
 

B0-B̄0 mixing: Matching to HQET at NNLO

Andrey G. Grozin,1,2,3,4 Thomas Mannel,2 and Alexei A. Pivovarov2
1PRISMA Cluster of Excellence, Johannes Gutenberg Universität,

Staudingerweg 9, 55128 Mainz, Germany
2Theoretische Elementarteilchenphysik, Naturwissenschaftlich-Technische Fakultät,

Universität Siegen, Walter-Flex-Str. 3, 57068 Siegen, Germany
3Budker Institute of Nuclear Physics SB RAS, Lavrentyev st. 11, Novosibirsk 630090, Russia

4Novosibirsk State University, Pirogova st. 2, Novosibirsk 630090, Russia

(Received 19 June 2018; published 24 September 2018)

We compute perturbative matching coefficients to the heavy quark effective theory (HQET)
representation for the QCD effective local ΔB ¼ 2 Hamiltonian that determines the mass difference in
the B0-B̄0 system of states. We report on the results at next-to-next-to-leading order in the strong coupling
constant for matching coefficients of two physical operators in HQET. Our results provide firm
confirmation that the recent next-to-leading order sum rules analysis of the bag parameter Bq is stable
with regard of inclusion of higher order radiative corrections. As a byproduct of our calculation we give a
fully analytical solution for the one-loop QCD-to-HQET matching problem: we present the explicit
formulas for the renormalization of four-quark operators of the full bases in both QCD and HQET and the
expressions for matching coefficients in a closed form.
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I. INTRODUCTION

The accuracy of theoretical predictions for the neutral
meson mixing within the standard model (SM) has been
steadily improving over the last years [1–3]. The main
reason for this progress is due to better numerical precision
achieved for the numerical values for hadronic matrix ele-
ments in the lattice simulations (e.g., [4,5]). Nevertheless,
recently some new results with a competitive level of
accuracy appeared in the domain of analytical computation
based on the sum rules approach [6,7]. The latter calcu-
lation has become possible due to the technical advance of
integral computation at three loops [8]. At present, the high
precision of experimental material provides for good
opportunities for searches of physics beyond the SM [9],
and these new theoretical predictions for the mixing within
the SM are important since the search for new physics
depends heavily on the accurate knowledge of numerical
values of low energy parameters [10,11]. The mixing of the
neutral B mesons is dominated by the top-quark contribu-
tion and hence looks directly to the ultraviolet (UV) new
physics having long distance effects under control. The
concept of effective theories allows for getting better

precision for the theoretical predictions due to separation
of scales [12–14] that essentially improves on old electro-
weak results [15]. Clearly, the most crucial point of such
an improvement is perturbation theory (PT) corrections at
the lowest scales involved in the analysis. This motivates
our research—we compute next-to-next-to-leading order
(NNLO) corrections to the matching of QCD to heavy
quark effective theory (HQET) that is applicable at the
scales of the order of few ΛQCD. Some partial results have
already been published [16].
The paper is organized as follows. In the next section we

briefly introduce notation just for the paper to be self-
contained (the details can be found in [16]) and give our
main results. In Sec. III we describe the technique of the
computation. In Sec. IV we briefly discuss implications of
our calculation for phenomenology. In the summary section
we give our conclusions.

II. OPERATORS AND WILSON COEFFICIENTS

In the SM the B0-B̄0 transition is described by a nonlocal
expression of quark scattering at loop level. The most
important corrections to the leading electroweak term are
the contributions of strong interactions. They can be
computed within QCD perturbatively as the relevant scale
is of the order of the meson mass mB and is much larger
than QCD infrared scale ΛQCD.
In this section we repeat some formulas from [16] to

introduce notation. More details are given in [16].
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A. QCD: Below mW

A relevant scale for the description of B0-B̄0 physics is
around the B-meson mass mB that is kinematically satu-
rated by the b-quark mass mb. After integrating out
particles of the SM that are heavier than b quark the
effective Hamiltonian for the process of B0-B̄0 mixing
reads

H ¼ CðmW;mt; μ; αsðμÞÞQðμÞ; ð2:1Þ

with

QðμÞ ¼ q̄Lγαbq̄LγαbðμÞ: ð2:2Þ

The quantity QðμÞ is a local renormalized operator with
ΔB ¼ 2. One can choose a low normalization point μ ∼mb
for the operatorQwhile large logarithms of the scales ratio,
lnðmW=mbÞ, in the Wilson coefficient CðmW;mt; μ; αsðμÞÞ
can be regularly resummed with renormalization group
techniques. At present the coefficient CðmW;mt; μ; αsðμÞÞ
is known at the next-to-leading order (NLO) of the
expansion in the strong coupling constant that gives the
accuracy of a few percent [12–14]. The renormalization
properties of the operator Q are a bit peculiar but well
understood and intensively discussed in the literature. The
point is that the calculations are usually and dominantly
performed in dimensional regularization and one has to
close up the algebra of Dirac gamma matrices, which is
infinitely dimensional in general d-dimensional space. This
is an outstanding problem and has been much discussed in
the literature [17]. Dimensional reduction has been used for
the computation of corrections to the ΔF ¼ 1 Hamiltonian
[18]. A naive dimensional regularization prescription is
introduced in [19]. As a result of using dimensional
regularization for the integral evaluation one requires a
special treatment of Dirac structure and, eventually, the
extension of the operator basis. For the four-quark operator
in question, i.e., QðμÞ in Eq. (2.2), the procedure was
discussed by Buras et al. [20]. The method has been further
analyzed in [21,22]. Note that the anomalous dimensions of
baryon or three quark operators have been computed earlier
within a similar approach [23,24]. A clear presentation of
the techniques is given in [25].
Thus, the effective Hamiltonian in Eq. (2.1) should, in

fact, contain additional evanescent operators and should
explicitly read as

H ¼ CðmW;mt; μ; αsðμÞÞQðμÞ þ CEE; ð2:3Þ

where E is a general notation for a string of evanescent
operators in QCD. Their matrix elements vanish but their
presence in the basis influences the renormalization pattern
and, therefore, evolution of physical operators QðμÞ. The
renormalized operator QðμÞ depends on the choice of the
evanescent ones. By choosing E0 ¼ Eþ aϵQ one obtains a

different renormalized physical operator Q0ðμÞ. At the one-
loop level one gets the relation between the two,

Q0ðμÞ ¼
�
1 − azQE

αsðμÞ
4π

�
QðμÞ: ð2:4Þ

Physical predictions stay independent of the choice of
evanescent operators. We discuss how it is achieved later in
the text.

B. HQET: Below mb

Since the scalemb is still QCD perturbative,mb≫ΛQCD,
one can go lower in scales and remove the explicit
dependence on mb from the matrix element or the
mixing amplitude at low energy. This is achieved by using
HQET [26–28].
The low scale for the operators involved in the mixing

used to be necessary for the lattice computation; however at
present there is sufficient power for lattice simulations
directly at the scale mb. In a computational framework
within analytical methods one matches the theory of QCD
on to HQET where considerable technical simplifications
occur for subsequent computation of sum rules. Thus the
matching is an unavoidable part of the whole computation.
Though there is an approach based on calculation at mb
[29]. The results need an update as the definition of the
operator has been different.
The heavy quark expansion (HQE) of the operator QðμÞ

goes

QðμÞ ¼ 2
X2
i¼1

CiðμÞÕiðμÞ þO
�
ΛQCD

mb

�
; ð2:5Þ

with Õ1ðμÞ ¼ OlðμÞ; Õ2ðμÞ ¼ OsðμÞ. The HQEToperators
Ol;sðμÞ are defined as

Ol ¼ ðq̄LγμhþÞðq̄Lγμh−Þ; Os ¼ ðq̄LhþÞðq̄Lh−Þ: ð2:6Þ

The field hþ annihilates the heavy quark in HQET (moving
with the four velocity v), and h− creates the heavy
antiquark (again moving with the four velocity v), which
is a completely separate particle in the HQET framework.
In HQET one can define its own set of physical and

evanescent operators (see [16]). The general basis is

On ¼ ðq̄γn⊥hþÞðq̄γn⊥h−Þ; O0
n ¼ ðq̄iγn⊥hjþÞðq̄jγn⊥hi−Þ;

ð2:7Þ

and q is a light fermion that is usually a chiral one, q≡ qL.
A choice for a basis in HQET is an antisymmetrized
product of transverse gamma’s,

γμ⊥ ¼ γμ − vμ=v: ð2:8Þ
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Then γn⊥ is a notation for an antisymmetrized product of n
transverse gamma matrices. We sometimes call the number
n a rank of the product and, therefore, of the corresponding
operator.
For our two-loop calculation it is more convenient to

change the operator basis in the physical sector from the
standard fOl;Osg [16] to fOl;Opg with

Op ¼ Os þ
1

4
Ol: ð2:9Þ

The operators fOp;Olg do not mix under renormalization
at the one-loop level [30]. The expression of operators
fOl;Opg through the basis operators fOn;O0

ng is

Ol ¼ O1 −O0; Op ¼ 3

4
O0 þ

1

4
O1: ð2:10Þ

The matching pattern of the QCD operator QðμÞ at
μ ¼ mb then reads

QðmbÞ ¼ 2fClðmbÞOlðmbÞ þ CpðmbÞOpðmbÞ þ � � �g;
ð2:11Þ

where dots denote the contribution of evanescent operators.
We define a PT expansion of the matching coefficients

Cl;pðmbÞ as

ClðmbÞ ¼ 1þ αsðmbÞ
4π

Cð1Þ
l þ

�
αsðmbÞ
4π

�
2

Cð2Þ
l ;

CpðmbÞ ¼
αsðmbÞ
4π

Cð1Þ
p þ

�
αsðmbÞ
4π

�
2

Cð2Þ
p : ð2:12Þ

Both fOl;Osg and fOl;Opg bases are convenient since at
the leading order (LO) there is a single operator Ol in the
matching relation and the other operator (Os or Op) first
appears at NLO.
In the HQET limit the theory has nl massless flavors and

the coupling constant in Eq. (2.12) is defined accordingly

as αðnlÞs .
At NLO the values of the matching coefficients in

fOl;Opg basis are [30–32]

Cð1Þ
l ðmbÞ ¼ −

ðN − 1Þð7N þ 15Þ
2N

;

Cð1Þ
p ðmbÞ ¼ −2ðN þ 1Þ; ð2:13Þ

where N is a number of colors for the SUðNÞ gauge group.
Note the difference with the fOl;Osg basis that is tradi-
tionally used at NLO in the literature,

Cð1Þ
l ðls-basisÞ ¼ −8N2 − 9N þ 15

2N
: ð2:14Þ

In the present paper we have computed the NNLO
contributions to the coefficients fCl; Cpg, which is the
main result of the paper.

The coefficient Cð2Þ
p ðmbÞ reads

Cð2Þ
p ¼ ðN þ 1Þ

�
38

9
nl −

8

3
I0 −

2

9

4N2 þ 9N − 29

N
π2

−
686N3 − 563N2 þ 1599N þ 18

36N2

�
: ð2:15Þ

Here I0 is one of the master integrals of the computation
that reads

I0 ¼ π2 logð2Þ − 3

2
ζð3Þ ¼ 5.038…

Note that the PT expansion in HQET goes over the
nl-flavored coupling constant since there are just nl flavors
in the low energy theory. In QCD we have in addition an
active heavy quark b and, therefore, nl þ 1 flavors.
For the number of colors N ¼ 3 and the number of

massless flavors nl ¼ 4, the numerical values of the
expansion coefficients are

Cp ∼ f0;−8;−311.166g:

One sees that the convergence of PT series for quantity
CpðmbÞ in the renormalized coupling constant αsðmbÞ with
nl ¼ 4 is marginal.
The coefficient Cð2Þ

l is

Cð2Þ
l ¼ ðN − 1Þ

��
N þ 3

3N
π2 þ 123N þ 211

24N

�
nl

− 2
N2 þNþ 1

N2
I0 − 2ðN − 1ÞN

2 þ 2N þ 2

N2
ζð3Þ

−
43N3 þ 111N2 − 111N − 275

48N2
π2

−
13518N3 þ 8456N2 − 7981Nþ 35037

576N2

�
: ð2:16Þ

For N ¼ 3 and nl ¼ 4 the numerical values of the coef-
ficients of the consecutive powers of the coupling constant
are

Cl ∼ f1;−12;−175.559…g:

The coefficient of the nl structure is different from the one
given in our early paper [16] for two reasons. First, the
mixing of operators fOl;Osg has not been accounted for,
and second, the expansion of ΓðϵÞ at NLO has not been
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done to a necessary order in ε [up to OðϵÞ, in fact] that has
caused a finite shift proportional to π2 in the NNLO
coefficient. The operators fOl;Opg do not mix with each
other at the αs order.
The results (2.15) and (2.16) can be rewritten at N ¼ 3,

nl ¼ 4 as

Cð2Þ
p ¼ −25.333β0 − 100.055 ¼ −211.111 − 100.055

¼ −311.166;

Cð2Þ
l ¼ −43.906β0 þ 190.323 ¼ −365.882þ 190.323

¼ −175.560:

So, the naive non-Abelianization [33] works moderately
well: the β0 terms are about two times larger than those
without β0.
The results for the matching coefficients correspond to

the normalization point mb ≡mpole
b , μ ¼ mpole

b . One sees
that the NNLO corrections are rather large. Their calcu-
lation is crucial for estimating the reliability of the results at
NLO in PT. We discuss some physical implications of the
obtained results later.
A note on subtraction scheme dependence is in order

here. The actual form of the matching coefficients depends
on the renormalization scheme used in the calculations.
Generally, the MS subtraction scheme is standard for
dimensionally regularized integrals. The operators in
Eqs. (2.1) and (2.5) are defined within a minimal sub-
traction scheme in QCD and HQET correspondingly, and
the coefficients in Eqs. (2.1) and (2.5) are obtained in MS-
scheme as well. While the whole mixing amplitude in the
SM does not depend on any scheme used for constructing
the operator product expansion (OPE) the coefficients in
Eqs. (2.1) and (2.5) do depend simply because the
corresponding operators are defined in a particular sub-
traction scheme. This is a standard situation within the OPE
analysis as one expands a physical amplitude over the UV
subtracted operators that are chosen conventionally with
the coefficients that correspond to a particular definition of
the operators. Only a product of the coefficients and the
matrix elements of the operators has a unique physical
meaning and is scheme independent. However, in our case
there is an additional dependence/freedom related to the
extension of the basis of four-quark operators and intro-
duction of evanescent operators. It is a new feature
compared to just the change of UV subtraction procedure.
The renormalization of four-quark operators in dimensional
regularization has been discussed at length in the original
papers on the subject [20–23]. We use the standard basis of
four-quark operators in QCD with evanescent operators as
defined in [20]. As for HQET, our extended basis with
evanescent operators has been introduced in Ref. [16]. We
follow the choice of Ref. [16] in the present paper. The
scheme dependence, i.e., the sensitivity to both a standard

UV subtraction and the choice of evanescent operators,
disappears after one computes properly the matrix elements
(ME) of the operators used in the OPE. The values of the
matrix elements depend on the definition of the operators
and this freedom cancels the dependence on the scheme in
the matching coefficients. In Ref. [7] there has been given
an explicit example of such a cancellation with MEs
evaluated within the sum rules technique. In case the
MEs are computed on the lattice one must supply the
transition coefficients (matching) to the lattice operators
that again cancel the dependence on the basis; an explicit
discussion can be found in Ref. [31]. Thus, theoretically the
dependence on the operator basis is completely under
control. Our matching coefficients are given in the well-
defined fixed basis and can be used with MEs of the
paper [7].

III. DESCRIPTION OF COMPUTATION

QCD operators can be expanded in 1=m in terms of
HQET operators,

QðμÞ ¼ CðμÞOðμÞ þ 1

m
BðμÞPðμÞ þO

�
1

m2

�
; ð3:1Þ

where QðμÞ is the column of renormalized QCD operators,
OðμÞ is the column of renormalized HQET operators, and
CðμÞ is the matrix of matching coefficients. For example,
the leading matching coefficients C for heavy-light quark
currents were calculated in [33–36].
Here we follow the same procedure but for the four-

quark operators. First we calculate the bare matching
coefficients

Q0 ¼ C0O0; Q0 ¼ ZðμÞQðμÞ; O0 ¼ Z̃ðμÞOðμÞ;
CðμÞ ¼ Z−1ðμÞC0Z̃ðμÞ; ð3:2Þ

where ZðμÞ and Z̃ðμÞ are the matrices of renormalization
constants in QCD and HQET (we omit 1=m corrections).
This is done by equating the on-shell matrix element ofQ0,

hb̄djQ0jbd̄i ¼ Zos
QZ

os
q Γ0; ð3:3Þ

where Zos
Q is the on-shell heavy-quark field renormalization

constant, Zos
q is the on-shell light-quark renormalization

constant, and Γ0 is the vertex function of Q0, to C0 times
the corresponding on-shell matrix element ofO0. If all light
quarks (including the charmed quark c) are considered
massless, all loop corrections to the HQET quantities Z̃os

Q ,
Z̃os
q , Γ̃0 vanish in dimensional regularization because they

contain no scale.
The two-loop results for Zos

Q [37] and Zos
q [35] are known.

We calculate Γ0 up to two loops using the REDUCE package
RECURSOR [38], similarly to [33]. The basis of antisymme-
trized products of γ⊥ allows us to project onto individual
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HQET operators easily. The calculation is done in an
arbitrary covariant gauge; we check that the on-shell matrix
element (3.3) is gauge invariant (Zos

Q and Zos
q are gauge

invariant up to two loops). If we keep only the (gauge-
invariant) subset of diagrams in which only b quark and the
light quark belonging to the same color-singlet current
interact, we successfully reproduce the two-loop matching
coefficients [33,35] of the heavy-light currents with the
Dirac structures 1, =v, γ⊥.
The quantities Γ0, Zos

Q , Z
os
q are calculated via the nf-

flavor bare coupling g
ðnfÞ
0 ; we reexpress them via the

renormalized α
ðnfÞ
s ðμÞ. The renormalization constant matrix

ZðμÞ is also expressed via α
ðnfÞ
s ðμÞ. However, the renorm-

alization constant matrix Z̃ðμÞ is expressed via αðnlÞs ðμÞ,
nl ¼ nf − 1. We have to use the decoupling relation

between α
ðnfÞ
s ðμÞ and αðnlÞs ðμÞ; see, e.g., an introductory

review [39]. It is most convenient to perform matching at
μ ¼ m, the on-shell mass of the b quark. Then

α
ðnfÞ
s ðmÞ ¼ αðnlÞs ðmÞ

�
1þ TF

π2

9
ε
αðnlÞs ðmÞ

4π

�
ð3:4Þ

with TF ¼ TðRÞ ¼ 1=2 for fermions in fundamental rep-
resentation. We need this OðεÞ term because the one-loop
QCD matrix element contains poles in 1=ε.
The computation has been done in leading logs in

[40,41] where LO anomalous dimension for Ol has been
found. It happens to be equal to that of the simple product
of two heavy-light currents. In higher orders this factori-
zation does not necessarily persist. The standard result for
the coefficients Cl;p at NLO has been obtained in [30–32].
In our paper [16] we have calculated the NNLO con-

tribution of the leading order in nl only. This allows one to
estimate the full results for the two-loop matching coef-
ficients using the approximate method of naive non-
Abelianization [33]. Presently available techniques allow
for the analytical calculation of any number of fermionic
bubbles (e.g., chapter 8 in [28], also available as [42]) that
can be converted into the β0-dominance estimates of the
matching coefficients at any order of perturbative expan-
sion. While the estimate is technically feasible, the quanti-
tative validity of the approximation for a phenomenological
analysis is not immediately clear (e.g., see some discussion
in [43]).
General description of matching calculations given

above is well known. In our case of matching four-quark
operators of QCD onto four-quark operators in HQET there
is a subtlety of using dimensional regularization caused by
the presence of spurious operators that formally vanish in
four-dimensional space. Therefore, one organizes the basis
of operators in both QCD and HQET in physical and
evanescent sectors. In QCD the operators are symbolically
Q ¼ fQ;Eg (do not confuse the concrete operator Q and

general notation for the whole set in QCD). In HQET the
operators are O ¼ fOl;Op; eig. The matching is by neces-
sity a relation between whole basis sets of the operators in
QCD and in HQET and it reads in general matrix form

Q ¼ CO: ð3:5Þ

Here CO denotes a matrix multiplication of the matrix of
matching coefficients C and the string (one-dimensional
matrix) of operators of the basis.
The renormalization pattern of the operators in Eq. (3.5)

(including evanescent ones) is

Q ¼ Z−1QB; O ¼ Z̃−1OB; ð3:6Þ

where Z; Z̃ are the renormalization matrices andQB,OB are
bare images of renormalized operators in QCD and HQET.
One obtains for the matching in Eq. (3.5)

QB ¼ ZCZ̃−1OB: ð3:7Þ

The matching coefficients can be found by taking the
matrix elements on shell in HQET from both sides of this
relation. And for HQET one has

hOBi ¼ tree level values only ð3:8Þ

because all loops are scaleless and vanish in dimensional
regularization. This is independent of whether the operator
is a physical one or evanescent one. LetOjj be an operation
of projecting on a particular state Pj (operator) and one
chooses a complete system of Pj for the HQET basis such
that OB

i jj ¼ δij. For the basis of four-quark operators this
operation has a simple realization: one takes traces in both
Dirac strings. Since the bare operator of the basis has a
structure of a direct product OB

n ¼ An ⊗ Bn, symbolically,

OB
i jj ¼ trðγðjÞ⊥ AiÞtrðBiγ

ðjÞ
⊥ Þ ∼ δij: ð3:9Þ

The matching coefficients C become

Cmn ¼ ðZ−1ÞnpðQB
pjjÞZ̃jm: ð3:10Þ

This is a working formula. The quantity ðQB
pjjÞ is basically

a bare matching coefficient of the bare operator QB
p from

the QCD basis to the bare operator OB
j in a HQET basis.

The bare matching coefficient depends on one scalemb and
is represented by loop integrals on shell. At NNLO they are
two-loop integrals.
At one-loop level the renormalization matrix in QCD

reads

Z ¼ 1þ αs
4πε

�
zQQ zQE

εzEQ zEE

�
; ð3:11Þ
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where zEQ is obtained from the requirement that matrix
elements of the renormalized evanescent operator EðμÞ
vanish, zEQ ¼ 3ð1 − 1=NÞð3N þ 14 − 22=NÞ. Here zQQ ¼
−3ð1 − 1=NÞ is related to an anomalous dimension of the
physical operatorQ. It is independent of details of the basis.
The quantity zQE ¼ −TF describes the admixture of the
evanescent operator E to the physical one. The quantity zEE
is the anomalous dimension of evanescent operators. Note
that there is more than one evanescent operator in the basis;
however for our computation we need only one indepen-
dent combination of those, and zEE is irrelevant altogether.
At the two-loop level we need only one additional entry to

the renormalization constant Z, which is zð2ÞQQ,

Z ¼ 1þ αs
4πε

�
zQQ zQE

εzEQ zEE

�
þ
�

αs
4πε

�
2
�
zð2ÞQQ �
� �

�
:

ð3:12Þ

The value of zð2ÞQQ is reconstructed from a two-loop
anomalous dimension of the physical operator Q. The
anomalous dimension of the operator QðμÞ is

−
1

2
γQ ¼ zQQ

αs
4π

þ
�
αs
4π

�
2

×

�
1

ϵ

�
β0zQQþ 2zð2ÞQQ− z2QQ

�
− zQEzEQ

	
; ð3:13Þ

with

β0 ¼
11

3
N −

2

3
nf; ð3:14Þ

and nf ¼ nl þ 1 is the number of flavors. For the pertur-
bative expansion of the anomalous dimension of the form

γðαsÞ ¼
αs
4π

γ0 þ
�
αs
4π

�
2

γ1; ð3:15Þ

the coefficient γ1 in the basis described reads [20]

γ1 ¼ N − 1

2N

�
−21þ 57

N
−
19

3
N þ 4

3
nf

�
: ð3:16Þ

In QCD one needs only one evanescent operator for the
whole computation of matching in two loops, just that one
that admixes to Q at NLO even if it can be composed of
several basis operators Qn.
In HQET the renormalization matrix for relevant oper-

ators looks similar to that one in QCD,

Z̃ ¼ 1þ αs
4πε

�
zOO zOe

εzeO zee

�
þ
�

αs
4πε

�
2
�
zð2ÞOO �
� �

�
;

ð3:17Þ

but now the quantity zOO is a 2 × 2 matrix in the subspace
of physical operators fOl;Opg.
In HQET two evanescent operators are necessary for

renormalization of physical operators, one for Ol and one
for Op. For computing the matching coefficients the whole
set of evanescent operators is relevant or at least the one that
Q can match onto at NLO (in fact, there is one operator that
is multiplied by the poles of the matching coefficient and
the other with only finite parts). It shows that, indeed, in
general the whole operator basis should be matched onto.
As for bare coefficients we need two-loop values for

CðQ → Ol;OpÞ and one-loop values for CðQ → jÞ for any
operator Ol, Op, ei and CðE → l; pÞ. One more ingredient
is ZQ on shell at NNLO from [37]. The calculation contains
rather delicate cancellations of infinities (poles in ϵ) and
fixing the finite parts according to sophisticated conven-
tions. To give just an example, the renormalization matrix Z
is expanded, by convention, over the renormalized coupling

αðnlþ1Þ
s ðμÞ while the renormalization matrix Z̃ is expanded,

by convention, over the renormalized coupling αðnlÞs ðμÞ. In
the course of computation of matching coefficients the
poles in ϵ cancel.
We have computed the necessary quantities. The quan-

tity zð2ÞQQ can be extracted from earlier calculations through

anomalous dimensions ofQ at two loops. The matrix zð2ÞOO is
related to the anomalous dimension matrix of the physical
pair ðl; pÞ. One of the entries has been considered in [44]
where the result for the anomalous dimension of Ol has
been given. The whole basis of operators was not explicitly
specified in [44]. We do not compute the corresponding
anomalous dimension independently. It can be extracted
from our calculations though. In fact, one can extract only
the difference γ1 − γ̃1 that reads

γ̃1 − γ1 ¼
�
1 −

1

N

��
nl

�
3þ 5

3
N

�

þ π2
2

3N
ðN − 1Þð2þ 2N þ N2Þ

−
177þ 161N − 3N2 þ 83N3

12N

�
:

Assuming the value for γ1 from Eq. (3.16) with nf ¼
nl þ 1 we have extracted the anomalous dimension γ̃1 of
the HQET operator Ol,

γ̃ð1Þ ¼
�
1 −

1

N

��
−
−165þ 279N þ 35N2 þ 83N3

12N

þ nl
11þ 5N

3
þ π2

2ðN − 1Þð2þ 2N þ N2Þ
3N

�
:

The coefficient nl agrees with our paper [16]. The whole
expression disagrees with the results quoted in Ref. [44].
Numerically we find
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γ̃ð1Þ ¼ 2

27
ð−807þ 78nl − 68π2Þ ¼ −86.3802…

while the result of Ref. [44] reads

γ̃ð1ÞjG ¼ 2

27
ð−1212þ 96nl − 26π2Þ ¼ −80.3415…

for nl ¼ 4 and QCD with N ¼ 3. The irony of life is that
the two quantities γ̃ð1Þ and γ̃ð1ÞjG are rather close numeri-
cally though the analytical expressions for them are quite
different.
As for the calculation at one-loop level the whole

program of renormalization of bases of four-quark oper-
ators in QCD and HQET and matching onto one another
has been explicitly realized in a closed form. The corre-
sponding formulas are given in the Appendix.

IV. IMPLICATIONS FOR PHENOMENOLOGY
OF THE MIXING

The splitting between the mass eigenstates of the B0-B̄0

system is determined, in the SM, by the nondiagonal matrix
element of the effective Hamiltonian (2.1),

Δm ¼ hB0jHjB̄0i ¼ CðmW;mt; μ; αsðμÞÞhB0jQðμÞjB̄0i;
ð4:1Þ

or, more specifically, if the concrete calculations are made
within dimensional regularization, by the expression (2.3).
After the coefficient functions have been determined in
QCD perturbation theory the task is the computation of
hadronic matrix elements of four-quark operators, Q, E.
While for evanescent operators E this task can be trivially
accomplished since by construction hB0jEðμÞjB̄0i ¼ 0, an
accurate determination of numerical values for physical
operators is a genuine QCD-bound-states problem. The
nonperturbative techniques required for the computation
can be QCD sum rules and direct lattice simulation. The
sum rules results for the matrix element hB0jQðmbÞjB̄0i
have been presented earlier [29,45–47] within different
approximation schemes for the Green functions used in the
OPE. The obtained precision has been rather limited by
modern standards though. Until recently the lattice analysis
with fully relativistic heavy quarks was impossible due to
insufficient computational power; therefore the matching to
HQET (2.5) has been a necessity. The NLO results for
matching coefficients to both HQET and to the lattice
representation for the operators were obtained more than a
quarter of a century ago.
The technical breakthrough with computation of three-

loop HQET integrals in Ref. [8] allowed for a NLO analysis
of the mixing matrix element using sum rules in HQET. In
our recent paper [6] we have computed the bag parameter Bd

for B0
d-B̄

0
d mixing at the next-to-leading order of perturbative

expansion for matching coefficient and for the Green

functions entering the sum rules analysis. To evaluate the
matrix element of the mixing we use a vertex (three-point)
correlation function [48]. The analysis uses the splitting of
the whole Green function necessary for the calculation
within OPE and for the sum rule approach [46–48] into
factorizable and nonfactorizable parts. It happens that the
nonfactorizable part starts only at NLO of perturbation
theory and turns out to be small. These features allow for
getting a numerical result of high precision for the bag
parameter. The techniques have also been used for other
four-quark operators in [7].1 The computation of Ref. [7] is
pinning down the important uncertainty for lifetime
differences of the heavy mesons with both b and c quarks.
It is rather a complete analysis but it is limited to only NLO
of the perturbation theory for HQETGreen functions. Future
experimental data may require even more accurate theoreti-
cal predictions. For obtaining still better theoretical accuracy,
the NNLO perturbative corrections to matching coefficients
can be useful. The first step in this direction has been made
in our recent paper [16] where the NNLO corrections pro-
portional to the nl factor have been computed that allowed us
to perform an approximate evaluation of the coefficients
within the naive non-Abelianization (β0-dominance)
approach [33]. In the present paper we have computed
the full NNLO results for matching coefficients. They read
numerically,

ClðmbÞ ¼ 1 − 12as − 175.6a2s ; ð4:2Þ

CpðmbÞ ¼ −8as − 311.2a2s ; ð4:3Þ

where as ¼ αð4Þs ðmbÞ=ð4πÞ. Our calculation of matching
coefficients is an important step in the program of NNLO
description of mixing within analytical methods of compu-
tation. From our results we see that NLO approximation for
matching coefficient may not be reliable since the NNLO
corrections are large. On the other hand, we also
see that the values of corrections to the coefficients by
themselves do not lead to immediate physical conclusions.
One has to add corrections to corresponding Green func-
tions, which determine the OPE for sum rule analysis. Thus,
the NLO correction to Cl requires NLO correction to the
correlator

K ¼
Z

ddx1ddx2eip1x1−ip2x2h0jT|̃2ðx2ÞOlð0Þ|̃1ðx1Þj0i

ð4:4Þ
of the operatorOl for consistent NLO analysis (see Ref. [16]
for more details). In the case of the Op operator the

1Note a minor misrepresentation of the results in [7]: the right-
hand side of Eq. (3.17) should include the factor NCF=4 for
general values of N. The results are correct in QCD for N ¼ 3
since NCF=4 ¼ 1. A. Lenz has confirmed this finding in his
private communication to us.
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corresponding correlator of the Op operator can be taken at
tree-level approximation for obtaining the NLO result for the
QCDmatrix element. With the NNLO correction included to
Cp, one needs the NLO correction to the correlators with
insertion ofOp; this turns out to be feasible [8] and it is even
available for some cases [7]. In case of the NNLO correc-
tions to Cl one has to compute the NNLO corrections to the
correlator (4.4) as well that leads to four-loop integrals,
which are currently beyond known technology.
Note that at NNLO there appear new evanescent oper-

ators that we do not specify explicitly. However, one can
try to choose the basis of evanescent operators such that

Cð2Þ
l becomes smaller or even vanishing (that changes the

numerical value of Cð2Þ
p accordingly) and one can hope to

obtain a chance to avoid the necessity of the computation of
NNLO corrections to the correlator (4.4).
The other possibility to get the most of our NNLO

calculation of matching coefficients even without having
the NNLO results for the correlator (4.4) is to perform a
direct comparison between physical quantities. While most
observables in QCD contain nonperturbative contributions,
there are, in fact, some observables for which one can show
that one may construct a perturbative relation between the
two observables. In such a case the perturbative expansion
acquires an immediate physical meaning and statements
about the size of coefficients as well as on the convergence
of the perturbative series become meaningful. To this end,
while for the individual observables large coefficients may
appear (depending on the definition of the operator matrix
elements), in a relation between these observables the large
coefficients my cancel, once the matrix elements are
defined in the same way in both observables.
As we pointed out above, the bag factor BB turns out to be

small and hence to a good approximation we expect a
perturbative relation between ΔMd and the B-meson decay
constant fB. In fact, it is known that the matching coef-
ficients of the axial current are also large [33], and we may
expect that in a direct comparison of the axial vector current
with ΔMd a well-behaved perturbation theory results.
The matching coefficient of the axial current to HQET

interpolating operator is [33,35]

J ¼ CJ|̃; J ¼ vμJ
μ
5 ¼ q̄=vγ5b; |̃ ¼ q̄γ5hv;

CJðmbÞ ¼ 1 − 2CFas þ CF

�
CF

�
4I0 − 8ζ3 −

5

2
π2 þ 255

16

�

þ CA

�
−2I0 þ 2ζ3 þ

5

6
π2 −

871

48

�

þ TFnl

�
2

3
π2 þ 47

12

�
þ TF

�
−4π2 þ 727

18

��
a2s

¼ 1 −
8

3
as − 31.6a2s ð4:5Þ

with a rather sizable coefficient at NNLO.

The HQET matching (2.5) has a great deal of arbitrari-
ness in distributing the contributions between coefficients
and operators. One concrete choice of fixing the MS-
scheme for the definition of the operators is a current
standard. If we call QðmbÞ our physical quantity determin-
ing δm (again up to the freedom of redefinition the matrix
elements and the coefficients in QCD but we set this aside
now), then the expansion in HQET is not unique in a variety
of aspects: choosing a physical pair of the operators,
changing renormalization scheme, etc. Also clearly, the
freedom of the definition of evanescent operators is not
only the choice of a physical pair but deviation from
minimality. By adding a physical operator to an evanescent
one with a coefficient vanishing at ϵ ¼ 0 we obtain
different renormalized physical operators; see (2.4) and
therefore a different matching coefficient.
While physics, i.e., predictions for observables, does not

depend on this reshuffling of the operator bases, the
independence restores only after adding matrix elements
computed within the same scheme up to the same accuracy.
The magnitude of the correction to a particular coefficient is
not an invariant characteristic of PT expansion and one
should really collect Wilson coefficients and matrix ele-
ments together, which is difficult in QCD since there is no
quantitative scheme for computing hadronic matrix ele-
ments. Lattice simulation may be an exception, but then the
perturbative short distance part of the matrix element
cannot be easily identified.
The full NNLO analysis of the mixing seems to be

feasible, and the most intriguing part is the possibility to
find a basis of evanescent operators in which the NNLO
correction to the matching coefficient of the operator Ol
turns out to be small. This assertion deserves to be validated
in future work.
Note also that the two-loop anomalous dimensions of the

operators fOl;Opg are not very important quantitatively.
The point is that the difference of scales is not large and
summation of logarithms of the scale differences is not
crucial numerically. Indeed, matching is done at mb with
mpole

b ∼ 4.8 GeV (e.g., [49,50]) while the Green functions
necessary for sum rules analysis are computed at the scale
of the order of w0 ∼ 1 GeV. The leading logs of the form
ðαsðw0Þ lnðw0=mbÞÞn, with n > 0 can be summed with the
leading anomalous dimensions of the operators fOl;Opg
which are known while the subleading logs of the form
αsðw0Þðαsðw0Þ lnðw0=mbÞÞn with n ≥ 1 are not large and
can be retained in an expanded form.
Here we check that our results for matching coefficients

allow for a reasonable perturbative expansion of physical
parameters. Recall that the matrix element in QCD is
represented by the expression

hB0jQðμÞjB̄0i ¼ 2

�
1þ 1

N

�
BqðμÞf2B ð4:6Þ
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and therefore BqðμÞ gives a relation between physical
parameters Δm and f2B [we factor out the redefinition
freedom of the operator QðμÞ in QCD considering it fully
under control in perturbation theory]. The perturbation
theory series for the relation between Δm and f2B is
unambiguous and can depend only on Nc and αs (with
all possible reservations that they are not completely PT
quantities). The realization of this idea is given in Eq. (2.18)
of Ref. [16] in the form

C2
JBqðmbÞ ¼ ClðmbÞBl þ Cp

�ð−2N þ 1Þ
2ðN þ 1Þ Bs þ

1

4
Bl

�

ð4:7Þ
or

BqðmbÞ ¼
�
ClðmbÞBl þ Cp

�
−
5

8
Bs þ

1

4
Bl

�	
=C2

J:

ð4:8Þ

Here Bl;s are bag parameters for the HQET operators Ol;s

(see Ref. [16] for more detail). The perturbative corrections
to the parameter Bl have the form [6]

Bl → Bl

�
1 − as

N − 1

2N

�
4

3
π2 − 5

�
− xð2Þl a2s

�
; ð4:9Þ

where xð2Þl represents a yet-unknown NNLO correction to
Bl from HQET sum rules (compare to the parameter X used
in [6] for estimating higher order contributions). We have
extracted the correction to the parameter Bs from Ref. [7]
with the result

Bs → Bs

�
1 − as

8

15

�
9 −

2π2

3

��
: ð4:10Þ

Substituting our results for the coefficients Cl, Cp and the
expression for CJ, we finally obtain the relation between
physical observables in the form

Δm ¼ constð1 − 6.4as − ð4.9þ xð2Þl Þa2sÞf2B: ð4:11Þ

The quantity xð2Þl emerges from NNLO corrections to
HQET sum rules and it is expected to be in the range of
NLO correction, which is just of order unity (compare
assumptions on the parameter X in [6], jXj < 20). The
perturbative expansion in Eq. (4.11) has reasonably small
coefficients as we had expected. We see that all large
coefficients in Cl, Cp, CJ mutually cancel each other and
numbers of order unity survive in the final expression
rending the PT expansion reliable.
The conjecture about the above pattern of perturbative

expansion is quite feasible and can be explicitly checked
once xð2Þl is determined. Note that the idea of reexpressing

the physical quantities through one another with a resulting
PT factor is rather old and has been widely used. It is often
applied as well to observables that are not quite fully
perturbatively related (see, e.g., [14,51]).
Note that the lattice results are based on NLO analysis

for the matching coefficients between continuum and
lattice representations of the operators. While that matching
is different, our computation shows that PT corrections at
NNLO to the matching coefficients can be important at this
level of precision.
If there is no particularly large NNLO contribution to the

sum rule determination of xð2Þl , our numbers show that the
precision of the matrix element at the level of a few percent
even in the presence of NNLO matching can be obtained.
The large corrections are mainly hidden in C2

J. In other
words, singling out the B parameter is very efficient
physically since it has a reasonable perturbative expansion
a posteriori and a bunch of perturbative correction to the
matrix element simply reproduces the correct value of fB.
Note in passing that with the NNLO accuracy of the

leading term one may need to account also for nonleading
terms of HQE [52] while small power corrections have
been accounted in [47].
In general, up-to-date lattice results turn out to be more

precise than sum rule estimates for classical quantities like
decay constants [53,54]. Only due to a special structure
of the observables occurring in the B0-B̄0 mixing one can
still use the sum rules to obtain predictions that are still
competitive with lattice computations.
Extension of our results to the case of B0

sB̄0
s has been

discussed in [16]. As the massms is not large it can be taken
into account in expansion inms=w0 (an interesting example
is given in [55]). We have shown that the strange quark
mass appears in nonfactorizable quantities only at NLO
level while the leading order contributions are hidden in
factorizable parameters like fBs

[53]. Numerically the
parameter ðms=w0Þαsðw0Þ [56] corresponds to NNLO level
but achieving this accuracy requires only one loop calcu-
lations. With formulas given in the Appendix it is rather a
straightforward computation which we are going to present
in future publications.

V. SUMMARY

We have calculated NNLO corrections to matching
coefficients necessary for the analysis of mixing in the
B0-B̄0 system, i.e., for the calculation of bag parameters in
sum rules at three-loop level in HQET [6,7]. The NNLO
corrections happen to be large, however; to a rather large
extent they cancel the large NNLO corrections in the
matching coefficients for the axial current that determines
the B-meson leptonic decay constant, fB. The relation
between experimentally measured quantities Δm and f2B
turns out to be rather well behaved as a perturbative series
up to NNLO. This observation gives a strong ground to our
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estimate of the uncertainties for the QCD bag parameter Bq

along the lines of Refs. [6,16].
We also discuss possible ways of getting invariant

physical predictions from our results independent of the
introduction of evanescent operators in the physical sector
due to renormalization. We have constructed and present
the completely analytical framework for analyzing the
renormalization and matching of four-quark operators at
one-loop level.
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APPENDIX A: RENORMALIZATION OF FOUR-
QUARK OPERATORS AT ONE LOOP: QCD

Let us consider a bare operator

O0 ¼
1

2
ðd̄L0iΓbi0Þðd̄L0jΓbj0Þ; ðA1Þ

where Γ is an arbitrary Dirac matrix. In the Born approxi-
mation its matrix element is

ðA2Þ

For brevity we write it as M0 ¼ T1Γ ⊗ Γ where

Γ1 ⊗ Γ2 ≡ ðv̄di1Γ1u
j1
b Þðūdi2Γ2v

j2
b Þ − ðūdi1Γ1u

j1
b Þðv̄di2Γ2v

j2
b Þ; T1 ≡ δi1j1δ

i2
j2
; T2 ≡ δi1j2δ

i2
j1
: ðA3Þ

The one-loop matrix element is

ðA4Þ

We are interested only in the UV 1=ε divergent terms. Therefore we may treat all quarks as massless and set all external
momenta to 0. Then we need some IR regulator, say, replacing all massless denominators by the ones with some nonzero
mass, or a hard IR cutoff in Euclidean momentum space. Such a regulator is implied, not written explicitly. The MS quark
field renormalization constant is

Zq ¼ 1 − CF
αs
4πε

ð1 − ξÞ; ðA5Þ

where ξ is the gauge fixing parameter.
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Averaging over directions of the loop momentum k in the
integrands, we easily obtain

M1 ¼ CFT1

αs
4πε

�
1

d
γμγνΓγνγμ ⊗ Γ − ξΓ ⊗ Γ

�
;

M2 ¼ CFT1

αs
4πε

�
1

d
Γ ⊗ γμγνΓγνγμ − ξΓ ⊗ Γ

�
;

M3 ¼ TF

�
T2 −

T1

N

�
αs
4πε

�
1

d
Γγνγμ ⊗ γμγνΓ − ξΓ ⊗ Γ

�
;

M4 ¼ TF

�
T2 −

T1

N

�
αs
4πε

�
1

d
γμγνΓ ⊗ Γγνγμ − ξΓ ⊗ Γ

�
;

M5 ¼ −TF

�
T2 −

T1

N

�
αs
4πε

�
1

d
Γγνγμ ⊗ Γγνγμ − ξΓ ⊗ Γ

�
;

M6 ¼ −TF

�
T2 −

T1

N

�
αs
4πε

�
1

d
γμγνΓ ⊗ γμγνΓ − ξΓ ⊗ Γ

�
:

The matrix element (A4) is gauge invariant,

hb̄djO0jbd̄i¼T1Γ⊗Γ

þCFT1

αs
4πε

�
1

d
γμγνΓγνγμ⊗Γþ1

d
Γ⊗ γμγνΓγνγμ−2Γ⊗Γ

�

þTF

�
T2−

T1

N

�
αs
4πε

1

d
ðΓγνγμ−γμγνΓÞ⊗ ðγμγνΓ−ΓγνγμÞ;

ðA6Þ

where only the UV 1=ε divergences are kept in the one-loop
terms. The result for the operator

O0
0 ¼

1

2
ðd̄L0iΓbj0Þðd̄L0jΓbi0Þ ðA7Þ

differs from Eq. (A6) only by the color factors,

hb̄djO0
0jbd̄i¼T2Γ⊗Γ

þCFT2

αs
4πε

�
1

d
Γγνγμ⊗ γμγνΓþ

1

d
γμγνΓ⊗Γγνγμ−2Γ⊗Γ

�

þTF

�
T1−

T2

N

�
αs
4πε

1

d
½γμγνΓγνγμ⊗ΓþΓ⊗ γμγνΓγνγμ

−Γγνγμ⊗Γγνγμ−γμγνΓ⊗ γμγνΓ�: ðA8Þ

Now we specifically consider the operators

On0 ¼
1

2
ðd̄L0iΓnbi0Þðd̄L0jΓnb

j
0Þ;

O0
n0 ¼

1

2
ðd̄L0iΓnb

j
0Þðd̄L0jΓnbi0Þ; ðA9Þ

where

Γn ¼ γ½μ1 � � � γμn� ðA10Þ

is the antisymmetrized product of n γ matrices. We
have [21]

γμΓnγμ ¼ ð−1Þnðd − 2nÞΓn;

γμΓn ⊗ γμΓn ¼ Γnþ1 ⊗ Γnþ1 þ nðd − nþ 1ÞΓn−1 ⊗ Γn−1;

Γnγ
μ ⊗ γμΓn ¼ ð−1Þn½Γnþ1 ⊗ Γnþ1 − nðd − nþ 1Þ

× Γn−1 ⊗ Γn−1�: ðA11Þ

Using these relations twice, we can rewrite the matrix
elements (A6) and (A8) as

hb̄djOn0jbd̄i ¼ hOni þ 2CF
αs
4πε

�ðd − 2nÞ2
d

− 1

�
hOni

ðA12Þ

−TF
αs
4πε

4

d

�
hO0

nþ2i−
hOnþ2i

N

þnðn− 1Þðd−nþ 1Þðd−nþ 2Þ
�
hO0

n−2i−
hOn−2i

N

��
;

hb̄djO0
n0jbd̄i ¼ hO0

ni−CF
αs
4πε

2

d
½hO0

nþ2i− 2nðd−nÞhO0
ni

þnðn− 1Þðd−nþ 1Þðd−nþ 2ÞhO0
n−2i�

−TF
αs
4πε

2

d

�
hOnþ2i−

hO0
nþ2i
N

þð6nðd−nÞ−dðd− 1ÞÞ
�
hOni−

hO0
ni

N

�

þnðn− 1Þðd−nþ 1Þðd−nþ 2Þ
�
hOn−2i−

hO0
n−2i
N

��
;

ðA13Þ

where hOi in the right-hand side are the Born-level matrix
elements.

APPENDIX B: RENORMALIZATION
OF FOUR-QUARK OPERATORS AT

ONE LOOP: HQET

Let us consider the bare HQET operator

Õ0 ¼ ðd̄L0iΓhiþ0Þðd̄L0jΓhj−0Þ; ðB1Þ

where hþ annihilates a heavy quark and h− creates a heavy
antiquark. The one-loop matrix element is
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<b̄d|Õ0|bd̄> = ZqZh

[
+ +

+ + + +

]

= ZqZh

[
M0 + M1 + M2 + M3 + M4 + M5 + M6

]
. ðB2Þ

We are interested only in the UV 1=ε divergent terms.
Therefore we may treat light quarks as massless, set their
external momenta to 0, and set external residual momenta
of HQET (anti-) quarks to 0. An IR cutoff is implied. The
MS HQET field renormalization constant is

Zh ¼ 1þ CF
αs
4πε

ð2þ ξÞ: ðB3Þ

Averaging the integrands over k directions [in particular,

using ðk · vÞ−2 ¼ −ðd − 2Þðk2Þ−1 [33,57]], we easily obtain

M1 ¼ M2 ¼ CFT1

αs
4πε

ð1 − ξÞΓ ⊗ Γ;

M3 ¼ M4 ¼ TF

�
T2 −

T1

N

�
αs
4πε

ð1 − ξÞΓ ⊗ Γ;

M5 ¼ TF

�
T2 −

T1

N

�
αs
4πε

ðd − 2þ ξÞΓ ⊗ Γ;

M6 ¼ −TF

�
T2 −

T1

N

�
αs
4πε

�
1

d
γμγνΓ ⊗ γμγνΓ − ξΓ ⊗ Γ

�
:

The matrix element (B2) is gauge invariant,

hb̄djÕ0jbd̄i

¼
�
T1 þ 3CFT1

αs
4πε

þ TF

�
T2 −

T1

N

�
αs
4πε

d

�
Γ ⊗ Γ

− TF

�
T2 −

T1

N

�
αs
4πε

1

d
γμγνΓ ⊗ γμγνΓ; ðB4Þ

where only the UV 1=ε divergences are kept in the one-loop
terms. The matrix element of the operator

Õ0
0 ¼ ðd̄L0iΓhjþ0Þðd̄L0jΓhi−0Þ ðB5Þ

differs from (B4) only by the interchange T1 ↔ T2.

Now we specifically consider the operators

Õn0 ¼ ðd̄L0iΓ⊥nhiþ0Þðd̄L0jΓ⊥nh
j
−0Þ;

Õ0
n0 ¼ ðd̄L0iΓ⊥nh

j
þ0Þðd̄L0jΓ⊥nhi−0Þ; ðB6Þ

where

Γ⊥n ¼ γ½μ1⊥ � � � γνn�⊥ ; γμ⊥ ¼ γμ − =vvμ: ðB7Þ

Setting γμ ¼ =vvμ þ γν⊥ and using the (d − 1)-dimensional
versions of (A11), we can rewrite the matrix element (B4)
as

hb̄djÕn0jbd̄i
¼ hÕni þ 3CF

αs
4πε

hÕni

− TF
αs
4πε

1

d

�
hÕ0

nþ2i −
hÕnþ2i

N
− 2

�
hÕ0

nþ1i −
hÕnþ1i

N

�

þ ððd − 1Þð2n − dÞ − 2n2Þ
�
hÕ0

ni −
hÕni
N

�

− 2nðd − nÞ
�
hÕ0

n−1i −
hÕn−1i

N

�

þ nðn − 1Þðd − nÞðd − nþ 1Þ
�
hÕ0

n−2i −
hÕn−2i

N

��
:

ðB8Þ

The result for hb̄djÕ0
n0jbd̄i differs only by the interchange

of primed and nonprimed operators in the right-hand side.

APPENDIX C: MATCHING QCD ON HQET
AT ONE LOOP

The one-loop on-shell matrix element of the QCD
operator (A1) is
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ðC1Þ

where

Zos
Q ¼ 1 − CF

g20m
−2ε

ð4πÞd=2 ΓðεÞ
d − 1

d − 3
; ðC2Þ

m is the on-shell mass, and Zos
q ¼ 1 at this order. The Born matrix element of the operator On0 (A9) is

M0 ¼ T1ðΓ⊥n ⊗ Γ⊥n − nΓ⊥n−1 ⊗ Γ⊥n−1Þ, where we have used

Γn ⊗ Γn ¼ Γ⊥n ⊗ Γ⊥n þ nΓ⊥n−1=v ⊗ Γ⊥n−1=v: ðC3Þ

Each one-loop diagram is gauge invariant separately,

M1 ¼ M2 ¼ CFT1

g20m
−2ε

ð4πÞd=2 ΓðεÞ
1

ðd − 2Þðd − 3Þ ½ðd − n − 1Þðd − 2n − 2ÞhÕni

þ nðn − 1Þðd − 2nþ 2ÞhÕn−1i�;

M3 ¼ M4 ¼ TF

�
T2 −

T1

N

�
g20m

−2ε

ð4πÞd=2 ΓðεÞ
1

2ðd − 2Þðd − 3Þ ½−hÕnþ2i þ ðdþ n − 2ÞhÕnþ1i

þ nð3d − 2n − 4ÞhÕni − nðd − nÞðdþ 2n − 4ÞhÕn−1i
− nðn − 1Þðd − nþ 1Þð2d − n − 2ÞhÕn−2i
þ nðn − 1Þðn − 2Þðd − nþ 1Þðd − nþ 2ÞhÕn−3i�;

M5 ¼ TF

�
T2 −

T1

N

�
g20m

−2ε

ð4πÞd=2 ΓðεÞ
1

2ðd − 2Þ
h
−hÕnþ2i þ ðdþ n − 2ÞhÕnþ1i

þ 1

d − 3
ð−½2ðd − 1Þðd − 2Þ þ ðd − 3Þð3d − 4Þn − 2ðd − 3Þn2�hÕni

þ n½d3 − 5d2 þ 6dþ 4þ ðd − 3Þðdþ 4Þn − 2ðd − 3Þn2�hÕn−1iÞ
− nðn − 1Þðd − nþ 1Þð2d − n − 2ÞhÕn−2i
þ nðn − 1Þðn − 2Þðd − nþ 1Þðd − nþ 2ÞhÕn−3i

i
:

The matrix element hb̄djO0
n0jbd̄i is obtained by replacing CF → TFðT1 − T2=NÞ in M1;2, TFðT2 − T1=NÞ → CF in M3;4,

and TFðT2 − T1=NÞ → TFðT1 − T2=NÞ in M5.
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