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Qing-Wu Wang,1 Si-Xue Qin,2,* Craig D. Roberts,3 and Sebastian M. Schmidt4
1Department of Physics, Sichuan University, Chengdu 610064, People’s Republic of China

2Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China
3Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

4Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany

(Received 5 June 2018; published 19 September 2018)

The proton’s tensor charges are calculated at leading order in a symmetry-preserving truncation of all
matter-sector equations relevant to the associated bound-state and scattering problems. In particular, the
nucleon three-body bound-state equation is solved without using a diquark approximation of the two-body
scattering kernel. The computed charges are similar to those obtained in contemporary simulations of
lattice-regularized quantum chromodynamics, an outcome which increases the tension between theory and
phenomenology. Curiously, the theoretical calculations produce a value of the scale-invariant ratio
(−δTd=δTu) which matches that obtained in simple quark models, even though the individual charges are
themselves different. The proton’s tensor charges can be used to constrain extensions of the Standard
Model using empirical limits on nucleon electric dipole moments.
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I. INTRODUCTION

New generation experiments [1–4] aim to obtain data
that can be used to determine the proton’s transverse
momentum dependent parton distribution functions
(TMDs) [5–12]. At leading-twist, three distinct TMDs
are nonzero in the collinear limit, i.e., in the absence of
parton transverse momentum within the target, k⊥ ¼ 0: the
unpolarized (f1), helicity ðg1LÞ and transversity ðh1TÞ
distributions. The last of these may be used to express
the proton’s tensor charges (q ¼ u; d;…)

δTq ¼
Z

1

−1
dxhq1TðxÞ ¼

Z
1

0

dx½hq1TðxÞ − hq̄1TðxÞ�; ð1Þ

which, as illustrated in Fig. 1, measures the light-front
number-density of quarks with transverse polarization
parallel to that of the proton minus that of quarks with
antiparallel polarization; namely, it measures any bias in
quark transverse polarization induced by a polarization of
the parent proton.
The tensor charges δTq are close analogues of the

nucleon flavor-separated axial-charges, which measure
the difference between the light-front number-density of
quarks with helicity parallel to that of the proton and the
density of quarks with helicity antiparallel. In nonrelativ-
istic systems, the helicity and transversity distributions are
identical because boosts and rotations commute with the
Hamiltonian. This connection highlights the fundamental

nature of tensor charges: they are a defining property of
the nucleon and may be judged to measure, inter alia, the
importance of Poincaré-covariance in treatments of the
nucleon bound state.
One can also compute the tensor charge associated with a

given quark, q ¼ u; d;…, in the proton via the matrix
element

hPðk; σÞjq̄σμνqjPðk; σÞi ¼ δTqūðk; σÞσμνuðk; σÞ; ð2Þ

where jPðk; σÞi is a state vector describing a proton with
momentum k and spin σ and uðk; σÞ is the associated
momentum-space Dirac spinor (Ref. [13], Appendix B).
Importantly, the tensor charge is a scale-dependent quantity
and this must be borne in mind when comparing results
from different calculations.1 Naturally, in the isospin
symmetric limit:

δTu ≔ δpTu ¼ δnTd; δTd ≔ δpTd ¼ δnTu; ð3Þ

and using δTu, δTd, the isoscalar and isovector tensor
charges are readily computed:

gð0ÞT ¼ δTuþ δTd; gð1ÞT ¼ δTu − δTd: ð4Þ

*sqin@cqu.edu.cn

1The quark tensor charges are gauge and Poincaré-invariant
quantities; but unlike the quark electric and axial charges in the
proton, they are not associated with a conserved current and
hence depend on the scale, ζ, at which the dressed tensor vertex is
renormalized. This is briefly discussed, e.g., in Appendix F of
Ref. [14] and detailed elsewhere [15].
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The value of the last of these, gð1ÞT , bears comparison with
the nucleon axial charge gA ¼ 1.276 [16,17].
Apart from the hadron physics interest, the value of the

nucleon tensor charges can also be used to constrain new
physics. This is because in typical extensions of the
Standard Model (SM), quarks acquire an electric dipole
moment (EDM) [18–20], viz. an interaction with the
photon that proceeds via a current of the form:

d̃qqγ5σμνq; ð5Þ

where d̃q is a quark EDM of unknown magnitude. Despite
the fact that d̃q ≠ 0 violates both parity and time-reversal
invariance, this does not itself produce a conflict with the
SM. The challenge to new physics is found in the fact that
the first nonzero SM contribution to a quark’s EDM
appears at third order and involves a gluon radiative
correction, so that jd̃SMq j≲ 10−34e · cm [21,22], a value
so small that SM-extensions are very tightly constrained.
Consider now the EDM of a proton containing quarks

which interact via Eq. (5):

hPðk; σÞjJ EDM
μν jPðk; σÞi ¼ d̃pūðk; σÞγ5σμνuðk; σÞ; ð6aÞ

JEDMμν ¼ d̃uūðxÞγ5σμνuðxÞ þ d̃dd̄ðxÞγ5σμνdðxÞ: ð6bÞ

Using a Dirac-matrix identity: γ5σμν ¼ 1
2
εμναβσαβ,

JEDMμν ¼ 1

2
εμναβ½d̃uūσαβuþ d̃dd̄σαβd�: ð7Þ

Hence,

hPðk; σÞjJEDMμν jPðk; σÞi

¼ 1

2
εμναβ½d̃uδTuþ d̃dδTd�ūðk; σÞσαβuðk; σÞ ð8aÞ

¼ ½d̃uδTuþ d̃dδTd�ūðk; σÞγ5σμνuðk; σÞ; ð8bÞ

namely, the quark-EDM contribution to a proton’s EDM is
determined once the proton’s tensor charges are known:

d̃p ¼ d̃uδTuþ d̃dδTd: ð9aÞ
With emerging techniques, it is becoming possible to place
competitive upper-limits on the proton’s EDM using
storage rings in which polarized particles are exposed to
an electric field [23].
Using isospin symmetry,

d̃n ¼ d̃uδTdþ d̃dδTu: ð9bÞ
Empirically [24]: d̃n < 3 × 10−26e · cm.
Given their importance, the proton’s tensor charges have

been computed using a variety of methods, with progress
recently using lattice-regularized QCD (lQCD) [25–29].
Continuum methods have also been employed [14,30–33];
and herein we report the most refined such calculation to
date, using a symmetry-preserving approach to the con-
tinuum bound-state problem in QCD [34–39].
We represent the proton by the solution of a three-body

analogue of the Bethe-Salpeter equation, commonly
described as a Poincaré-covariant Faddeev equation. This
approach to baryons was introduced in Refs. [40–43],
which capitalized on the role of diquark correlations in
order to simplify the problem [44–51]; but we adapt the
formulation in Refs. [52–54] and solve the three-valence-
body problem directly, under the assumption that two-body
interactions dominate in forming a baryon bound-state.
This means that we also solve the dressed-quark gap
equation and inhomogeneous Bethe-Salpeter equation for
the quark tensor vertex using the same interaction.
We describe the three-body bound-state equation and the

character of its solution for the nucleon in Sec. II; and detail
the quark-quark interaction that we use in solving for all
one-, two- and three-valence-body Schwinger functions
relevant to our calculation of the proton’s tensor charges in
Sec. III. Section IV introduces the proton’s tensor current,
explains how to extract the tensor charges therefrom,
describes the gap equation for the dressed light-quark
propagator and its solution, and presents the solution of
the inhomogeneous Bethe-Salpeter equation for the
dressed-quark-tensor vertex. Our results for the proton’s
tensor charges are reported and discussed in Sec. V.
Section VI connects these results with nucleon EDMs
and Sec. VII provides a summary and perspective.

II. THREE-BODY AMPLITUDE AND EQUATION

The Faddeev amplitude for the J ¼ 1=2 nucleon can be
written as follows:

c1c2c3Ψ
α1α2α3;δ
ι1ι2ι3;ι

ðp1; p2; p3;PÞ

¼ 1p
6
εc1c2c3Ψ

α1α2α3;δ
ι1ι2ι3;ι ðp1; p2; p3;PÞ; ð10Þ

where c1;2;3 are color indices; α1;2;3, δ are spinor indices for
the three valence quarks and nucleon, respectively; ι1;2;3,
ι are analogous isospin indices; and P ¼ p1 þ p2 þ p3,

FIG. 1. The tensor charge, Eq. (1), measures the net light-front
distribution of transversely polarized quarks inside a transversely
polarized proton.
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P2 ¼ −M2
N , where MN is the nucleon mass and p1;2;3 are

the valence-quark momenta.
With color factorized from the amplitude in Eq. (10),

then Ψα1α2α3;δ
ι1ι2ι3;ι ðp1; p2; p3;PÞ describes momentum-spaceþ

spinþ isospin correlations in the nucleon and must be
symmetric under the interchange of any two valence
quarks, including cyclic permutations, e.g.,

Ψα1α2α3;δ
ι1ι2ι3;ι ðp1; p2; p3;PÞ ¼ Ψα1α3α2;δ

ι1ι3ι2;ι ðp1; p3; p2;PÞ: ð11Þ

As we shall now describe, the structure of this matrix-
valued function is nontrivial in a Poincaré-covariant
treatment.
Consider isospin first. There are three valence quarks in

the fundamental representation of SUð2Þ and

2 ⊗ 2 ⊗ 2 ¼ 4 ⊕ 2 ⊕ 2: ð12Þ

The fully-symmetric 4-dimensional irreducible representa-
tion (irrep) is associated with the Δ-baryon and therefore
ignored hereafter. In terms of valence-quark flavors, the
two mixed-symmetry I ¼ 1=2 2-dimensional irreps can be
depicted thus:

Iz¼ 1
2

Iz¼−1
2

F0
1p
2
ðudu−duuÞ 1p

2
ðudd−dudÞ

F1 − 1p
6
ðuduþduu−2uudÞ 1p

6
ðuddþdud−2dduÞ

:

ð13Þ

Defining a quark isospin vector f ¼ ðu; dÞ, then this array
can be expressed compactly via matrices:

D0 ¼
ip
2
τ2 ⊗ τ0; D1 ¼ −

ip
6
τiτ2 ⊗ τi; ð14Þ

where τ0¼diag½1;1� and fτi;i¼1;2;3g are Pauli matrices,
e.g., the bottom-left entry is

ðffTÞD1ðfpTÞ ¼ −
ip
6
fτiτ2fTfτipT; ð15Þ

where p ¼ ð1; 0Þ represents the Iz ¼ þ1=2 proton.
Notably, with respect to the first two labels, D0 relates
to isospin-zero and D1 to isospin-one; and differences
between quark-quark scattering in these channels can
provide the seed for formation of diquark correlations
within baryons [48]. Such differences do exist, e.g., only
u − d scattering possesses an attractive isospin-zero
channel.
Labeling the valence quarks by fi; j; kg, each taking a

distinct value from f1; 2; 3g, then under i ↔ j

�
F0

F1

�
→

�
F0
0

F0
1

�
¼ Ek

�
F0

F1

�
; ð16Þ

where Ek is the associated exchange operator. In general,
owing to the mixed symmetry of these irreps, F0

0;1 ≠ F0;1.
Define in addition, therefore, a momentum-spaceþ spinor
doublet with the following transformation properties:

½Ψ0Ψ1� → ½Ψ0Ψ1�ET
k : ð17Þ

The momentum-spaceþ spinor þ isospin combination

Ψðp1; p2; p3;PÞ
¼ Ψ0ðp1; p2; p3;PÞF0 þ Ψ1ðp1; p2; p3;PÞF1 ð18Þ

is invariant under the exchange of any two quark labels.
(Given this “doublet” structure, 64þ 64 ¼ 128 indepen-
dent scalar functions are required in general to completely
describe a nucleon Faddeev amplitude: see Appendix B in
Ref. [53] for more details.) This feature is a statement of the
fact that a Poincaré-covariant treatment of the nucleon does
not typically admit a solution in which the momentum-
space behavior is independent of the spin-isospin structure;
or, equivalently, that using a Poincaré-covariant framework,
the d-quark contribution to a nucleon’s form factor or
kindred property is not simply proportional to the u-quark
contribution.
Bound-states and their interactions can be studied in the

continuum via a collection of coupled integral equations
[34]. A tractable system of equations is only obtained once
a truncation scheme is specified; and a systematic, sym-
metry-preserving approach is described in Refs. [55–57].
The leading-order term is the rainbow-ladder (RL) trunca-
tion. It is known to be accurate for ground-state light-quark
vector- and isospin-nonzero-pseudoscalar-mesons, and
related ground-state octet and decouplet baryons [35–39]
because corrections largely cancel in these channels owing
to the preservation of relevant Ward-Green-Takahashi
identities ensured by the scheme [55–57]. To obtain the
nucleon amplitude in Eq. (18), we therefore consider the
following RL-truncation three-body equation, depicted in
Fig. 2:

Ψα1α2α3;δ
ι1ι2ι3;ι ðp1; p2; p3Þ ¼

X
j¼1;2;3

½KSSΨ�j; ð19aÞ

½KSSΨ�3 ¼
Z
dk
K

α1α
0
1
;α2α02

ι1ι
0
1
ι2ι

0
2

ðp1; p2;p0
1; p

0
2Þ

× S
α0
1
α2

00

ι0
1
ι00
1

ðp0
1ÞS

α0
2
α2

00

ι0
2
ι00
2

ðp0
2ÞΨα1

00α2 00α3;δ
ι1
00ι2 00ι3;ι

ðp0
1; p

0
2; p3Þ;
ð19bÞ

where
R
dk represents a translationally-invariant definition of

the four-dimensional integral and ½KSSΨ�1;2 are obtained
from ½KSSΨ�3 by cyclic permutation of indices.
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In order to compute any nucleon observable, the Faddeev
amplitude must be canonically normalized. This can be
achieved by introducing an eigenvalue λðP2Þ on the right-
hand-side of Eq. (19a). The equation thus obtained has a
solution at all values of P2 and the original (bound-state)
equation is recovered at that value of P2 ¼ −M2

N for which
λð−M2

NÞ ¼ 1. Canonical normalization is then achieved by
rescaling the bound-state amplitude such that the identity in
Fig. 3 is satisfied at P2 ¼ −M2

N [58]. With such an
amplitude, the proton has unit electric charge and the
neutron is neutral.

III. TWO-BODY INTERACTION

The key element in analyses of the continuum
bound-state problem for hadrons is the quark-quark scat-
tering kernel. In RL truncation that can be written
(k ¼ p1 − p0

1 ¼ p0
2 − p2):

Kα1α
0
1
;α2α02

¼ GμνðkÞ½iγμ�α1α01 ½iγν�α2α02 ; ð20aÞ

GμνðkÞ ¼ G̃ðk2ÞTμνðkÞ; ð20bÞ

where k2TμνðkÞ ¼ k2δμν − kμkν. Thus, in order to define all
elements in Eq. (19) and hence the bound-state problem, it

remains only to specify G̃; and two decades of study have
led to the following form [59,60] (s ¼ k2):

1

Z2
2

G̃ðsÞ ¼ 8π2

ω4
De−s=ω

2 þ 8π2γmFðsÞ
ln½τ þ ð1þ s=Λ2

QCDÞ2�
; ð21Þ

where: γm¼12=ð33−2NfÞ, Nf ¼ 4; ΛQCD ¼ 0.234 GeV;
τ ¼ e2 − 1; and FðsÞ ¼ f1 − expð−s=½4m2

t �Þg=s, mt ¼
0.5 GeV. Z2 is the dressed-quark wave function renorm-
alization constant. We employ a mass-independent momen-
tum-subtraction renormalization scheme for the gap and
inhomogeneous vertex equations, implemented by making
use of the scalar Ward-Green-Takahashi identity and fixing
all renormalization constants in the chiral limit [61], with
renormalization scale ζ ¼ 2 GeV≕ ζ2.
The development of Eqs. (20), (21) is summarized in

Ref. [59] and their connection with QCD is described in
Ref. [62]; but it is worth reiterating some points.
The interaction in Eqs. (20), (21) is deliberately con-

sistent with that determined in studies of QCD’s gauge
sector, which indicate that the gluon propagator is a
bounded, regular function of spacelike momenta that
achieves its maximum value on this domain at k2 ¼ 0
[62–70], and the dressed-quark-gluon vertex does not
possess any structure which can qualitatively alter these
features [71–74]. It is specified in Landau gauge because,
e.g., this gauge is a fixed point of the renormalization group
and ensures that sensitivity to differences between Ansätze
for the gluon-quark vertex are least noticeable, thus
providing the conditions for which rainbow-ladder trunca-
tion is most accurate. The interaction also preserves the
one-loop renormalization group behavior of QCD so that,
e.g., the quark mass-functions produced are independent of
the renormalization point. On the other hand, in the
infrared, i.e., k2 ≲M2

N , Eq. (21) defines a two-parameter
model, the details of which determine whether confinement
and/or dynamical chiral symmetry breaking (DCSB) are
realized in solutions of the dressed-quark gap equations.
Computations [59,60] reveal that observable properties

of light-quark ground-state vector- and isospin-nonzero
pseudoscalar-mesons are practically insensitive to varia-
tions of ω ∈ ½0.4; 0.6� GeV, so long as

ς3 ≔ Dω ¼ constant: ð22Þ

This feature also extends to numerous properties of the
nucleon and Δ-baryon [75,76]. The value of ς is chosen so
as to obtain the measured value of the pion’s leptonic decay
constant, fπ; and in RL truncation this requires

ς ¼ 0.80 GeV: ð23Þ

We will subsequently employ ω ¼ 0.5 GeV, the midpoint
of the domain of insensitivity, reporting the response of
observables to a 10% variation in this value.

FIG. 3. Evaluated on shell, i.e., at P2 ¼ −M2
N , the bound-state

amplitude which satisfies this identity is canonically normalized.
Amplitude: vertices on either side of the square brackets;
and solid line with shaded circle: dressed-quark propagators
(Sec. IV B). The explicit appearance of the bracketed term with
inverse propagators emphasizes that the normalization condition
overlaps the amplitude with the unamputated bound-state wave
function, either on the left or right.

FIG. 2. Three-body equation in Eq. (19), solved herein for the
proton’s mass and bound-state amplitude. Amplitude: vertex on
the left-hand-side; spring with shaded circle: quark-quark inter-
action kernel in Eq. (20); and solid line with shaded circle:
dressed-propagators for scattering quarks, obtained by solving a
gap equation with the same interaction (Sec. IV B).
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It is also worth looking at Eq. (21) from a different
perspective [62,69]. Namely, one can sketch a connection
with QCD’s renormalization-group-invariant process-
independent effective charge by writing

1

4π
G̃ðsÞ ≈ α̃PIðsÞ

sþ m̃2
gðsÞ

; m2
gðsÞ ¼

m̃4
0

sþ m̃2
0

; ð24Þ

and extract α̃PIð0Þ≕ α̃0, m̃0 via a least-squares fit on an
infrared domain: s≲M2

N . In this way, one obtains

1

π
α̃RL0 ¼ 9.7; m̃RL

0 ¼ 0.54 GeV; ð25Þ

αRL0 =π=½mRL
0 �2 ≈ 33 GeV−2. Comparison of these values

with those predicted via a combination of continuum and
lattice analyses of QCD’s gauge sector [69]: α0=π ≈ 0.95,
m0 ≈ 0.5 GeV, α0=π=m2

0 ≈ 4.2 GeV−2, confirms an earlier
observation [62] that the RL interaction defined by
Eqs. (20), (21) has the right shape, but is an order-of-
magnitude too large in the infrared. As explained elsewhere
[77–79], this is because Eq. (20) suppresses all effects
associated with DCSB in bound-state equations except
those expressed in G̃ðk2Þ, and therefore a description of
hadronic phenomena can only be achieved by overmagni-
fying the gauge-sector interaction strength at infrared
momenta.
In choosing the scale in Eq. (23) so as to describe a given

set of light-hadron observables in RL truncation, one also
implicitly incorporates some of the effects of resonant
corrections (meson cloud effects) on light-hadron static
properties [80]. We capitalize on this feature herein.

IV. TENSOR CHARGES: PRELIMINARIES

A. Algebra

Working with the definition of the tensor charge in
Eq. (2) and a proton defined as a solution of Eq. (19), a
symmetry-preserving calculation of the proton’s tensor
charge proceeds by computing the following current at
zero momentum transfer:

JμνðQÞ ¼
X3
k¼1

X
nn0

½JðkÞnn0 ðQÞ�μνFðkÞ
nn0 ; ð26Þ

where the spinor piece is illustrated in Fig. 42 and the

quantities fFðkÞ
nn0 ; k ¼ 1; 2; 3g express the correlated isospin

traces, e.g.,

Fð3Þ
nn0 ðp; fÞ ¼ ½D†

n0 �bad0c0 fc0pd0 ½Dn�abcdfcpd ð27Þ

isolates the contribution from flavor f to the proton’s tensor
charge: u ¼ ð1; 0Þ, d ¼ ð0; 1Þ. Completing the algebra,

Fð3Þ
nn0 ðp; uÞ ¼

�
1 0

0 1
3

�
nn0
; ð28aÞ

Fð3Þ
nn0 ðp; dÞ ¼

�
0 0

0 2
3

�
nn0
; ð28bÞ

and

δ3Tu ¼ Jð3Þ00 þ 1

3
Jð3Þ11 ; ð29aÞ

δ3Td ¼ 2

3
Jð3Þ11 ; ð29bÞ

where, with the trace over spinor indices,

Jð3Þnn0 ¼ tr
1

12
σμν½Jð3Þnn0 ð0Þ�μν: ð30Þ

Now, owing to symmetry of the color-factorized proton
wave function under interchange of any two quarks, one
arrives at the final result:

FIG. 4. a ¼ 3 spinor component of the tensor current in Eq. (26): δ, δ0 are spinor indices and n, n0 are isospin indices: first term on the
right-hand-side, impulse contribution; and second term, interaction correction. The new element is the dressed-quark-tensor vertex, Γμν,
described in Sec. IV C.

2Following the reasoning in Ref. [53], Sec. III A, one can show
that this form of the current is both necessary and sufficient to
ensure a symmetry-preserving treatment of the tensor charges
when the n-point functions which appear are computed in
rainbow-ladder truncation.
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δTu ¼ 3δ3Tu ¼ 3Jð3Þ00 þ Jð3Þ11 ; ð31aÞ

δTd ¼ 3δ3Td ¼ 2Jð3Þ11 : ð31bÞ

Recalling the conclusions of Refs. [14,33] and the remarks
following Eq. (14), it is evident from this analysis that
δTd ≃ 0 in any model of nucleon structure that retains only
scalar diquark correlations.
The algebraic structure in Eqs. (31) is quite general. For

instance, considering the nucleon axial charges in the
isospin symmetric limit:

App
uu ¼ hPðk; σÞjūγ5γμujPðk; σÞi; ð32aÞ

App
dd ¼ hPðk; σÞjd̄γ5γμdjPðk; σÞi; ð32bÞ

Apn
ud ¼ hPðk; σÞjūγ5γμdjNðk; σÞi; ð32cÞ

with jNðk; σÞi a neutron state vector, then

App
uu ¼ 3Að3Þ

00 þ Að3Þ
11 ; ð33aÞ

App
dd ¼ 2Að3Þ

11 ; ð33bÞ

Apn
ud ¼ App

uu − App
dd ; ð33cÞ

where

Að3Þ
nn0 ¼ tr

1

4
γμγ5½Jð3Þnn0 ð0Þ�5μ; ð34Þ

with ½Jð3Þnn0 ð0Þ�5μ obtained from the current in Fig. 4 by
making the replacement Γμν → Γ5μ, the latter being the
dressed-quark-axial-vector vertex [81–85].

B. Dressed-quark propagator

The kernel of Eq. (19), the Faddeev equation, is complete
once the dressed-quark propagator is known. In order to
ensure a symmetry-preserving analysis, this should be
computed from the following (rainbow-truncation) gap
equation:

S−1ðkÞ ¼ iγ · kAðk2Þ þ Bðk2Þ ð35aÞ

¼ Z2ðiγ · kþmbmÞ þ ΣðkÞ; ð35bÞ

ΣðkÞ ¼
Z
dq
Gμνðk − qÞ λ

a

2
γμSðqÞ

λa

2
γν; ð35cÞ

using the interaction specified in connection with Eqs. (20),
(21). Following Ref. [86], this gap equation is now readily
solved, and we adapt algorithms from Ref. [87] when
necessary. Solving the gap equation subject to the condition
that the mass function reproduces renormalization-group-
invariant current-quark masses

m̂u ¼ m̂d ¼ 6.6 MeV; ð36Þ

which correspond to one-loop evolved values mζ2
u ¼

mζ2
d ¼ 4.4 MeV, a good description of π- and ρ-meson

properties is obtained; and we use these values herein.

C. Dressed-quark-tensor vertex

The remaining element required to complete a calcu-
lation of the proton’s tensor charges is the dressed-quark-
tensor vertex, which satisfies the following inhomogeneous
integral equation, depicted in Fig. 5:

Γμνðk;QÞ ¼ ZTσμν þ
Z
dq
Gμνðk − qÞ λ

a

2
γμSðqþÞΓμνðq;QÞ

× Sðq−Þ
λa

2
γν; ð37Þ

where q� ¼ q�Q=2 and ZT is the tensor vertex renorm-
alization constant, ensuring Γμνðk2 ¼ ζ22;Q ¼ 0Þ ¼ σμν.
Computation of the proton’s tensor charge only requires

knowledge of

Γμνðk;Q ¼ 0Þ ¼ T1ðk2; ζÞσμν þ T2ðk2; ζÞfγ · k̂; σμνg
þ T3ðk2; ζÞðσμρk̂ρk̂ν − σνρk̂ρk̂μÞ; ð38Þ

where k̂2 ¼ 1. Inserting Eq. (38) into Eq. (37), one obtains
a set of three coupled linear integral equations for T1;2;3,
whose kernels are completely specified by G̃ in Eq. (21)
and SðkÞ computed using Eq. (35). The solutions are
depicted in Fig. 6 and are characterized by the following
value of the light-quark tensor charge:

T1ðk2 ¼ 0; ζ2Þ ¼ 0.67ð5Þ≕ δ̃Tq: ð39Þ

This value may be compared with the estimate reported in
Ref. [32]: T1ð0; ζ2Þ ≈ 0.6.
It is worth remarking that DCSB leads similarly to a

suppression of a dressed-quark’s axial charge, but the effect
is weaker, viz. in comparison with the undressed value of
unity, g̃qA ≈ 0.85 [81–84]. The missing strength is absorbed
by the pion bound-state [81–83]. The difference between
δ̃Tq and g̃qA highlights again the importance of preserving
Poincaré-covariance in treatments of light-quark bound-
state problems.

FIG. 5. Inhomogeneous Bethe-Salpeter equation for the
dressed-quark-tensor vertex, Γμν, in rainbow-ladder truncation,
which uses SðkÞ from Eq. (35).
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V. TENSOR CHARGES: RESULTS
AND ANALYSIS

Everything necessary to evaluate the proton’s tensor
charges is now available. To proceed, we solve the three-
body equation,3 Eq. (19), for the proton’s mass and bound-
state amplitude, using the interaction described in Sec. III
and the dressed-quark propagator from Sec. IV B, with the
result (ω ¼ 0.5 ∓ 0.05)

mNðGeVÞ ¼ 0.932ð5Þð11Þ: ð40Þ

Importantly, no parameters were varied to obtain this value:
it follows once the scale in Eq. (22) is chosen. Using this
amplitude, canonically normalized as described in con-
nection with Fig. 3, along with the same interaction and
quark propagator, and the dressed-quark-tensor vertex
described in Sec. IV C, we compute Jð3Þ in Eq. (30) from
the current in Fig. 4. Subsequently, using Eqs. (31)
ðω ¼ 0.5 ∓ 0.05Þ:

δTu ¼ 0.912ð42Þð47Þ; δTd ¼ −0.218ð4Þð5Þ; ð41aÞ

gð1ÞT ¼ 1.130ð42Þð47Þ; gð0ÞT ¼ 0.694ð42Þð47Þ: ð41bÞ

It is interesting to note that if the dressed-quark tensor
charge from Eq. (39) is used in combination with a simple
quark-model spin-flavor wave function [30,32], then one
finds:

δQMT u ¼ 4

3
δ̃Tq ¼ 0.89; ð42aÞ

δQMT d ¼ −
1

3
δ̃Tq ¼ −0.22; ð42bÞ

values which are practically equivalent to those in
Eq. (41a). This similarity is a numerical accident, however.
If one instead uses the bare tensor vertex, so that the
computed charges are a direct measure of proton wave
function properties, then δTu ¼ 1.12, δTd ¼ −0.25.
It is here worth noting that the quark model itself predicts

[30] δQMT u ¼ ð4=3Þ ¼ 1.33, δQMT d ¼ ð−1=3Þ ¼ −0.33, val-
ues which should be associated with the “model scale,” ζM.
The model does not have a traceable connection with QCD
so this scale is unknown; but ζM can be introduced as a
parameter and tuned in order to obtain a desired result
for the tensor charges. On physical grounds, one should
require ζM ≳ 2ΛQCD so that perturbative evolution is
possibly applicable [88]. As noted in Ref. [33], with ζM ¼
0.39 GeV one obtains δQMT u ¼ 1.06, δQMT d ¼ −0.26 using
first-order evolution to reach ζ2. A smaller value of ζM is
difficult to justify.
In Fig. 7 we compare our predictions for the proton’s

tensor charges with those obtained using lQCD [26–28]
and an earlier contact-interaction Faddeev equation study
[33]. A weighted combination of our result and the most
recent lQCD values [26–28] yields the following estimates
(gray bands in Fig. 7):

δTu ¼ 0.805ð17Þ; δTd ¼ −0.216ð4Þ: ð43Þ

It is evident from the figure that our predictions are
consistent with recent lQCD results; but these four

FIG. 6. Scalar functions determining the Q ¼ 0 dressed-quark-
tensor vertex in Eq. (38) obtained using the interaction in Eq. (21)
and SðpÞ computed from Eq. (35). Shown, too, is the sensitivity
to a �10% variation in the interaction’s range parameter, subject
to Eqs. (22), (23).

3The formulation of this problem and efficient solution
methods are detailed, e.g., in Ref. [53], Appendices A–C, and
Ref. [54], Appendices A, B. So far as charges are concerned,
numerical accuracy at the level of 0.1% is readily achieved.
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analyses, based on Eq. (2), produce results for δTu
which differ markedly from those obtained via Eq. (1)
using extant transversity distribution data. (Tensor charges
decrease with increasing ζ, hence evolving the phenom-
enological estimates so that their renormalization scales
match the calculations would increase the discrepancy.)
It is here worth describing the fundamental differences

between this study and that in Ref. [33]. We use a single
interaction kernel, Eq. (21), whose sole parameter is fixed
by requiring a good description of π- and ρ-meson proper-
ties, to compute every element that contributes to the
proton’s tensor charge: the dressed-quark propagator;
dressed-quark-tensor vertex; and proton Faddeev amplitude
and tensor current. On the domain of momenta for which
perturbative-QCD is a valid tool, the behavior of each of
these quantities matches that required by QCD. Their
properties at infrared momenta are a direct reflection of
the kernel’s extension to that domain. This is where the
model-parametrization has an influence; but progress is
being made toward eliminating that as more is learned
about the infrared behavior of Schwinger functions in
strong QCD and how that information may be incorporated
into the continuum bound-state problem [62,67–70,
77–79,92]. Diquark correlations play no explicit role in
our analysis.
On the other hand, Ref. [33] uses a symmetry-preserving

(rainbow-ladder-like) treatment of a vector-vector contact
interaction to develop and solve a Faddeev equation for the

proton, in which isoscalar-scalar and isovector-vector
diquark correlations play a key role and dynamical quark
exchange between the diquarks provides an important
contribution to binding within the nucleon. The results
obtained depend upon the values of seven parameters and
the choice of regularization scheme, the latter because a
contact interaction is not renormalizable; and the unre-
alistic hardness of the interaction is expressed in many
aspects of the results. Notwithstanding these weaknesses,
the algebraic simplicity of the framework enables some
important qualitative features of many low-momentum
observables to be clearly exhibited, such as the roles
played by both DCSB and correlations in wave functions.
Naturally, where quantitative disagreements are met, one
should prefer the QCD-connected results herein.
As noted in closing Sec. III, the effects of improvements

to RL truncation on some static hadron properties are
implicitly included in the choice of scale, Eq. (23). The
residual dependence on ω-variations can then be used to
indicate just which static properties these might be [59].
MN exhibits a 1% response to variations ω → ðω� ΔωÞ,
Δω=ω ¼ 0.1, validating our approach to this observable.
δTu displays a ≲5% response to the same variation,
flagging this as a quantity that might be sensitive to RL
corrections. In this case, its proximity to the independently
obtained lQCD results may be used to argue for its stability;
but we choose to look more deeply. δTd is less sensitive to

Δω, changing by only 2%, which indicates that Jð3Þ11 in
Eq. (31) is stable and hence the variation in δTu owes

largely to that of Jð3Þ00 . An analogous feature is seen in
Refs. [14,33], which employ a diquark approximation to
the quark-quark scattering kernel and whose simplicity
enables them to correlate the magnitude of δTu with the
strength of DCSB as expressed, e.g., in the nucleon mass
and the integrated strength of the dressed-quark mass
function. In improving upon RL truncation, these
things do not change, only the distribution and size of
terms in the kernels which contribute to them [62,78,79].
Thus informed, one can more confidently rely upon
the parameter-dependence results we have supplied as a
valid estimate of the uncertainty in our tensor charge
predictions.
In Fig. 8, we compare our prediction for gð1ÞT with values

obtained by other means. A weighted combination of our
result and recent lQCD values [26–29] yields the following
estimate (gray bands in Fig. 8):

ḡð1ÞT ¼ 1.021ð17Þ: ð44Þ

The mismatch between theory and phenomenology is also
apparent in this isovector combination of flavor-separated
tensor charges. (Recall that were a nonrelativistic limit

valid, then gð1ÞT would match the nucleon’s axial charge
gA ¼ 1.276 [16,17].)

FIG. 7. Comparison of our prediction for the proton’s tensor
charges, position 1—Eq. (41a), with those obtained using:
lQCD (2—[26], 3—[27], 4—[28]); and a contact-interaction
Faddeev equation (5—[33]). The renormalization scale is ζ2 ¼
4 GeV2 in all these cases; and the gray bands depict the averages
in Eq. (43). Position 6—projected errors achievable at JLab 12
with the Solenoidal Large Intensity Device (SoLID) [4], using
Eq. (1) and anticipated transversity distribution data. The central
values are chosen to match those estimated elsewhere [89]
(7, ζ2 ¼ 2.4 GeV2) following an analysis of extant transversity
distribution data. Earlier estimates from transversity distribution
data are also depicted (8—[90], ζ2 ¼ 2.4 GeV2, and 9—[91],
ζ2 ¼ 1 GeV2.)

WANG, QIN, ROBERTS, and SCHMIDT PHYS. REV. D 98, 054019 (2018)

054019-8



It is highlighted, too, by Fig. 9, which depicts the scale-
independent ratio (−δTd=δTu). In this case, the weighted
average of theoretical predictions is

−
δTd
δTu

¼ 0.25ð1Þ; ð45Þ

illustrated by the gray band in the figure. Using a simple
nonrelativistic quark model spin-flavor wave function, this
ratio is 0.25. It is practically the same in the MIT bag model
[30]; but, in both cases, the individual tensor charges are

measurably larger in magnitude than our results and those
obtained using lattice methods [26–28].
It is worth noting here that the nonrelativistic quark

model prediction for the ratio of proton-to-neutron mag-
netic moments, μp=μn, agrees with the empirical value, but
this outcome is also a numerical accident. The quark model
result is obtained neglecting meson-baryon final state
interactions (meson cloud effects), which are known to
contribute a roughly equal amount to μp and μn [93],
increasing both in magnitude, so that the meson-undressed
result should exceed the empirical value in size.

VI. ELECTRIC DIPOLE MOMENTS

Using Eqs. (9) and (41a), we have

d̃p ¼ 0.91d̃u − 0.22d̃d; d̃n ¼ −0.22d̃u þ 0.91d̃d: ð46Þ

The impact of these results on beyond-SM phenomenology
may be elucidated, e.g., by following the analysis in
Refs. [4,26].
In this connection it is worth remarking that the

possibility of an s-quark contribution produces some
uncertainty in estimates of nucleon EDMs [94], largely
because its size is poorly known. An estimate of this
contribution is thus useful. Such may be obtained via a
simplified treatment of meson-loop corrections to the
quark gap equations, as used elsewhere [95,96] to estimate
the proton’s strangeness-magnetic-moment and -σ-term.
Following that reasoning, we find δTsðζ2Þ ≈ 0.02g0T ¼
0.014ð1Þ, a value consistent with contemporary lQCD
estimates [26,27].
We note, too, that knowledge of the nucleon tensor

charges can also place constraints on new physics via
precision neutron β-decay experiments [97].

VII. EPILOGUE

We calculated the proton’s tensor charges using the
leading-order (rainbow-ladder, RL) truncation of all rel-
evant matter-sector one-, two- and -three-valence-body
equations, and the associated tensor current. In particular,
the three-body (Faddeev) equation is solved without
recourse to a diquark approximation for the two-body
scattering kernel. Notably, once in possession of results for
the tensor charges, one can use existing and future
empirical limits on nucleon electric dipole moments to
constrain extensions of the Standard Model.
Our results for the tensor charges [Eqs. (41)] are com-

mensurate with those obtained in contemporary lattice-
QCD simulations [Figs. 7–9]. This confluence increases
tension between theory and phenomenology, viz. while
there is agreement on δTd, direct computations of the
tensor-charge matrix element [Eq. (2)] produce a value of
δTu that is approximately twice as large as that obtained
via analyses of extant transversity distribution data [Eq. (1)].

FIG. 8. Comparison of our prediction for the proton’s isovector
tensor charge [position 1—Eq. (41b)] with those obtained using:
lQCD (2—[26], 3—[27], 4—[28], 5—[29]); and a contact-
interaction Faddeev equation (6—[33]). The renormalization
scale is ζ2 ¼ 4 GeV2 in all these cases; and the gray band
depicts the weighted average in Eq. (44). Position 7—estimate
obtained using Eq. (1) and extant transversity distribution data
[89] (ζ2 ¼ 2.4 GeV2).

FIG. 9. Ratio (−δTd=δTu). Position 1: our result; lQCD:
2—[26], 3—[27] and 4—[28]; contact-interaction Faddeev
equation: 5—[33]. The gray band depicts the weighted average
in Eq. (45); and the dashed horizontal line is the quark model
result ð−δTd=δTuÞ ¼ 1=4 [30]. Position 6—estimate obtained
using Eq. (1) and extant transversity distribution data [89].
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In a curious twist, the theoretical calculations produce a
value of the scale-invariant ratio (−δTd=δTu) which matches
that obtained in simple quark models (Fig. 9), even though
the individual charges are themselves very different.
This analysis completes the first improvement recom-

mended in Ref. [33], delivering continuum predictions of
the tensor charges with a direct connection to QCD; and no
material betterment of these results can be expected before
methods are devised to improve over RL truncation in the
three-body problem.
It may nevertheless be worth calculating the tensor

charges using the QCD-kindred model employed success-
fully in computing a wide range of nucleon properties,
including elastic and transition form factors [47–51]. As a

model constrained by some data, elements of that frame-
work implicitly improve upon RL truncation. Hence, a
comparison of its predictions with those presented herein
could indicate what to expect from such refinements.
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