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We apply the event-chain algorithm proposed by Bernard et al. in 2009 to toy models of lattice QCD.
We give a formal proof of stability of the algorithm. We study its performance at the example of the massive
Gaussian model on the square and the simple cubic lattice, the Oð3Þ-invariant nonlinear σ-model on the
square lattice, and the SUð3Þ × SUð3Þ principal chiral model on the square lattice. In all these cases we find
that critical slowing down is essentially eliminated.
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I. INTRODUCTION

Monte Carlo simulation of statistical field theory systems
is a standard tool in their study. While the development of
algorithms has a long tradition, it is still an active field and
source of substantial progress. Here we test a new class of
recently proposed algorithms, the so-called event-chain
Monte Carlo [1–4], in systems with asymptotic freedom. In
particular, we study the two-dimensional OðNÞ-invariant
nonlinear σ-model and the two-dimensional SUðNÞ ×
SUðNÞ principal chiral model. In our simulations, we take
N ¼ 3 in both cases. As a preliminary step, we study free
field theory in two and three dimensions.
The cost of a simulation is determined essentially by

two factors: the numerical cost of one update of the whole
system and the autocorrelation time τ in units of these
updates. For definitions of the autocorrelation time see
Appendix B. It typically scales with a power of the
correlation length ξ,

τ ∝ ξz: ð1Þ

The dynamical critical exponent z therefore character-
izes the algorithm’s performance close to criticality.
Algorithms, such as the local Metropolis algorithm, which
essentially perform a random walk in configuration space
have z ≈ 2, whereas for some models also update strategies
whose autocorrelation times increase much slower with the
correlation length have been devised. Examples are the

cluster [5,6] and multigrid [7] algorithms. They are
characterized by a coherent update of a large fraction of
the field variables in one step. Such advanced algorithms,
however, rely on special features of the theory to be
simulated and are difficult to generalize: Algorithm per-
formance depends strongly on the model under investiga-
tion. For a new proposal, it is therefore pivotal to test it in
many cases to understand better its dynamics.
An interesting new entry in the toolbox is the so-called

event-chain algorithm pioneered in Refs. [1–3]. It is
basically a walker on the lattice which updates the local
field variable in Monte Carlo time until a so-called event
occurs, with probabilities given by the theory. Then it
moves to a neighboring site, which is determined by the
event. The details are given below. It is remarkable that for
some theories this leads to a small value of z and not to the
random walk one might naively expect.

II. EVENT DRIVEN ALGORITHM

In this section, the algorithm is discussed for a model
with a single real variable at each site of the lattice. In order
to apply the algorithm to more complicated models, the
simple model is embedded, as we explain below. Note that
the idea of embedding is also used in the case of cluster
[6,8] and multigrid [9] algorithms. To define the algorithm,
one first discusses infinitesimal updates with a step size
ϵ > 0. These updates are integrated analytically, leading to
the version of the algorithm that is implemented at the end.
We consider a general scalar field theory with the action

Sð½ϕ�Þ ¼
X
x∈Λ

sxðϕxÞ þ
X
hx;yi

shx;yiðϕx;ϕyÞ; ð2Þ

where sxðϕxÞ and shx;yiðϕx;ϕyÞ are functions of the real
variables ϕx. Here we consider analytic functions. However
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the example of hard spheres considered in Ref. [1] shows
that this requirement can be relaxed. The collection of all
sites of the lattice is denoted by Λ and hx; yi is a pair of
interacting sites. In our numerical study, we consider
nearest neighbor interactions only. We require that

∂shx;yiðϕx;ϕyÞ
∂ϕx

¼ −
∂shx;yiðϕx;ϕyÞ

∂ϕy
ð3Þ

holds for the interaction terms.
The configuration space ϕ is now extended by two

“lifting” variables: the position of the walker x̃ ∈ Λ at
which field updates are performed and the direction
σ ∈ f−1; 1g of these changes. Both are drawn from a
uniform distribution, in particular, uncorrelated to the fields
ϕ. Let us denote an enlarged configuration by

X ¼ ðϕ; σ; x̃Þ: ð4Þ

The action pertaining to a single site, keeping the fields
at all other sites fixed, can be written as

SxðϕxÞ ¼ sxðϕxÞ þ
X
y

shx;yiðϕx;ϕyÞ≡
Xn
i¼0

si;xðϕxÞ; ð5Þ

where i ¼ 0 indicates the single site term and i ¼ 1; 2;…; n
labels the interaction partners y of x.
The enlarged configuration X is always changed. Either

ϕx̃ is replaced by ϕx̃ þ σϵ, σ is replaced by −σ, or x̃ is
replaced by one of its interacting partners yi. The decisions
are taken for each term of the single site action (5) separately.
With the standard Metropolis probability, applied to si;x̃

pi ¼ min ½1; exp½−si;x̃ðϕx̃ þ σϵÞ þ si;x̃ðϕx̃Þ�� ð6Þ

the proposal ϕx̃ þ σϵ is accepted. Expanding in ϵ we get

pi ¼
(
1 − σ ∂si;x̃ðϕx̃Þ

∂ϕx̃
ϵþOðϵ2Þ for σ ∂si;x̃ðϕx̃Þ

∂ϕx̃
> 0

1þOðϵ2Þ for σ ∂si;x̃ðϕx̃Þ
∂ϕx̃

≤ 0:
ð7Þ

The update ϕx̃ þ σϵ is rejected, if it is rejected by at least one
si;x̃. If the proposal is not accepted the following is done: In
the case of i ¼ 0, σ is replaced by −σ, while for i > 0 the
walker is set to the site yi. At finite ϵ there is a probability
Oðϵ2Þ that the proposal is rejected by more than one si;x̃.
Hence for a sequence of n updates with t ¼ nϵ finite, the
probability for conflicting decisions is OðϵÞ and hence the
algorithm becomes well defined in the limit ϵ → 0. A proof
of the correctness of the algorithm is given in Appendix A.
The algorithm that is implemented in the program is

obtained by integrating infinitesimal steps over a finite
fictitious time t. The probability that there is no rejection by
si;x̃ in n ¼ t=ϵ subsequent steps is

Piðϕx̃ þ σt← ϕx̃Þ ¼
Yn
m¼1

piðϕx̃ þmσϵ← ϕx̃ þ ðm− 1ÞσϵÞ:

ð8Þ

Taking the logarithm and the limit ϵ → 0 one arrives at

lnPiðtÞ¼
Z

t

0

dψmin½0;−σs0i;x̃ðϕx̃þσψÞ�≕ −ΔEiðtÞ: ð9Þ

Performing the integral we get

ΔEiðtÞ ¼ σ
X
k

½si;x̃ðϕ1;kÞ − si;x̃ðϕ0;kÞ�; ð10Þ

where k labels the intervals with σs0i;x̃ being positive
throughout within ½min½ϕx̃;ϕx̃ þ σt�;max½ϕx̃;ϕx̃ þ σt��.
ϕ0;k and ϕ1;k are the lower/upper and upper/lower bounds
of these intervals, depending on the value of σ. The field
ϕx̃ is updated until the update is rejected by one of the si;x̃.

The times tðeventÞi when these events occur are determined
in the following way: One draws a uniform random number
ri ∈ ð0; 1� for each i to fix PiðtÞ. We arrive at Eq. (11)
of [2],

ΔEiðtðeventÞi Þ ¼ − ln ri; ð11Þ

which has to be solved for tðeventÞi . The i ¼ imin with the

smallest tðeventÞi makes the race: tðeventÞ ¼ mini½tðeventÞi �. The
field is updated ϕx̃ → ϕx̃ þ σtðeventÞ. For imin ¼ 0 we
replace σ by −σ and x̃ remains unchanged. Or else, for
imin > 0 the walker assumes the new position yimin

and σ
keeps its sign.
The algorithm evolves in a fictitious time tMC. For each

event the fictitious time increases as tMC → tMC þ tðeventÞ.
A sequence of updates is started at tMC ¼ 0 by drawing x̃
and σ from a uniform distribution. The sequence of updates
is stopped at some fixed tf. To this end, events are
generated until tMC overshoots tf for the first time. This
last event is not taken into account in the update of the
field and tMC is not increased by this last tðeventÞ. Instead
ϕx̃ → ϕx̃ þ σðtf − tMCÞ is performed. Furthermore, mea-
surements should be performed in equal intervals of the
fictitious time. Mostly, we performed a measurement after a
complete update sequence of the length tf or after a fixed
number of these sequences. Note that measuring at events
leads to a bias that, at least for small system sizes, can be
easily seen in the averages of estimators.
In order to arrive at a formal proof of ergodicity one has

to introduce some randomness in the evolution time tf.
An alternative would be to add Metropolis updates that
ensure ergodicity. In our explorative study here, similar to
Refs. [1–3], we simply ignore this question.
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III. THE MODELS

We consider square or simple cubic lattices. The sites
of the lattice are denoted by x ¼ ðx0; x1;…; xd−1Þ with
xi ∈ f0; 1; 2;…Li − 1g, where d is the dimension of the
system, setting the lattice spacing to unity, a ¼ 1. The
directions of the lattice are denoted by μ ∈ f0;1;…;d−1g.
There are 2d nearest neighbors yi ¼ x� μ̂, where μ̂ is
a unit vector in μ-direction. In our simulations we take
L0 ¼ L1 ¼ � � � ¼ Ld−1 ¼ L throughout.

A. Free field theory

First we study the two- and three-dimensional scalar
field theory. It is defined by the action

S ¼ 1

2

X
x;μ

ðϕx − ϕxþμ̂Þ2 þ
m2

2

X
x

ϕ2
x þ

λ

4!

X
x

ϕ4
x: ð12Þ

In the following we only discuss the free case λ ¼ 0.
Here the functions (9) are easy to evaluate. For the single

site term of the action we get

ΔE0ðtÞ ¼
1

2
m2

8>><
>>:

0 for σϕx̃ < 0; t < −σϕx̃

ðϕx̃ þ σtÞ2 for σϕx̃ < 0; t ≥ −σϕx̃

ðϕx̃ þ σtÞ2 − ϕ2
x̃ for σϕx̃ ≥ 0:

ð13Þ
For i > 0 we get

ΔEiðtÞ¼
1

2

8>><
>>:
0 for σΔϕx̃;i <0;t<−σΔϕx̃;i

ðΔϕx̃;iþσtÞ2 for σΔϕx̃;i <0;t≥−σΔϕx̃;i

ðΔϕx̃;iþσtÞ2−Δϕ2
x̃;i for σΔϕx̃;i≥0;

ð14Þ

where Δϕx̃;i ¼ ϕx̃ − ϕx̃þμ̂ ¼ ϕx̃ − ϕyi . There is always a
solution for a positive t.

B. Nonlinear σ-model

The action of the nonlinear OðNÞ-invariant σ-model is

S ¼ −β
X
x;μ

s⃗x · s⃗xþμ̂; ð15Þ

where s⃗x is a unit vector with N real components. We study
the model on the square lattice for N ¼ 2 and 3. For N ¼ 2
we get the so-called XY-model. It undergoes a Kosterlitz-
Thouless phase transition at βKT ¼ 1.1199ð1Þ [10]. For
temperatures above the transition, there is a finite correlation
length. At lower temperatures there is no ordering and the
two-point correlation function is decaying with a power law.

For references see e.g., [11]. For the event-chain algorithm it
is useful to write the XY-model in terms of angles αx,

S ¼ −β
X
x;μ

cosðαx − αxþμ̂Þ: ð16Þ

The pair terms of the action are

si;x̃ ¼ −β cosðαx̃ − αyiÞ: ð17Þ
In the update, αx̃ is incremented. The functions (9) are
given in Ref. [2]. To simplify the notation, let us assume
σ ¼ 1 in the following. Let us define

δi ¼ αx̃ − αyi − 2mπ; ð18Þ
where the integer m is chosen such that −π < δi ≤ π.

ΔEiðtÞ ¼ β

8>>><
>>>:

2n for δi < 0; δi þ t − 2nπ < 0;

2nþ 1 − cosðδi þ tÞ for δi < 0; δi þ t − 2nπ ≥ 0;

2ðn − 1Þ þ cosðδiÞ − 1 for δi ≥ 0; δi þ t − 2nπ < 0;

2nþ cosðδiÞ − cosðδi þ tÞ for δi ≥ 0; δi þ t − 2nπ ≥ 0;

ð19Þ

where the integer n ≥ 0 is chosen such that
−π < δi þ t − 2nπ ≤ π. Note that 2n is the contribution
from n complete cycles, where cosð0Þ − cosðπÞ ¼ 2. For an
illustration see Fig. 4 of Ref. [2].
ForN ¼ 3 the model has a finite correlation length at any

finite value of β. The model is asymptotically free. The
divergence of the correlation length as β → ∞ is governed

by the so-called β-function. For a discussion of the physics
of this model see e.g., [12].
In the literature there are a number of Monte Carlo

studies of this lattice model. It can be efficiently
simulated by using the cluster algorithm [13] and the
multigrid algorithm [9]. Also the microcanonical over-
relaxation algorithm [14] has been applied successfully.
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For simulations with the worm algorithm see Ref. [15]. The
simulation for N > 2 with the event-chain Monte Carlo
algorithm is performed, by an embedding of a generalized
XY model. To this end, for one sequence of updates, one
picks out a pair ðl; kÞ of components from the N compo-
nents of the field. In the update, only rotations in this plane
are performed. The algorithm is run as for the XY model,
with the exception that in Eq. (19) the prefactor β is

replaced by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2l;x̃s

2
k;x̃

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2l;yis

2
k;yi

q
β.

C. SUðNÞ × SUðNÞ principal chiral model

The principal chiral model on the square lattice is defined
by the action

S ¼ −β
X
x;μ

RetrUxUxþμ̂ ð20Þ

where Ux ∈ SU (N). The action restricted to a single site is

Sx ¼ −β
X
�μ̂

RetrUxU
†
xþμ̂ ≡

X2d
i¼1

sx;i: ð21Þ

The model is asymptotically free. For a discussion of the
physics of this model see e.g., [16]. No efficient imple-
mentation of the cluster algorithm has been devised for this
model so far. However the multigrid algorithm has been
implemented successfully [16,17]. To this end, in Ref. [16],
for one sequence of updates, a one-parameter subgroup
of SUðNÞ is considered. Here we apply the same idea.
Following [16], a general one-parameter update can be
composed of a random SUðNÞ rotation and a rotation by a
variable angle along one, fixed element λ of the algebra.
With

λ ¼

0
B@

i 0 …

0 −i 0 …

0 …

1
CA

the updates read

U → etRλR
†
U ¼ RetλR†U;

leading to an embedded action for site x and component i,

si;xðtÞ ¼ −β½a cos tþ b sin t� ¼ −βc cosðt − t0Þ

with

a ¼ Reð½Wi�11 þ ½Wi�22Þ and b ¼ Imð½Wi�11 − ½Wi�22Þ;
ð22Þ

where Wi ¼ R†UxU
†
yiR. Furthermore c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
and

t0 ¼ arctanðb=aÞ.

IV. NUMERICAL RESULTS

Below we discuss our numerical results for the scalar
free field theory, the Oð3Þ-invariant nonlinear σ-model and
the SUð3Þ × SUð3Þ-invariant principal chiral model. We
abstain from a discussion of our simulations of the two-
dimensional XY-model, since our results are fully consis-
tent with those of Ref. [18].

A. Scalar free field theory

We simulated the Gaussian model on the square and
simple cubic lattice. In our simulations, we have taken
L ∝ m−1, evolving the fictitious Monte Carlo time for the
period tf using the event-chain algorithm. Once this is
reached, a new site x̃ and direction σ are selected. Note that
tf is the only free parameter of the algorithm.
Let us define the quantities that we measured in our

simulations. The first two quantities are related to the terms
in the action,

O1 ¼
1

2dLd

X
hxyi

ðϕx − ϕyÞ2; O2 ¼
1

2Ld ϕ
2
x: ð23Þ

Furthermore we determined the magnetization and a proxy
of the second moment correlation length,

O3 ¼
1

2

�X
x
ϕx

�
2

; O4 ¼
Xd−1
i¼0

ϕ̃iϕ̃
�
i ð24Þ

with the Fourier transform ϕ̃i ¼
P

x expð−i2πxi=LÞϕx.
In the Gaussian model, these quantities can be easily

computed exactly by Fourier transformation. We compared
the outcome of our simulations with these exact results.
The largest deviation had been 3.4 standard deviations
for a single observable.
We performed a measurement after nm sequences of the

length tf. For a given L we kept tmeas ¼ nmtf constant. It is
chosen such that the integrated autocorrelation times in
units of tmeas are of Oð10Þ. Studying local algorithms, such
as the local Metropolis algorithm, one typically quotes the
autocorrelation times in units of sweeps over the whole
lattice. In our case, the artificial time that is needed on
average for Ld events could be used as an analog. As
discussed below, we find that the number of events per unit
of the artificial time is slightly larger than one for both the
square as well as the simple cubic lattice. Similar obser-
vations are made in the case of theOð3Þ-invariant nonlinear
σ-model and the SUð3Þ × SUð3Þ-invariant principal chi-
ral model.

1. Two dimensions

In the two-dimensional case we simulated the linear
lattice sizes L ¼ 32, 64, 128, and 256. Correspondingly the
masses are taken as m ¼ 0.3, 0.15, 0.075, and 0.0375,
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respectively. Each series of simulations consists of 106

measurements, separated by tmeas ¼ 100, 400, 2000 and
8000 for L ¼ 32, 64, 128, and 256, respectively. We focus
on the dependence of the autocorrelations on the length tf
of the update sequence.
In the left part of Fig. 1 we give the integrated

autocorrelation time of O3. We determined the integrated
autocorrelation time in units of measurements. In the plot,
we give τint in units of L2. To this end, we multiply the
numbers that we compute by tmeas=L2. Plotting the auto-
correlation time as a function of tf=L2, we see a reasonable
collapse of the data for the four different lattice sizes. We
conclude that tf should be chosen such that tf ∝ m−2 ∝ L2.
The integrated autocorrelation time of O3 decreases with
increasing tf and seems to approach a plateau value for
large tf. We cannot exclude that τint increases for very large
tf again, as it is the case for the principal chiral model,
discussed below.
A perfect collapse of the data for the different lattices

sizes would also imply that critical slowing down is
eliminated completely. However we see a slight increase
of τint with increasing L. This is studied below for a fixed
value of tf=L2 using higher statistics. Now let us briefly
comment on the behavior of τint for the observables that we
do not show in the plot. The behavior of τint for O4 is
similar to that of O3. In the case of O1 and O2 the behavior
is different. For O1 we see an increase of τint with
increasing tf. This increase is not dramatic and τint seems
to approach a plateau. For O2 we see a decrease of τint with
increasing tf. It is however less pronounced as for O3

and O4.
Next we performed simulations for tf=L2 ¼ 125=4096≈

0.030517578… fixed. Measurements were performed after
tmeas ¼ 2tf. Here we performed 5 × 106 measurements for
each lattice size. In addition to L ¼ 32, 64, 128, and 256 we
have simulated L ¼ 512. The simulation for L ¼ 512 took

8 hours on one core of a Intel(R) Xeon(R) CPU E5-2660 v3
2.60 GHz. The results for the integrated autocorrelation
times are summarized in Table I.
Looking at the numbers we see that for each observable,

the integrated autocorrelation time is increasing with
increasing lattice size. Fitting the numbers for the observ-
ableO1 with the ansatz τint;1 ¼ cLz, taking into account the
linear lattice sizes L ≥ 32, we get z ¼ 0.112ð4Þ and
χ2=d:o:f: ¼ 1.15. Fits for the other three observables
result in even smaller values for z. Fits with the ansatz
τint ¼ aþ c lnðLÞ seem to be even more adequate. For
example, fitting all data for τint;1 results in c ¼ 1.05ð2Þ and
χ2=d:o:f: ¼ 0.68. We conclude that slowing down is
essentially eliminated.
The CPU time that is used is proportional to the number

of events. There is a small dependence on the mass and the
lattice size of the average number of events within one
update sequence divided by tf. Roughly this ratio equals
1.128 for all our masses and lattice sizes.
Note that our results are consistent with those of

Ref. [18], where the massless case was studied.

0 0.05 0.1
t /Lf

2

0

0.5

1

1.5

2

2.5

τ

L=  32
L=  64
L=128
L=256

0 0.25 0.5 0.75 1
t /Lf

2

0

0.2

0.4

0.6

0.8

τ

L=  16
L=  32
L=  64
L=128

FIG. 1. Integrated autocorrelation time for the observable O3, left the two-dimensional Gaussian model, right the three-dimensional
version. The integrated autocorrelation times are given in units of Ld.

TABLE I. Integrated autocorrelation times for tf=L2 ¼
125=4096 ≈ 0.030517578…. The distance between two sub-
sequent measurements is tmeas ¼ 2tf. For each L, 5 × 106

measurements are performed. The τint are given in units of
tmeas. To get the same normalization as in Fig. 1, the number has
to be multiplied by tmeas=L2 ¼ 250=4096 ≈ 0.061035156…. The
index i of τint;i specifies the observable.

L τint;1 τint;2 τint;3 τint;4

32 7.23(5) 4.80(3) 3.70(3) 3.56(2)
64 8.03(5) 4.80(3) 3.90(4) 3.79(3)
128 8.74(5) 4.95(3) 4.10(4) 3.99(3)
256 9.47(6) 5.09(3) 4.26(4) 4.18(3)
512 10.13(6) 5.16(3) 4.42(4) 4.39(3)
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2. Three dimensions

Next we simulated the three-dimensional Gaussian
model. We simulated the linear lattice sizes L ¼ 16, 32,
64, and 128 for various values of tf. Similar to the two-
dimensional case, we use the masses m ¼ 0.6, 0.3, 0.15,
and 0.075. In Fig. 1 on the right, we give the integrated
autocorrelation time of the observable O3. Also in three
dimensions it turns out that the curves for the different L
fall approximately on top of each other for plotting τint as a
function of tf=L2. Since we have taken L ∝ m−1, it is likely
that actually m2tf should be kept constant.
As for two dimensions, we have measured the number

of events per tMC. We get here ≈1.38. For tf=L2 ¼
1=4 ¼ 0.25 we performed simulations with 5 × 106

measurements. The results of these simulations are sum-
marized in Table II. In contrast to two dimensions, the
autocorrelation times are slightly decreasing with increas-
ing lattice size (decreasing mass). Hence slowing down is
eliminated.

B. The Oð3Þ-invariant nonlinear σ-model
in two dimensions

We performed updates in the (0, 1), (0, 2) and (1, 2)
planes of the spins in a fixed order. For each of the planes,
we used tf ¼ L2. We simulated the model at β ¼ 1.4, 1.5,
1.6, 1.7, and 1.8 on lattices of the linear size L ¼ 68, 110,
190, 346, and 646, respectively. Following Ref. [13]
the correlation length is ξ ¼ 6.90ð1Þ, 11.09(2), 19.07(6),
34.57(7), and 64.78(15) at these values of β, respectively.
Consistent results are given in Ref. [19].

Our results for the observables

E ¼ 1

L2

X
x;μ

s⃗x · s⃗xþμ̂; χ ¼ 1

L2

�X
x
s⃗x

�
2

ð25Þ

and the corresponding integrated autocorrelation times are
summarized in Table III. The integrated autocorrelation
times are given in units of three XYembeddings. In the last
column we give the average number of events divided by
the number of sites for one cycle of three XY embeddings.
The number slowly increases with increasing lattice size.
This has to be taken into account when judging the
performance of the algorithm. The fact that the number
is close to 1 in all cases means that in one cycle, each site is
touched roughly once.
In the case of the energy density E, the integrated

autocorrelation time even decreases with increasing corre-
lation length ξ. On the other hand, for the susceptibility χ,
the integrated autocorrelation time is increasing with
increasing ξ. Fitting with the ansatz τint;χNev=L2 ¼ cξz

gives z ¼ 0.386ð5Þ and χ2=d:o:f: ¼ 7.74, taking all data
into account and z ¼ 0.367ð7Þ and χ2=d:o:f: ¼ 4.93, tak-
ing all data with β ≥ 1.5 into account. On the other hand,
fitting with the ansatz τint;χNev=L2 ¼ aþ c lnðξÞ gives c ¼
0.74ð1Þ and χ2=d:o:f: ¼ 7.82, taking all data into account
and c ¼ 0.80ð2Þ and χ2=d:o:f: ¼ 1.33, taking all data with
β ≥ 1.5 into account. The logarithmic increase of the
integrated autocorrelation time is favored by the fits. In
any case, slowing down is essentially eliminated, since also
the fits with a power law ansatz result in small values for z.
Note that in Ref. [3] slowing down with z ≈ 1 has been

observed for the Oð3Þ-invariant model on the three-
dimensional simple cubic lattice. Furthermore one should
notice that the single cluster algorithm [13] is more efficient
than the event-chain Monte Carlo algorithm and on top
of that provides variance reduced estimators for various
observables.

C. The SUð3Þ × SUð3Þ-invariant principal
chiral model

For an update sequence of the length tf a fixed random
rotation matrix R is used. Then for the next update
sequence a new R is generated.

TABLE II. Autocorrelation times for the three-dimensional
Gaussian model. Integrated autocorrelation times for tf=L2 ¼
1=4 ¼ 0.25. The distance between two subsequent measurements
is tmeas ¼ L3=32 ¼ tfL=8. For each L, 5 × 106 measurements are
performed. The τ are given in units of tmeas.

L τint;1 τint;2 τint;3 τint;4

16 17.32(15) 13.00(11) 7.85(9) 7.59(5)
32 16.71(14) 10.53(9) 7.56(8) 7.12(5)
64 17.08(14) 9.02(8) 7.45(8) 7.04(5)
128 16.82(14) 7.75(5) 7.29(7) 6.87(5)

TABLE III. Our results for the Oð3Þ-invariant nonlinear σ-model on the square lattice.

β E τint;E χ τint;χ Nev=L2

1.4 1.124340(23) 1.476(10) 78.65(10) 1.358(9) 0.954050(12)
1.5 1.203250(14) 1.507(11) 176.67(25) 1.597(13) 0.995291(9)
1.6 1.271421(7) 1.503(12) 447.42(69) 1.937(17) 1.033550(6)
1.7 1.3284761(35) 1.376(12) 1273.9(2.1) 2.306(26) 1.070078(4)
1.8 1.3758734(16) 1.256(11) 3841.2(7.0) 2.739(31) 1.105618(3)
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We measure the following observables, constructed from
fundamental and adjoint correlation functions [16]

GFðx − yÞ ¼ htrðU†
xUyÞi;

GAðx − yÞ ¼ hjtrðU†
xUyÞj2i − 1: ð26Þ

The energies EF and EA and the susceptibilities χF and χA

EF ¼ 1

N
GFð1; 0Þ; EA ¼ 1

N2 − 1
GAð1; 0Þ ð27Þ

χF ¼
X
x∈Λ

GFðxÞ; χA ¼
X
x∈Λ

GAðxÞ ð28Þ

as well as the second moment correlation length

ξF ¼
ðχF=FF−1Þ1=2
2sinðπ=LÞ ; FF ¼

X
x

e2πix0=LGFðxÞ: ð29Þ

In Table IV we give the basic parameters of our runs and
our result for the correlation length ξF. We have chosen the
linear lattice size L such that L=ξF ≈ 11 for all values of β.
We performed a large number of simulations, varying the
length tf of the update sequence. We find that the results
from various runs are compatible and agree also with

results from the literature [16,17], confirming the correct-
ness of our implementation of the algorithm.
In this particular study, we also measure in time intervals

which are smaller than tf in order to reveal the scaling
behavior with long update sequences. Our estimates of the
integrated autocorrelation times are shown in Fig. 2. We
give both the autocorrelation time and the length tf of the
update sequence normalized by the average number of
events divided by the number of sites L2. We observe a
rather weak dependence on the length tf of the update
sequence, with a shallow minimum. In particular for
sequences with a length tf such that 0.1 up to 1 events
per site occur, we see very little variation.
Next we study in more detail how the autocorrelation

times scale with the correlation length ξF. To this end, for
each value of β, we determine tf at which the integrated
autocorrelation time is minimal. In Fig. 3, the correspond-
ing minimal integrated autocorrelation times for four

TABLE IV. Parameters of the runs for the principal chiral
model and our results for the correlation length ξF.

β L ξF L=ξF

1.5 32 3.01629(4) 10.6
1.65 64 5.4549(2) 11.8
1.825 128 11.679(6) 11.0
1.985 256 23.41(5) 10.9

FIG. 2. Integrated autocorrelation time of the susceptibility as a function of the average number of events within one update sequence
divided by the lattice volume. One the left/right we give the results for the fundamental/adjoint representation. In both cases, we observe
a weak dependence on the length of the sequence and a shallow minimum.

FIG. 3. Scaling of the integrated autocorrelation times with the
correlation length. We observe dynamical critical exponents z
well below 1 in all cases.
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different observables are plotted against the correlation
length.
The behavior of τint;χA and τint;χF can be described

reasonably well by a power law behavior with z ≈ 0.3
and 0.5, respectively. This behavior is indicated by the two
solid lines in Fig. 3. In the case of the energies EA and EF,
the integrated autocorrelation is even decreasing, going
from β ¼ 1.65 to 1.985. We conclude that the dynamical
critical exponent z is well below 1 and hence critical
slowing down is essentially eliminated.

V. CONCLUSIONS AND OUTLOOK

We applied the event-chain Monte Carlo algorithm [1–4]
to asymptotically free models in two dimensions. In the
literature, these models are considered as toy models of
lattice QCD that allow for testing of algorithmic and
theoretical ideas in a simplified setting. In a preliminary
study, we applied the event-chain Monte Carlo to free field
theory on a square and a simple cubic lattice. We find
that critical slowing down is eliminated. This is quite
astonishing for an algorithm, where local changes of the
field variables are performed. Next we studied the two-
dimensional XY-model. We do not discuss our results in
detail. They corroborate the findings of [18]: At low
temperatures, in the spin wave phase, slowing down is
eliminated, which is consistent with our free field theory
result. On the other hand, in the high temperature phase,
the physics is governed by vortices. Here we find slowing
down with z ≈ 2, even though the amplitudes of the
integrated autocorrelation times are considerably reduced
compared with the local Metropolis algorithm. One should
note however that for this model the over-relaxation
algorithm [14] gives z ≈ 1 in both phases and the cluster
algorithm eliminates slowing down completely [13,20]. In
order to apply the event-chain Monte algorithm to the
Oð3Þ-invariant nonlinear σ-model and the SUð3Þ × SUð3Þ
chiral model, we use an embedding of the XY-model. In the
case of the Oð3Þ-invariant model this simply means that
one picks out two of the three components of the field.
During one sequence of updates only these two compo-
nents are updated. For the next sequence a new pair of
components is taken. In the case of the SUð3Þ × SUð3Þ
principal chiral model the embedding is a bit more
complicated. We follow Ref. [9] whose authors used such
an embedding in the context of the multigrid algorithm. For
details see Sec. III C.
We find for both the Oð3Þ-invariant nonlinear σ-model

and the SUð3Þ × SUð3Þ chiral model that critical slowing
down is essentially eliminated. While this is certainly
encouraging with regard to the application to lattice
QCD, open questions remain. What should a coherent
embedding ofUð1Þ variables in the gauge theory look like?
Will the event-chain Monte Carlo algorithm speed up
the decorrelation of topological objects that are present
in QCD?
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APPENDIX A: PROOF OF STABILITY

We have to show that the infinitesimal update by ϵ
preserves the target distribution

πðXÞ ¼ 1

2VZ
expð−S½ϕ�Þ; ðA1Þ

where Z is the partition function of the lattice model and
the factors 2 and V give the number of possible values of
σ and x̃. Let us write the update probabilities defined in
Sec. II as TðY ← XÞ. Then stability means

πðYÞ ¼
X
X

TðY ← XÞπðXÞ; ðA2Þ

where
P

X is a shorthand for the integral over the field ϕ
and the sums over x̃ and σ. As a first step, we list the
configurations X that can end up in a given Y ¼ ðϕ; σ; x̃Þ,
after an update step.

(i) X0 given by ϕ the same as for Y, σ is replaced by −σ
and the position of the walker x̃ remains the same.

(ii) Xi given by ϕ is the same as for Y, σ is the same as
for Y and x̃ ¼ yi, meaning that the walker is hopping
to its interaction partner yi.

(iii) Xnþ1 given by ϕx̃ − σϵ, ϕx with x ≠ x̃ are the same
as for Y, σ and x̃ keep their value.

Hence Eq. (A2) can be written as

πðYÞ ¼
Xnþ1

i¼0

TðY ← XiÞπðXiÞ: ðA3Þ

Note that the probability density of Xi for i ≤ n is the same
as that of Y, since the field ϕ is the same. The probability
density of Xnþ1 is

πðXnþ1Þ ¼ πðYÞ exp
�
−
X
i

½si;xðϕx̃ − σϵÞ − si;xðϕx̃Þ�
�

¼ πðYÞ
�
1þ σ

Xn
i¼0

∂si;x̃
∂ϕx̃

ϵþOðϵ2Þ
�
: ðA4Þ

Now let us work out the transition probabilities,

TðY←XiÞ¼ 1−pi

¼max

�
0;−σ

∂si;x̃
∂ϕx̃

ϵ

�
þOðϵ2Þ for i≤ n: ðA5Þ

Note that for i ¼ 0 the sign of σ changes, while for
1 ≤ i ≤ n the hopping of the walker along with Eq. (3)
produces a minus sign. Finally
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TðY←Xnþ1Þ¼
Yn
i¼0

pi¼
Yn
i¼0

min

�
1;1−σ

∂si;x̃
∂ϕx̃

ϵ

�
þOðϵ2Þ

¼ 1þ
Xn
i¼0

min
�
0;−σ

∂si;x̃
∂ϕx̃

ϵ

�
þOðϵ2Þ: ðA6Þ

Now we can put things together,

Xn
i¼0

TðY ← XiÞπðXiÞ þ TðY ← Xnþ1ÞπðXnþ1Þ

¼ πðYÞ
�Xn

i¼0

max

�
0;−σ

∂si;x̃
∂ϕx̃

ϵ

�
þOðϵ2Þ

�

þ πðYÞ
�
1þ σ

Xn
i¼0

∂si;x̃
∂ϕx̃

ϵþOðϵ2Þ
�

×
�
1þ

Xn
i¼0

min
�
0;−σ

∂si;x̃
∂ϕx̃

ϵ

�
þOðϵ2Þ

�

¼ πðYÞ½1þOðϵ2Þ�: ðA7Þ

Contributions OðϵÞ exactly cancel each other.

APPENDIX B: AUTOCORRELATION TIMES

The autocorrelation function of an observable A is
given by

ρAðtÞ ¼
hAiAiþti − hAi2
hA2i − hAi2 ; ðB1Þ

where the index of A gives the position in the Markov
chain. The modulus of the autocorrelation function is
bounded from above by an exponentially decaying func-
tion. Following Ref. [21] we define

τexp;A ¼ lim
t→∞

sup
t

− logðjρAðtÞjÞ
ðB2Þ

and the exponential autocorrelation time as

τexp ¼ supAτexp;A; ðB3Þ

which characterizes the Markov chain. Since τexp is hard to
compute, we determine integrated autocorrelation times.
The integrated autocorrelation time of the observable A is
given by

τint;A ¼ 0.5þ
X∞
t¼1

ρAðtÞ: ðB4Þ

The statistical error of the estimate of hAi is

ϵA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2τint;A
n

σ2A

r
; ðB5Þ

where n is the number of measurements and

σ2A ¼ hA2i − hAi2 ðB6Þ

is the variance. Computing τA, we use the estimate of ρAðtÞ
obtained from our simulation. Therefore the summation in
Eq. (B4) has to be truncated at some finite tmax. Since ρAðtÞ
is falling off exponentially at large distances, the relative
statistical error becomes large at large distances. Therefore
it is mandatory to truncate the summation at some point that
is typically much smaller than the total length of the
simulation. In the literature one can find various recom-
mendations on how this upper bound should be chosen.
Sokal [21] suggests to take tmax ≈Mτint, where the value of
M should be at least 6.

[1] E. P. Bernard, W. Krauth, and D. B. Wilson, Event-chain
Monte Carlo algorithms for hard-sphere systems, Phys. Rev.
E 80, 056704 (2009).

[2] M. Michel, J. Mayer, and W. Krauth, Event-chain
Monte Carlo for classical continuous spin models, Euro-
phys. Lett. 112, 20003 (2015).

[3] Y. Nishikawa, M. Michel, W. Krauth, and K. Hukushima,
Event-chain algorithm for the Heisenberg model: Evidence
for z ≃ 1 dynamic scaling, Phys. Rev. E 92, 063306 (2015).

[4] S. Kapfer and W. Krauth, Irreversible Local Markov Chains
with Rapid Convergence towards Equilibium, Phys. Rev.
Lett. 119, 240603 (2017).

[5] R. H. Swendsen and J.-S. Wang, Nonuniversal Critical
Dynamics in Monte Carlo Simulations, Phys. Rev. Lett.
58, 86 (1987).

[6] U. Wolff, Collective Monte Carlo Updating for Spin
Systems, Phys. Rev. Lett. 62, 361 (1989).

[7] J. Goodman and A. D. Sokal, Multigrid Monte Carlo
method. Conceptual foundations, Phys. Rev. D 40, 2035
(1989).

[8] R. C. Brower and P. Tamayo, Embedded Dynamics for φ4

Theory, Phys. Rev. Lett. 62, 1087 (1989).
[9] T. Mendes, A. Pelissetto, and A. D. Sokal, Multigrid

Monte Carlo via XY embedding. General theory and

TESTING THE EVENT-CHAIN ALGORITHM IN … PHYS. REV. D 98, 054502 (2018)

054502-9

https://doi.org/10.1103/PhysRevE.80.056704
https://doi.org/10.1103/PhysRevE.80.056704
https://doi.org/10.1209/0295-5075/112/20003
https://doi.org/10.1209/0295-5075/112/20003
https://doi.org/10.1103/PhysRevE.92.063306
https://doi.org/10.1103/PhysRevLett.119.240603
https://doi.org/10.1103/PhysRevLett.119.240603
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevD.40.2035
https://doi.org/10.1103/PhysRevD.40.2035
https://doi.org/10.1103/PhysRevLett.62.1087


two-dimensional OðNÞ-symmetric non-linear σ-models,
Nucl. Phys. B477, 203 (1996).

[10] M. Hasenbusch and K. Pinn, Computing the roughening
transition of Ising and solid-on-solid models by BCSOS
model matching, J. Phys. A 30, 63 (1997).

[11] M. Hasenbusch, The Binder cumulant at the Kosterlitz-
Thouless transition, J. Stat. Mech. Theor. Exp. 2008,
P08003 (2008).

[12] J. Balog, M. Niedermaier, F. Niedermayer, A. Patrascioiu,
E. Seiler, and P. Weisz, Comparison of the O(3) bootstrap
σ model with the lattice regularization at low energies, Phys.
Rev. D 60, 094508 (1999).

[13] U. Wolff, Asymptotic freedom and mass generation in the
O(3) nonlinear σ-model, Nucl. Phys. B334, 581 (1990).

[14] J. Apostolakis, C. F. Baillie, and G. C. Fox, Investigation of
the two-dimensional O(3) model using the overrelaxation
algorithm, Phys. Rev. D 43, 2687 (1991).

[15] U. Wolff, Simulating the all-order strong coupling expan-
sion III: OðNÞ sigma/loop models, Nucl. Phys. B824, 254
(2010); Erratum B834, 395(E) (2010).

[16] G. Mana, A. Pelissetto, and A. D. Sokal, Multigrid
Monte Carlo via XYembedding. II. Two-dimensional SU(3)
principal chiral model, Phys. Rev. D 55, 3674 (1997).

[17] M. Hasenbusch and S. Meyer, Multigrid acceleration for
asymptotically free theories, Phys. Rev. Lett. 68, 435 (1992).

[18] Z. Lei and W. Krauth, Irreversible Markov chains in spin
models: Topological excitations, Europhys. Lett. 121,
10008 (2018).

[19] J. Balog, M. Niedermaier, F. Niedermayer, A. Patrascioiu,
E. Seiler, and P. Weisz, Comparison of the O(3) bootstrap
σ model with the lattice regularization at low energies, Phys.
Rev. D 60, 094508 (1999).

[20] U.Wolff, CollectiveMonte Carlo updating in a high precision
study of the x-y model, Nucl. Phys. B322, 759 (1989).

[21] A. D. Sokal, Monte Carlo Methods In Statistical Mechanics:
Foundations and new Algorithms, Cours de Troisième
Cycle (Lausanne, Switzerland, 1989); N. Madras and
A. D. Sokal, The pivot algorithm: A highly efficient Monte
Carlo method for the self-avoiding walk, J. Stat. Phys. 50,
109 (1988).

MARTIN HASENBUSCH and STEFAN SCHAEFER PHYS. REV. D 98, 054502 (2018)

054502-10

https://doi.org/10.1016/0550-3213(96)00376-8
https://doi.org/10.1088/0305-4470/30/1/006
https://doi.org/10.1088/1742-5468/2008/08/P08003
https://doi.org/10.1088/1742-5468/2008/08/P08003
https://doi.org/10.1103/PhysRevD.60.094508
https://doi.org/10.1103/PhysRevD.60.094508
https://doi.org/10.1016/0550-3213(90)90313-3
https://doi.org/10.1103/PhysRevD.43.2687
https://doi.org/10.1016/j.nuclphysb.2009.09.006
https://doi.org/10.1016/j.nuclphysb.2009.09.006
https://doi.org/10.1016/j.nuclphysb.2010.03.029
https://doi.org/10.1103/PhysRevD.55.3674
https://doi.org/10.1103/PhysRevLett.68.435
https://doi.org/10.1209/0295-5075/121/10008
https://doi.org/10.1209/0295-5075/121/10008
https://doi.org/10.1103/PhysRevD.60.094508
https://doi.org/10.1103/PhysRevD.60.094508
https://doi.org/10.1016/0550-3213(89)90236-8
https://doi.org/10.1007/BF01022990
https://doi.org/10.1007/BF01022990

