
 

θ dependence in trace deformed SUð3Þ Yang-Mills theory: A lattice study
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In this paper we investigate, by means of numerical lattice simulations, the topological properties of the
trace deformed SUð3Þ Yang-Mills theory defined on S1 × R3. More precisely, we evaluate the topological
susceptibility and the b2 coefficient (related to the fourth cumulant of the topological charge distribution) of
this theory for different values of the lattice spacing and of the compactification radius. In all the cases we find
results in good agreement with the corresponding ones of the standard SUð3Þ Yang-Mills theory on R4.
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I. INTRODUCTION

The strongly interacting dynamics of non-Abelian gauge
theories at low energy eluded so far any first-principle
analytical description, although several nonperturbative
approximation schemes have been developed during the
years in order to improve our analytical control over this
problem, like the expansion in the number of colorsNc or in
the number of flavors Nf=Nc [1,2], instanton calculus [1,3]
and holographic approaches [4], just to name a few. These
approaches gave invaluable hints and helped in clarifying
some aspects of the strongly interacting theory; however they
typically provide only qualitative or semiquantitative results.
Reliable quantitative estimates can still be obtained only
numerically, by means of lattice simulations, or by using
effective theories that encode from the beginning some
nonperturbative features, like chiral perturbation theory.
A complementary strategy that has been proposed

consists in deforming the original theory in such a way
as to drive the dynamics towards tractable regimes. For this
strategy to be usable one has to ensure that physical
observables are analytic in the deformation, in order to
have the possibility of going back smoothly to the original
nondeformed case once results have been obtained in the
deformed theory.
One of the first possibilities that may come to mind is to

introduce a new scale in the theory by changing the
topology of the space-time from R4 to S1 × R3, where

S1 stands for a circumference of length L. By varying L we
switch between the original theory on R4 (case L ≫ Λ−1,
with Λ being a typical energy scale of the theory) and a
regime in which perturbation theory and instanton calculus
can be applied (case L ≪ Λ−1).
What remains to be shown, in order to advocate the

compactification on S1 ×R3 as useful in this paradigm, is
that physical properties change smoothly when varying the
compactificaton length L. This is however generically
not the case: the compactified theory resembles very much
(and for some choice of boundary conditions it is) finite
temperature field theory, and a phase transition is likely to
happen at finite temperature.
From now on we consider the specific case of SUð3Þ

Yang-Mills theory compactified on S1 ×R3 with periodic
boundary conditions. In this setup the length of the
compactified direction is nothing but the inverse temper-
ature and it is well known that for L ≈ 0.7 fm (correspond-
ing to a temperature Tc ≃ 270 MeV) a first order phase
transition is present [5], separating the low temperature
confined phase from the high temperature deconfined one.
It is clear that in such a situation it is hopeless to obtain
reliable results for the large L case by studying the small L
case. To proceed further with this approach we have to
smoothen or remove the phase transition and here the trace
deformation of the action enters.
Let us remind the reader that the deconfinement phase

transition at finite temperature is associated with the
spontaneous symmetry breaking (SSB) of the Z3 center
symmetry, whose order parameter is the mean value of the
trace of the Polyakov loop Pðx⃗Þ ¼ P exp ði R L

0 A0ðx⃗; tÞdtÞ,
which vanishes in the confined phase (hTrPi ¼ 0) while it
is different from 0 for T > Tc (hTrPi ¼ αei2πn=3, with
n ∈ f0; 1; 2g and α > 0).
In order to remove the Z3 SSB that prevents a smooth

connection between large and small L regimes, it was
suggested in [6] to add to the SUð3Þ Yang-Mills action a
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new term, explicitly dependent on the Polyakov loop and
disfavoring configurations with TrP ≠ 0 in the path inte-
gral. Inspired by the perturbative form of the Polyakov loop
effective action at high temperature [7], the authors of [6]
suggested the following form for the new term:

Std ¼ h
Z

jTrPðx⃗Þj2d3x; ð1Þ

where h is a new parameter and the subscript “td” stands for
“trace deformation” [higher powers of Pðx⃗Þ have also to be
added in SUðNcÞ theories with Nc > 3, see [6]]. Several
works followed this approach, but possible alternatives,
like the introduction of adjoint fermions or the use of
nonthermal boundary conditions, have also been proposed
[8–25]. In the present work we restrict ourselves to the case
of the deformation in Eq. (1).
It has been shown in [26], using numerical lattice simu-

lations, that the new term Std indeed moves to smaller values
the critical compactification length at which deconfinement
happens, but it also introduces a new phase (called “skewed”)
that has no equivalent in the nondeformed theory. A system-
atic study of the changes induced by Std on observables
different from hTrPi has however never been undertaken so
far and the present work is a first step in this direction.
The reason for performing such a study is that there is no

way of excluding a priori the possibility that the deforma-
tion term Std generates some spurious phase transition in
observables uncorrelated with center symmetry. From a
more general perspective we can ask: are we sure that what
really matters in the low-energy dynamics of SUð3Þ Yang-
Mills is just the fact that center symmetry in not sponta-
neously broken? Since we have no definite answer to this
fundamental question, the best thing we can do is to study
the trace deformed theory by means of lattice simulations
and investigate the behavior of not-center-related physical
observables as functions of h.
In the present work we concentrate on two observables

related to θ dependence: the topological susceptibility χ
and the coefficient b2, related to the fourth order cumulant
of the topological charge distribution (see, e.g., [27]).
These observables appear to be perfectly suited to our
purposes; since their value is fixed only by nonperturbative
physics, they are very sensitive to the deconfinement
transition [28–32] and they do not appear to be tightly
related to center symmetry [33,34].

II. NUMERICAL SETUP

The standard Wilson action [35] with bare coupling
β ¼ 6=g2 was used to discretize the theory and the addition
of the term Std presents no difficulties, but for the fact that
now the action is nonlinear in the temporal links. For this
reason a simple Metropolis scheme [36] had to be used
to update temporal links, while links directed along
other directions could be updated by heat bath and

over-relaxation algorithms [37–39] implemented à la
Cabibbo-Marinari [40].
To measure the topological content of the gauge con-

figurations we used cooling [41–45] to remove fluctuations
at the scale of the lattice spacing (see [46–51] for
discussions on the practical equivalence of different
smoothing algorithms) and we measured the topological
charge Q ¼ R

qðxÞd4x on the smoothed configurations
using the discretization of qðxÞ introduced in [52,53]

qLðxÞ ¼ −
1

29π2
X�4

μνρσ¼�1

ϵ̃μνρσTrðΠμνðxÞΠρσðxÞÞ; ð2Þ

where Πμν denotes the plaquette operator, ϵ̃μνρσ coincides
with the Levi-Civita tensor for positive entries and is
fixed by complete antisymmetry and ϵ̃μνρσ ¼ −ϵ̃ð−μÞνρσ
otherwise.
The topological susceptibility χ and the b2 coefficient

parametrize up to Oðθ4Þ the θ dependence of the vacuum
energy density [27],

ΔEðθÞ≡ EðθÞ − Eð0Þ

¼ 1

2
χθ2ð1þ b2θ2 þ b4θ4 þ � � �Þ; ð3Þ

and they can be related to the cumulants of the topological
charge distribution at θ ¼ 0 by the relations [27]

χ ¼ hQ2iθ¼0

V
; b2 ¼ −

hQ4iθ¼0 − 3hQ2i2θ¼0

12hQ2iθ¼0

; ð4Þ

where V is the four-dimensional volume. These expressions
can be used to compute χ and b2 using simulations
performed at θ ¼ 0.
While θ ¼ 0 simulations represent the optimal strategy if

one is interested in χ, to determine b2 there is a better
possibility: simulations performed at imaginary values (to
avoid the sign problem) of θ can be used to obtain a better
estimator, with improved signal-to-noise ratio on large
volumes [54–56]. In this approach one adds to the
discretized Lagrangian density a term Lθ ¼ −θLqLðxÞ,
where θL is the lattice θ parameter (related to its continuum
counterpart by a finite renormalization, θ ¼ ZθL [57]) and
qLðxÞ is defined in Eq. (2). The values of Z, χ and b2 can
then be obtained by fitting the cumulants of the distribution
of the topological charge extracted from simulations
performed at θL ≠ 0, i.e.,

hQiθL ¼ VχZθLð1 − 2b2Z2θ2L þ � � �Þ;
hQ2iθL − hQi2θL ¼ Vχð1 − 6b2Z2θ2L þ � � �Þ; ð5Þ

see [55] for more details. The first four cumulants of the
topological charge measured at θL ≠ 0 were used in this
work to provide precise estimates of b2.
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III. RESULTS

Before presenting our results for χ and b2 in the
deformed theory, let us make a few comments on the
way in which center symmetry can be realized in Yang-
Mills theory and in its deformed counterpart. In ordinary
Yang-Mills theory the fact that hTrPi ¼ 0 does not imply
that hjTrPðn⃗Þj2i has to be small; i.e., fluctuations of the
Polyakov loop are not severely constrained in the confined
region. In the confined phase of the deformed theory at
small L, where hTrPi ¼ 0 is enforced by the new term in
Eq. (1), fluctuations of TrP are instead strongly suppressed.
In Fig. 1 we report data for hjTrPðn⃗Þj2i (related to the

trace of P in the adjoint representation) measured on a
8 × 323 lattice for two values of the bare coupling β and of
the parameter h controlling the deformation. Without
deformation (h ¼ 0 case) the system is in the confined
phase at β ¼ 5.8 but not at β ¼ 6.2; for h ¼ 1.10 center
symmetry is restored also at β ¼ 6.2. We see that
hjTrPðn⃗Þj2i ≃ 1 in the standard confined phase (h ¼ 0)
while it gets significantly smaller, hjTrPðn⃗Þj2i ≃ 0.5, when
the deformation is switched on (h ¼ 1.1). This is a possible
indication that the confined phase of the original and of the
deformed theory are different from the dynamical point of
view. Will this difference persist in observables of more
direct physical relevance? To elucidate this point we now
describe the results obtained for the θ dependence in the
two cases.
In Fig. 2 we show the behavior of the topological

susceptibility as a function of h, obtained from simulations
performed at θ ¼ 0 on an 8 × 323 lattice at coupling
β ¼ 6.4. The lattice spacing is fixed by the value of the
Sommer parameter r0 [58], determined in [59], whose
value in physical units is r0 ≃ 0.5 fm. For β ¼ 6.4 and

temporal extent Nt ¼ 8 the system is deconfined at h ¼ 0
and χ is very small [28–31]. By increasing the value of h
the topological susceptibility quickly gets larger, until it
reaches a plateau starting around h ≈ 0.3, which is approx-
imately the value at which center symmetry starts to be
restored (see the behavior of RehTrPi in Fig. 2).
In Fig. 2 the value of χ obtained in standard SUð3ÞYang-

Mills theory is also reported for reference and it can be
noted that this value is consistent with that in the plateau
region of the deformed theory; the same happens in all the
explored cases. Two different physical values of L have
been studied, L−1 ≃ 370 MeV and L−1 ≃ 495 MeV, and
for each of these values two sets of simulations (at θ ¼ 0)
have been performed, corresponding to two values of the
coupling β and 16 values of h in the range 0 ≤ h ≤ 1.5.
The qualitative behavior observed for χ as a function of h is
the same as that shown in Fig. 2 and the plateau values are
reported in Fig. 3, again together with the standard SUð3Þ
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FIG. 1. Time histories of jTrPðn⃗Þj2 for two values of the bare
coupling (β ¼ 5.8 and 6.2) and two values of the deformation
parameter (h ¼ 0 and 1.1), measured on a 8 × 323 lattice. The
two sets of data corresponding to β ¼ 5.8, 6.2 at h ¼ 1.1 are
graphically indistinguishable.
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FIG. 2. Topological susceptibility χ and RehTrPi=3 measured
on a 8 × 323 lattice at bare coupling β ¼ 6.4 as a function of h.
The value obtained in standard SUð3Þ Yang-Mills theory [27] is
also shown for reference (horizontal band).
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FIG. 3. Plateau values of χ extracted from simulations per-
formed on lattices of different temporal extent (Nt ¼ 6, 8, with
Ns ¼ 32) and using different couplings (β ¼ 6.0, 6.2, 6.4). We
also report the inverse compactification size in physical units.

θ DEPENDENCE IN TRACE DEFORMED SUð3Þ … PHYS. REV. D 98, 054508 (2018)

054508-3



value. From this figure we can exclude the presence of
sizable lattice artefacts in the χ plateau values, which are
always compatible with the standard SUð3Þ value and
remarkably insensitive to L.
Up to now we have tacitly assumed the lattice spacing to

be independent of the deformation parameter h. We can
improve on this in two different ways: by explicitly setting
the scale at h ≠ 0 or by looking at dimensionless observ-
ables, whose expectation values are independent of the
scale setting.
In order to directly test the independence of the lattice

spacing on h we determined the scale t0, defined by
gradient flow and introduced in [60]. While this scale is
not associated to the value of a physical observable of direct
experimental relevance (like r0 or the string tension), it has
the advantage of being easily measurable with good
accuracy on the lattice (see e.g., the discussion in [61]).
To extract the value of t0=a2 we integrated the flow
equations using the Runge-Kutta integrator described in
Appendix C of [60] with step size ϵ ¼ 0.01, using a
statistics of Oð100Þ independent configurations generated
on symmetric lattices. The results obtained are reported in
Table I and the outcome is that t0=a2 is indeed practically
independent of h in the explored range: data coincide with
those at h ¼ 0 up to less than 1%, i.e., well within the
statistical errors on χ.
Finally, let us discuss results for the dimensionless

coefficient b2, defined in Eqs. (3) and (4). As previously
discussed, to obtain precise results for this observable it is
convenient to perform simulations at imaginary values of
the θ parameter, which are however significantly slower
than the θ ¼ 0 ones: a single simulation is slower than the
corresponding one at θ ¼ 0 by a factor 2 ÷ 3 and several θ
values have to be simulated to extract a single determi-
nation of b2. For this reason we concentrated on just a
couple of points, well in the plateau region of χ: simulations
were performed for β ¼ 6.4 at two values of the deforma-
tion parameter (h ¼ 1.10 and 1.20) using 8 × 323 lattices.
Seven values of θL (the lattice imaginary θ parameter) were

investigated, in the range 0 ≤ θ ≤ 16, and the stability of
the results was tested against changes of the fit range
adopted. In all the cases the Oðθ6Þ dependence of the
vacuum energy density come out to be negligible (as in
ordinary Yang-Mills [55]) and in the fit we thus used
b4 ¼ 0 [see Eq. (3)].
Results obtained for b2 are shown in Fig. 4 together with

the standard SUð3Þ result of [55]. To appreciate the
effectiveness of the imaginary θ approach, a point is also
shown obtained by using simulations at θ ¼ 0 only, which
required about the same CPU time as the imaginary θ ones.
Also for b2 there is very good agreement between the
values at the plateau for the deformed theory and the values
known for the confined Yang-Mills theory [55,62–65], in
this case without any assumption on the lattice spacing,
since b2 is dimensionless.
For comparison, in Fig. 4 we also indicate two values

of b2 typical of particular regimes. The first is that in
which the dominant topological excitations have integer
charges and are weakly interacting. Such a regime is well
described by the DIGA [7], in which ΔEðθÞ ∝ 1 − cos θ
and b2 ¼ −1=12. This value is typical of Yang-Mills theory
in the deconfined phase [32] and it is clearly incompatible
with the results obtained in this work.
Another interesting case is that in which excitations are

still weakly interacting but have fractional topological
charges 1=3 [1=Nc for SUðNcÞ]. This regime corresponds
to the functional form ΔEðθÞ ∝ 1 − cosðθ=3Þ of the vac-
uum energy, characterized by b2 ¼ −1=108, and it is
expected to well describe the deformed theory in the limit
of asymptotically small L values [6,66,67]: this sort of
fractional instanton gas approximation is related to the fact
that Abelian degrees of freedom are dominant in the
deformed theory in the limit of small L [6,66,67]. From
Fig. 4 we see that our results are inconsistent also with this
value. A possible interpretation is that, for the explored
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FIG. 4. Results obtained for b2 in the deformed theory using
8 × 323 lattices. The horizontal band denotes the standard
SUð3Þ value [55], dashed lines denote the value b2 ¼ −1=12
[dilute instanton gas approximation (DIGA)] and b2 ¼ −1=108
(fractional instanton gas approximation).

TABLE I. Values of t0=a2 with and without the trace defor-
mation. Values at h ¼ 0 have been computed in [60], results at
β ¼ 5.96 have been extracted using 244 lattices, while 324 lattices
have been used at β ¼ 6.17.

β h t0=a2

5.96 0.0 2.7854(62)
5.96 1.0 2.8087(69)
5.96 2.0 2.8063(74)

β h t0=a2

6.17 0.0 5.489(14)
6.17 1.0 5.530(16)
6.17 2.0 5.498(16)
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values of L, the deformed theory resembles the actual
Yang-Mills vacuum more closely than for asymptotically
small values of L, so that non-Abelian degrees of freedom
are still relevant, leading to nontrivial interactions between
the fractionally charged objects, hence to a value of b2
which is not equal to the asymptotically predicted one;
however, it is also not far from it, supporting the idea that
corrections due to residual interactions might be small, and
maybe analytically computable. Following the same line of
reasoning, based on the virial expansion, discussed in
Ref. [32], one might infer that the residual interactions
between the fractionally charged objects are repulsive,
because the deviation of b2 from the asymptotic prediction
is negative.

IV. CONCLUSIONS

In this paper we investigated, by means of Monte Carlo
simulations, the nonperturbative dynamics of the trace
deformed SUð3Þ gauge theory, in which the term in
Eq. (1) is added to the action. Such a deformation term
inhibits the spontaneous symmetry breaking of center
symmetry in the presence of a compactified direction
and, in principle, opens the way to the possibility of
investigating the low-energy physics of Yang-Mills theory
using perturbative/semiclassical methods. For such an
ambitious goal to be achievable it is fundamental that
physical observables behave smoothly, as functions of β
and h, up to small values of the compactification length L.
In this paper we investigated the behavior of observables
related to the θ-dependence to inquire this point.
Our numerical results for the topological susceptibility

and the coefficient b2, obtained using compactification
lengths L−1 ≈ 370 MeV and L−1 ≈ 495 MeV, are perfectly
compatible with the known values for the nondeformed
SUð3Þ theory. Given the completely nonperturbative origin
of these quantities, this is a strong indication that the

compactified theory indeed conserves intact a significant
part of the dynamics of the original Yang-Mills theory.
The values obtained for b2 show that, at least for the L

values explored, low-energy physics cannot be described as
a gas of weakly interacting objects of integer or fractional
(1=Nc) topological charge. This is again the same thing that
happens in ordinary Yang-Mills, but it is at odds with what
is expected to happen at very small compactification radii
in the deformed theory. A possible interpretation of this
result is the following: the nonperturbative dynamics of the
deformed theory is so similar to that of the original Yang-
Mills one that analytical computations that go beyond the
known leading order semiclassical approximations are
required to quantitatively describe our numerical data.
Indeed the fact that the L dependence is smooth is not
enough to guarantee leading order results to be reliable
down to L ≈ 500 MeV. This is a point that surely deserves
further studies, specifically targeted at investigating the
small L regime and the way in which the large Nc limit is
approached. Another interesting topic that could be relevant
to better understand this point is the nature of the
topological excitations in the deformed theory, which have
to be substantially different from that of Yang-Mills theory,
because of the compactified direction, but nevertheless with
a similar distribution. The study of other not-θ-related
observables is also something of the utmost importance
to get a complete picture of the physical effects of the
deformation.
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