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We calculate the finite-temperature density and polarization equations of state of one-dimensional
fermions with a zero-range interaction, considering both attractive and repulsive regimes. In the path-
integral formulation of the grand-canonical ensemble, a finite chemical potential asymmetry makes these
systems intractable for standard Monte Carlo approaches due to the sign problem. Although the latter can
be removed in one spatial dimension, we consider the one-dimensional situation in the present work to
provide an efficient test for studies of the higher-dimensional counterparts. To that end, we use the complex
Langevin approach, which we compare here with other approaches: imaginary-polarization studies, third-
order perturbation theory, and the third-order virial expansion. We find very good qualitative and
quantitative agreement across all methods in the regimes studied, which supports their validity.
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I. INTRODUCTION

Motivated by the potential appearance of exotic polar-
ized superfluid phases in ultracold atoms (see Refs. [1–4]
for reviews), along with the possibility of importing
powerful methods from relativistic lattice field theory to
the area of nonrelativistic strongly correlated matter (see
e.g., [5–10]), we report on the determination of the thermal
properties of one-dimensional (1D) fermionic systems at
finite chemical potential asymmetry, i.e., polarized fer-
mions. While 1D fermions have been extensively studied
(see e.g., Refs. [11–13]), we use them here as a test bed for
a suite of methods that are applicable to their higher
dimensional counterparts.
Indeed, recently we applied complex stochastic quantiza-

tion [10] and imaginary-polarization [14] methods to the
analysis of 1D fermions whose higher-dimensional ana-
logues have a sign problem. Such is the case, for instance, for
Hamiltonians featuring repulsive interactions [10], finite
chemical potential asymmetry (i.e., finite polarization)
[15], finite mass imbalance [16–18], or both mass and
density imbalance [19,20]. In this work, we continue those
investigations by tackling the polarized 1D Fermi gas with

both attractive and repulsive interactions, putting together a
more diverse set of tools than in our previous work: we
compare calculations performed with the complex Langevin
approach (CL) with those obtained from hybridMonte Carlo
(MC) studies at imaginary polarization (iHMC), lattice
perturbation theory at third order (N3LO), and the virial
expansion (at third order).
Our objective is to establish the reliability of non-

perturbative approaches such as the CL method to then
proceed to problems in higher dimensions, such as the spin-
1=2 Fermi gas tuned to the unitary limit. While that and
similar systems have been extensively studied in their
unpolarized states, the polarized 3D case remains a mystery
in many ways. There, the possible appearance of inhomo-
geneous superfluid phases at low temperatures has attracted
much attention in recent years (see, e.g., Refs. [1,4] for
reviews). Still, what little is known about the fate of such
phases in calculations beyond the mean-field approxima-
tion remains unclear at present (see, e.g., Refs. [20–22] for
recent studies including fluctuation effects) and calls for
ab initio studies. However, the latter (in the form of MC
methods) only allow investigations of unpolarized fermions
with attractive contact interactions. The spin-polarized
counterpart poses the aforementioned sign problem since
the fermion determinant corresponding to each species
may generally take different signs, producing a nonpositive
probability measure.
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One way of avoiding nonpositive probability measures is
given by the so-called iHMC method, whereby one takes
the chemical potential for each species to be complex, such
that the chemical potential for one species is the complex
conjugate of the other. The product of these two fermion
determinants is then positive definite and represents a valid
probability measure. However, this comes at a price: the
calculated observables now have to be analytically con-
tinued to the real axis to obtain the physical observables.
That technique was applied by the present authors to the 1D
case of polarized, attractively interacting fermions in
Ref. [14] with success for moderate-strength couplings,
but the technique was found to be difficult to apply in the
case of very strong couplings. Moreover, it is limited
to attractive interactions, and is cumbersome in the sense
that an appropriate ansatz must be selected to fit the
Monte Carlo results obtained on the imaginary axis.
The main objective of our present work is to provide

further validations of our CL approach to nonrelativistic
Fermi gases rather than providing a detailed pheno-
menological discussion of the thermodynamics of one-
dimensional Fermi gases. Against this background, the
remainder of this paper is organized as follows. In Sec. II
we review the path integral formalism leading to the
imaginary-polarization and complex Langevin methods,
with emphasis on the latter; in Sec. III we review the
perturbation theory formalism leading to our N3LO results;
in Sec. IV we discuss the elements of the virial expansion,
which is nonperturbative and which we use to validate our
results in the low-fugacity region. Note that our discussion
of the various methods is meant to be minimalistic as
detailed discussions and introductions to the tools under-
lying our present work can be found in Refs. [23,24]
regarding MC approaches to nonrelativistic systems,
Refs. [14,15] regarding iHMC, and Ref. [10] regarding
our perturbative approach. In Sec. V, we present our results
for the density and polarization equations of state, including
a brief discussion of the underlying systematics. In Sec. VI,
we summarize and present our conclusions. Finally, the
Appendices include results for higher interaction strengths
than in themain sections, to show the eventual breakdown of
our perturbative calculations (Appendix A); and the pro-
gression from first- to third-order perturbation theory at two
fixed coupling strengths (Appendix B).

II. STOCHASTIC METHODS

A. Basic formalism

As in most finite-temperature calculations, we choose
the grand-canonical ensemble, where the partition function
is defined by

Z ¼ Tr½expð−βK̂Þ�; ð1Þ

where K̂ ¼ Ĥ − μ↑N̂↑ − μ↓N̂↓ and ↑;↓ refers to two
particle species. Here, Ĥ is the Hamiltonian, β is the

inverse temperature, μs is the chemical potential for spin-s
particles, and N̂s is the corresponding particle number
operator. Below, we will also use the notation

μ≡ ðμ↑ þ μ↓Þ=2; h≡ ðμ↑ − μ↓Þ=2; ð2Þ

such that

μ↑ ¼ μþ h; μ↓ ¼ μ − h: ð3Þ

The Hamiltonian we will use is of the standard form

Ĥ ¼ T̂ þ V̂; ð4Þ

where T̂ is the kinetic energy operator, and V̂ is the
potential energy operator given by

T̂ ¼
Z

dx
X
s¼↑;↓

ψ̂†
sðxÞ

�
−
ℏ2

2m
d2

dx2

�
ψ̂ sðxÞ; ð5Þ

and

V̂ ¼ −g
Z

dx n̂↑ðxÞn̂↓ðxÞ; ð6Þ

where ψ̂†
s ; ψ̂ s are the creation and annihilation operators in

coordinate space for particles of spin s, and n̂s ¼ ψ̂†
s ψ̂ s are

the corresponding density operators, g is the bare coupling,
and we take ℏ ¼ kB ¼ m ¼ 1. In all results presented, the
chemical potential and its asymmetry are placed in dimen-
sionless form as βμ and βh, respectively, and the dimen-
sionless coupling strength is given as λ ¼ ffiffiffi

β
p

g.
Below, we will put this problem on a spacetime lattice of

spacing l ¼ 1 in the spatial direction (which sets the scale
for everything else in the computation) and extent
L ¼ Nxl, and spacing τ in the imaginary-time direction,
such that β ¼ τNτ. Thus, Nx and Nτ are the number of
lattice points in the spatial and time directions, respectively.
We use periodic boundary conditions for the former, and
antiperiodic for the latter in order to respect the statistics of
the fermion fields.
By applying a Suzuki-Trotter factorization first, one may

use a Hubbard-Stratonovich (HS) transformation to decou-
ple the interaction, which comes at the price of introducing
a field integral. We thus arrive at the starting point of many
conventional methods used to compute thermodynamic
observables, namely the field-integral representation of the
grand-canonical partition function,

Z ¼
Z

Dσ detM↑½σ� detM↓½σ�: ð7Þ

Here, Ms are the fermion matrices for each particle species
(see Ref. [10] for details), and σ is the auxiliary field
introduced by our choice of HS transformation. In most
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auxiliary-field MC methods, one then attempts to evaluate
the integral stochastically by identifying a probability P½σ�
and corresponding action S½σ� via

P½σ� ¼ expð−S½σ�Þ ¼ detM↑½σ� detM↓½σ�: ð8Þ
As a consequence, the calculation of observables takes the
form

hOi ¼ 1

Z

Z
Dσ e−S½σ�O½σ�; ð9Þ

such that the expectation value can be determined by
sampling the auxiliary field σ according to P½σ�.

B. Imaginary polarization method

As is well known, conventional MC algorithms are
usually not suitable for calculations at finite polarization
because P½σ� is either complex or real but of varying sign,
i.e., it suffers from the so-called phase or sign problem. One
way to guarantee a non-negative P½σ� for systems with
attractive interactions (where the sign problem comes from
μ↑ ≠ μ↓) is to make the chemical potential asymmetry h
imaginary, such that μ↑ and μ↓ (and therefore detM↑½σ� and
detM↓½σ�) are complex conjugates of each other. We then
have

P½σ� ¼ j detM↑½σ�j2: ð10Þ

Such an approach, referred to above as iHMC, enables
nonperturbative calculations of observables which are
a posteriori analytically continued to real asymmetry, as
was done for the systems considered here in Ref. [14], and
for mass-imbalanced systems in Refs. [16,17]. While the
results on the imaginary side are fully nonperturbative and
in principle exact, the analytic continuation procedure
introduces an uncontrolled approximation in the final
results. In practice, only at low asymmetries, our results
from the analytic continuation agree with the other con-
sidered methods within their statistical uncertainty, as
shown below. The differences we find at high asymmetry
still remain small.

C. Complex Langevin method

Another way to bypass or overcome the sign problem is
the CL method, which we will briefly describe here
following our work of Ref. [10]. The first step in the
CL approach is to complexify the auxiliary field σ, such
that

σ ¼ σR þ iσI; ð11Þ

where σR and σI are real fields. The CL equations of
motion, including a regulating term which prevents uncon-
trolled excursions into the complex plane (see Ref. [10]),
are

δσR ¼ −Re
�
δS½σ�
δσ

�
δt − 2ξσRδtþ ηt

ffiffiffiffi
δt

p
; ð12Þ

δσI ¼ −Im
�
δS½σ�
δσ

�
δt − 2ξσIδt; ð13Þ

where ηt is a a noise field varying with the CL time t and
spacetime lattice ðx; τÞ which satisfies hηtðx; τÞi ¼ 0 and
hηtðx; τÞηt0 ðx0; τ0Þi ¼ 2δx;x0δτ;τ0δt;t0 . Note that the time t is a
fictitious time that is unrelated to the imaginary-time τ. The
real parameter ξ controls the strength of the regulator term,
which for the following results is set to ξ ¼ 0.1 (see
Refs. [10,17] for an analysis of the dependence of physical
results on this parameter). In the CL context, S½σ� is
interpreted as a complex function of the complex variable
σ; note that in the unpolarized case with attractive inter-
actions, σ becomes a real field.
The conditions for the validity of the CL algorithm have

been extensively explored in recent years (see e.g., [25–30]),
as theCLmethod is not always guaranteed to converge to the
right answer (in contrast with conventional stochastic
quantization based on real actions).WhenCLdoes converge
correctly, the expectation values of observables hOi are
obtained by averaging over the real part of O½σ�, with
complex fields σ sampled throughout the CL evolution.
In the path toward making CL a viable solution to the

sign problem, problems were identified affecting conver-
gence and correctness; one of the most important of such
problems was the appearance of uncontrolled excursions of
σ into the complex plane. This issue is currently under
investigation and a few approaches have been proposed
(see e.g., [31,32]). In our case, we modified the action in a
way reminiscent of the dynamical stabilization approach
of Refs. [33,34], which was proposed independently in
Ref. [10] for nonrelativistic systems.

III. LATTICE PERTURBATION THEORY

In this section we outline the relevant formalism
for our perturbation theory results. We carried out our
perturbative lattice calculations by expanding the grand-
canonical partition function Z ¼ exp ðβPVÞ, as in
Ref. [10]. There, we carried out perturbation theory starting
from the field-integral formulation of the problem. That
expansion gives us direct access to the pressure P as a
function of βμ and βh. Numerical differentiation with
respect to βμ and βh yields the density and polarization
equations of state, respectively. Our perturbative calcula-
tions include contributions up to N3LO in the auxiliary
field coupling A2 ¼ 2ðeτg − 1Þ, where τ is the temporal
lattice spacing and g is the lattice coupling. Thus, the
expansion takes the form

Z
Z0

¼ 1þ A2Δ1 þ A4Δ2 þ A6Δ3 þ � � � ; ð14Þ
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where the functions Δnðβμ; βhÞ represent the contribution
at order NnLO and Z0 is the noninteracting result. To
access the pressure at a given order in A2, we expand lnZ
in a consistent fashion such that, at third order,

P
P0

¼ 1þ 1

lnZ0

ðA2ζ1 þ A4ζ2 þ A6ζ3Þ; ð15Þ

where

ζ1 ¼ Δ1; ð16Þ

ζ2 ¼ Δ2 −
1

2
Δ2

1; ð17Þ

ζ3 ¼ Δ3 − Δ1Δ2 þ
1

3
Δ3

1: ð18Þ

In Ref. [10] we presented calculations up to N3LO for the
unpolarized case; here we extend those to the polarized
system for both attractive and repulsive couplings. Note
that if we were again to perform the analysis of Z to a
particular order of A, but consider distinct determinants for
each flavor, we would arrive at the same symmetry factors
and diagrams as for the unpolarized case, but find that
exactly half of the propagators are a function of z↑, and the
remaining half are a function of z↓. This translates to
modifying the corresponding sums over momenta such that
they are invariant under exchange of spin-up and spin-down
fermions, and considering all permutations of z↑ and z↓
across noncommuting propagators. Note that these extra
considerations lead to a small increase in computational
complexity when evaluating these diagrams, particularly as
the number of loops involved grows.

IV. VIRIAL EXPANSION

In addition to the stochastic and perturbative results
previously discussed, we compare to the equation of state
provided by the virial expansion, i.e., an expansion in
powers of the fugacity z ¼ expðβμÞ. For βμ ≪ −1, such an
expansion is indeed expected to be valid.
For unpolarized systems, the expansion reads

lnZ ¼ −βΩ ¼ Q1

X∞
n¼1

bnzn; ð19Þ

where Q1 ¼ 2L=λT , λT ¼ ffiffiffiffiffiffiffiffi
2πβ

p
, and bn are the virial

coefficients. The latter can be obtained in terms of the
n-particle canonical partition functions Qn using

Z ¼
X∞
n¼0

Qnzn: ð20Þ

For polarized systems, on the other hand, we write

Z ¼
X∞
n;m¼0

Qn;mzn↑z
m
↓ : ð21Þ

Note that zs ¼ eβμs and, with our usual definitions,
μ↑ ¼ μþ h and μ↓ ¼ μ − h.
At leading order in zs, we have n↑;↓λT ¼ z↑;↓, such that

nλT ¼ ðn↑ þ n↓ÞλT ¼ 2eβμ coshðβhÞ; ð22Þ

which yields

n
n0

¼ coshðβhÞ: ð23Þ

Here, n0 is the density for the noninteracting unpolarized
system; the above leading-order result holds for any
interaction strength. Similarly, we find for the polarization
that

m
n0

¼ n↑ − n↓
n0

¼ sinhðβhÞ; ð24Þ

at leading order in zs.
To access higher orders, we use the simpler expressions

that result from taking the noninteracting case as a
reference. Thus, the usual unpolarized virial expansion
of the pressure takes the form

−βΔΩ ¼ lnðZ=Z0Þ ¼ Q1

X∞
n¼2

Δbnzn; ð25Þ

where Δbn ¼ bn − bð0Þn is the change in the nth order virial
coefficient due to interactions. Note that the sum starts at

n ¼ 2 since b1 ≡ bð0Þ1 ¼ 1 by definition.
For polarized systems, we have

−βΔΩ ¼ lnðZ=Z0Þ ¼ Q1

X∞
n;m¼1

Δbn;mzn↑z
m
↓ : ð26Þ

Writing down the partition function in terms of the ðn;mÞ-
particle canonical partition functions Qn;m, it is straightfor-
ward to see that

Δb1;1 ¼ Δb2; ð27Þ

Δb2;1 ¼ Δb1;2 ¼
Δb3
2

; ð28Þ

which yields the first two terms of the virial expansion for
the polarized case entirely in terms of the unpolarized
coefficients.
Differentiating with respect to zs and dividing by the

system size L gives us access to Δn ¼ Δðn↑ þ n↓Þ and
Δm ¼ Δðn↑ − n↓Þ. Using the relevant noninteracting
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polarized results nðniÞ and mðniÞ, we can obtain n and m
themselves. Calling n0 the noninteracting unpolarized
result (i.e., n0 ¼ nðniÞjz↑¼z↓), we have up to third order,

n
n0

¼ Q1

n0V

�
2Δb2z↑z↓ þ 3

Δb3
2

ðz2↑z↓ þ z↑z2↓Þ
�
þ nðniÞ

n0
:

ð29Þ

Similarly, up to third order for the magnetization, we find

m
n0

¼ Q1

n0V
½Δb3ðz2↑z↓ − z↑z2↓Þ� þ

mðniÞ

n0
: ð30Þ

For reference, we also present here the result for the density
and polarization of the polarized noninteracting Fermi gas:

nðniÞ ¼ 1ffiffiffi
π

p
λT

½I1ðz↑Þ þ I1ðz↓Þ�; ð31Þ

mðniÞ ¼ 1ffiffiffi
π

p
λT

½I1ðz↑Þ − I1ðz↓Þ�; ð32Þ

where λT ¼ ffiffiffiffiffiffiffiffi
2πβ

p
, I1ðzÞ ¼ zdI0ðzÞ=dz, and

I0ðzÞ ¼
Z

∞

−∞
dx lnð1þ ze−x

2Þ: ð33Þ

In our numerical studies below, we employ the expressions
for the density and the magnetization presented here at third
order in the virial expansion, with the coefficients b2 and b3
taken from a numerical calculation [35], see also Table I.

V. RESULTS

In this section we show our results for the density
and polarization equations of state as obtained from a
nonperturbative calculation with the CL method on lattices
of size up to Nx ¼ 61 and Nτ ¼ 160, lattice perturbation
theory up to N3LO using a matching lattice size, and the
third-order virial expansion. In addition, for attractive

interactions we have at our disposal the data of
Ref. [14], which were obtained using the technique of
imaginary polarization and analytic continuation (described
above as iHMC). The lattice calculations were performed
using a temporal lattice spacing of τ ¼ 0.05 such that
β ¼ τNτ,

1 which was chosen to provide a suitable balance
between computational demand and finite-lattice effects.
The CL calculations were performed using an adaptive
Euler integrator, and were evolved for a total of 105

iterations, where the first 10% of samples were discarded
to thermalize the system and improve convergence proper-
ties. Note that here we display the equation of state for a
dimensionless coupling strength at jλj ¼ 1 (i.e., for the
repulsive and attractive case), but additionally show results
at jλj ¼ 2 and 4 in the Appendix.

A. Density at jλj= 1
In Fig. 1 we show our results for the density equation of

state at λ ¼ 1 (left) and λ ¼ −1 (right), as a function of βμ
and for varying asymmetry βh ¼ 0;…; 2.0. Note that λ > 0
corresponds to attractive interactions, and interactions for
λ < 0 are repulsive. The insets show zooms into the region
of positive βμ, where quantum effects dominate. We
compare our CL results with third-order perturbation
theory, imaginary-polarization calculations (for the attrac-
tive case, as for repulsive interactions that option is not
available), and the virial expansion in the region βμ ≤ −1.5.
The agreement between the methods is remarkable, in

particular in the virial region (and for both attractive and
repulsive regimes), where except for very small deviations
in the perturbative third-order answer, the results are almost
indistinguishable from one another. Note that, although the
virial coefficients b2 and b3 used here vary considerably
with the interaction strength λ (see Table I), the dominant
term at large negative βμ is interaction independent
[cf. Eqs. (23) and (24)]; all the methods studied here
reproduce that universal asymptotic behavior. For βμ > 1
the insets in Fig. 1 also show agreement of the CL results
with the perturbative and iHMC numbers.
Although the agreement between the various methods is

remarkable, a word of caution is in order on the CL results
for repulsive couplings. In that case, it was found in
Ref. [17] that while the CL results for e.g., the ground-
state energy, agree with the known exact results from the
Bethe ansatz at zero temperature, the distributions of
the energy do not exhibit a finite variance (see also
Refs. [37–41], where similar behavior is described in the
context of cold atoms, QCD, entanglement, and electronic
systems, even in the absence of a sign problem). This
appears to be a general issue in quantum Monte Carlo
studies and requires further investigation. In any case, the

TABLE I. Second- and third-order virial coefficients b2 and
b3 as a function of the dimensionless coupling λ. For
the noninteracting gas (λ ¼ 0), the virial coefficients are
bn ¼ ð−1Þnþ1n−3=2. At finite coupling, the interacting virial
coefficients have been taken from a numerical calculation on
the lattice [35]. The given values of b2 and b3 at λ ¼ 0 correspond
to the exact values.

λ b2 b3

−2.0 −0.180ð5Þ −0.0739ð5Þ
−1.0 −0.490ð5Þ 0.394(5)
0 −0.35355… 0.19245…
1.0 −0.0375ð5Þ −0.240ð5Þ
2.0 0.190(5) −0.0615ð5Þ

1For a discussion of the dependence on the various para-
meters defining our space-time lattice, we refer the reader to
Refs. [10,17,36].
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distributions in the attractive regime are statistically well
behaved.

B. Polarization at jλj= 1
In Fig. 2 we show our results for the polarization

equation of state at λ ¼ 1 (left) and λ ¼ −1 (right), as a
function of βμ and for varying asymmetry βh ¼ 0;…; 2.0.
Also in this case we compare our CL results with third-
order perturbation theory, imaginary-polarization calcula-
tions (for the attractive case), and the virial expansion in the
region βμ ≤ −1.5. Once again the results in the latter region
are nearly indistinguishable from one another, and they
remain so for increasing βμ as well, as far as βμ ¼ 4.0
(where our explorations concluded).

C. Systematics of Langevin time discretization

One of the features of stochastic quantization is that,
either in its real or complex forms, it performs a walk in
configuration space with a specific fictitious time t dis-
cretization, which we denote here as δt. Even when using

adaptive algorithms, as done here, the adaptive-step toler-
ance effectively determines a scale for δt that affects the
results. We have observed effects where if the tolerance is
set such that it corresponds to an average time step which is
too large, the CL evolution will converge to a value which
systematically deviates from the true result.
To illustrate those effects, we show in Fig. 3 a plot of the

sensitivity to the size of the CL time step δt for jλj ¼ 1,
using the perturbative answer for βμ ≥ 0 and the answer
from the virial expansion for βμ ≤ −4.0 as a reference. As
evident from that figure, the size of δt can be responsible
for potential discrepancies. The remaining difference
between the CL and perturbative results in the limit
δt → 0 is ascribed in part to the inaccuracy of N3LO
perturbation theory (see Appendix B) and in part to
statistical uncertainties, as shown by the error bars in
Fig. 3. On the scale of the insets of Fig. 1, however, that
remaining difference would appear as agreement between
CL and perturbation theory. (The same holds for the figures
in the Appendix.) This highlights the need to explore such
systematic effects when using the CL method.
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FIG. 1. Density equation of state n ¼ n↑ þ n↓ normalized by the noninteracting, unpolarized counterpart n0, for attractive (left) and
repulsive (right) interactions of strength λ ¼ �1. Insets: Zoom in on the region βμ > 0 (left) and βμ > 1 (right). In all cases, the CL
results are shown with colored symbols, iHMC results (from Ref. [14]) appear with black diamonds, perturbative results at third order
are shown with solid lines, and virial expansion results appear as dashed lines.
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FIG. 2. Spin polarization m ¼ n↑ − n↓ normalized by the noninteracting, unpolarized density n0 for attractive (left) and repulsive
(right) interactions of strength λ ¼ �1. The CL results are shown with colored symbols, iHMC results (from Ref. [14]) appear with
black diamonds, perturbative results at third order are shown with solid lines, and virial expansion results appear as dashed lines.
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VI. SUMMARY AND CONCLUSIONS

In this work we have presented an application of the CL
method to a classic problem: the polarized one-dimensional
Fermi gas. With the main objective of validating the CL
algorithm for nonrelativistic Fermi gases, we compared our
CL results for the finite-temperature density and polariza-
tion equations of state with those from perturbation theory,
iHMC studies, and the virial expansion.
Generally speaking, our results speak favorably for the

CL method as a way to tackle polarized matter, indicating
that the door is open for calculations in higher dimensions
and for nontrivial coupling strengths. More specifically, the
results obtained with the various methods in the virial
region are in remarkably good agreement with one another.

For βμ ≳ −1.5, small differences are noticeable in the
density equation of state at strong coupling (λ ¼ 2), even
less in the polarization.
It should be pointed out that fermions in 1D can be

addressed without a sign problem by, e.g., mapping the
system onto hard-core bosons (see e.g., [42]) or employing
the fermion bag approach [43]. However, to our acknowl-
edge, such methods do not generalize (efficiently) to higher
dimensions, which is why we focused here on benchmarks
for auxiliary-field approaches. The latter not only general-
ize to higher dimensions but also to a wide range of
situations including condensed matter, nuclear, and high-
energy physics.
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APPENDIX A: RESULTS FOR HIGHER
INTERACTION STRENGTHS

In this Appendix we present the density and polarization
equations of state analogous to Figs. 1 and 2, but for the
stronger interaction strengths of jλj ¼ 2 and 4. The same
techniques discussed for the results at jλj ¼ 1 are
applied here.
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FIG. 3. (Left) Relative difference between the density n↑ þ n↓
computed via CL (nCL) and the third-order perturbative result nPT
for three positive values of βμ, as a function of the CL time step
δt. The dashed horizontal line shows where nCL ¼ nPT.
(Right) Relative difference between nCL and the third-order
virial expansion nvirial for three values of βμ of small fugacity,
as a function of δt. The dashed horizontal line shows where
nCL ¼ nvirial. In both plots, the coupling was set to λ ¼ �1, where
solid and open symbols refer to repulsive and attractive cou-
plings, respectively. Error bars represent the statistical error of the
CL calculation, and indicate agreement with PT and the virial
expansion as δt → 0.
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1. Density and polarization at jλj= 2
In Fig. 4 we show our results for the density equation of

state at λ ¼ 2 (left) and λ ¼ −2 (right), as a function of βμ
and for varying asymmetry βh ¼ 0;…; 2.0. We compare
our CL results with third-order perturbation theory and the
virial expansion for βμ ≤ −1.5. As expected, the agreement
between all three techniques deteriorates at the increased
coupling strength when compared to the results for jλj ¼ 1.
However, the overall comparison is satisfactory. For these
systems, perturbation theory is expected to break down at
this coupling strength. Indeed, this is most obvious for the
unpolarized case which was further discussed in Ref. [10].
Agreement between perturbation theory and CL improves
as the polarization increases, where the effective interaction
between opposite spins lessens. The virial expansion
demonstrates a more significant deterioration at this cou-
pling as both βμ and βh move away from zs ∼ 0.
In Fig. 5, we show our results for the polarization

equation of state at λ ¼ 2 (left) and λ ¼ −2 (right), as a
function of βμ and for varying asymmetry βh ¼ 0;…; 2.0.
Also in this case we compare our CL results with

perturbation theory calculations and find excellent agree-
ment for the whole range of βμ studied.

2. Density and polarization at jλj= 4
To demonstrate that CL is capable of providing a

prediction of the equation of state in a nonperturbative
regime (at least up to N3LO), we compute the density and
polarization at a dimensionless coupling strength of
λ ¼ �4. Figure 6 displays the density, and Fig. 7 the
polarization, for attractive (left) and repulsive (right)
interactions. We have extended the domain of βμ values
studied to reach the region where the density approaches
the asymptotic virial expansion [see Eqs. (23) and (24)]. As
the interaction strength is increased, the virial coefficients
generally increase in magnitude, indicating that higher-
order contributions are no longer small corrections to the
leading order. As a result, the expansion breaks down
earlier in βμ, as is particularly evident for the attractive
case. Note that the third-order virial coefficient is currently
not available at such a strong coupling; instead, the second-
order expansion is shown using coefficients computed in
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the continuum. As expected, PT breaks down significantly
when compared to CL at this interaction strength. It is
reassuring to note that CL reproduces the unpolarized result
for attractive interactions (where the HMC method is
available) to within acceptable accuracy. However, in the
limit of vanishing fugacity z, the fermion determinant
detð1þ zsU½σ�Þ becomes approximately independent of
the auxiliary field σ, such that CL effectively approaches
random sampling. As such, statistical noise can become
problematic in the deep virial region as compared to the
situation in the semiclassical regime. We display error bars
in Figs. 6 and 7 as the statistical variance can become larger
than the symbol size in this region. Note that at the fixed
value of β ¼ 8, finite-beta effects (resulting from the finite
temporal lattice size) are expected to be more prevalent

when compared to the more weakly coupled counterparts
(see Ref. [44]).

APPENDIX B: PERTURBATIVE PROGRESSION
FROM FIRST TO THIRD ORDER

Finally, in Fig. 8 we show the progression of density
results in lattice perturbation theory at first, second, and
third order, for two attractive couplings (λ ¼ 1, 2) and for
two polarizations (βh ¼ 1.0, 2.0). We note that the pertur-
bative results appear very well converged at λ ¼ 1, where
they agree very well with the CL answers, as noted in the
main text. On the other hand, at λ ¼ 2, perturbation theory
is (as expected) still slightly away from convergence [note
in particular the big jump from first (dotted) to second order
(dashed)], but it uniformly approaches the CL results.
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(right) interactions of strength λ ¼ �4. N3LO perturbation theory no longer offers a viable comparison for the polarization at this
coupling strength, except near the virial region.
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