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In quantum chromodynamics, axial charge is known to be nonconserved due to chiral anomaly and
nonvanishing quark mass. In this paper, we explore the role of quark mass in axial charge fluctuation and
dissipation. We present two separate calculations of the axial charge correlator, which describe dynamics of
axial charge. The first is free quarks at a finite temperature. We find that axial charge can be generated
through effective quantum fluctuations in free theory. However, the fluctuation does not follow a random
walk behavior. Because of the presence of an axial symmetry breaking mass term, the axial charge also
does not settle asymptotically to the thermodynamic limit given by susceptibility. The second calculation is
in a weakly coupled quark gluon plasma. We find in the hard thermal loop (HTL) approximation, the quark-
gluon interaction leads to random walk growth of the axial charge, but dissipation is not visible. We
estimate the relaxation timescale for the axial charge, finding it lies beyond the HTL regime.
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I. INTRODUCTION

The chiral anomaly is one of the most intriguing
discoveries in quantum field theory. Over the past ten
years, its manifestations in macroscopic phenomena such
as the chiral magnetic effect and chiral vortical effect have
triggered significant interest across different communities
[1–6]. There have been continuous efforts in searching for
chiral magnetic effect and chiral vortical effect in the quark
gluon plasma produced in heavy ion collisions [7–9], as
well as in Weyl semimetal [10,11]. For comprehensive
reviews of current status, we refer to [12–14]. Effective
descriptions of chiral magnetic effect and chiral vortical
effect have been developed for chiral fermions, including
anomalous hydrodynamics [15–17], chiral kinetic theory
[18–24], and holography [25–30]. Both theoretical frame-
works reveal beautiful structures in the chiral limit. In most
phenomenological applications of the two frameworks,
axial charge density is needed as an input, usually modeled
by axial charge chemical potential μ5. Possible issues with
using spacetime dependent μ5 are pointed out by one of the
authors [31]. To use μ5 properly, a better understanding of
the dynamics of axial charge is needed.

One of the well-known generation mechanisms of axial
charge is through a topological fluctuation of the gluon
field [32,33]. Because of the fluctuation-dissipation theo-
rem, this mechanism can also cause damping of the axial
charge. Most phenomenological studies ignore the damp-
ing effect in the dynamics of axial charge. The interplay of
generation and damping is known to lead to interesting
dynamics of axial charge [34]. In addition to topological
fluctuation of gluons, fermion mass violates axial charge
conservation explicitly. Questions on the role of fermion
mass also arises in a different context. On the theoretical
side, any fundamental fermion is known to carry mass.
Knowing how fermion mass modifies the existing frame-
works is a key ingredient. On the phenomenological
side, quantifying the magnitude of the mass effect is
needed for reliable modeling. The damping effect is first
discussed in [35] for an electron in the neutron star. The
generation effect is proposed by one of the authors [36,37]
for the supersymmetric gauge theory based on a holo-
graphic model.
This paper aims at providing a unified description of the

two effects in the same setting. To be specific, we study
dynamics of total axial charge in QCD in the weakly
coupled regime, where perturbative calculation is possible.
The results apply equally well to QED. For pedagogical
reasons, we begin with axial charge dynamics in free quark
theory in Sec. II. We then move on to carry out the same
study in weakly coupled QCD plasma in Sec. III. We find
that unlike free theory, weakly coupled plasma can generate
axial charge through a quark mass term similar to the
topological fluctuation of gluons. The rate of generation, to
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be coined mass diffusion rate, is numerically much smaller
than the topological fluctuation rate at physically relevant
coupling for a strange quark mass. We summarize
in Sec. IV.

II. AXIALCHARGEDYNAMICS IN FREE THEORY

For simplicity, we first study axial charge dynamics in
free theory. This allows us to set the stage and gain insights
into the dynamics. We first note that classical fermions
satisfying the Dirac equation do not have a net axial charge,
even though axial symmetry is broken by fermion mass. In
order to generate the net axial charge, we need the quantum
fluctuation to push fermions off shell. The quantity
characterizing axial charge dynamics is the following
Wightman correlator:

Z
dtd3xeiq0thψþγ5ψðt; xÞψþγ5ψð0Þi: ð1Þ

This describes dynamics of total axial charge
N5 ¼

R
d3xψþγ5ψðxÞ. The contribution to (1) comes from

a simple quark loop diagram. The contribution is given by

G>ðQÞ ¼
Z

d4K
ð2πÞ4 TrS21ðKÞS12ðK −QÞ; ð2Þ

with K ¼ ðk0; k⃗Þ and Q ¼ ðq0; 0Þ. Let us first consider the
case q0 > 0. Using delta functions in fermion propagators
S21 and S12, we find the only possible kinematics is
k0 ¼ Ek, and k0 − q0 ¼ −Ek, with Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. It is

not difficult to evaluate the integral to obtain

G>ðq0Þ ¼
NfNc

π
f̃

�
−
q0
2

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
q0
2

�
2

−m2

s
2m2

q0
θðq0 − 2mÞ; q0 > 0;

with f̃ð−q0=2Þ ¼
1

e−βq0=2 þ 1
: ð3Þ

This gives the spectral function ρðq0Þ,

ρðq0Þ ¼
G>ðq0Þ
1þ fðq0Þ

¼ NfNc

π

f̃ðq0=2Þ
fðq0=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
q0
2

�
2

−m2

s
2m2

q0
θðq0 − 2mÞ; q0 > 0;

with fðq0=2Þ ¼
1

eβq0=2 − 1
: ð4Þ

For the case q0 < 0, we use the representation G>ðq0Þ ¼
ρðq0Þð1þ fðq0ÞÞ and the property ρð−q0Þ ¼ −ρðq0Þ to
obtain

G>ðq0Þ ¼ −
NfNc

π
f̃

�
−
q0
2

�
2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
q0
2

�
2

−m2

s
2m2

q0
θð−q0 − 2mÞ; q0 < 0: ð5Þ

The above evaluation misses a contribution proportional to
δðq0Þ. It is known that such a contribution corresponds to
susceptibility for a conserved charge [38]. We can include
this contribution by assuming the following decomposition
of G>:

G> ¼ Gðq0; T;mÞ þ δðq0ÞFðT;mÞ: ð6Þ

We have already obtained Gðq0; T;mÞ in (3) and (5).
FðT;mÞ can be obtained by

FðT;mÞ ¼ lim
ϵ→0

Z
ϵ

−ϵ
dq0G>ðq0; T;mÞ: ð7Þ

Using (2) for the evaluation of (7), we obtain

FðT;mÞ ¼
Z

∞

0

dk
4

π

k4

E2
k

f̃ðEkÞð1þ f̃ðEkÞÞ: ð8Þ

It is instructive to compare (6) with the Wightman
correlator for N ¼ R

d3xψþψðxÞ. Following a similar
procedure, we would obtain the same expression (6) but
without Gðq0; T;mÞ. It is known that for conserved charge
N, G> ¼ 2πTδðq0Þχ, and thus FðT;mÞ is simply related to
susceptibility FðT;mÞ ¼ 2πTχ. By analogy, we define the
susceptibility of N5 from the contribution of F by
χ ¼ F=ð2πTÞ. We plot the m dependence of χ in Fig. 1.
The fluctuation of N5 is characterized by the correlator

hΔN5ðtÞ2i≡ hðN5ðtÞ − N5ð0ÞÞ2i, which can be expressed
by G> as
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hΔN5ðtÞ2i ¼ V
Z

dq0
2π

ð2 − eiq0t − e−iq0tÞG>ðq0Þ; ð9Þ

with V ¼ R
d3x being the volume factor. Let us look at the

contribution from F andG separately. The evaluation of the
former is subtle: a naive integration of δðq0Þ gives a
vanishing result. However, on general ground we expect
as t → ∞

hΔN5ðtÞ2i ¼ hN5ðtÞ2i þ hN5ð0Þ2i − hN5ðtÞN5ð0Þi
− hN5ð0ÞN5ðtÞi → 2hN5ð0Þ2i; ð10Þ

where we used hN5ðtÞN5ð0Þi → 0 and hN5ðtÞ2i ¼
hN5ð0Þ2i.1 Taking the contribution to hN5ð0Þ2i from F,
we would instead obtain

hΔN5ðtÞ2iF ¼ 2χTV: ð11Þ

The origin of the disagreement is that the two limits q0 → 0
(or t → ∞) and k → 0 (or V → ∞) do not commute. In (9),
we take V → ∞ first while in (10), we take t → ∞ first.
Physically they are not equivalent: since a conserved charge
can fluctuate only through a charge exchange with a heat
bath, taking V → ∞ requires a larger and larger heat bath,
and consequently a longer and longer equilibration time. To
reproduce (10), we should take the limit t → ∞ first, which
amounts to dropping the rapid oscillating terms in (9). The
resulting hΔN5ðtÞ2i indeed obtain (10).
Now we turn to the evaluation of the contribution from

G. This is intrinsic to the breaking of the axial symmetry. It
corresponds to fluctuation by itself, not relying on a charge
exchange with a heat bath. It is easy to see from (3) that the
fluctuation also exists in vacuum. Plugging (3) and (5) into
(9), we find the integral contains a UV divergence. We
regularize by subtracting the vacuum contribution:

hΔN5ðtÞ2iG ¼ VNfNc

Z
∞

0

dq0
2π

2ð1 − cosðq0tÞÞ
πℏ3

×

�
f̃ðq0=2Þ2
f̃ðq0Þ

− 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
q0
2

�
2

−m2

s

×
m2

q0
θðq0 − 2mÞ: ð12Þ

We have restored the factor of ℏ in (12). Note that on the
left-hand side, N5 is dimensionless. On the right-hand side,
the dimension reads ðenergyÞ3ðlengthÞ3=ℏ3, also dimen-
sionless. We point out two counterintuitive features of (12).
The fluctuation of N5 contains the explicit factor of ℏ,
indicating it is a consequence of quantum fluctuation.
However, we know in the free quark case there is no
interaction to induce quantum fluctuation. The other odd
feature is that the regularized fluctuation is negative (as is
clear from the negativity of the square bracket). It means
that the fluctuation at finite temperature is smaller com-
pared to that in the vacuum.
The two seemingly odd features are, in fact, related:

Although quarks are free at the Lagrangian level, Fermi-
Dirac statistics obeyed by quarks in equilibrium provides
effective interaction; thus quantum fluctuation is present.
Furthermore, this also gives a quantitative explanation of
the negative sign in the regularized fluctuations. The effect
of Fermi-Dirac statistics becomes prominent as we lower
the temperature. In the vacuum case, quantum fluctuation is
maximal, and thus the vacuum fluctuation is larger than any
finite temperature fluctuation, giving rise to negative
regularized fluctuation. Equation (12) can be evaluated
numerically. We include the time evolution of (12) for
different m in Fig. 2. The fluctuation is characterized by an
initial rise followed by oscillatory decay to asymptotic
value. Figure 2 suggests the initial rise satisfies the scaling
hΔN5ðtÞ2i ∝ m2. Since the mass term is the source of

FIG. 1. Normalized susceptibility versus m=T for both N5 and
N. It reduces to known result χ ¼ NcNfT2=3 in the massless limit.

FIG. 2. Contributions from intrinsic fluctuation hΔN5ðtÞ2i=m2

for different masses: blue solid line form ¼ 1=10, red dashed line
form ¼ 1=5, and green dotted line form ¼ 1=2. The unit is set by
T ¼ 1. The fluctuation is characterized by an initial rise followed
by oscillatory decay to asymptotic value. The case with a larger
mass shows more rapid convergence to the asymptotic value.

1In [34], the same quantity is calculated in the stochastic
hydrodynamics framework. χTV is obtained instead. The reason
is we set initial N5ð0Þ ¼ 0. This amounts to subtracting a baseline
for the fluctuation.
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fluctuation, the m2 dependence as the lowest order expan-
sion is expected from analyticity in m. Nonanalyticity can
occur in the presence of the external field due to the
Schwinger effect [5,39]. Furthermore, if we regard the
period of oscillation as relaxation time, Fig. 2 also implies a
shorter relaxation time at a larger mass, which is consistent
with the expectation on general grounds.
To summarize, we find the fluctuation of N5 contains

two contributions (10) and (12):

hΔN5ðtÞ2i ¼ 2VχT þ V
Z

dq0
2π

ð2 − eiq0t − e−iq0tÞGðq0Þ;
ð13Þ

where in the second line the limit t → ∞ should be taken.
The χ term arises from a charge exchange with a heat bath.
The term proportional toG is intrinsic to the breaking of the
axial symmetry. It exists without a heat bath. We could have
view the second term as a correction to susceptibility, but
this interpretation is misleading. Note that the second term
is not necessarily proportional to temperature as it arises
from quantum fluctuation. In the next section, we will
focus on the modification of the intrinsic fluctuation by
interaction.

III. AXIAL CHARGE DYNAMICS IN WEAKLY
COUPLED QGP

After the warm-up, we move on to the calculation in
weakly coupled quark gluon plasma (QGP). We expect the
same structure of the Wightman correlator as (6). The term
proportional to F is related to the susceptibility of N. It has
been calculated in perturbation theory [40]. The other term
is entirely due to the nonconservation of N5. We will
calculate G>

G in weakly coupled QGP, with the subscript
indicating it only contains the G term. We start with the
retarded correlator, whose imaginary part is related to the
Wightman correlator,

GRðq0Þ≡
Z

dtd3xeiq0th½ψþγ5ψðxÞ;ψþγ5ψð0Þ�i: ð14Þ

We will proceed in imaginary time formalism and analyti-
cally continue to real time in the end. We work in the hard
thermal loop (HTL) approximation at one loop order. It is
known from the calculation of susceptibility that the one
loop result of HTL is not complete ([40] and references
therein). However, the main purpose of this paper is to
demonstrate the diffusive behavior of the axial charge from

the quark mass effect; we restrict ourselves to one loop
order and leave more refined studies for future work.
At one loop order, the N5 correlator receives contribu-

tions from three diagrams as shown in Fig. 3. The first
diagram contains a soft quark loop with pseudophoton-
quark vertices (γ̃qq). The second diagram contains a soft
gluon loop with two-pseudophoton-two-gluon vertex
(2γ̃2g), and the third diagram contains a quark loop with
a two-pseudophoton-two-quark vertex (2γ̃2q) vertex. Here
we used γ̃ to denote the pseudophoton leg. These
resummed vertices are to be evaluated for HTL diagrams.
When the quark mass m ¼ 0, we can easily show by
commuting γ5 with γμ the following relations:

γ̃qq ¼ γqq × γ5;

2γ̃2g ¼ 2γ2g;

2γ̃2q ¼ 2γ2q: ð15Þ
We have used schematic notations. The first line of (15)
means the pseudophoton-quark vertex equals photon-quark
vertex times γ5 and similarly for the second and third
equalities. When m ≠ 0, in general all the vertices involv-
ing the pseudophoton receive corrections from m. To
simplify the computation, we take the quark mass to be
soft, i.e., m ∼ gT. We stress that this is the “current quark
mass,” not to be confused with the thermal quark mass,
which will appear below as mf. The current quark mass
itself should be T independent. The relation m ∼ gT is only
meant for numerical values for specific m, g, and T.
In the spirit of HTL, we will drop any contributions at

Oðm2

T2Þ. This allows (15) to hold in this approximation. We
are ready to write down explicit expressions of the vertices
involved,

�Γ5μðP1; P2Þ ¼
�
γμ −m2

f

Z
dΩ
4π

K̂μ=̂K

ðP1 · K̂ÞðP2 · K̂Þ

�
γ5;

ð16Þ
�ΓμνðP1; P2; Q1; Q2Þ

¼ −m2
f

Z
dΩ
4π

K̂μK̂ν=̂K

ðP1 þQ1Þ · =̂KðP2 −Q1Þ · =̂K

×

�
1

P1 · K̂
þ 1

P2 · K̂

�
; ð17Þ

with P1 and P2 being quark momenta and Q1 being one of
the gluon momenta. m2

f ¼ 1
8
CFg2T2 is the thermal quark

mass, not to be confused with the current quark mass m.

FIG. 3. Three leading one loop diagrams contributing to (14) in the HTL approximation.
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The null vector is defined as K̂ ¼ ð−i; k̂Þ. The remaining
2γ̃2g vertex is obtainable by sending two generators to 1 in
four-gluon vertex. This leads to a vanishing result, and thus
the second diagram drops out. Unlike vertices, the
resummed quark propagator does get modification due
to quark mass as follows:

�SðPÞ ¼ 1

=Pþ Σþm

¼
1
2
ðΔþ þ Δ−Þiγ4 þ 1

2
ðΔþ − Δ−Þ −mΔþΔ−

1 −m2ΔþΔ−
; ð18Þ

with γp ¼ p̂ · γ⃗ and

Σ ¼ m2
f

p

�
iγ4Q0

�
ω

p

�
þ γp

�
1 −

iω
p
Q0

�
ω

p

���
;

1

Δ�ðPÞ
¼ iω ∓ p −

m2
f

p

�
Q0

�
iω
p

�
∓ Q1

�
iω
p

��
: ð19Þ

Our calculation heavily relies on Ward identities. We
note the γqq vertex and the 2γ2q vertex satisfy the
following Ward identities:

Q1μ
�ΓμνðP1;P2;Q1Þ¼ΓνðP1;P2−Q1Þ−ΓνðP1þQ1;P2Þ;

ðP1−P3Þμ�ΓμðP1;P3Þ¼ΣðP1Þ−ΣðP3Þ: ð20Þ

For our purpose, we take quark momenta as P1 ¼ P2 ¼ P,
P3 ¼ P0, and pseudophoton momentum Q ¼ ð−ϖ; 0Þ ¼
P − P0. Consequently �Γ44 and �Γ4 can be uniquely fixed by
Ward identities as

−ϖ�Γ44ðP;P;QÞ ¼ �Γ4ðP;P −QÞ − �Γ4ðPþQ;PÞ;
−ϖ�Γ4ðP;P0Þ ¼ ΣðPÞ − ΣðP0Þ: ð21Þ

We proceed by evaluating the tadpole diagram

Z
d4p
ð2πÞ4 tr�Γ44

�SðPÞð−1Þ; ð22Þ

The trace can be evaluated using (21)

Z
d4p
ð2πÞ4 tr�SðPÞ½Γ4ðP;P0Þ − Γ4ðPþQ;PÞ� 1

ϖ

¼
Z

d4p
ð2πÞ4 ½tr

�SðPÞ�Γ4ðP; P0Þ − tr�SðP0Þ�Γ4ðP;P0Þ� 1
ϖ
;

ð23Þ

where in the second line, we make a change of variable:
P → P0 to the second Γ4. This expression will be canceled
by part of the terms in the quark-antiquark diagram.

We proceed by simplifying the quark-antiquark diagram
using (21). Note that �Γ5

4 ¼ �Γ4γ
5 and also �Γ4ðP;P0Þ ¼

�Γ4ðP0; PÞ, which is obvious from (16), and we have

Z
d4P
ð2πÞ4 tr

�SðPÞ�Γ5
4ðP;P0Þ�SðP0Þ�Γ5

4ðP0;PÞð−1Þ

¼
Z

d4P
ð2πÞ4 tr

1

=PþΣþm
�Γ4γ

5
1

=P0 þΣ0 þm
ðΣ−Σ0Þγ5 1

ϖ
;

ð24Þ

where we use shorthand notation Σ ¼ ΣðPÞ, Σ0 ¼ ΣðP0Þ
and suppressed the argument of �Γ4 for notational simplic-
ity. Commuting γ5 through only the switch sign of mass in
the second propagator, we can further simplify the expres-
sion by splitting Σ − Σ0 ¼ ð=Pþ ΣþmÞ − ð=P0 þ Σ0 −mÞ −
ð=P − =P0 þ 2mÞ and using the cyclic property of trace to
obtain

Z
d4P
ð2πÞ4 tr

1

=Pþ Σþm
�Γ4

1

=P0 þ Σ0 −m
ðΣ − Σ0Þ 1

ϖ

¼
Z

d4P
ð2πÞ4

�
tr

1

=P0 þ Σ0 −m
�Γ4 −

1

=Pþ Σþm
�Γ4

− tr
1

=Pþ Σþm
�Γ4

1

=P0 þ Σ0 −m
ð=P − =P0 þ 2mÞ

�
1

ϖ
:

ð25Þ

The retarded correlator is given by the sum of (23) and (25).
It is instructive to look at the result in the massless limit

first. Setting m ¼ 0, we immediately see the first two terms
of (25) cancel (23) entirely, leaving only the third term of
(25). To evaluate the third term, we use (18) and the
following explicit expression of Γ4:

�Γ4ðP;P0Þ ¼
��

1 −
m2

f

iϖp
δQ0ðp; p0Þ

�
γ4

þm2
f

ϖ
δQ1ðp; p0Þγp

�
; ð26Þ

with δQnðP;P0Þ ¼ Qnðiωp Þ −Qnðiω0
p Þ. We can adopt a rep-

resentation of Γ4 in terms of Δ� ≡ Δ�ðPÞ and Δ0
� ≡

Δ�ðP0Þ by using (19),

�Γ4ðP;P0Þ ¼ −
1=Δþ þ 1=Δ− − 1=Δ0þ − 1=Δ0−

2ϖ
iγ4

þ 1=Δþ − 1=Δ− − 1=Δ0þ þ 1=Δ0−
2ϖ

γp: ð27Þ

Taking the trace, we obtain

Z
d4P
ð2πÞ4

2i
ϖ
ðΔ− þ Δþ − Δ0− − Δ0þÞ; ð28Þ
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which vanishes identically upon change of variable. This
indicates that indeed the contribution we are after is
intrinsic to the breaking of the axial symmetry.
Now we move on to a massive case. We note that the first

two terms of (25) combine with (23) to give

Z
d4P
ð2πÞ4 tr�Γ4

�
1

=P0 þ Σ0 −m
−

1

=P0 þ Σ0 þm

�
1

ϖ
; ð29Þ

which still vanishes upon taking the trace. The remaining
terms are

Z
d4P
ð2πÞ4 ð−Þtr

1

=PþΣþm
�Γ4

1

=P0 þΣ0−m
ð=P−=P0 þ2mÞ 1

ϖ
:

ð30Þ
We aim at calculating the lowest order mass correction,
which begins at order Oðm2Þ. It arises from the expansion
of the denominator and the numerator of the propagators
and mass term in Γ4. It is easy to see that the expansion of
the denominator still gives a vanishing result due to similar
cancellation as the Oðm0Þ result. The remaining correction
can be organized as follows:

Z
d4P
ð2πÞ4

8m2

ϖ2
ð−ΔþΔ− − Δ0þΔ0− þ ΔþΔ0− þ Δ0þΔ−Þ:

ð31Þ

We use the following formula to perform the frequency
sum:

ImTΣng1ðiωnÞg2ðiðωn−ωÞÞ¼πð1−eβq0Þ

×
Z þ∞

−∞

dp0

2π

dp0
0

2π
f̃ðp0Þf̃ðp0

0Þδðq0−p0−p0
0Þρ1ðp0Þρ2ð−p0

0Þ:

ð32Þ

Here g1 and g2 are two generic functions. ρ1 and ρ2
correspond to their spectral densities, ρ1 ¼ −2Img1,
ρ2 ¼ −2Img2. Note that the analytic continuation iω →
q0 þ iη is taken after the frequency sum and only the
imaginary part of the result is kept in (32). The frequency
sum of the first two terms in (31) gives a contribution with
q0 ¼ 0, which vanishes identically due to the factor
1 − eβq0 . The frequency sum of the remaining terms is
given by

Z
d3p
ð2πÞ3

Z
dp0

2π

dp0
0

2π
πð1 − eβq0Þf̃ðp0Þf̃ðp0

0Þδðq0 − p0 − p0
0Þ
32m2

q20
ðImΔþðp0ÞImΔ−ð−p0

0Þ þ ImΔ−ðp0ÞImΔþð−p0
0ÞÞ

¼
Z

d3p
ð2πÞ3

Z
dp0

2π

dp0
0

2π
πð1 − eβq0Þf̃ðp0Þf̃ðp0

0Þδðq0 − p0 − p0
0Þ
32m2

q20
ðImΔþðp0ÞImΔþðp0

0Þ þ ImΔ−ðp0ÞImΔ−ðp0
0ÞÞ:

ð33Þ

We have used the property ImΔ�ð−p0
0Þ ¼ ImΔ∓ðp0

0Þ in the
second line. Note that Wick rotation applies N4

5 → iN5,
which gives an overall minus sign between the correlator of
N4

5 and the correlator of N5. Using the Kubo-Martin-
Schwinger relation, we readily obtain

G>
Gðq0Þ¼

Z
d3p
ð2πÞ2

Z
dp0

2π

dp0
0

2π
eβq0 f̃ðp0Þf̃ðp0

0Þ

×δðq0−p0−p0
0Þ
32m2

q20
×ðImΔþðp0ÞImΔþ0ðp0

0Þþ ImΔ−ðp0ÞImΔ0−ðp0
0ÞÞ:
ð34Þ

Note that we have identified the contribution with G>
G

because it arises entirely from quark mass breaking of the
axial symmetry. The spectral density appearing in (34)
contains a contribution from poles and a cut. The con-
volution of two spectral densities gives rise to contributions
from the following types: pole-pole, pole-cut, and cut-cut.
A similar situation is encountered in the computation of

soft dilepton production, showing a remarkable structure
[41,42].
For the purpose of demonstrating late time dynamics of

N5, we focus on the small q0 regime. In the limit q0 → 0,
we obtain G>

G → 4Γm
q2
0

, with Γm defined as

Γm ¼
Z

d3p
ð2πÞ2

dp0

2π

dp0
0

2π
8m2δðp0 þ p0

0Þf̃ðp0Þf̃ðp0
0Þ

× ½ImΔþðp0ÞImΔþðp0
0Þ þ ImΔ−ðp0ÞImΔ−ðp0

0Þ�:
ð35Þ

Γm characterizes the rate of fluctuation of the axial charge.
To see this, we do the Fourier transform as follows:

Z
d3xhðn5ðt; xÞ − n5ð0ÞÞ2i

¼
Z

dqo
2π

ð2 − e−iq0t − eiq0tÞG>ðq0Þ

≃
Z

dq0
2π

8Γm

q20
ð1 − cos q0tÞ ¼ 4Γmt: ð36Þ
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This is the random walk growth of axial charge, with the
growth rate given by (35).
To evaluate Γm, we note that the delta function constraint

only allows for the cut-cut contribution in the product
ImΔ�ImΔ0

�: The pole-pole contribution is excluded in the
limit q0 → 0. The pole-cut contribution is possible only at
large p, which is exponentially suppressed by the Fermi-
Dirac distribution. The cut-cut contribution is not sup-
pressed. We send f̃ðp0Þ → 1=2, f̃ðp0

0Þ → 1=2 in the
evaluation. All the momenta are of order gT. The spectral
functions scale as ImΔ� ∼ gT. As a result, we obtain
Γm ∼m2g2T2. This is to be compared with the Chern-
Simons (CS) diffusion rate, which scales as ΓCS ∼
g10 ln g−1T4 [43,44] or ΓCS ∼ g8T4 from extrapolation of
the weak coupling result [32]. At sufficient weak coupling,
the quark mass diffusion rate always dominates the CS
diffusion rate. It is interesting to compare the actual number
of the two rates at relevant coupling and mass. For the
former, we quote the strong coupling extrapolation by
Moore and Tassler [32],

ΓCS ∼ 30α4sT4: ð37Þ
For the latter, we need to obtain the precise number in
Γm ∼m2ðgTÞ2 from (35). We obtain from numerical
integration

Γm ≃ 0.013m2m2
f: ð38Þ

We use strange quark mass m ¼ 100 MeV and use the
lattice measured thermal mass [45], which is mf ≃ 1.0T.
Taking T ¼ 400 MeV and αs ¼ 0.3 relevant for heavy ion
collisions, we obtain

ΓCS ≃ 0.24T4; Γm ≃ 0.001T4: ð39Þ
We found the quark mass effect is much less efficient in axial
charge generation. However, the effect of the quark mass can
be significantly enhanced when the temperature approaches
the transition temperature from above. In this region, the
relevant mass parameter is the constituent quark mass, which
is enhanced by partial chiral symmetry breaking.2

Note that in the weakly coupled case, only the generation
of the axial charge is obtained, and the damping effect is not
visible. The reason can be understood by making an estimate
of the damping timescale. Using the fluctuation-dissipation
theorem, the damping timescale due to the quark mass is
given by

τm ¼ χT
2Γm

; ð40Þ

where χ is the axial charge susceptibility. To the leading
order in g, it is given by the free theory result χ ∼ g0T2. We
thus obtain τm ∼ T

m2g2. Obviously the relaxation is shorter for

larger mass, consistent with the expectation on general
grounds. Note that we assumed m ∼ gT in the calculation.
The conjugate frequency to this timescale is q0 ∼ g4T, which
lies well beyond the HTL regime.

IV. SUMMARY

Let us compare the fluctuation of the axial charge in free
theory and weakly coupled QGP. First of all, the fluctuations
in both cases contain two contributions: one is proportional
to susceptibility, originating from the charge exchangewith a
heat bath; the other contribution is intrinsic to the breaking of
axial symmetry. Focusing on the contribution from the
breaking of axial symmetry, we find that unlike the
susceptibility term, quantum fluctuation is needed to give
a nonvanishing contribution. In the case of free theory, the
quantum fluctuation is provided by effective Pauli repulsion.
This also explains the counterintuitive result we find: the
fluctuation maximizes at zero temperature. It also implies
that it is misleading to interpret this contribution as a
correction to susceptibility. In the case of weakly coupled
QGP, the fluctuation is given by quark-gluon interaction,
which is enhanced by the presence of the thermal medium.
The frequency dependence of theWightman correlator of the
two cases is given by the following:

hG>
Gðq0ÞifreeG ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 − 4m2

q m2

jq0j
θðjq0j − 2mÞ;

hG>
Gðq0ÞiQGPG ∼

m2m2
f

q20
: ð41Þ

In the free case, the Wightman correlator vanishes for
jq0j < 2m. This gives a flat asymptotic behavior for
hN2

5ðtÞi as shown in Fig. 2. In the weakly coupled QGP
case, the Wightman correlator is nonvanishing, giving rise to
random walk behavior for hN2

5ðtÞi in the long time limit.
Note that (41) is not applicable when q0 ∼ g2T. We expect
the random walk growth of the axial charge to be cut off on
an even longer timescale. In order to see the damping effect,
we might need kinetic theory to access this timescale [42].
We leave it for future work.
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