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We consider the production of pairs of lepton through the Drell-Yan process at the LHC and present the
most accurate prediction on their rapidity distribution. While the fixed order prediction is already known to
next-to-next-to-leading order in perturbative QCD, the resummed contribution coming from threshold
region of phase space up to next-to-next-to-leading logarithmic (NNLL) accuracy has been computed in
this article. The formalism developed in [1–3] has been used to resum large threshold logarithms in the two
dimensional Mellin space to all orders in perturbation theory. We have done a detailed numerical
comparison against other approaches that resum certain threshold logarithms in Mellin-Fourier space. Our
predictions at NNLL level are close to theirs even though at leading logarithmic and next-to-leading
logarithmic level we differ. We have also investigated the impact of these threshold logarithms on the
stability of perturbation theory against factorization and renormalization scales. While the dependence on
these scales does not get better with resummed results, the convergence of the perturbative series shows a
better trend compared to the fixed order predictions. This is evident from the reduction in the K-factor for
the resummed case compared to fixed order. We also present the uncertainties on the predictions resulting
from parton distribution functions.
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I. INTRODUCTION

The standard model (SM) has been extremely successful
in describing the physics of elementary particles. The
production of oppositely charged lepton-pairs, known as
the Drell-Yan production [4], is one of the benchmark
processes to probe physics at TeV energies at the colliders,
namely earlier at Tevatron and now at the Large Hadron
Collider (LHC). Because of its large cross section and small
systematic uncertainties, Drell-Yan production also serves
as luminosity monitor [5] at the LHC. Most importantly, at
hadron colliders, Drell-Yan production provides valuable
information about the partonic structure of hadrons, its
clean electromagnetic probe is best suited for the search of
any new physics beyond the SM (BSM). An excess rate
over the SM in this channel will potentially indicate the

signature of BSM physics. Drell-Yan is the potential
background for processes involving Z0 or W0 and also
for spin-2/graviton searches. With the current LHC-13 and
upcoming LHC-14 runs, more events will be available to
precisely study the Drell-Yan distributions over a wide
kinematic region.
Due to its undeniable importance, Drell-Yan has been

studied theoretically to a great extent over many decades
[6,7]. There has been continuous efforts towards the
computation of higher order QCD and electroweak (EW)
corrections to unprecedented accuracy. The full inclusive
production cross section is known up to next-to-next-to-
leading order (NNLO) [8,9] for a very long time. Very
recently, predictions at next-to-next-to-next-to-leading-
order (N3LO) level have become available considering
only the dominant soft-virtual (SV) contributions [10,11].
Electroweak corrections beyond leading-order (LO) are
also known and at next-to-leading-order (NLO) level, they
were computed in [12,13]. While inclusive production is
important for precise prediction of cross section, differ-
ential distributions allow a wider comparison with experi-
ments. Fully differential distributions such as rapidity,
transverse momentum for the Drell-Yan are known to up
to NNLO level in QCD [14–18]. SV contributions for the
rapidity distribution are also known at N3LO level [2,19,20].
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Studies where both QCD and EW corrections are combined
can be found in [21]. Parton showers matched with NLO
QCD results for the Drell-Yan are also available in
MC@NLO [22], POWHEG [22,23] and aMC@NLO [24]
frameworks.
One of the differential distributions that has been studied

extensively is the transverse momentum (pT) distribution
of pair of leptons or the vector bosons such as Z=W�, see
[25–29], often in their large pT region. The rapidity distri-
bution in Drell-Yan was computed in [25] at NLO level in
QCD and it was then extended to NNLO level in [14,17]
which stabilize the predictions [15] giving only a few
percentage sensitivity to renormalization and factorization
scales, say for example at theZmass region.However it has to
be noted that the result does vary significantly with respect to
the choices of different parton distribution functions (PDFs).
In particular, at large invariant mass or at large rapidity of the
final state, the cross sections are sensitive to large Björken
x regions of PDFs, where different PDFs show not only
differences between them but also exhibit large uncertainties.
For a recent review see [30]. This sensitivity of PDFs will in
turn help to constraint the PDF sets much better. Hence, it is
important to study these distributions. Certain distributions in
Drell-Yan production also helps to study unpolarized trans-
verse momentum dependent PDFs. For the recent develop-
ments, see [31,32].
The fixed order predictions are often not reliable in certain

regions of phase space where large logarithms of some
kinematic variables can appear. For example, at the partonic
threshold, i.e., where the initial partons have just enough
energy to produce the final state such as a pair of leptons or
Z=W� and soft gluons, the phase space available for the
gluons become severely constrained which results in large
logarithms. These large logarithms however can be system-
atically resummed to all orders in perturbation theory for
reliable predictions.This hasmade the resummation program
an important topic of investigation over many years. For the
inclusive production, the resummation of soft gluons in the
threshold region was established [1,33–38] in the Mellin
space and for the transverse momentum distribution, at small
pT , the resulting large logarithms were shown to exponen-
tiate in the impact parameter space [39,40]. A modern
approach based on soft-collinear effective theory (SCET)
demonstrates similar resummation in momentum space, see
[41] for inclusive production and [42] for transverse momen-
tum distribution. Resummation for the differential distribu-
tionwith respect to the Feynmanvariable xF which describes
the longitudinal momentum of the final state was studied in
[1] and it was found that there were two thresholds and both
could be resummed to all orders. For the resummation with
respect to xF using a different scheme see [43]. For the
rapidity distribution, resummation similar to the inclusive
one, with a single scaling variable, can be obtained in certain
kinematic regions, see [44–48] and an equivalent approach
based on SCET can be found in [49,50]. In the former one,

called the standard direct QCD (dQCD) approach [1,33,34],
since the resummation is performed in Mellin space where
the phase space of the soft gluons factorizes under appro-
priate Mellin transformation, the threshold limit of the
partonic scaling variable z → 1 corresponds to Mellin
variable N → ∞, where z ¼ q2=ŝ, q2 ¼ MV , V ¼ Z, W�
and ŝ is the partonic center ofmass energy. InSCETapproach
[41,49,50], however, resummation can be performed both in
Mellin space as well as in z-space using the evolution
operators of soft and the hard functions of the coefficient
function.
Resummation of large logarithms for rapidity distribu-

tion has been an interesting topic and several results are
already available to very good accuracy. In [46] the authors
have studied resummation of rapidityW� in Mellin-Fourier
(M-F) space following a conjecture (see [44]) and later on
same approach was used for Drell-Yan production in [47].
A more detailed study in the context of W� productions as
well as production of a pair of leptons was undertaken in
[51] emphasizing the role of prescriptions that take care of
diverging series at a given logarithmic accuracy.
In this article we will follow the dQCD approach [1] to

study soft gluon resummation for the rapidity distribution of
a pair of leptons produced in hadron colliders. Recently,
using the formalism developed in [2,19], we [3] derived a
general result, applicable to production of any colorless state
in hadron colliders, that resums the soft gluons to all orders in
perturbation theory in two dimensional Mellin (M-M) space
spanned by N1, N2. We also investigated their numerical
impact on the rapidity distribution of the Higgs boson
produced at theLHC. The soft gluon effects show up through
delta functions and plus distributions in the partonic cross
sections when the partonic scaling variables reach the
threshold limits, i.e., z1 → 1 and z2 → 1 and these contri-
butions can be resummed to all orders both in z1, z2 space and
in N1, N2 space. These resummed results were expanded to
the desired accuracy to obtain fixed order predictions for
various observables [19,20,52] at the LHC in the SV
approximation. This double threshold limit, denoted by a
pair of limits, namely (z1 → 1, z2 → 1) corresponds to
(N1 → ∞, N2 → ∞) in M-M space. The corresponding
large logarithms are of the form lnnðNiÞ, where n ¼ 1;…
and i ¼ 1, 2 and the resummation in M-M space resums
terms of the form ω ¼ asβ0 lnðN1N2Þ through a process
independent function gðωÞ and a process dependent but Ni
independent function g0. Here β0 is the leading coefficient
of the beta function of the strong coupling constant gs and
as ¼ g2sðμ2RÞ=16π2 with μR being the renormalization scale.
The main goal of this article is to study the numerical

impact of resummed contributions in the M-M approach
on the fixed order predictions for the rapidity distribution
of a pair of leptons in the Drell-Yan process at the LHC.
At NNLO level, fixed order results show remarkable
stability against the factorization and renormalization
scales. In addition, they demonstrate excellent perturbative
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convergence. While this is a good news for any phenom-
enological study with Drell-Yan process, the question
remains whether the fixed order predictions will be plagued
by presence of large kinematic logarithms resulting from
soft gluons in the threshold regions at every order in
perturbative expansion. The formalisms that can resum
these large logarithms to all orders do exist and it is not
a priori clear whether the resulting resummed contributions
will not affect the fixed order predictions. Hence, a detailed
study taking into account these threshold effects through
resummation is warranted. In addition, owing to various
ways by which these logarithms can be resummed, a
detailed comparison of these approaches is desirable.
This article attempts to address all these issues. We start
by recapitulating the resummation formalism based onM-M
approach and then proceedwith a detailed numerical study at
the LHC and conclude with our findings.

II. THEORETICAL FRAMEWORK

In the QCD improved parton model, for the production
of a pair of leptons with invariant mass q2 and rapidity y,
the double differential cross section can be written as

d2σqðτ; q2; yÞ
dq2dy

¼ σqBðx01; x02; q2Þ
X

ab¼q;q̄

Z
1

x0
1

dz1
z1

Z
1

x0
2

dz2
z2

× fa

�
x01
z1

; μ2F

�
fb

�
x02
z2

; μ2F

�

× Δq
d;abðz1; z2; q2; μ2F; μ2RÞ; ð1Þ

where σqBðx01; x02; q2Þ is the Born prefactor, τ ¼ q2=S ¼
x01x

0
2 with q being the momentum of the final state lepton

pairs and S ¼ ðp1 þ p2Þ2 where pi are the momenta of the
incoming hadrons. The hadronic rapidity is defined as

y ¼ 1
2
lnðp2:q

p1:q
Þ ¼ 1

2
lnðx01x0

2

Þ; faðx
0
1

z1
; μ2FÞ and fbðx

0
2

z2
; μ2FÞ are the

PDFs having momentum fractions x1 ¼ x01=z1, x2 ¼ x02=z2
respectively, renormalized at the factorization scale μF.
Δq

d;abðas; z1; z2; q2; μ2FÞ [shorthand as Δq
d;abðz1; z2Þ] on the

other hand is the Drell-Yan coefficient function for the
rapidity distribution mass factorized at μF. Unlike PDFs,
these are calculable order by order in QCD perturbation
theory in powers of as. The coefficients in this power series
expansion contain distributions such as δð1 − ziÞ and

½lnm−1ð1−ziÞ
1−zi

�þ with m ≤ 2n, n being the order of perturbation

and regular functions of zi. The former ones, namely the
distributions, constitute the SV part, denoted by Δq;SV

d;ab

while the latter one, the hard part is Δq;H
d;ab. In the SV part,

these distributions result from certain regions of the phase
space in the real emission sub processes and also of the loop
integrals in the virtual ones. While these distributions are
singular as zi → 1, they are integrable functions. At the
level of hadronic cross sections, they often dominate over
the hard part when folded with the appropriate PDFs, in the

above mentioned kinematic regions at every order in
perturbation theory. Hence, they can potentially disturb
the reliability of the perturbative predictions. The resolution
is to resum these large terms, often the logarithms, to all
orders to obtain any sensible prediction. This is indeed
the case for the rapidity distribution in Drell-Yan when the
scaling variables z1 → 1 and z2 → 1. Recall that in the
work by Catani and Trentadue [1], a different distribution
namely Feynman xF for the Drell-Yan was studied in the
context of threshold resummation and it was shown that
the potential threshold logarithms can be resummed to all
orders in perturbation theory working in M-M space. They
had established that these logarithms could be exponenti-
ated and also obtained the resummed result at the next-to-
leading-logarithmic (NLL) accuracy. Following this, in
[2,19,20] we demonstrated for the rapidity distribution
of any colorless particle, resummation of the distributions
defined with respect to the scaling variables zi to all orders
in perturbation theory in z1, z2 space and later extended it
to N1, N2 space in [3] by applying two dimensional Mellin
transformations on these distributions to obtain resummed
result in the M-M space. The latter one, namely the
resummed result in the M-M space, turned out to be more
suitable for numerical study and hence, we used this
approach to demonstrate the importance of these threshold
logarithms for the rapidity distribution of the Higgs boson
at the hadron collider to next-to-next-to-leading-logarithmic
(NNLL) accuracy [3] over NNLO. In this paper, we explore
this approach to study the Drell-Yan process at the LHC.
Weuse thegeneral result obtained for any colorless particle in
[3] to study the numerical impact on the rapidity distribution
of a pair of leptons produced at the LHC.
Note that the approach followed here [3] differs from

earlier ones (see [44,45,47,49–51] in the way the threshold
limit(s) is(are) taken). In the latter approach, the threshold
contributions from soft gluons in the partonic cross section
are defined by considering only those distributions with
respect to the scaling variable z ¼ z1z2 which appear in the
region when z → 1. The remaining contributions contain
not only regular terms in z but also distributions and regular
functions of partonic rapidity variable (yp). Here, only
distributions in z are resummed to all orders treating the
remaining terms as hard part. Thus the resummation for the
Drell-Yan rapidity distributions has been done using a
single Mellin variableN corresponding to z and keeping the
yp dependent coefficients as it is. Interestingly, if one works
in M-F space, it can be easily shown that in the limit z → 1,
the threshold logarithms resulting fromN → ∞ are identical
to those of the inclusive cross section. Unlike the M-F
approach where contributions resulting from yp ≠ 0 are
dropped in the resummed formula, the methodology dem-
onstrated in the present paper includes the threshold loga-
rithms coming from yp ≠ 0 region as well, hence covering
wide range of values for thevariableyp. The advantage of our
approach is in constraining the PDFs at high momentum
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fraction. In particular, dilepton pair at large y resulting from
collisions in which one of the partons carries a large and the
other a small momentum fraction x, can be used to constrain
the PDFs at large x, a region not well constrained by the
current results.
We employ the technique developed in [3] namely the

M-M space approach to perform the soft gluon resumma-
tion for Drell-Yan rapidity distribution. Thanks to the
convolution structure of the hadronic cross section in terms
of the PDFs fa;b and the Drell-Yan coefficient functions
Δq

d;ab, the two-dimensional Mellin transformation of the
Born normalized hadronic cross section becomes a simple
product of f̃aðN1Þ, f̃bðN2Þ and Δ̃q

d;abðN1; N2Þ where

f̃cðNiÞ ¼
R
1
0 dziz

Ni−1
i fcðziÞ for i ¼ 1, 2, c ¼ a, b and

Δ̃q
d;abðN1; N2Þ ¼

�Y
i¼1;2

Z
1

0

dziz
Ni−1
i

�
Δq

d;abðz1; z2Þ ð2Þ

It was shown in [2,3,19] that the SV part of Δ̃q
d;ab ðΔ̃SV

d;qÞ
exponentiates the threshold logarithms through the cusp
anomalous dimension Aq and the collinear functions Dq

d
giving the resummed result

Δ̃SV
d;qðN1;N2Þ

¼ gqd;0ðasÞexp
��Y

i¼1;2

Z
dziz

Ni−1
i

�

×

�
δðz̄2Þ

�
1

z̄1

�Z
q2 z̄1

μ2F

dλ2

λ2
Aqðasðλ2ÞÞþDq

dðasðq2z̄1ÞÞ
��

þ

þ1

2

�
1

z̄1z̄2

�
Aqðasðq2z̄1z̄2ÞÞþ

dDq
dðasðq2z̄1z̄2ÞÞ
d lnðq2z̄1z̄2Þ

��
þ

þðz1↔ z2Þ
��

; ð3Þ

where z̄i ¼ ð1 − ziÞ. The cusp anomalous dimensions for the
quark, Aq, are known for Drell-Yan up to 3-loops [53–58],
and the coefficients in Aq ¼ P∞

i¼1 a
i
sA

q
i are given by

Aq
1 ¼ 4CF;

Aq
2 ¼ 8CFCA

�
67

18
− ζ2

�
þ 8CFnf

�
−
5

9

�
;

Aq
3 ¼ 16CFC2

A

�
245

24
−
67

9
ζ2 þ

11

6
ζ3 þ

11

5
ζ22

�

þ 16C2
Fnf

�
−
55

24
þ 2ζ3

�
þ 16CFCAnf

×
�
−
209

108
þ 10

9
ζ2 −

7

3
ζ3

�
− 16CFn2f

�
1

27

�
; ð4Þ

and Dq
ds are related [2,3,19] to the Dqs of the inclusive

cross section for the Drell-Yan. Expanding Dq
d as Dq

d ¼P∞
i¼1 a

i
sD

q
d;i, we find that Dq

d;1 ¼ 0, Dq
d;2 ¼ Cfnf

f112
27

− 8
3
ζ2gþCaCff− 808

27
þ 28ζ3 þ 44

3
ζ2g, with the SU(N)

color factors

CA ¼ N; CF ¼ N2 − 1

2N
; TF ¼ 1

2
ð5Þ

and nf is the number of active flavors. In [3], following [59],
we systematically computed the two dimensional Mellin
transformations in the largeNi limits and the result takes the
following form:

Δ̃SV
d;qðN1; N2Þ ¼ g̃qd;0ðasÞ expðgqdðas;ωÞÞ; ð6Þ

whereω is defined asω ¼ asβ0 lnðN̄1N̄2Þ, with N̄i ¼ eγENi,
i ¼ 1, 2. The coefficients gdðas;ωÞ are process independent
and contain purely logarithmically enhanced terms and can
be expanded as,

gqdðas;ωÞ ¼ gqd;1ðωÞ lnðN̄1N̄2Þ þ
X∞
i¼0

aisg
q
d;iþ2ðωÞ: ð7Þ

Rescaling the constants by appropriate βi as ḡqd;1 ¼ gqd;1,
ḡqd;2 ¼ gqd;2, ḡqd;3 ¼ gqd;3=β0, Āq

i ¼ Aq
i =β

i
0, D̄q

d;i ¼ Dq
d;i=β

i
0

and β̄i ¼ βi=β
iþ1
0 , we find [3].

ḡqd;1 ¼ ĀI
1

1

ω
fωþ ð1 − ωÞ lnð1 − ωÞg;

ḡqd;2 ¼ ωfĀI
1β̄1 − ĀI

2g þ lnð1 − ωÞfĀI
1β̄1 þ D̄I

d;1 − ĀI
2g þ

1

2
ln2ð1 − ωÞĀI

1β̄1 þ ln

�
q2

μ2R

�
lnð1 − ωÞĀI

1 þ ln

�
μ2F
μ2R

�
ωĀI

1;

ḡqd;3 ¼ −
1

2
ωĀI

3 −
1

2

ω

1 − ω
f−ĀI

3 þ ð2þ ωÞβ̄1ĀI
2 þ fðw − 2Þβ̄2 − ωβ̄21 − 2ζ2gĀI

1 þ 2D̄I
d;2 − 2β̄1D̄I

d;1g

− lnð1 − ωÞ
�

β̄1
1 − ω

fĀI
2 − D̄I

d;1 − ĀI
1β̄1ωg − ĀI

1β̄2

�
þ 1

2

ln2ð1 − ωÞ
1 − ω

ĀI
1β̄

2
1 þ ln

�
μ2F
μ2R

�
ĀI
2ω

−
1

2
ln2

�
μ2F
μ2R

�
ĀI
1ω − ln

�
q2

μ2R

�
1

1 − ω
ffĀI

2 − D̄I
d;1gω − ĀI

1β̄1fωþ lnð1 − ωÞgg þ 1

2
ln2

�
q2

μ2R

�
ω

1 − ω
ĀI
1: ð8Þ

The first three coefficients of the QCD β function, β0, β1, and β2 are given by [60]
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β0 ¼
11

3
CA −

4

3
TFnf;

β1 ¼
34

3
C2
A − 4TFnfCF −

20

3
TFnfCA;

β2 ¼
2857

54
C3
A −

1415

27
C2
ATFnf þ

158

27
CAT2

Fn
2
f þ

44

9
CFT2

Fn
2
f −

205

9
CFCATFnf þ 2C2

FTFnf: ð9Þ

The N1, N2 independent terms resulting from integrals have been absorbed in g̃qd;0 addition to gqd;0, which however
depends on the specific process under study. In principle, these N1, N2 independent terms can also be exponentiated.

For Drell-Yan production, expanding g̃qd;0 ¼
P∞

i¼0 a
i
sg̃

qðiÞ
d;0 , we find up to a2s order in strong coupling:

g̃qð0Þd;0 ¼ 1;

g̃qð1Þd;0 ¼ CFf−16þ 16ζ2g þ ln

�
μ2F
μ2R

�
CFf−6g þ ln

�
q2

μ2R

�
CFf6g;

g̃qð2Þd;0 ¼ CFnf

�
127

6
−
64

3
ζ2 þ

8

9
ζ3

�
þ C2

F

�
511

4
− 198ζ2 − 60ζ3 þ

552

5
ζ22

�
þ CACF

�
−
1535

12
þ 376

3
ζ2 þ

604

9
ζ3 −

92

5
ζ22

�

þ ln

�
μ2F
μ2R

��
CFnf

�
2

3
þ 16

3
ζ2

�
þ C2

Ff93 − 72ζ2 − 48ζ3g þ CACF

�
−
17

3
−
88

3
ζ2 þ 24ζ3

��

þ ln2
�
μ2F
μ2R

�
½CFnff−2g þ C2

Ff18g þ CACFf11g� þ ln

�
q2

μ2R

��
CFnf

�
−
34

3
þ 16

3
ζ2

�

þ C2
Ff−93þ 72ζ2 þ 48ζ3g þ CACF

�
193

3
−
88

3
ζ2 − 24ζ3

��
þ ln

�
q2

μ2R

�
ln

�
μ2F
μ2R

�
C2
Ff−36g

þ ln2
�
q2

μ2R

�
½CFnff2g þ C2

Ff18g þ CACFf−11g�: ð10Þ

To study the numerical impact of our resummed result, we require in addition fixed order results containing only the large
logarithms to perform proper matching. They can be obtained by truncating the resummed result and in the following, we

present the Δ̃SVðiÞ
d;q by setting μ2R ¼ μ2F up to NNLO level:

Δ̃SVð0Þ
d;q ¼ 1;

Δ̃SVð1Þ
d;q ¼ CFf−16þ 16ζ2g þ ln2ðω̄ÞCFf2g þ ln

�
q2

μ2F

�
CFf6g þ ln

�
q2

μ2F

�
lnðω̄ÞCFf−4g;

Δ̃SVð2Þ
d;q ¼ CFnf

�
127

6
−
64

3
ζ2 þ

8

9
ζ3

�
þ C2

F

�
511

4
− 198ζ2 − 60ζ3 þ

552

5
ζ22

�

þ CACF

�
−
1535

12
þ 376

3
ζ2 þ

604

9
ζ3 −

92

5
ζ22

�
þ lnðω̄Þ

�
CFnf

�
−
112

27

�
þ CACF

�
808

27
− 28ζ3

��

þ ln2ðω̄Þ
�
CFnf

�
−
20

9

�
þ C2

Ff−32þ 32ζ2g þ CACF

�
134

9
− 4ζ2

��

þ ln3ðω̄Þ
�
CFnf

�
−
4

9

�
þ CACF

�
22

9

��
þ ln4ðω̄ÞC2

Ff2g þ ln

�
q2

μ2F

�

×

�
CFnf

�
−
34

3
þ 16

3
ζ2

�
þ C2

Ff−93þ 72ζ2 þ 48ζ3g þ CACF

�
193

3
−
88

3
ζ2 − 24ζ3

��

þ ln

�
q2

μ2F

�
lnðω̄Þ

�
CFnf

�
40

9

�
þ C2

Ff64 − 64ζ2g þ CACF

�
−
268

9
þ 8ζ2

��
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þ ln

�
q2

μ2F

�
ln2ðω̄Þ

�
CFnf

�
4

3

�
þ C2

Ff12g þ CACF

�
−
22

3

��
þ ln

�
q2

μ2F

�
ln3ðω̄ÞC2

Ff−8g

þ ln2
�
q2

μ2F

�
½CFnff2g þ C2

Ff18g þ CACFf−11g� þ ln2
�
q2

μ2F

�

× lnðω̄Þ
�
CFnf

�
−
4

3

�
þ C2

Ff−24g þ CACF

�
22

3

��
þ ln2

�
q2

μ2F

�
ln2ðω̄ÞC2

Ff8g: (11)

where ω̄ ¼ N̄1N̄2. In the following, we will discuss how
these resummed contributions can be systematically
included in order to study their phenomenological impor-
tance at the LHC.

III. PHENOMENOLOGY

Our next task is to include the resummed contributions
consistently in the fixed order predictions and study their
numerical impact on the rapidity distribution of lepton pairs
produced in the Drell-Yan process at the LHC. We consider
the production of both leptons, i.e., lþl−, where l ¼ e, μ
through Z and γ� in the collision of two hadrons at the
center of mass energy 14 TeV. Unless otherwise stated, we
will mostly focus on the region containing the Z-pole. We
take nf ¼ 5 flavors, the MMHT2014(68cl) PDF set [61]
and the corresponding asðMZÞ through the LHAPDF-6
[62] interface at each order in perturbation theory. For the
fixed order rapidity distribution, we use the publicly
available code Vrap-0.9 [14,63]. The resummed contribu-
tion is obtained from Δ̃SV

d;qðN1; N2Þ in Eq. (6) after perform-
ing Mellin inversions which are done using an in house
Fortran based code. Since the resummed result cannot be
simply added to the fixed order one because all the lnðNiÞ
and Ni independent terms present in the resummed expo-
nential gqd and g̃qd;0 are already present in the fixed order
results and hence care is needed to avoid double counting.
This can be achieved simply by employing a matching
procedure at every order. The matched result is given below

d2σq;res

dq2dy
¼ d2σq;f.o

dq2dy
þ σqB

Z
c1þi∞

c1−i∞

dN1

2πi

Z
c2þi∞

c2−i∞

×
dN2

2πi
eyðN2−N1Þð ffiffiffi

τ
p Þ2−N1−N2 f̃qðN1Þf̃qðN2Þ

× ½Δ̃SV
d;q − Δ̃SV

d;qjtrunc�; ð12Þ
where σqB is given by

σqB ¼ 4πα2

3q4N

�
e2q −

2q2ðq2 −M2
ZÞeqgVe gVq

ððq2 −M2
ZÞ2 þM2

ZΓ2
ZÞc2ws2w

þ 3q4ΓZBZ
l

16αMZððq2 −M2
ZÞ2 þM2

ZΓ2
ZÞc2ws2w

×

�
1þ

�
1 −

8

3
s2wÞ2

��
ð13Þ

with α ¼ αðMZÞ ¼ 1=127.925, eq is the quark charge,
MZ ¼ 91.1876 GeV, ΓZ ¼ 2.4952 GeV, s2w¼0.227, c2w ¼
1 − s2w, gVe ¼ −1=4þ s2w, gVu ¼1=4−2=3s2w, gVd ¼ −1=4þ
1=3s2w, BZ

e ¼ 0.03363 and BZ
μ ¼ 0.03366. The first term in

Eq. (12), ðd2σq;f.o=dq2dyÞ, corresponds to contributions
resulting from a fixed order perturbative computation. The
second term on the other hand contains only threshold
logarithms lnðNiÞ but to all orders in perturbation theory.
The subscript “trunc” in the Δ̃SV

d;q indicates that it is
truncated at the same order as the fixed order one after
expanding in powers of as. Hence, at a given order n in as
(i.e., at order ans ), the nonzero contribution from the second
term starts at order anþ1

s and includes terms from all orders.
For the fixed nth order contribution, namely NnLO, the
contribution from the second term is called NnLL.
Hence, we use the notations LO, NLO, and NNLO for
the fixed order predictions and correspondingly LOþ LL,
NLOþ NLL, and NNLOþ NNLL for the resummed ones.
It is well known that the resummed expression diverges due
to the missing nonperturbative contributions. These diver-
gences show up when ω → 1 in the functions ḡqd;i; they are
due to the coupling constant asðμ2RÞ that diverges near the
Landau pole. In order to resolve this, we have adopted
the minimal prescription (MP) [64]. The contours for the
integrals corresponding to two Mellin inversions [65] are
chosen in such a way that all the poles in the complex plane
spanned by N1, N2 remain to the left of the contours except
for the Landau pole. Since the leading order contribution
to the Drell-Yan process is due to EW interactions, the
dominant theoretical uncertainty comes from the factoriza-
tion scale μF that enters through the parton distribution
functions while the dependence on the renormalization scale
μR starts only from NLO onwards. Unlike the leading order
prediction, in the resummed case, the LL contributions do
depend on μR through ω in ḡqd;1ðwÞ given in Eq. (8). Hence,
μR dependencewill showup at evenLOþ LL level. Thiswill
be evident from Fig. 4 that one finds larger scale uncertainty
fromLOþ LLcontributions compared to the fixed order one
at LO level. It is then important to understand the impact of
these two scales at the resummed level and also to determine
the optimal choice for the central scale around which the
scale uncertainty remains minimal. For the fixed order case
it has already been realized in [66] that the optimal choice
for the central scale is when both μR and μF are set to MZ.
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In order to obtain the optimized central scale for the
resummed case, we have plotted in Fig. 1 the dependence
of the rapidity distribution on (a) ðμR ¼ MZ; μFÞ,
(b) ðμR; μF ¼ MZÞ, and finally (c) ðμ ¼ μR ¼ μFÞ at
NNLOþ NNLL level. The symmetric band is obtained by
performing 7-point scale variation [51,59,66] around a given
central scale with the constraint ðk1; k2Þ ⊗ ðμR; μFÞcentral
where ðk1; k2Þ ∈ ½1=2; 2� with 1=2 ≤ k1=k2 ≤ 2 and by
taking maximum absolute deviation from the central scale.
From the first and the last panels of Fig. 1, it is clear that the
optimal central scale choice is ðMZ;MZÞwhereas the middle
panel favors ðMZ=2;MZÞ for the central scale. Comparing all
three panels, we find that the choice ðMZ=2;MZÞ gives

minimum uncertainty band. However, to confirm the above
analysis also holds true at each order in the perturbation
theory, we have considered two different central scale choices
ðMZ;MZÞ and ðMZ=2;MZÞ in Fig. 2. We find that while the
acceleration of the perturbative convergence are almost same
for both cases, uncertainty band at NLOþ NLL and at
NNLOþ NNLL level are smaller for the central scale choice
ðMZ=2;MZÞ compared to the case ðMZ;MZÞ. In Fig. 3, we
compare predictions from the fixed order using the central
scale ðMZ;MZÞ against those from the resummed result using
the central scale ðMZ=2;MZÞ for two rapidities y ¼ 0 and
y ¼ 2.4. The scale uncertainties from the resummed case at
NNLOþ NNLL are comparable to what one obtains from
NNLO. However, the central values at NLOþ NLL and
NNLOþ NNLL are very close to each other compared to

FIG. 1. Cross sections against μF (left), μR (middle) and μ (right) variations at NNLO þ NNLL for 14 TeV LHC. The bands are
obtained by using 7-point scale variation (see text for more details).

FIG. 2. Resummed rapidity distribution in Drell-Yan produc-
tion for the two sets of central scale choices ðMZ;MZÞ and
ðMZ=2;MZÞ using MMHT PDFs at 14 TeV LHC. Corresponding
bands are obtained using 7-point scale variation around the
central scale. The lower panel represents the corresponding
K-factors.

FIG. 3. Fixed order predictions with the central scale μR ¼
μF ¼ MZ and resummed prediction with the central scale
μR ¼ MZ=2, μF ¼ MZ for rapidity y ¼ 0 and y ¼ 2.4 using
MMHT2014 PDF at each order. The uncertainties are obtained
by using 7-point scale variation (see text for more details) around
the central scale.
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those of fixed order results demonstrating the better pertur-
bative convergence.Aswehave discussed in the Introduction,
in [46,47,51] resummation of threshold logarithms for the
rapidity distribution was achieved in the M-F space. Our
formalism [3] differs from the other approach in the way the
threshold contributions are resummed. We resum large logs
resulting from the regions where scaling variables z1 and z2
approach unity simultaneously while in the case ofM-F, only
large logarithms from the regionwhere the partonic threshold
variable z approaches unity and the partonic rapidity yp is
zero, are resummed. In the following we will make the
numerical comparison of our predictions, namely the M-M
formalism against those of M-F reported in [51]. The fixed
order contributions are obtained by using Vrap-0.9 [14,63];
the resummedcontributionsup toNNLL forM-Fare obtained
by using publicly available code ReDY [67] and for M-M,
we use our in house Fortran routine. We have set all the
parameters including the PDF set (NLO set of NNPDF-2.0
[68] at every order) same as those used in [51]. Both our
results and those fromReDYare listed in the Table I for various

scale choices at the central rapidity.At LL level, bothM-F and
M-M give positive contributions but the contribution from
M-M is about three times larger compared to M-F indepen-
dent of the scale choice. The additional contribution over LL
atNLLforM-F is negative for somescale choices andpositive
for the rest while for M-M, it is always negative. The
magnitude of these additional contributions forM-M is larger
than M-F. Interestingly, at NNLL level, the additional con-
tributions over NLL for M-F andM-M are both negative in a
such a way that the net NNLL contributions from both
approaches become comparable. In the case of M-F, the
NLOþ NLL is 2% larger compared to LOþ LL and
NNLOþ NNLL is −4.7% larger compared NLOþ NLL.
For M-M, the corresponding ones are −0.8% and −4.9%
respectively at μR ¼ μF ¼ 2MZ.
In Fig. 4, using Eq. (12), we present the cross section for

producing lepton pairs as a function of the rapidity y up to
NNLO in the left panel and to NNLOþ NNLL in the right
panel along with the respective K-factors. The K-factor at a
given perturbative order, say at NnLO (NnLOþ NnLL), is

TABLE I. Comparison of resummed results between M-F and M-M approach in the minimal prescription scheme at y ¼ 0 for various
choices of scales.

y ð μRMZ
; μFMZ

Þ LO LLM-F LLM-M NLO NLLM-F NLLM-M NNLO NNLLM-F NNLLM-M

0.0 (2, 2) 72.626 þ0.988 þ3.219 73.450 þ1.639 þ1.796 70.894 þ0.630 þ0.646
0.0 (2, 1) 63.197 þ0.768 þ2.595 70.625 þ0.761 þ1.017 70.360 þ0.292 þ0.317
0.0 (1, 2) 72.626 þ1.095 þ3.577 73.535 þ1.912 þ1.760 70.509 þ0.510 þ0.395
0.0 (1, 1) 63.197 þ0.851 þ2.887 71.395 þ0.858 þ0.901 70.537 þ0.248 þ0.167
0.0 (1, 1=2) 53.241 þ0.621 þ2.216 67.581 þ0.156 þ0.140 69.834 −0.001 −0.094
0.0 (1=2, 1) 63.197 þ0.953 þ3.278 72.355 þ0.945 þ0.681 70.266 þ0.091 −0.015
0.0 (1=2, 1/2) 53.241 þ0.695 þ2.504 69.259 þ0.102 −0.154 70.283 −0.039 −0.146

FIG. 4. Drell-Yan rapidity distribution for 14 TeV LHC at q ¼ MZ using MMHT PDFs. The fixed order results are plotted in the left
panel and the resummed results in the right panel. Central scale is chosen as μR ¼ μF ¼ MZ for both and the corresponding bands are
obtained using 7-point scale variation (see text for more details) around the central scale. The lower panel represents the corresponding
K-factors.
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defined by the cross section at that order normalized by the
same at LO (LOþ LL) at the central scale μR ¼ μF ¼ MZ.
We have made this choice for the scales because the fixed
order perturbative prediction is well behaved around this
scale [66]. The symmetric band at each order is obtained by
varying μR and μF between ½MZ=2; 2MZ� around the central
scale μR ¼ μF ¼ MZ with the constraint 1=2 ≤ μR=μF ≤ 2,
by adding and subtracting to the central scale the highest

possible uncertainties originating from all the scale combi-
nations. We find that the magnitude and the sign of the
resummed contribution are sensitive to the order of per-
turbation as well the exact values of y and the scales μR, μF.
For example, if we choose μR ¼ MZ=2 and μF ¼ MZ
instead of μR ¼ μF ¼ MZ as the central scale, we obtain
a negative contribution from NNLL terms for all values of
rapidity.
Figure 4 also demonstrates that the inclusion of NnLL

contributions increase the cross section at every order for a
wide range of rapidity values. In addition, the overlap
among various orders is larger for the resummed case
compared to the fixed order ones, because the uncertainty
band at each order in the resummed case is bigger
compared to fixed order. As far as fixed order results are
concerned, in particular at NNLO level, several partonic
channels open up, effectively reducing the scale uncertainty
considerably. On the other hand, resummed contributions
come only from quark antiquark initiated channels to all
orders in perturbation theory as other channels do not
give threshold logarithms of the type that is resummed.
We confirm this through Fig. 5, where we have studied the
effects of resummation over the fixed order contributions,
by considering (a) only qq̄ channel at NNLO and (b) all the
channels at NNLO. We perform our analysis for y ¼ 0
and set μF ¼ MZ while varying μR betweenMZ=2 to 2MZ.
For the qq̄ channel the resum contributions arising from the

TABLE II. Fixed order and the resummed cross sections with % scale uncertainties along with the K-factors at the central scale
μR ¼ μF ¼ MZ.

y LO LOþ LL NLO NLOþ NLL NNLO NNLOþ NNLL KNLO KNLOþNLL KNNLO KNNLOþNNLL

0.0 58.002�16.36% 64.873�16.89% 76.758�5.28% 78.867�7.56% 79.182�0.98% 79.568�2.02% 1.323 1.216 1.365 1.226
0.8 57.645�16.07% 64.468�16.61% 75.727�5.26% 77.797�7.53% 77.968�1.04% 78.340�2.03% 1.314 1.207 1.352 1.215
1.6 56.228�15.29% 62.929�15.82% 72.295�5.17% 74.274�7.45% 74.239�1.11% 74.588�2.08% 1.286 1.180 1.320 1.185
2.4 53.181�14.19% 59.655�14.71% 65.953�5.04% 67.772�7.33% 67.678�1.21% 67.985�2.11% 1.240 1.136 1.273 1.140

FIG. 6. Same as Fig. 4 but for q ¼ 1 TeV.

FIG. 5. Drell-Yan rapidity distribution for 14 TeV LHC at y ¼
0 using MMHT PDFs. The variation of fixed order and resummed
results as a function of μR are shown separately for qq̄ channel
and also for all the channels added together.
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two extreme scales are of opposite sign and their individual
contributions are such that the NNLOþ NNLL (qq̄) curve
shows a stable behavior as compared to NNLO (qq̄). While
the fixed order decreases by 2.36% fromMZ=2 to 2MZ, the
corresponding decrease for NNLOþ NNLL (qq̄) is 1.53%.
This confirms the reduction of scale dependence upon
adding resummed terms to the fixed order contributions. To
estimate the percentage corrections purely coming from
the threshold region from this channel at each order of the
perturbation theory, we have considered the case where the
central scale is chosen to be μR ¼ μF ¼ MZ. As expected, at
LO both fixed order and the truncated resummed predictions
agree. But, at NLO and at NNLO we find truncated one is
7%–8% and 12%–13% larger compared to respective fixed
order at the central rapidity region. The largeness of the
truncated results gets compensated by the -ve corrections
coming from other channels emerging at respective orders.
However the scenario entirely reverses when we consider all
the channels at NNLO. We find that the differential cross
section at NNLO (all) increases by 0.29% in the entire range
ofμR values; the corresponding increase forNNLOþ NNLL
(all) is 1.29%. This reduction of the scale dependence at
NNLO is due to cancellations among different partonic
channels. However the resummation effects come only from
qq̄ channel which adds to the fixed order in such a way that

the resummed uncertainty increases. This explains the
increase of the scale uncertainty at each resummed order
depicted in Fig. 4. Furthermore an incomplete cancellation
of the factorization scale dependence against the PDFswhich
do not contain resummed threshold logarithms also increases
the band. For the threshold resummation effects in PDFs, see
[69]. For the fixed order, the K-factor at NLO varies between
1.3 and1.2 and atNNLObetween1.37 and1.3over the entire
rapidity region. On the other hand, the K-factors at both
NLOþ NLL and NNLOþ NNLL significantly overlap
with each other over most of the regions of rapidity and
stay around 1.2. This demonstrates a better perturbative
convergence for resummed case compared to the fixed order.
InTable II,we have presented the cross section for benchmark
rapidity values along with the percentage scale uncertainties.
Note that the differential cross-section at NNLOþ NNLL
level for the central scale is well approximated by the same at
NLOþ NLL. In fact, NNLOþ NNLL increases approxi-
mately by0.8%with respect toNLOþ NLL; the correspond-
ing number for NNLO over NLO is approximately 3%.
From the trend that resummed results give, we anticipate
N3LOþ N3LL cross-section will fall completely within the
NNLOþ NNLL band.
In Fig. 6, we have plotted both fixed order and resummed

results at various orders for the larger invariant mass at
q ¼ 1 TeV. Interestingly, the uncertainty bands at NLOþ
NLL and NNLOþ NNLL levels are better compared to
those from fixed order. Also the predictions at various
orders are closer compared to those from fixed order
demonstrating better perturbative convergence of the higher
order predictions from the resummed terms. In fact the
resummed K-factor for the central rapidity at NNLOþ
NNLL is 1.25 compared to 1.39 at NNLO.
As there are several PDF groups in the literature, each

providing sets of PDFs, it is customary to estimate the
uncertainty resulting from the choice of PDFs within each
set of a given PDF group. Using PDFs from different PDF
groups namely MMHT2014nnlo68cl [61], ABMP [70],

FIG. 7. PDF variation at NNLOþ NNLL using various sets.
The y-axis represents the ratio of extremum variation over the
central PDF set.

TABLE III. Cross sections at NNLO þ NNLL using different
PDF sets along with percentage uncertainties for y ¼ 0, 0.8,
1.6, 2.4.

y MMHT ABMP NNPDF PDF4LHC

0.0 79.568þ1.83%
−1.16% 79.756þ0.43%

−0.56% 81.959þ2.64%
−3.64% 78.734þ1.20%

−0.89%

0.8 78.340þ1.55%
−0.99% 78.202þ0.43%

−0.56% 80.256þ2.07%
−3.66% 77.390þ1.17%

−0.83%

1.6 74.588þ0.90%
−0.63% 73.738þ0.42%

−0.52% 75.178þ2.61%
−2.31% 73.505þ1.26%

−0.61%
2.4 67.985þ0.72%

−0.79% 66.653þ0.41%
−0.44% 67.354þ2.89%

−3.01% 67.070þ1.11%
−0.62%

FIG. 8. Rapidity distribution at NNLOþ NNLL for 8 TeV
LHC in the invariant mass range 60 < q < 120 GeV. The dotted
line is the fixed order NNLO contribution, the dashed line
represents NNLO þ NNLL result and the solid line includes
EW corrections.
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NNPDF3.1 [71] and PDF4LHC [72] we have obtained the
cross sections along with the corresponding PDF uncer-
tainty. In Fig. 7, we have plotted the uncertainty bands for
various PDF sets as function of rapidity in order to
demonstrate the correlation of PDF uncertainty with the
rapidity values. This will help to better constrain the PDF
fits using measurements on rapidity in the Drell-Yan
process. In Table III, we have also tabulated the cross
sections along with % uncertainties resulting from the
choice of different PDFs.
We have studied the q-integrated rapidity distribution

at the LHC with 8 TeV center of mass energy at
NNLOþ NNLL. The invariant mass is integrated between
60 GeV and 120 GeV and choose μR ¼ μF ¼ MZ. Unlike
our earlier analysis, we have included both eþe− as well as
μþμ− final states. NLO EW corrections are also included
as they are also comparable to QCD corrections at
NNLOþ NNLL. The EW contributions are obtained by
using the publicly available code Horace-3.2 [73–76].
We use the Gμ scheme and take GF ¼ 1.16639 × 10−5,
MW ¼ 80.395 GeV, MZ ¼ 91.1876 GeV and use MMH
T2014nlo68cl pdf. The electron and muon masses are taken
to be me¼0.51099MeV and mμ ¼ 0.10566 GeV respec-
tively. The NNLL contribution increases the cross section
by roughly around 0.5% with respect to NNLO. However
the EW corrections at NLO give negative contribution to
the cross-section. The corrections are different for eþe−
and μþμ− pairs. For electrons, the EW contributions are
twice that of muons. In total from the electron and muon
channels, we see an overall 2.3% decrease in the cross
section with respect to the NNLO in the central rapidity
region. The rapidity distribution in Fig. 8 being inclusive
in transverse momenta of the final state leptons, can not be
directly compared with the results presented in [77] where a
minimum transverse momenta cut is applied in the selec-
tion of final state leptons. To really compare this one needs
distributions exclusive of transverse momenta which at the
moment beyond the scope of the current paper and we leave
it to future work.

Both at Tevatron and at the LHC, there are already
precise measurements of rapidity distributions for different
ranges of invariant mass q. For one of the earliest set of
measurements see NuSea [78,79]. Since the data from the
LHC depends heavily on the kinematic cuts of the final
states we cannot directly compare against our predictions.
On the other hand CDF [80,81] has data for the rapidity
distributions for wide range of y with invariant mass range
66 < q < 116 GeV. In Fig. 9, we have compared our
predictions against the data at

ffiffiffi
s

p ¼ 1.8 TeV and at
ffiffiffi
s

p ¼
1.96 TeV after integrating q between the above mentioned
range for two different choices of PDF sets. The scale
uncertainty is obtained as before by using 7-point scale
variations around the central value μR ¼ μF ¼ MZ. We
note that at NNLOþ NNLL level, the resummed contri-
butions over the fixed order is very mild, less than 0.5%.
We have also observed that the resummed effects become
significant for large invariant mass regions.

IV. DISCUSSION AND CONCLUSION

In this article we have done a detailed study on the role
of resummed threshold logarithms for the rapidity distri-
bution of pairs of leptons in the Drell-Yan process at the
LHC. Being one of the cleanest channels at the hadron
colliders, precise measurements of various observables
such as inclusive cross section, transverse momentum
and rapidity distributions are already available. Precise
predictions from perturbative QCD are known to NNLO
level for long and corrections from electroweak theory have
become available in recent times. The latter effects being
close to the second order effects from QCD so that
dedicated efforts to understand the EW effects have been
undertaken. Owing to the dominant QCD interactions, soft
gluons play vital role in most of the observables. They
show up in certain kinematic regions through large loga-
rithms in the perturbative computations. Often they spoil
the reliability of the fixed order predictions. In this present
article, we have made a detail study on the effect of these
soft gluons within the resummation framework. In the

FIG. 9. Comparison between the resummed results and the CDF data [80,81] at
ffiffiffi
s

p ¼ f1.8 TeV; 1.96 TeVg in the invariant mass
range 66 < q < 116 GeV for two different PDF sets.
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literature two different approaches exist. They differ in
the kind of logarithms that are resummed to all orders.
The approach which uses Mellin-Fourier transformation to
achieve the resummation to resum large logarithms of
the scaling variable z has been well studied for the rapidity
distribution. Threshold logarithms resulting from regions
where the scaling variable zi approach unity are success-
fully resummed using the M-M approach. We used the
latter approach to get the quantitative predictions at
NNLOþ NNLL level. Since these formalisms resum
different type of logarithms to all orders, they are expected
to give different numerical predictions. In this article, we
have not only undertaken a detailed study on the numerical
impact of the M-M approach for the first time for the Drell-
Yan process but also made a detailed numerical comparison
against the M-F approach. While at LL and NLL level, they
differ very much, surprisingly at the NNLL level both the
approaches converge to a few percent correction to the
fixed order prediction. This could be accidental, however it
is desirable to understand this coincidence at NNLL level.
Our numerical study on the dependence of renormalization
and factorization scales shows that the optimal central
scales for the resummed result are μR ¼ MZ=2 and μF ¼
MZ while it is μR ¼ μF ¼ MZ for NNLO. We have also
found that, for wide range of rapidity, the scale uncertain-
ties from NNLL contributions at every order are slightly
larger than those from fixed order results. We believe that
this could be due to an incomplete cancellation of scale
dependent terms between resummed result and the PDFs.
Note that the PDFs that we use are extracted from data
using the fixed order perturbative predictions for the
observables and also using evolutions equations con-
trolled by splittings functions computed to desired order
in strong coupling constant. Hence, we expect that there
will be a better cancellation of scale if appropriate
resummed PDF sets are available. We have also presented
our predictions for various choices of PDFs from various
PDF groups. Each group has several sets and hence we

have not only made comparisons with respect to various
groups but also estimated the uncertainty from different
sets within each PDF group. We have also predicted the q
integrated rapidity distribution. Since our resummation
formalism cannot take into the experimental cuts such as
the transverse momentum and/or polar angles of the final
state leptons, we can not make any direct comparisons
with the existing data on the q integrated rapidity
distribution measured at the LHC which are extracted
after employing cuts on transverse momentum of final
state leptons. On the other hand we have compared our
predictions against CDF data at Tevatron for the invariant
mass range 66 < q < 116 GeV and found good agree-
ment within both theoretical and experimental uncertain-
ties. We believe that perturbative results that take into
account both fixed order as well as the resummed
contributions will provide a precise determination of
PDFs from the ample data that are already available at
the LHC.
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