stationary Markov
process: then, the distribution density fðϕ; tÞ becomes
time-independent and the left-hand side of Eq. (10) van-
ishes. Thus, the Markov process generates an ensemble of
configurations distributed according to the canonical
Boltzmann distribution for a system with Hamiltonian
Hλ at temperature T, i.e., fðϕ; tÞ ∝ exp½−HλðϕÞ=T�, and

X
fϕ0g

exp½−Hλðϕ0Þ=T�Rλðϕ0;ϕÞ ¼ 0: ð12Þ

Equation (12) means that the canonical distribution is
preserved by the Markov process under consideration.
Note that, if the Markov process satisfies detailed balance,
i.e., if

exp½−Hλðϕ0Þ=T�
exp½−HλðϕÞ=T�

¼ Rλðϕ;ϕ0Þ
Rλðϕ0;ϕÞ ; ð13Þ

then Eq. (12) follows: this can be easily proven
by expressing exp½−Hλðϕ0Þ=T�Rλðϕ0;ϕÞ in terms of
exp½−HλðϕÞ=T� and Rλðϕ;ϕ0Þ using Eq. (13), and then
summing (or integrating) over the ϕ0 values. The converse
is in general not true, but, given that the distinction between
Eqs. (12) and (13) is immaterial for our present discussion,
for the sake of simplicity we will nevertheless refer to
Eq. (12) as to the “detailed-balance condition,” as was done
in Ref. [22].1

Let us assume that the initial distribution at time t ¼ tin is
a canonical one, finðϕÞ ∝ exp½−HλðtinÞðϕÞ=T�, let Qðϕ; tÞ
denote the average value of exp½−wðϕ; tÞ=T� over all
trajectories going through a particular configuration ϕ at
a generic time t. Introducing the distribution defined as

gðϕ; tÞ ¼ fðϕ; tÞQðϕ; tÞ; ð15Þ

the average of expð−W=TÞ over all trajectories can be
expressed as

exp ð−W=TÞ ¼
X
fϕg

gðϕ; tfinÞ: ð16Þ

From its definition by Eq. (15), it is easy to see that the time
derivative of g is given by

∂g
∂t ¼

∂f
∂t Qþ f

∂Q
∂t ¼ R̂λfQ − f

∂Hλ

∂λ
_λ

T
Q

¼
�
R̂λ −

∂Hλ

∂λ
_λ

T

�
g: ð17Þ

In particular, the third equality appearing in Eq. (17) can be
proven by imagining that ϕðtÞ represents the “motion of a
particle with a time-dependent mass exp½−wðϕ; tÞ=T�” (this
motion is supposed to take place in the space of configu-
rations), so that Qðϕ; tÞ can then be interpreted as the
“average mass” of the particles that at time t go through
ϕðtÞ, and gðϕ; tÞ represents the “average mass density”
of the particles that go through ϕ at time t. The time

1One can also assume the stronger condition that, when
t − tin → ∞, the Markov process always generates a canonical
Boltzmann distribution, i.e., that for any, arbitrary, initial dis-
tribution finðϕÞ:

lim
ðt−tinÞ→∞

exp ½ðt − tinÞR̂λ�finðϕÞ ¼
exp½−HλðϕÞ=T�P
fϕg exp½−HλðϕÞ=T�

; ð14Þ

so that, for sufficiently long times, the Markov process always
leads to thermalization of any distribution. Note that Eq. (14) is
stronger than and implies Eq. (12). For our present purposes,
however, only Eq. (12) is needed.
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dependence of such “average mass density” would then be
induced by two terms: first, the one due to the “flow” of
these “particles,”which is encoded in Eq. (10), and, second,
by the fact that the particle “mass”mðtÞ ¼ exp½−wðϕ; tÞ=T�
varies with time, and _mðtÞ ¼ −½wðϕ; tÞ=T�mðtÞ. The time
derivative of g is then given by the sum of these two terms,
which yields Eq. (17). For another derivation of Eq. (17),
see Ref. [22, Appendix A]. Note that Eqs. (6) and (15)
imply that, at t ¼ tin:

gðϕ; tinÞ ¼ fðϕ; tinÞ ¼
exp½−HλðtinÞðϕÞ=T�P
fϕg exp½−HλðtinÞðϕÞ=T�

¼ exp½−HλðtinÞðϕÞ=T�
Zin

; ð18Þ

where we used the fact that the initial distribution is a
canonical one.
According to Eq. (12), R̂λ annihilates N expð−Hλ=TÞ

(where N is an arbitrary constant factor), hence:

� ∂
∂t − R̂λ þ

∂Hλ

∂λ
_λ

T

�
N expð−Hλ=TÞ ¼ 0; ð19Þ

which means that N expð−Hλ=TÞ is solution to Eq. (17).
The solution consistent with the boundary condition
specified by Eq. (18) has N ¼ 1=Zin, so that

gðϕ; tÞ ¼ exp½−HλðtÞðϕÞ=T�
Zin

: ð20Þ

Plugging Eq. (20), evaluated at t ¼ tfin, into Eq. (16), one
finally obtains

exp ð−W=TÞ ¼ 1

Zin

X
fϕg

exp½−HλðtfinÞðϕÞ=T� ¼
Zfin

Zin
; ð21Þ

which proves Jarzynski’s theorem.
Note that, even though the distribution of ϕ is a canonical

one only at t ¼ tin, in the last term of Eq. (21) the canonical
partition function of the system at the final value of λ
appears, and that this equation relates a genuinely out-
of-equilibrium quantity (the average appearing in the first
term) to a ratio of equilibrium quantities.
This proof of Jarzynski’s equality provides a natural way

to implement a numerical evaluation of the free-energy
difference appearing on the right-hand side of Eq. (3) by
Monte Carlo simulation2: having defined a parameter
evolution λðtÞ, with tin ≤ t ≤ tfin, that interpolates between
the initial and final ensembles, and starting from a
canonical distribution of configurations, one can drive

the system out of equilibrium by varying λ as a function
of Monte Carlo time, letting the configurations evolve
according to any Markov process that satisfies the detailed-
balance condition expressed by Eq. (12), and compute
expð−W=TÞ during this process. The average expressed by
the bar notation on the left-hand side of Eq. (3) is then
obtained by averaging over a sufficiently large number of
such trajectories. This is the numerical strategy that we use
in this work, in which the Euclidean action S plays the role
of H=T.
We close this section with a word of caution. The

computational efficiency of this method may strongly
depend on the properties of the system under consideration:
in particular, physical systems with a very large number of
d.o.f. (such as quantum field theories regularized on a
spacetime lattice) have sharply peaked statistical distribu-
tions, hindering an accurate sampling of the configuration-
space regions that contribute mostly to expð−W=TÞ. If the
different values of W in different trajectories are much
larger than the scale of typical thermal fluctuations (or of
typical quantum fluctuations, for lattice simulations of
quantum field theory), then expð−W=TÞ is dominated by
configurations in which the value of W is much smaller
than W, and an accurate determination of expð−W=TÞ
may require a prohibitively large number of trajectories.
Note, however, that, in the numerical calculation of free-
energy differences by Eq. (3), there exists a remarkable
difference in the roles of the initial and final ensembles:
one assumes that the initial configurations are thermal-
ized, while the field values at all t > tin (including, in
particular, at t ¼ tfin) are out of equilibrium. This asym-
metry between the initial and target ensembles implies
that, if the Monte Carlo determination of ΔF is biased by
effects due to limited statistics, then carrying out the same
calculation in the opposite direction will, in general, give a
result different from −ΔF. Conversely, verifying that a
“direct” and a “reverse” computation give consistent
results, provides a powerful test of the correctness of
the calculation. This is a test that all results of our present
work pass with success.

III. LATTICE CALCULATION OF THE SU(3)
EQUATION OF STATE

In this work, we investigate the behavior of QCD at finite
temperature, and compute the equation of state via lattice
simulations using an algorithm based on Jarzynski’s equal-
ity Eq. (3).
In particular, we focus on the pure-glue sector, which

captures the main feature of thermal QCD at the qualitative
level: the existence of a confining phase at low temper-
atures, in which the physical states are massive color
singlets, and a deconfined phase at high temperatures,
in which chromoelectrically charged, light, elementary
particles interact with each other through screened,

2A related idea underlies the annealed-importance-sampling
technique [27]: we thank Martin Hasenbusch for discussions on
this issue.
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long-range interactions.3 Thermal screening of both electric
and magnetic field components is, indeed, a characterizing
feature of the deconfined phase of non-Abelian gauge
theories, which defines it as a “plasma.” Asymptotic
freedom implies that, when the temperature T is very high,
the physical coupling g at the scale of thermal excitations,
OðTÞ, becomes small; in this limit, chromoelectric fields
are screened on distances inversely proportional to gT,
while chromomagnetic fields are screened on lengths
inversely proportional to g2T, so that the theory develops
a well-defined hierarchy of scales, between “hard” (of the
order of T), “soft” (of the order of gT), and “ultrasoft” (of
the order of g2T) modes, and this separation of scales
allows for a systematic treatment in terms of effective
theories [29–32]. The appearance of the soft and ultrasoft
scales is due to the existence of infrared divergences, which
lead to a breakdown of the correspondence between the
number of loops in Feynman diagrams and the order in αs

in perturbative calculations [33], and to the intrinsically
nonperturbative nature of long-wavelength modes at all
temperatures. Moreover, for plasma excitations on the
energy scale of the deconfinement temperature, the physi-
cal coupling is not very small, so that the deconfined
state of matter cannot be reliably modeled as a gas of
free partons.
For these reasons, the study of the equation of state

of QCD—or of its gluonic sector, that we are focusing on
here—close to deconfinement requires nonperturbative
techniques. We carry out this study by discretizing the
Euclidean action of SU(3) Yang-Mills theory on a hyper-
cubic lattice Λ of spacing a, spatial volume V ¼ L3 ¼
ðaNsÞ3 and extent aNt along the compactified Euclidean-
time direction, using the Wilson action [5]

S ¼ β
X
x∈Λ

X
0≤μ<ν≤3

�
1 −

1

3
ReTrUμνðxÞ

�
; ð22Þ

where β ¼ 6=g20, with g0 the bare coupling, and

UμνðxÞ ¼ UμðxÞUνðxþ aμ̂ÞU†
μðxþ aν̂ÞU†

νðxÞ: ð23Þ

The partition function of the lattice theory is given by

Z ¼
Z Y

x∈Λ

Y3
μ¼0

dUμðxÞ exp ½−SðUÞ� ð24Þ

(where dUμðxÞ is the Haar measure for the SUðNÞ matrix
defined on the oriented link from site x to site xþ aμ̂) and
expectation values are defined as

hOi ¼ 1

Z

Z Y
x∈Λ

Y3
μ¼0

dUμðxÞO exp ½−SðUÞ�: ð25Þ

The integrals on the right-hand side of Eq. (25) are
estimated numerically, by Monte Carlo integration, from
a sample of field configurations produced in a Markov
chain; our update algorithm combines one heat-bath [34]
and five to ten over-relaxation steps [35] on the link
variables of the whole lattice: this defines a “sweep.”
The uncertainties in these simulation results are estimated
with the jackknife method [36].
The physical temperature of the system T ¼ 1=ðaNtÞ is

varied by varying a, which, in turn, can be continuously
tuned by varying β: to this purpose, we set the scale of our
lattice simulations by means of the Sommer scale r0 [37] as
determined in Ref. [38]. The critical temperature is related
to r0 by Tcr0 ¼ 0.7457ð45Þ [18].4
Our lattice determination of the equation of state rests on

the following thermodynamic identity, relating the pressure
p to the free energy per unit volume f ¼ F=V,

p ¼ −f ¼ T
V
lnZ; ð26Þ

which holds in the thermodynamic limit, V → ∞, and
receives negligible corrections for the L and T values
considered here [16,41]. Following the algorithmic strategy
discussed in Ref. [24] for a benchmark study in the SU(2)
theory, we study how the dimensionless pðTÞ=T4 ratio
varies as a function of the temperature, starting from an
initial temperature T in:

pðTÞ
T4

−
pðT inÞ
T4
in

¼
�
Nt

Ns

�
3

ln
ZðTÞ
ZðT inÞ

: ð27Þ

In our simulations, we compute ZðTÞ=ZðT inÞ by means of
Jarzynski’s equality, using β (by tuning which, as stated
above, the temperature can be varied continuously) as the λ

3We also remind the reader of some notable differences
between pure-glue SU(3) Yang-Mills theory and real-world
QCD with dynamical quarks. In particular, in the pure-glue
theory, the confining and deconfined phases are separated by a
first-order phase transition taking place at a critical temperature
Tc which, when converted into physical units, is about 270 MeV.
By contrast, in QCD with physical quarks, the change of state
from the confining to the deconfined regimes is rather a smooth
crossover, taking place at a lower temperature, around 160 MeV.
However, it has been recently argued that the pure Yang-Mills
dynamics could nevertheless be relevant for certain aspects of the
physics of heavy-ion collisions’ experiments [28].

4Note that, if r0 is assumed to be of the order of 0.5 fm (a figure
consistent with phenomenological potential models for QCD),
then the critical deconfinement temperature in SU(3) Yang-Mills
theory is almost twice as large as in QCD. The fact that
deconfinement takes place at lower temperatures for theories
with a larger number of colored d.o.f. in the deconfined phase
[15,39] is consistent with a qualitative argument, based on the
mismatch between the number of d.o.f. at low and at high
temperatures (see also Ref. [40]).
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parameter: β is let evolve linearly with the Monte Carlo
time t between the initial (βin) and final (βfin) values
corresponding to T in and T, respectively. More precisely,
the β interval is discretized in N equal intervals of width
Δβ, so that βn ¼ βin þ nðβfin − βinÞ=N ¼ βin þ nΔβ.
Finally, one should remember that the pðTÞ and pðT inÞ
terms appearing on the left-hand side of Eq. (27) also
include contributions from quantum (nonthermal) fluctua-
tions, that depend on the lattice cutoff and diverge in the
continuum limit. These contributions can be removed from
p by evaluating the quantity appearing on the right-hand
side of Eq. (27) on a lattice of large hypervolume ðaN0Þ4 at
T ¼ 0 at the same a. This leads us to define the physical,
renormalized pressure as

pðTÞ
T4

¼ pðT inÞ
T4
in

þ
�
Nt

Ns

�
3

× ½ln exp ð−ΔSN3
s×Nt

Þ − γ ln expð−ΔSN4
0
Þ�; ð28Þ

where ΔS is the variation in Euclidean action during a
nonequilibrium trajectory in configuration space:

ΔS ¼
XN−1

n¼0

fS½βnþ1; UðtnÞ� − S½βn; UðtnÞ�g; ð29Þ

the N3
s × Nt and N4

0 subscripts respectively indicate that
this quantity is evaluated on a finite- or on a zero-
temperature lattice, γ ¼ N3

s × Nt=N4
0, and the bar denotes

the average over a sample of ntraj nonequilibrium trajecto-
ries, which start from canonically distributed initial con-
figurations fUðt0Þg. We remark that, in each of these
trajectories, only the initial configuration is thermalized;
then one starts driving the system out of equilibrium (by
varying its parameters, in this case β) and all subsequent
configurations that are produced during the same trajectory
are not let thermalize.
Note that the summands on the right-hand side of

Eq. (29) are given by the action difference induced by a
variation of β on the same field configuration. In practice,
in order to scan a wide temperature range, from the
confining to the deconfined phase, it is more convenient

to divide the temperature interval in a number (that we
denote as nint) of smaller intervals. In particular, we choose
these intervals in such a way that they do not stretch across
different phases: this allows us to get rid of potential
difficulties that might arise in the numerical sampling of
configurations, when the algorithm tries to probe the
physics at T > Tc, by driving configurations in the
T < Tc phase out of equilibrium, without letting them
thermalize.5 Dividing the β range of interest in a different
number of intervals that do not cross the phase transition
should lead to the same physical results, but nint has some
effect on the numerical efficiency of the simulation algo-
rithm. In particular, smaller values of nint (i.e., broader
intervals in β) typically require larger values of N and more
statistics. On the other hand, larger nint implies a larger
overhead for thermalization of the initial configurations at
the start of each transformation (in this work we used 5000
full thermalization sweeps at T ¼ 0 and 15000 at finite
temperature).
We run our simulations on lattices with Nt ¼ 6, 7, 8 and

10 and for Ns > 12Nt (and typically Ns ≃ 16Nt), accord-
ing to the parameters listed in Table I, where ntraj ¼ 10

throughout, and nconf denotes the total number of configu-
rations used for each combination of parameters, given by
the sum of theN · ntraj products over all nint intervals. These
calculations were carried out on the A1 Intel Broadwell
partition of the MARCONI tier-0 supercomputer of the
Italian CINECA consortium, a Lenovo system. The total
number of core-hours to produce the numerical results
presented in this work was approximately 9 × 105.
The pressure p is the primary thermodynamic observable

that we compute using Jarzynski’s equality, according to
Eq. (28): the results at the different values of Nt are shown
in Fig. 1.

TABLE I. Parameters of our simulations.

Nt Ns N0 β range temperature range nint nconf Δβ

6 96 48 [5.72785, 5.89985] ½0.7Tc; Tc� 3 1.7 × 105 10−5–2 × 10−5

6 96 48 [5.89985, 6.50667] ½Tc; 2.5Tc� 6 3.7 × 105 10−5–2 × 10−5

7 112 48 [5.79884, 5.98401] ½0.7Tc; Tc� 3 2.4 × 105 10−5

7 112 48 [5.98401, 6.6279] ½Tc; 2.5Tc� 4 3.3 × 105 10−5–2 × 10−5

8 120 48 [5.86415, 6.06265] ½0.7Tc; Tc� 3 2.6 × 105 10−5–2 × 10−5

8 120 48 [6.06265, 6.72223] ½Tc; 2.5Tc� 9 1.2 × 105 10−5–8 × 10−5

10 120 48 [5.98408, 6.2068] ½0.7Tc; Tc� 5 3.1 × 105 7.5 × 10−6–10−5

10 160 48 [6.2068, 6.9033] ½Tc; 2.5Tc� 8 1.3 × 105 10−5–10−4

5A different computational strategy, that would allow the
algorithm to avoid the critical point, consists in deforming the
action by adding operators that could turn the deconfinement
transition into a crossover (e.g., traces of Wilson lines in the
Euclidean-time direction), and varying their coefficients to turn
them on only near the critical temperature. This numerical
strategy, however, is more complex, and we did not explore it
in the present work.
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From the results for p=T4 at finite lattice spacing, we
take the continuum limit by first interpolating them, for
each Nt, through cubic splines, and then by fitting the
splines at fixed values of T with a constant-plus-linear-term
fit in 1=N2

t :

pNt
ðTÞ ¼ αðTÞ þ ξðTÞ

N2
t
: ð30Þ

This defines αðTÞ as the continuum-extrapolated value
of the pressure at that temperature. Different types of
interpolations at fixed Nt, or more complicated functional
forms than the one in Eq. (30), yield compatible results.
As the starting value for p=T4 at T in ¼ 0.7Tc, we use
pðT inÞ=T4

in ¼ 0.00086, the analytical result for a glueball

gas [42] (for a thorough discussion, see also Refs. [43] and
references therein). Our results for p=T4 obtained in this
way are shown in Fig. 2, in comparison with those from
Refs. [12,17].
Other basic thermodynamic observables, like the trace of

the energy-momentum tensorΔ, the energy per unit volume
ϵ, and the entropy per unit volume s are directly related to
the pressure by basic thermodynamic relations:

Δ ¼ T5
∂
∂T

�
p
T4

�
; ð31Þ

ϵ ¼ T2

V
∂
∂T lnZ ¼ 3pþ Δ; ð32Þ
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FIG. 1. Results for p=T4, as a function of T=Tc, from
simulations at different values of Nt. The inset shows a zoom
onto the confining phase, T < Tc.
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FIG. 2. Our results for p=T4, extrapolated to the continuum
(green circles), as a function of T=Tc, in comparison with those
obtained with the integral method in Ref. [17] (red squares) and
with those obtained using the moving-frame method in Ref. [12]
(blue triangles). The results in the confining phase are displayed
in the inset plot.
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FIG. 3. Our continuum-extrapolated results for Δ=T4 (green
circles), as a function of T=Tc, in comparison with those obtained
with the integral method in Ref. [17] (red squares), with those
obtained using the moving-frame method in Ref. [12] (blue
triangles), and with those computed using the gradient-flow
method in Ref. [9] (orange diamonds).
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FIG. 4. Same as in Fig. 2, but for the energy density in units of
the fourth power of the temperature.
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s ¼ lnZ
V

þ ϵ

T
¼ 4pþ Δ

T
: ð33Þ

To compute the trace of the energy-momentum tensor,
we first fit our continuum values for p=T4 in the temper-
ature range Tc ≤ T ≤ 2.5Tc, to the following rational
function of w ¼ lnðT=TcÞ:

p
T4

¼ p1 þ p2wþ p3w2

1þ p4wþ p5w2
: ð34Þ

The fit gives p1 ¼ 0.0045ð35Þ, p2 ¼ 1.76ð12Þ, p3 ¼
10.6ð2.2Þ, p4 ¼ 2.07ð47Þ, and p5 ¼ 5.8ð1.1Þ, with a
reduced χ2 equal to 0.33. Deriving the function on the
right-hand side of Eq. (34), we obtain the results for
the trace of the energy-momentum tensor shown in
Fig. 3, where we compare them with those that have
been recently obtained by different groups, using other
methods [9,12,17].
Finally, the energy density and the entropy density are

simply obtained using Eqs. (32) and (33), respectively: the
results are shown in Figs. 4 and 5.
The complete set of our continuum-extrapolated results

for p=T4, Δ=T4, ϵ=T4, and s=T3 is reported in Table II.

IV. DISCUSSION AND CONCLUDING
REMARKS

The results presented in Sec. III deserve several relevant
comments, which are separately discussed in each of the
following subsections.

A. Universality of lattice results

First and foremost, the comparison of our data, obtained
with an algorithm based on Jarzynski’s equality, with those
from previous works [9,12,17] provides a striking check of
the expected universality of lattice results: the fact that the
high-precision results obtained by four independent groups,
using remarkably different computational strategies, are
essentially compatible with each other, indicates that all
sources of systematic or statistical uncertainties are under
control, and confirms that lattice calculations provide solid,
first-principle results for the thermodynamics of strong
interactions in the temperature range probed by heavy-ion
collision experiments.
Looking at the fine details, however, one can also see that

some slight tension between the results obtained with
different methods still persists. For example, the results
for the various thermodynamic observables reported in
Ref. [17] appear to be systematically lower than the others.
This effect is most visible for the trace of the energy
momentum tensor in Fig. 3, while it is essentially absent in
the results for the pressure shown in Fig. 2 (whereas the
energy and entropy densities, being obtained from linear
combinations of p and Δ, exhibit an intermediate behavior,

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
T / T

c

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
s 

/ T
 3

Jarzynski’s equality method (this work)
integral method, from JHEP 07 (2012) 056
moving-frame method, from Phys. Lett. B 769 (2017) 385
gradient-flow method, from Phys. Rev. D 94 (2016) 114512

FIG. 5. Same as in Fig. 3, but for the entropy density in units of
the third power of the temperature.

TABLE II. Our final, continuum-extrapolated results for the
pressure (second column), for the trace of the energy-momentum
tensor (third column), and for the energy density (fourth column)
in units of the fourth power of the temperature, and for the
entropy density in units of the third power of the temperature
(fifth column), as a function of the temperature in units of the
deconfinement temperature (first column).

T=Tc p=T4 Δ=T4 ϵ=T4 s=T3

0.72 0.0023(3) 0.0137(38) 0.021(17) 0.023(17)
0.78 0.0041(15) 0.0200(57) 0.032(20) 0.036(21)
0.84 0.0040(23) 0.0286(87) 0.041(23) 0.045(25)
0.90 0.0078(17) 0.044(14) 0.067(24) 0.075(26)
0.96 0.0117(26) 0.072(23) 0.107(32) 0.119(35)
1.02 0.0418(28) 2.001(78) 2.127(78) 2.169(79)
1.08 0.1698(32) 2.426(27) 2.936(30) 3.106(32)
1.14 0.3064(42) 2.520(34) 3.439(39) 3.746(41)
1.20 0.429(6) 2.438(25) 3.724(38) 4.153(43)
1.26 0.550(5) 2.276(16) 3.927(27) 4.477(32)
1.32 0.651(5) 2.089(14) 4.041(23) 4.693(27)
1.38 0.739(5) 1.902(15) 4.118(22) 4.856(26)
1.44 0.816(7) 1.728(16) 4.177(24) 4.993(30)
1.50 0.878(6) 1.571(16) 4.206(27) 5.084(32)
1.56 0.938(7) 1.432(15) 4.245(26) 5.182(31)
1.62 0.988(7) 1.309(14) 4.273(26) 5.261(31)
1.68 1.043(7) 1.201(12) 4.329(27) 5.372(34)
1.74 1.083(6) 1.106(10) 4.355(25) 5.437(30)
1.80 1.122(6) 1.022(9) 4.389(25) 5.511(31)
1.86 1.146(6) 0.949(8) 4.386(24) 5.532(30)
1.92 1.179(7) 0.883(8) 4.420(25) 5.599(32)
1.98 1.202(8) 0.825(8) 4.431(27) 5.633(35)
2.04 1.229(8) 0.773(8) 4.459(28) 5.687(35)
2.10 1.248(8) 0.727(9) 4.471(29) 5.719(37)
2.16 1.264(8) 0.685(9) 4.476(27) 5.739(34)
2.22 1.282(7) 0.647(10) 4.494(27) 5.776(34)
2.28 1.301(8) 0.613(11) 4.516(30) 5.817(37)
2.34 1.316(8) 0.582(11) 4.530(29) 5.846(37)
2.40 1.333(7) 0.554(12) 4.554(26) 5.887(33)
2.46 1.353(7) 0.528(12) 4.588(28) 5.941(35)
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with milder tensions). Also, the discrepancy appears to be
largest in the temperature region of the peak in Δ=T4,
where it is comparable (in sign and magnitude) with the
difference from the results from Ref. [14] that was reported
in Ref. [17] itself. While the origin of this slight difference
between the results of Ref. [17] and the others remains
unclear,6 it should be remarked that it is quantitatively
modest, and does not change the overall physical picture of
the SU(3) equation of state in a significant way.

B. Physical implications of the results

In terms of physics, these results confirm that, in the
temperature range relevant for collider experiments, the
thermodynamics of SU(3) Yang-Mills theory is dominated
by nonperturbative effects, and far from the ideal limit of a
gas of free gluons. In particular, the equilibrium observ-
ables considered here are significantly different from their
Stefan-Boltzmann values:

pSB

T4
¼ 8π2

45
;

ΔSB

T4
¼ 0;

ϵSB
T4

¼ 8π2

15
;

sSB
T3

¼ 32π2

45
;

ð35Þ
which are reached only in the T → ∞ limit, and
approached logarithmically slowly as the temperature is
increased. A way to study the values for these quantities at
high, but finite, temperatures, is by means of thermal
perturbation theory. Weak-coupling expansions for the
pressure of QCD (and pure-glue Yang-Mills theory) have
a long history: the leading-order correction, Oðg2Þ, was
worked out forty years ago [45]. Soon thereafter, however,
it was realized that perturbative expansions in thermal non-
Abelian gauge theories have nontrivial features: in particu-
lar, the existence of infrared divergences, which have to be
resummed, leads to the appearance of terms proportional to
odd powers and/or logarithms of g, and, most importantly,
implies that, at some finite order, an infinite number of
Feynman diagrams, of arbitrarily complicated topologies,
will contribute [33]. This “Linde problem” leads to the
peculiar situation, in which the number of sensible pertur-
bative orders is finite. For the pressure, this problem occurs
at Oðg6Þ, or four loops, and the program of computing all
perturbative contributions up to that order has been
completed, with the determination of all terms Oðg3Þ
[46], Oðg4 ln gÞ [47], Oðg4Þ [48], Oðg5Þ [49], and finally

Oðg6 ln gÞ [32], but the convergence of the perturbative
series is known to be very slow [31]. In particular,
truncating the perturbative series at subsequent orders
results in a strongly oscillating behavior in the temperature
range probed in heavy-ion collisions.
As we already mentioned above, dimensional reduction

provides an elegant way to systematically account for the
nonperturbative physics related to infrared divergences, by
means of effective theories [29] that can be studied non-
perturbatively on the lattice [50] (an approach that has
recently found useful applications even for real-time
phenomena in hot QCD [51]).
The limited convergence of weak-coupling expansions for

thermodynamic quantities in finite-temperature QCD is due
to the fact that characteristic phenomena of plasmas, such as
screening and Landau damping, must be properly accounted
for. To this purpose, one can rearrange the perturbative
expansions using a hard-thermal-loop approach [52] (in
which the Debye massmD in the “improvement term” added
to the Lagrangian is, in principle, arbitrary, and must be fixed
in a self-consistent way).
In any case, the intrinsically nonperturbative nature of

the physics of high-temperature non-Abelian gauge theo-
ries makes it hardly surprising that leading-order weak-
coupling expansions provide an unsatisfactory description
for the equation of state of strong interactions, even at high
temperatures. While various phenomenological models
(including bottom-up models based on the gauge-gravity
duality [53]) describe well the thermodynamics of the
quark-gluon plasma at temperatures close to deconfinement
[54], lattice calculations remain the most reliable first-
principle theoretical tool to study thermal QCD under the
conditions probed in heavy-ion collisions.

C. Computational efficiency of the algorithm

The algorithmic strategy proposed in Ref. [24] and based
on Jarzynski’s equality [21,22] provides a robust and
efficient tool to compute the equation of state nonpertur-
batively on the lattice. As we mentioned above, its
implementation in Monte Carlo calculations only requires
that the Markov process satisfies detailed balance, and the
assumption that the initial starting configurations (not those
at subsequent Monte Carlo times) are thermalized. It is also
interesting to observe that, as we pointed out in Sec. III, in
our computations we only used ntraj ¼ 10 trajectories for
each of the Nt and Ns combinations of values and each of
the nint temperature intervals in the finite-T simulations
(and for the corresponding ones at T ¼ 0). This means that,
out of the total number of configurations from which we
could extract data for each combination of parameters
(which is denoted as nconf in Table I, and equals the sum of
the N · ntraj products over the nint intervals), only a very
small number nint · ntraj required thermalization.
It is important to discuss the main factors determining

the computational efficiency of the algorithm. The key

6It should be noted that Ref. [17] is the only one, among these
works, to use a Symanzik-improved formulation of the lattice
action [44], which is affected by smaller discretization effects at
finite lattice spacing, and, as a consequence, may offer better
control over the extrapolation to the continuum limit. However,
we deem it unlikely that the tension with the results reported in
the other works can be (completely) interpreted in terms of
discretization artifacts, since there is no reason to expect the latter
to affect the different quantities, that are computed in those
works, in the same way.
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aspect of our algorithm is the exponential average appearing
in Eq. (3): this implies that, if the typical amplitude of
fluctuations in W=T from one trajectory to another is large,
then the quantity appearing on the left-hand side of Eq. (3)
receives its dominant contributions from trajectories in the
tail of the distribution of values of W=T, and its accurate
estimate by Monte Carlo methods would require a prohibi-
tively large number of trajectories. In the present context,
W=T is replaced by the total variation in Euclidean action
S along a trajectory, see Eq. (29). Since S (and, as a
consequence, ΔS) is an extensive quantity, one may expect
it to be practically impossible to obtain accurate results on
large lattices: in particular, the typical fluctuations in the
exponent of Eq. (3) will scale like the square root of the
lattice hypervolume, making the evaluation of pðTÞ nearly
unattainable on all lattices, except for very coarse ones. Note
that this is the same argument by which the sign problem
affecting lattice QCD calculations at finite quark chemical
potential μ [55] cannot be solved by the reweighting method
[56]. In fact, the reweighting method is a special case of our
algorithm, which reduces to it for N ¼ 1. Nevertheless, with
our algorithm it is possible to take the fluctuations in ΔS
under control even on a lattice of arbitrarily large hyper-
volume V, for example simply by scaling N proportionally
to V. This is so, because the fluctuations in ΔS from one
trajectory to the other result from the sum of the fluctuations
in the summands on the right-hand side of Eq. (29):
assuming that the latter are uncorrelated with each other,
when N grows (at fixed V), the fluctuations in ΔS will be
suppressed like 1=

ffiffiffiffi
N

p
(so that, in particular, in the “quasi-

static limit” N → ∞ the field configurations remain in
equilibrium throughout their evolution from the initial to
the final ensemble, and ΔS is exactly equal to the logarithm
of Zin=Zfin on all trajectories), thus by making N scale with
V, the two, opposite effects on the size of the fluctuations in
ΔS can compensate each other.
A convenient practical way to test whether the numerical

results obtained using our algorithm for finite statistics are
biased by poor sampling of the distribution of ΔS values,
consists in running the simulation in the direct (from λin to
λfin) and in the reverse (λfin → λin) direction. If N is too
small, then the fluctuations in ΔS from one trajectory to the
other can be very large, and a numerical estimate of the
average on the left-hand side of Eq. (3) will be determined
by a small number of configurations in one of the tails of
the distribution, which is very difficult to sample in an
accurate way. This will then induce a systematic bias in the
numerical results. By carrying out the computation in the
reverse direction, the same effect will occur for the variation
in Euclidean action induced by a λfin → λin transformation,
but this time for a different distribution, resulting in a
generally different bias of numerical results. Thus, an
inconsistency in the numerical results obtained from
simulations starting from λin or from λfin provides a useful
detector of poor-sampling effects.

Note that the mutual consistency of results obtained from
a calculation in the direct and in the reverse direction is not
a sufficient but a necessary condition for the correctness of
the result. All results in our present work pass this test.
More in general, a systematized study of statistical

and systematic uncertainties, with the goal of algorithm
optimization, can rest on the mathematical theory that
has been developed over several years, for generic
Monte Carlo calculations using Jarzynski’s equality in
statistical mechanics. The “good practices” underlying
simulations with nonequilibrium work methods are by
now well-established, and are encoded in formulas related
to the deep connections between statistical mechanics
and information theory [57]. For a detailed discussion
of the computational efficiency of algorithms based on
Jarzynski’s equality, see Refs. [58,59].
It is interesting to compare the numerical efficiency of

our algorithm with other computational methods, that have
been used in the literature to evaluate the QCD equation of
state on the lattice. Among the three recent works that we
directly compared our results with [9,12,17], the one
reported in Ref. [17] is based on the most similar method,
i.e., the integral method [8]. Like for the integral method,
our determination of the equation of state is based on the
p ¼ −f identity, and requires the numerical subtraction of
contributions from quantum, nonthermal fluctuations that
would make the free-energy density divergent in the
continuum limit a → 0. Exactly like for the integral
method, this ultraviolet divergence can be removed by
subtracting the free-energy density evaluated at T ¼ 0 and
at the same lattice spacing: see the subtrahend in the
brackets on the right-hand side of Eq. (28). Thus, our
method, in itself, does not allow one to bypass the need
of renormalization arising in the integral method [8],
as it relies on the same vacuum-contribution subtraction.
However, an important difference between our method and
the integral method is that, while in the latter all field
configurations produced at intermediate temperatures (or,
equivalently, at intermediate values of a, that means at
intermediate values of β) must be fully thermalized, this is
not the case for the algorithm based on Jarzynski’s equality,
in which only the configurations at the initial β are
thermalized, while those at intermediate (and at the final)
β values are genuinely out of equilibrium. This implies a
significant reduction in CPU time for the algorithm based
on Jarzynski’s equality.
More quantitatively, as we mentioned above, the ther-

malization that in this work was used for the configurations
at the initial β values consisted of ntherm ¼ 1.5 × 104

sweeps (where, as we mentioned above, by “sweep” we
mean the combination of one heat-bath [34] and five to ten
over-relaxation updates [35] on all link variables of the
lattice) for the lattices at finite temperature, and of ntherm ¼
5 × 103 sweeps for those at T ¼ 0. Naïvely, if one were to
make a comparison with a computation of the equation of
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state based on the integral method [8] using the same
number of configurations for each data set (the parameter
nconf reported in Table I), the fact that in our calculation the
intermediate configurations need not to be thermalized,
would imply a very large reduction in CPU time, by a factor
of the order of N, the number of steps one trajectory
consists of. This estimate of the computational-cost reduc-
tion, however, neglects the inherently different nature of the
field configurations that are used by the two algorithms.
The point is that, while the integral algorithm only uses
thermalized configurations, and extracts information on the
thermodynamic equilibrium ensemble they belong to, a
computation based on Jarzynski’s equality attempts to
extract information from configurations that are not typical
ones of the “target” equilibrium ensemble (the one speci-
fied by the partition function Zfin): in fact, most of them are
not typical configuration of any equilibrium ensemble,
since, by definition of the algorithm, they are not required
to thermalize. In practice, the algorithm “tries to sample”
the target equilibrium ensemble by progressively driving
the thermalized configurations of the initial ensemble
towards the target ensemble. As remarked above, if the
fluctuations in ΔS are too large, then such sampling
becomes computationally very demanding (like in the
reweighting method) and exponentially increasing statistics
is required for a given level of precision: this is a general
feature of all Monte Carlo algorithms based on Jarzynski’s
equality, which was shown and discussed in mathematical
detail in Refs. [58] and, more recently, in Refs. [59], and
we refer the interested readers to those references. Note
that large fluctuations in ΔS may occur when N is small,
when βfin − βin is large, when for β ¼ βin and for β ¼ βfin
the system is in two different phases,7 or when the number
of d.o.f. is large (including, in particular, when the volume
is large); the fact that the fluctuations in ΔS become large
when βfin − βin is large (or, more precisely, when the
equilibrium statistical ensembles respectively correspond-
ing to β ¼ βin and to β ¼ βfin have little overlap) implies
that a proper sampling of such “long” trajectories requires
higher statistics. Conversely, if the number of steps in each
trajectory is increased to large values (with the initial and
final parameters fixed), then the simulation proceeds through
a sequence of steps which are “only slightly” out of
equilibrium, and for infinite N the simulation goes through
a sequence of configurations in thermal equilibrium.
In order to further clarify the meaning of the non-

equilibrium transformations used in simulations based on
Jarzynski’s theorem, it is instructive to look at examples of
the distributions forΔS, the total Euclidean-action variation
during a nonequilibrium trajectory, defined by Eq. (29),
that can be obtained in simulations starting from the same

initial ensemble (at equilibrium), aimed at the same target
ensemble, and with a similar computational cost, but with
different values ofN. To this purpose, in Fig. 6 we show the
density of probability p of observing a variation of
Euclidean action ΔS, defined by Eq. (29), as obtained
from two different simulations on a finite-T lattice with
Nt ¼ 6 and Ns ¼ 96. More precisely, the histograms dis-
play the probability distribution in terms of “left-stairs”
columns, associated with bins of width 1.25, whose total
area is normalized to one.
For both calculations, βin¼6.17921 and βfin ¼ 6.13671,

and also the number of configurations used and the total
CPU time that was needed to produce them are comparable,
but for one of them (whose results are denoted by red
histograms) the ðβfin − βinÞ interval was split into 425
intervals, with Δβ ¼ −10−4, while for the other one
(represented by the green histograms) Δβ was ten times
smaller, and N was equal to 4250.
The fact that, in the latter case, Δβ is much closer to zero

implies that the simulation proceeds through a sequence of
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FIG. 6. Histograms of the probability density pðΔSÞ for a
variation ΔS in Euclidean action during nonequilibrium trajec-
tories, as defined in Eq. (29), in two different calculations at finite
temperature, on a lattice with Nt ¼ 6 and Ns ¼ 96. In both
simulations, the starting configuration in each of the trajectories is
drawn from an equilibrated distribution at β ¼ βin ¼ 6.17921,
and is let evolve through a sequence of nonequilibrium trans-
formations, during which the β parameter is decreased down to
βfin ¼ 6.13671. In the first simulation (red histogram), the non-
equilibrium transformations were carried out by dividing the
ðβfin − βinÞ interval into N ¼ 425 subintervals of amplitude
jΔβj ¼ j − 10−4j and 300 trajectories were produced, whereas
in the second simulation (green histogram), the ðβfin − βinÞ
interval was divided into N ¼ 4250 subintervals of amplitude
jΔβj ¼ j − 10−5j, and the number of trajectories was ntraj ¼ 40.
The estimates for the free-energy difference (in units of the
temperature) obtained using the algorithm based on Jarzynski’s
equality from these two simulations are ΔF=T ¼ 825741.5� 4.1
for the calculation with N ¼ 425, and ΔF=T ¼ 825740.3� 0.5
for the one with N ¼ 4250.

7Note that, precisely because of this reason, in our calculations
we never used trajectories that crossed the deconfinement phase
transition at T ¼ Tc: see Table I.
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configurations which are driven out of equilibrium very
slowly. As a consequence, one expects the observed
distribution of ΔS values to be close to a very narrow,
Gaußian-like distribution centered around the free-energy
difference (in units of T) between the two equilibrium
ensembles corresponding to β¼6.17921 and β ¼ 6.13671,
that one could compute by standard Monte Carlo calcu-
lations at equilibrium on this finite lattice. Indeed, the green
histogram plotted in Fig. 6 does confirm this expectation:
the distribution is sharply peaked around a value of ΔS
close to 825740—a value which, unsurprisingly, is fully
compatible with the value of ΔF=T extracted from this
simulation using our algorithm based on Jarzynski’s
theorem: ΔF=T ¼ 825740.3� 0.5. In fact, it is trivial to
observe that, when the probability density of ΔS values
tends to a very sharply peaked, nearly δ-like, distribution,
then the value of ΔF=T obtained from Eq. (3) (in which, as
we stated above, ΔS plays the role of W=T) coincides with
the value of ΔS at which the peak is located.8

Much less trivial, however, is the fact that exactly the
same result is obtained (within statistical uncertainties)
when ΔF=T is calculated by Jarzynski’s theorem through
the former sample of trajectories, i.e., those obtained with
N ¼ 425 and a significantly larger Δβ ¼ −10−4. In this
case, β is let interpolate from βin to βfin at a rate that is ten
times faster than in the previous case: as a consequence, the
configurations generated by the Monte Carlo along each
trajectory are driven out of equilibrium much more briskly,
and, in general, the ΔS values computed in each non-
equilibrium trajectory will fluctuate more wildly (and, in
general, in a nonuniversal, and not trivially predictable,
way). Once again, this is clearly visible in our data: the red
histogram shows that in this case the distribution of ΔS
values is quite broad, and appears to have a nontrivial
structure (even featuring secondary peaks, etc.). From the
plot, one also notes that this distribution takes its largest
values in the (approximate, and poorly defined) range of
ΔS between 825753 and 825761. Remarkably, however,
the result for ΔF=T obtained using Jarzynski’s theorem
with this set of trajectories is ΔF=T ¼ 825741.5� 4.1,
which is very far from the interval where this pðΔSÞ is
largest, and perfectly compatible with the one obtained
from the set of trajectories with N ¼ 4250, that are much
closer to equilibrium!
It is also worth noting that this result for ΔF=T has very

high precision, of the order of a few per million, compa-
rable with the one achieved in simulations near equilibrium,
even though it arises from the exponential average of a
quantity (the action variation during nonequilibrium tra-
jectories) whose distribution is so broad. Once again, we
remark that, while the details of such distribution may be
affected by nonuniversal dynamics of the Monte Carlo,

with a sizable impact on results obtained from limited
statistics, the determination of ΔF=T through Jarzynski’s
theorem becomes exactwhen the algorithm samples pðΔSÞ
to a sufficient level of precision: the equality encoded in
Eq. (3) allows one to extract equilibrium information from
ensembles of configurations out of equilibrium.
For completeness, in Fig. 7 we also plot the results

obtained from two analogous simulations, carried out in the
opposite direction, i.e., starting from thermalized configu-
rations at β ¼ 6.13671, and progressively driving the
system out of equilibrium, through a sequence of configu-
ration updates in which β is increased to β ¼ 6.17921: like
in the previous case, the distribution of ΔS values obtained
at smaller N is the broader and farther from equilibrium
one, but the final results for ΔF=T, which in this case
are ΔF=T ¼ −825734.7� 2.6 for the simulation with
N ¼ 425, and ΔF=T ¼ −825740.3� 1.1 for the one
with N ¼ 4250, are compatible with each other, and with
(minus) the results for ΔF=T obtained in the simulations
with βin ¼ 6.17921 and βfin ¼ 6.13671, discussed above.
One may also compare our algorithm to compute the

pressure, with a variant of the standard integral method
combined with the “snake algorithm” defined in Ref. [60],
whereby a ratio of partition functions of the form Zλfin=Zλin
is factorized into a telescoping product of the form

Zλfin

Zλin

¼
YN−1

n¼0

Znþ1

Zn
ð36Þ
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FIG. 7. Same as in Fig. 6, but for transformations in which β is
let vary from βin ¼ 6.13671 to βfin ¼ 6.17921. The red histogram
shows the distribution of ΔS values obtained in simulations with
N ¼ 425 and Δβ ¼ 10−4 (with 300 trajectories), whereas the
green histogram displays the probability density for theΔS values
obtained in simulations with N ¼ 4250 and Δβ ¼ 10−5, for
which 40 trajectories were produced. The results for the free-
energy difference (in units of the temperature) from these two
simulations are ΔF=T ¼ −825734.7� 2.6, for the calculation
with N ¼ 425, and ΔF=T ¼ −825740.3� 1.1, for the one
with N ¼ 4250.

8Note that the values of F=T discussed here are not renor-
malized (i.e., the vacuum contribution has not been subtracted
yet).
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(with Z0 ¼ Zλin and ZN ¼ Zλfin ), where each ðZn; Znþ1Þ
pair appearing in the intermediate ratios describes statistical
ensembles with better overlap than Zλfin=Zλin .

9 Note that, for
later convenience, we assumed the product on the right-
hand side of Eq. (36) to involve exactly the same number of
terms as the sum on the right-hand side of Eq. (29), i.e., N.
The fundamental idea underlying the snake algorithm is
that, when the distributions of configurations associated
with Zλin and Zλfin are poorly overlapping, so that a
Monte Carlo estimate of the Zλfin=Zλin ratio to a fixed level
of relative precision would require exponentially large
statistics, evaluating each of the Znþ1=Zn ratios appearing
on the right-hand side of Eq. (36) is computationally much
cheaper, provided Zn and Znþ1 always describe ensembles
with a good overlap with each other. Then, all Znþ1=Zn
ratios areOð1Þ, and can be evaluated to high precision with
a fixed computational cost. The final statistical uncertainty
on Zλfin=Zλin is eventually obtained by the sum (in quad-
rature, as they are obtained from independent simulations)
of the uncertainties on the Znþ1=Zn ratios, and does not
grow exponentially. If Zλfin=Zλin is factorized in exactly N
terms (as we assumed in the equation above), and if each of
the Znþ1=Zn ratios is calculated by Monte Carlo methods
with ntraj configurations, then with the snake algorithm one
would be able to determine Zλfin=Zλin by producing N · ntraj
thermalized and uncorrelated configurations. An elemen-
tary argument shows that, while with this number of
independent configurations the algorithm based on
Jarzynski’s equality would yield an estimate of Zλin=Zλfin
from ntraj measurements, the snake algorithm would instead
express the same quantity as

YN−1

n¼0

�
1

ntraj

Xntraj
kn¼0

�
Znþ1

Zn

�
kn

�
ð37Þ

(where ðZnþ1=ZnÞkn denotes the value of the Znþ1=Zn ratio
computed in the knth configuration), which, when the
product is expanded, corresponds to ntrajN measurements.
While this naïve counting argument overlooks the role of
fluctuations, it suggests that, under these conditions (i.e.,
working with a sample of N · ntraj, completely thermalized
and fully independent configurations), the snake algorithm
would outperform the one based on Jarzynski’s equality.
This is not surprising: indeed, were the Markov update
algorithm perfectly efficient, i.e., capable of generating
fully thermalized and decorrelated configurations in a
single sweep, then the system would never be out of
equilibrium. In that case, our algorithm would not be
affected by any overlap problem even if the λin → λfin

transformation were carried out in a single step: this means
that our algorithm could be reduced to the reweighting
algorithm, as discussed above, and, with a sample of N ·
ntraj configurations, one could factor the Zfin=Zin ratio into a
product of N intermediate ratios, each of which could be
computed by reweighting. Clearly, however, it is in the
more realistic case of Markov updates that do not produce
immediate thermalization, that our simulation algorithm
reveals its full potential: in this case, our algorithm turns the
fact that the field configurations “lag behind” equilibrium
into an advantage, by means of Jarzynski’s equality—
whereas a computation based on the standard integral
method, or on its snake-algorithm variant, would always
require thermalized configurations, which would increase
its computational cost.
As concerns the two other works that we confronted our

results with [9,12], a comparison of the computational costs
is far less direct.
In the calculation of the equation of state presented in

Ref. [9], based on the Wilson flow [61], the energy density
and the pressure are extracted from the diagonal compo-
nents of the renormalized energy-momentum tensor of the
theory, which, in turn, is obtained from the behavior of the
two dimension-four, gauge-invariant operators defined in
terms of the flowed field-strength tensor at short flow time
[62]. The calculation involves the numerical solution of
the differential equation defining the flowed gauge field,
and a double extrapolation, in which the small-flow-time
limit has to be taken after the continuum-limit (a → 0)
extrapolation.
Finally, in Ref. [12], the primary observable to determine

the equation of state is the entropy density (in units of T3),
which is directly related to the time-space off-diagonal
components of the energy-momentum tensor. When the
theory is defined in a relativistic moving frame, it is
possible to prove a set of Ward-Takahashi identities for
the correlators of the energy-momentum tensor, that relate
the energy and momentum distributions in the canonical
ensemble, and allow one to nonperturbatively renormalize
the energy-momentum tensor [63]. In practice, this multi-
plicative renormalization of the energy-momentum tensor
is encoded in a finite function of the bare coupling, which
has to be determined independently.

D. Further applications of the algorithm based
on Jarzynski’s equality

Extending our algorithm to calculations including
dynamical quark flavors is straightforward, and we plan
to implement it in code for lattice simulations of full
QCD in future work. In this respect, it would be interesting
to compare the efficiency of this algorithm to different
calculations of the QCD equation of state [7,13,64].
Another direction, in which the present work can be

generalized, consists in applying the Jarzynski’s equality
to lattice calculations of different physical observables.

9We are indebted to Michele Pepe for suggesting this com-
parison to us, and for helpful discussions on the subject.
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The computational strategy based on this algorithm,
indeed, is quite general and versatile, and not restricted
to the thermodynamics domain. As a benchmark study, a
determination of the interface free energy was presented in
Ref. [24]; the extension to other quantities, like the running
coupling of the strong interaction in the Schrödinger-
functional scheme [65] and the entanglement entropy in
lattice gauge theory [66], is under way.
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