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We consider the chiral Lagrangian for charmed baryon fields with J* =1* or J¥ =3* quantum
numbers. A chiral expansion framework for the baryon ground state masses is worked out to N3LO as to
compute their dependence on the up, down and strange quark masses for finite box QCD lattice
simulations. It is formulated in terms of on-shell meson and baryon masses. The convergence of such a
scheme is illustrated with physical masses as taken from the Particle Data Group (PDG). The counter terms

relevant at N3LO are correlated systematically by large-N,. sum rules to leading and subleading order in a
manner that keeps the renormalization scale invariance of the approach.
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I. INTRODUCTION

QCD lattice simulations offer the opportunity to deter-
mine low-energy parameters of the chiral Lagrangian.
Since the simulations are performed also at quark masses
distinct to those needed to reproduce the physical hadron
masses new information is generated that may help to
determine so far unknown low-energy constants.

Such programs have already been successfully set up for
the masses of baryons and mesons in their ground states
with J# =17, 3" and J* = 0, 1~ quantum numbers [1-3].
Corresponding sets of low-energy parameters to be used in
flavor SU(3) chiral Lagrangians were established from the
available lattice data on such hadron masses [1,2].

The purpose of the present work is to establish a
corresponding framework for the masses of charmed
baryons, which can then eventually be applied to the
current QCD lattice data. Given the rather scarce data
set that is provided so far on the charmed baryon masses
[4-9] it is important to derive additional constraints from
QCD that will guide a fit of the low-energy constants to
such data. An important first step in this direction are the
recent works [10,11], in which all counterterms that turn
relevant in a chiral expansion of the charmed baryon
masses are constructed and correlated by the heavy-
quark spin symmetry and sum rules derived from large-
N, QCD. Here we complement these results by deriving
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explicit expressions for the various contributions to the
baryon masses that arise at next-to-next-to-next-to leading
order (N°LO).

As was argued in our previous works [1-3] a chiral
expansion around the flavor SU(3) limit of QCD in terms of
bare meson and baryon masses is not convergent for the
physical up, down and strange quark masses. Any attempt
to apply such a conventional expansion strategy to the QCD
lattice data set is futile and should be abandoned [12].
Instead, it was demonstrated that a reformulated expansion
scheme that uses the on-shell meson and baryon masses
appears to have a significantly larger convergence domain,
that is applicable to the physical masses for up, down and
strange quarks [1,2]. In this work the details of such an
approach for the charmed baryon masses are presented. In
particular its convergence properties are illustrated at the
hand of a chiral decomposition of the bubble loop con-
tributions at physical meson and baryon masses. This is
supplemented by the derivation of additional sum rules for
the counter terms that arise from the condition of renorm-
alization scale invariance. Given the results of this work an
application to the data set from lattice QCD group is
feasible. This should eventually lead to a faithful set of
low-energy constants.

The work is organized as follows. In Sec. II the relevant
parts of the chiral Lagrangian are collected. All expressions
required at N*LO are detailed in Sec. III. In Sec. IV the
various large-N . sum rules are studied at the one-loop level.
The paper continues with a convergence study in Secs. V
and VI of the one-loop bubble contributions as decomposed
into their chiral moments. A short summary given with
Sec. VII. The Appendix provides a glossary for our notations
and conventions.
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II. CHIRAL LAGRANGIAN WITH CHARMED BARYON FIELDS

The chiral Lagrangian is a reliable tool, once it is combined with appropriate counting rules leading to a systematic

approximation strategy. In the following we recall the leading order (LO) terms [10,13,14]. It is convenient to decompose
the fields into their isospin multiplets with

® =7 7(140) + a' - K(494) + K7(494) - a + n(547) g,

1 - I _ .
V2Bp = \ﬁoﬂ 2.(2470) — %:Z (2470) - a + i1, A (2284),
\/_ 1 o= 1 =T . ﬂ \/_
2B = 7§a - E,.(2580) + 7§c <(2580) - a + X.(2455) - tity + 3 (1 —V/325)Q.(2704),
V2B = L T EK(2645) + LECT"‘(2645) - a + ¥(2520) - tit, + V2 (1 —/35)Q(2770)
o V2 3 ’
1
af = — (4 + ids, A + id7),
\/5( 4 5546 7)
T= (’117/127/13)7 (1)
|
where the matrices A; are the standard Gell-Mann E, = E.cose + E. sine, Bl ==l cose — E.sine,
generators of the SU(3) algebra. The numbers in the 1
brackets recall the approximate masses of the particles with Xz = = E(Zg{ — Xz ) tan(2e), (2)

in units of MeV. Note that we do not consider the 7
meson as an active degree of freedom in our current
study [15,16].

It should be noted that =. and E., have the same quantum
numbers and therefore a mixing of the two fields needs
to be considered [17]. We introduce a =.— E. mixing
angle € by

There are the kinetic terms

£ = tI'B[ ]()/”lD M[ 6] )B[6] ( B!

+7,[iB + M{[’]y,)BYy) + Bz (yiD,, M[l/f

- H[66]trB[6]gaﬂyﬂY5lU/AB[G,] s
U, = EuT(aﬂe Nut — EMT(

D,B=9,B+T,B+ BT,
1

1
r,= EuT[Bﬂ —i(v, + a,)]u +§u[8” —i(v

and 6 structures which parametrize the three-point inter-
actions of the Goldstone bosons with the charmed baryon
fields [13,14]. From the kinetic terms one can read off the
Weinberg-Tomozawa interaction terms on which the
coupled-channel computation of [18] rests. It follows upon
an expansion of the kinetic terms in powers of the Goldstone

([lD - M3/2]g;w -

i
v, +a,)u+ Eu(vﬂ —a,)u’,

= a)lu’

where the physical fields are denoted by =, and Z... The off-
diagonal self- energy Yz = # 0 reflects the fact that the
fields Z. and 2/, are unphyswal. Only for the physical fields
=, and =/ we expect their corresponding off-diagonal self-
energy ¥z z — 0 to vanish for on-shell conditions.

i(y,D, +7.,D,)

)B B+ F[66]tI‘B[6]]/”7/5iU B[ﬁ] + F:;g]tI‘B[g]]/”ysiUﬂBB]
+ Fpgtr(Bigr*ysiU, Bz + H.c.) 4 Cle) tr(B" iU,Bjg +H.c.) + CBﬁ]tr(

lU B[3]+HC)

i2
u=e,

3)

boson ﬁelds At leadmg order ina chiral expansion, the bare
masses M/ 6 ] M 6 * and M may be identified with the
flavor average of the sextet and antitriplet baryon masses.
Note the classical vector and axial-vector source functions v,

and a, of QCD in (3) were instrumental in the derivation of
our large-N . sum rules [10,11].
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We proceed with the terms at next-to-leading order (NLO) where there are symmetry conserving and symmetry breaking
terms [10,11]. We recall the 7 symmetry breaking counter terms

) =b, 33t (B Btz ) + by pytr(Brx Bry) + by g tr(Bjeyr By + Hee.)
+ by j6)tr(B 6]3[6])tr()(+)+b2,[66]tr(Bﬁ]Z+ o) — dl.[66]tr(g;wB Big)t(y.) —dy, 166t (9, B X +Bjg))-

1 .
P =§(u)(ou+u')mu+), (4)

with yo = 2Bgdiag(m, m, m) proportional to the quark-mass matrix. We do not consider isospin violating effects in this
work. The low-energy constants of (4) imply a linear quark-mass dependence for the charmed baryon masses with

Mg - Mzzc) = —By(m; — m)b; [g)» Mg) - Mg) = —2By(m; — m)b; eq,
M_'(Ezj) - M(ch) = —By(my — m)d, ), Mg) - M(ZZ;) = —2By(m, — m)d, jsq,

MS\ZC) + 2M(2) = =2Bo(2m + m,)(3b, ;33 + b2 33),
MG +2ME) +3ME) = —4By(2m + m,) (3, s6) + b2 eq))-
( ) + 2M ) + 3M = —4B0<2m + ms)(3d17[66] + d2,[66])v
2
M(E ):/ = By(m; —m)b 3¢, (5)
where the upper index 2 in Mg) projects the mass of the baryon of type B on its chiral order Q2 in this case.

A complete list of chiral symmetry conserving Q? counterterms, relevant for the calculation of the charm baryon masses

at N3LO, was given in [10,11]. In these works the Q? counter terms are grouped according to their Dirac structure. Here we
display the scalar and vector terms relevant for our study only

L2 = £6) 4 £V, (6)

with

L) = =g (BB tr(U, U) = g5 tr(Bjs {U,ys U} B ) = g g (B Big (U, UP) = 94 g (Big U B U
~ 01 66 T (Big {U,is U"}Big) = gly 13 (Big {U,,, U} By +Hic.)
+hés[)66]tr(B’[‘]gm o) tr(Uq U“)+h 66]tr(B” o) r(U,U )+h2 [66]tr( o 9uA U Ua} B
— 1 (Bl {U,,. U, Y By )+ B tr(Blg 0, U B UT) + b5 te(Bl U, By UL + Bl U, B UT),

£V —%gg_[;g]tr(é i (DPB (U U,) + Hic.)

1 R _ i,

1 R .0 D s 1 I QL
-3 ggf%] tr(Bigjiy“{Us Uy} (D By )~ (D' Big))iy"{ U, Uy} By + H.oc.) _Eggggﬁ] (tr(Big iy“(DPBig)) (U U,) +Hec.)

L vy s .4 e g l v e g
—Zgg’[éG]tr(B[é]zy Uy(D’Bg) UL+ Bygiy Ua(D/fBW)UﬁTJrH.c.)—Egﬁ)@ﬁ]tr(B[ﬂzy (U Ug}(DPBg) +Hoc.)

1 V) " 1 V) . a v a v
—l—Eh((),[“]tr(B’[‘]gwl}/ (D B[6])tr(UaU,;)+H.c.)+Zh§’[66]tr(B’[’6]ngy Up(DPBi)Uj + Big 9, i7" U (DBl ) Uj +H.c.)

1 >, - v
+§hg/[gé]tr(3’[‘6] 9uir{Ua Us}(DP By ) +H.c.), (7)

054012-3



HEO, GUO, and LUTZ

PHYS. REV. D 98, 054012 (2018)

where further possible terms that are redundant owing to
the on-shell conditions of spin—% fields with yﬂB’[g] =0 and
8,,B’[‘6] = 0 are eliminated systematically.

The counterterms recalled in (7) contribute to the baryon
masses at the one-loop level. They imply renormalization
scale dependent contributions that need to be balanced by a

set of symmetry breaking counterterms in ij‘). We close
this section with a partial collection of terms contributing to
E)(;‘) that are relevant in a chiral extrapolation of the baryon

masses at N3LO. There are 16 such symmetry breaking
counter terms

4 - - - -
Ly = ¢ 53t (BBa)tr(r) + caa3tr(ByBps) (ty)* + ¢3 55t (Bayr B )ty ) + cap3tr(Biyi Bp)
+ c166tr (Big Big) )tr(x2) + ca66)tr (Big Bis)) (try)* + €3 166/t (Biejx+ Bie) )t (x+.) + Ca.j66t(Biejx Be))
+ ¢5 j66)tr (B [6)(+B L) 4y getr(Ber B + Hee)tr(y ) + ¢ 3 tr(Biepr 3 By + Hee.)
- 61,[66]“( ’[lg]g;w [6] )tr()(+) — € [66]tr( [6]g;w [6]>(tr)(+> — €3, [66]tr( [ﬁ]gyu)(+B 6])tr(;(+)
—64,[66]tr( "[46].9;41/)(4— 6]) — €5 [66]tr( [6]9ﬂy)(+3[6])(+) (8)
|
Altogether we count 54 low-energy constants in this =Y = My for Be[3]
section that have to be determined by some data set. )
Clearly, any additional constraints from heavy-quark spin =~ Mz—2Xz(Mp) :MgD = M[J()] 12 = Mg for B€[6], (10)
symmetry or large-N, QCD are desperately needed to _ 23/
arrive at any significant result. Such constraints were Mg~ =My for Be [4]

derived in [10,11,19] to subleading order in the 1/N,
expansion and are summarized in Appendix A for the
readers’ convenience.

III. CHIRAL EXPANSION OF THE CHARMED
BARYON MASSES

We turn to the computation of the baryon masses. The
baryon self-energy, Xz(p), may be considered to be a
function of p,y* only, with the 4-momentum p, of the
baryon B. This is obvious for the spin-one-half baryons, but
less immediate for the spin-three-half baryons. We refer to
[20] for technical details. To order Q* the self-energy
receives contributions of symmetry breaking counterterms,
the tadpole and the one-loop bubble diagram

Sp(My) = dee—level + Ztgldpole + z%ubble’ 9)

where the index B stands for the members of the flavor
multiplets with J* = 1%, 3% Since the J© = 1" states come
either in a flavor antltrlplet or a flavor sextet we discrimi-
nate those states by B € [3] and B € [6]. In contrast, the
JP = %JF ground states are realized only in a flavor sextet.
In order to keep these states apart from the sextet with
JP =1 we label the J® = 3" states by B € [4] where we
refer to the spin rather than the flavor multiplicity in
this case.

The on-shell mass of the baryon M is determined by the
condition

where M 3, M|y and Mg are the renormalized and scale-

independent masses of the baryon multiplets in the flavor
SU(3) limit.

The separation of the baryon self-energies into a loop
and a tree-level contribution is not unique depending on the
renormalization scheme. In this work we apply a recent
approach developed for the chiral extrapolation of the
baryon octet and decuplet masses [1,2,21]. It is based on
the yMS scheme [20] and can directly be adapted to the
charmed baryons, the focus of the current work. A
matching with alternative renormalization schemes is most
economically performed by a direct comparison with the
explicit expressions of our study. Given the renormalization
scheme [1] the low-energy constants b, or d,, do specify the
linear quark mass dependence of the baryon masses as
already detailed in (5). The particular subtraction scheme
for the loop contributions as introduced in [1] was con-
structed to ensure this property of b, or d,,.

Let us begin with the tadpole contributions, which in a
finite volume take the following form

siadpole _ 7 Z (GUIY —m2 Gy — MG,

(11)

where the various Clebsch coefficients G%g and G Bé, Gg/Q)
are summarized in Table I for the J” = 1 states. " Note that
= sl

'For the tadpole contribution to the E.Z! mixing it follows
0
Mg) = 2(1‘4[ 3) +M[ ])

054012-4



FRAMEWORK FOR THE CHIRAL EXTRAPOLATION OF THE ...

PHYS. REV. D 98, 054012 (2018)

TABLEL The Clebsch coefficients G5y and G, of (11) for the J* =

Clebsch by the universal replacement gé 1)

D= gé RD where we use g, 33

1+ states. We assure that the scalar G<S> follow from the vector
2 0B
)37] = ( for notational convenience.

; z i
K 4By (4b, ;35 + by 33) (m + my) Sg(()v[% 5T 493/[)3 3
4 . . (V) 2 (V) 2 (V)
n 3Bo(byzzym + 2b 33(m + 2my)) 290535 +39 53 T 3953
K 2By(8b, 33 + 3b, 33 (V) (V) (V)
2 0(8b1 33 + 3by 33) (m + my) 89;).[?%] _49(1‘[\?5] +6g?[)\-5]
2 - Z - Vv 4 (V 5 (V
n 3BO(4b1,[33](m+2m5) +b2[33](m—|—4m3)) 2 0[33] igl B33 +?gD,[f§]
ELEQ T 6Bob1’[36]m 393)‘/?36]
K —2Byb, 3 (V)
0by 36 (m + my) _2904,[36]
n - %Bobl,[iﬁ] (4ms - m) _g(DV:[)gﬁl
(V) (V) (V)
ZC T IZBO(ZbI,[GG] + bgy[ﬁﬁ])m 690,[66] + gl,[66] + 6gD_[66]
K 4B(4b j66] + bajss)) (m + my) Sgév[éﬂ + 4g(DV[)66]
n 1 Bo(bajgg)m + 2Dy g6 (m + 2m,)) 298/[%6] + %9(1‘,/[26] + %ggf66]
A T 6B (4b, 66 + b2 [66]) M 698“/[2)6] + 3gg[)6 i
K 2B, (8b) 66 + 3b2,(66)) (m + m;) Sgo 6] T 2g(lv[éﬁ] + 6g(vg66]
n 2Bo(4b, 55 (m + 2my) + by g6 (m + 4my)) 298‘,/[66] z g(1 [26] +3 ggfﬁﬁl
QL. T 24Bob1$[66]m 6g(<) [2,6]
K 8B (21 j66) + b2, j66]) (m + 1) 8(gé¥é6] + g(DV[)GG])
n 8 Bo (b1 j66)m + 2(b1 66 + bajos)) 1) 298%6] + %g(l‘%@ + %ggfﬁ]

like in our previous works [1-3] we use the letter Q in a
context specific manner. It may either denote a chiral order,
or as in (11) or Table I if used as an index it runs over the

eight Goldstone bosons properly grouped into their isospin
multiplets. The set of finite-box scalar tadpole integrals 1 g’>

were introduced in [21]. Here we recall their infinite
volume limit only,

2 2
7(0) Mo Mo 72)

© _ o M (5 _ )

(S s , s s

o66) = Mo j66) T 3 91 166) = 1466
)

v Mg v

0.166] — "0./66] ~ 3 My’ 91.566) = ™1.j66] ~

with the renormalization scale u of dimensional regulari-
zation. Explicit expressions for 7<Q0> and 1 g) appropriate

for their finite volume generalization are given in Egs. (2)
and (19) of [21].

It remains to detail the Clebsch coefficients Ggl)g
and G(Qsév) for the J¥ =3+
states. To do so it is useful to introduce the particular
combinations

states in the flavor sextet

(8) (S)
n 2h5,[66] S _ 0 h3,[66]
3 D.[66] 2,66 3
(5) (8)
2hs, [66] g(v) _ W h3 jss) (13)
3M D.[66] 2,[66] 3M[4] ’
(S.v) ~(8,V)

such that the desired Clebsch coefficients can be read off from Table I by replacing go; , = Jo 1 p together with b, — d,.

054012-5



HEO, GUO, and LUTZ

PHYS. REV. D 98, 054012 (2018)

Consider now the terms quadratic in the quark masses,
which we denote with Zg and are supposed to absorb the
renormalization scale dependence of the tadpole terms
s@drole They supplement the terms linear in the quark
masses, which were already considered in (5). Together,
both classes of terms are combined with Z{ee=level i (9). We

B 4

133 —5(3361,[331 45¢, 33 —
2,33 = 253 527 (207¢y 33 + 3333 —

G333 = —E(%s,[ﬁé] +26¢433))s
Cl36) = : (9¢y 36) +26¢5,36))

46

in terms of which our unambiguous results are simplified
significantly. The self-energies for the flavor antitriplet
states are detailed in the first part of Table II with the
coupling constants ¢,. As can be seen from Table II only
the particular term ¢; keeps the original structure being
a product of two quark masses. We identify a single
parameter combination ¢; that probes the product of a
quark mass with the second power of some meson mass.
The remaining parameters ¢, and ¢, select the terms
involving the fourth power of a meson mass.

TABLE II.

follow here our previous works [1,2,21] in which we keep
the on-shell meson masses in the tadpole contributions.
This requires us to cast the terms quadratic in the quark
masses into corresponding terms that depend on the meson
masses in addition. For that purpose we introduce particular
parameter combinations

15¢5 35 + 1ley 33).

22¢4 33))

1
(36‘3 [ ]

) 22¢433),

Ca33) =

- 3
C236 = g5 (3¢ 36) = 22¢2,36)) (14)

Like in the previously studied cases [1,2] there is a subtle
issue as how to treat the flavor singlet structures propor-
tional to gé [) 3 and b 33. While the first term stems from
a chiral symmetric interaction, the second one from a
structure that breaks the chiral symmetry explicitly.
Nevertheless, the two terms end up with identical tadpole
type contributions if the Gell-Mann-Oakes-Renner rela-
tions are used. The request of renormalization scale
invariance implies that the two contributions in (11) have
to be dealt with identically, i.e., we take the replacement

Contributions to the baryon self-energy proportional to the product of two quark masses are expressed

in terms of meson masses as to obtain renormalization scale invariant results. The original form from (8) is recovered
in application of the Gell-Mann-Oakes-Renner relations, e.g., m2 = 2Bym and m%( = By(m + my).

540 B—=A, B—E, B=g2.
mf, 35‘2[5 3] + 186‘4 (33 362 33 + 954 33 _352,[56]
mi 4¢3 33 + 1284 33 402 B3] + 18¢4 33 22, 36)
m, Cr33) 28433 Cr 33 38433 . 36)
Bymm} 18¢3 33 9¢333 =9¢) 3¢
By(m + my)m¥ 6C3 33 923 33 3¢ g
Bymm; 28333 G333 =C1 36
Bomsmg 0 45, 33 45’1,[36]
Bj(2m* + m3) 133 ¢ 0
s B==, B=g B=Q,

my 3¢5 66) + 18C4 166 + 3Cs 6] 3¢5 166) + 9C4,66) 3¢2.[66)

m 425 66) + 1284 [66) 4¢3 (66) + 18C4 66 + 6Cs [66] 425 [66) + 24C4 [66)
m, Caf66) + 2C4.[66] T Cs.66] Ca.66) + 5C4.66] — 2Cs5[66] C2.66] T 8C4 [66) + 4Cs5 [66]
Bomm? 1823 [66] 923 [66] 0

Bo(m + mg)my 63,66 9¢3 66 1225 66

Bomm% 22‘3,[66] 53.[66] 0

Bymgm;, 0 4¢3 6] 8¢3,[66]

Bj(2m? + m?) C1.j66) C1.[66) C1.j66)
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(8) __
90,53 = 9033 ~ 2b1533) (15)

in GE% but drop the contribution of b, 33 in G%.

Analogous results can be derived for the flavor sextet
states with J” =1% and J¥ =3*. Here we detail our
derivations for the J¥ = %* states without loss of generality.
The corresponding expressions for the JP :%+ follow
upon the universal substitution ¢, — e,. Consider the
parameter combinations

4
C1l66) = 33 (33cyj66) = 45¢2,66) — 15¢3 66
+ 1lcy 66 = Cs,66))

- 2
20660 = "33 (207¢5,166) + 3¢3,j66) = 22C4,[66] T+ 20¢5 [66) )

1
C3.[66) = ~ 76 (9¢3 j66] + 264 j66) + 14¢5 j66))

1
Ca f66] = Y (3¢3,66) — 224,66 — 26C5 [66])»
Cs.66) = —C5.[66]> (16)

as used in the lower parts of Table II. We point at the one-
to-one correspondence of the coefficients in (14) and (16)
for all four terms but the css¢, Which does not have a
counterpart in (14). Note that here the replacements

s) (s

9o.66) = gO.[)66] —2byje) and by je5) = 0,

are required in G% and G% respectively.

We turn to the bubble loop contributions properly
derived in the subtraction scheme [1,2]. The generic form
of the loop contributions can be taken over from our

B)

previous works [1,2,20,21]. Consider first the contributions
to the masses of the J* = %* states

(B)\ 2
> (GQR> {_(MB+MR)2P2 Ior
OR
0€[8].Re[3.6] 2f Eg+ Mg
My=M§ o B
+W1Q+2(ZQR

Sbubble __
286[3,6] -

(B)\ 2
G ){ 2M2 i
OR B 2
Yo (5F) -3 (Er+Mp)phel

2( R R)PORYOR

0€[8].Ref4] ( 2f 3My

(MR_MB)<MR+MB)31R R0 (17)
12M yM>% Q3R

_|_

+

where we encounter the subtraction terms aglg [see (21)]. We
first recall the scalar tadpole and bubble integrals with

m2 m2 -
1B =—"C10g—2 AT},
0 (4ﬂ)2 gM%e + 0

_ 1 1 m? —M% m2
Tor=Alpg+——=3yR—(=4+—2 "R} (-2
or QR*mnz{“ <2+ 213 ><M>

M3 —2poxM
+@(1n<1——3 _“Por B)
My mg+ Mg

(1 _M%‘FZPQRMB
sz—l—M%e ’

2 :%_M%+mé (M%—sz)z
ok 4 2 amy

E; :M%i_l_szR’

(18)
where all finite volume effects are collected into AT (Q0> and

Al k. For explicit expressions for the latter the reader is

TABLE III. Meson-baryon coupling constants, G(Q - in the isospin basis. Only nonvanishing elements are shown

for the flavor antitriplet and sextet states with J¥ = %*.

Gg?:.> = —Fp33 szEa‘;) = ?F[ﬁi]
Gy =5Fas Gin = 7P
G;(z/;? =V/3F G,(,Esi) —ﬁgF (33
Giew! = Fiaq GE) =L Fyq
Gia! = V2Fpq Gié, = Fsg
GE?:) = V2F Gf{() —\/§F 36]
Gy = =% Fise Gz =L Fuq
G/(z[;}> = v/3Cp3) Gfs}) = ?C[g()]
G%\:> = Cpzg) Ggg) = Cpzg)
Gix) = V2Cigy Gl = —\/écm
Ay 6E) =Gy,

GE =Y Fsq
G| = Fpg Gir = =5 Fps
Gs! = Fyq Gzl =P Fpq
G = —V2F G2 =% Fq
Gz = ~Flas G, = Fios
G,(é) = \/%F [66] sz’) = \/%F [66]

G = -3l Fq
G,(é“%_) = —V2Cg) Gg:) =L Cieq
Gzl = —Cieq Gia. = Cig
G%) = %C[%J G(KEE/) = 1/3Ceq)

Gy =~ 57 Cis
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referred to [21]. The sums in (17) extend over the inter-
mediate Goldstone bosons (Q € [8]), the two baryon flavor

sextet states with (R € [6],[4]) and one flavor antitriplet
(R € [3]). The coupling constants G(QB,g are determined in
Tables IIT and IV by the parameters F/qy). Diap), Clap]> H{ap]

as introduced in (3).

We note that all terms proportional to mg'l, with n > 1
are dropped in (17) as either higher order or as terms that
can be absorbed into our tadpole terms. This requires to use
renormalized low-energy parameters g'*") in (11) of the
following form

5 _ s 1 (5) _ (8) )
9035 = %33 T39pr I3 T Ip5a T Ie ey
(5 _ (9 5 _ (5 _2 (s ~(5) s _1
9o,566] = Y0.66)’ 91.66) = I1e6) ~ 39c.[66]" 9Ip.j66) = Ip.Jss] ~ 3 9c 6]
39 =g _L(Ced 5) Cae (s)
D.[36] D[36] g - C.[36] Cies, c.l66) )
vy _ (V) L () _(v)  _ (V) vy _ (V) (v)
90,33 = 90,33 T 39c36) 9533 = 953 .33 — Ip33) ~ IcFe)
() V) v 2. v _ v _ 1w
0.j66) = Y0.[66]’ 91.66] ~ Jue6) ~ 39c [66]" 9p.j66] — Ip.j66] ~ 3 9c.[66)°
v _ v _1(Ceq v | CBg v
Ip.36) ~ In.36] T § Cpg 9e.p3e) Clog 9ee6) )
2 2 2 2
8 o Mg T AaMa B v Gy (Mg (19)
Clsl oMy AMg A T TS A \ My + A

with the chiral limit mass spin splitting values A, =
My — M, for a = 3,6. We use here the notation for the

flavor SU(3) chiral limit baryon masses M\

introduced with (10). B

Given our approach the scalar bubble loop function /g
does not depend on the renormalization scale u. We point
the reader at the subtraction terms y¥ and aglg in (17). It is
recalled that the subtraction

<> M[a] as

[

makes sure that the scalar bubble g (M) will vanish in
the chiral limit with m, — O strictly. This protects the tree
level slope parameters b,, [, in (5) as advocated above. The

additional term ag,g is required to protect a chiral theorem.

There are nonanalytic terms proportional to m3Q that arise
from the bubble loop contributions. Only in the presence of
the subtraction terms a(QBlg they take their proper form. From
[1,2] it is recalled

2 _Ap2 M2 — M2
R B R B
|
2 2
(3 _ alA AD Amy,
= Mg —Mp— D) 7p+1 79 by,
AoR (4n)? (Mg 5 —Ap) (8A + 1)+ (4x)? ay2
_ g 0) o (0) C2M A+ A AP(2M 4 A)?
M =My, A=M, —M}’, — ’
B R B 71 M (M1 A
A AMs _ 2MP +2AM + A* AP(2M 4 A)? M
BT T T oMM 1 a) (M+AF 2M+A
: M+ A (2M + A)? _
with a; = 1M (M £ A) if Re[4] buta = —ar if R € [3,6], (21)
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TABLE IV. Meson-baryon coupling constants, G(QB;, in the isospin basis. Only nonvanishing elements are shown

for B € [4], i.e., the flavor sextet states with J* = %+.

GE =4 Cpq
GnA‘C) = Cizq Gy ) =—75Cpg
Gz = Cug Gz =B Cpg G(,i? = V2Cpq
Gy = —V2Cyq GS) =% Cq G5<Q:> = V2Cgq)
sl = —Cieq Go, = Ci) G = =% Cleg
G%) =75 Cisel Gf) = \/3C(e¢)

G,z = =55

Gz = Y Higg
G = —V2Hg Gl = Higg Gis! = V2Higq
G(EE;‘? = —Higq) Gg) = \/3H e G,(72> - _%H (6]
Gt = 5 Hieg G =~35H

where we note that the last expression for a; in (21) was not needed in [1] since there only one flavor multiplet of baryon
states with J” = 1t occurs.

We close this section with the bubble loop contribution for the J* = %* states. Again the form for the loop contributions
can be inferred from our previous work [1,20]. We find

_ [ :
- 3 () {3 morila
Q€l8],Re[3,6]
(Mg = Mp) (Mg +Mp)* o 2 ()
+ 24M3, To + 3%k
B)\ 2
n <G<ng> {_(MB+MR)22ER(ER_MR)+5M%QPZ 7
oeiirem \ 2 IM% Eg + Mg o

N M3 + My + 12MAM% — 2M M 3(M% + M%)
36M3M%

(M3 Mé)lg}, (22)

with the Clebsch G(QB,g listed in Table IV. The renormalization of the coupling constants 2(5-Y) from the bubble-loop
diagram is

R = g forn=0,1.3,5,
w5 _ .0 Lo L w5 _ .0 Lo T
hy 166) = P o6 ghc,[ﬁs] + 6hc i66] hy 66 = Maj6s) — ghc.[és] + §hc,[66]v
2
AU W M 1w m
0.[66] — 0.[66)’ Les] — "M1.j66] T g M[24] 3 Ve 36) c.66]/)
H? 1
Sv) () 66] V) )
ha 6 = M2 66 ~ 73 78 ~% (he g e fos)»
2 3 2 2 2
S _ Clasg Mg T38aMig +28M ) Clag M (23)
Clal = 2My 4(Myg + A’ Ll aM M1 My + Ay
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(B

with again Ay = My — M|, fora = 3, 6. It is left to detail the subtraction term ag 13 for the J© = %* states which takes the

form

A? M+ A\ (AD Am?
agﬁz(ﬂiﬂ)z(MB—MR—ABK >< +1>51+—Qﬁ15z,

M

A (4r)?
M(ZM + A) A(ZM + A)
1= = 5 10g ) s
(M + A) M

0 0 0
M=MY,  A=M-M
My _ oM,
VN >T2M 4 A
. (2M + A)*
th py=—oc "2
M e TS VI Ve

For a more in depth discussion of the various arguments in
favor of the applied renormalization scheme we refer to our
previous works [1,2].

IV. LARGE-N, SUM RULES
AT THE ONE-LOOP LEVEL

In our previous work [11] we derived sum rules for our
low-energy constants as they arise in QCD with a large
number of colors (N.). The analysis was performed for
tree-level expressions derived from the chiral Lagrangian.
As was pointed out already for the analogous case of a
study for the baryon octet and decuplet masses [1], such
relations need to be supplemented by constraints that are
implied by the renormalization scale invariance condition.

This is readily understood if one considers the scale
dependence of the symmetry breaking counter terms
proportional to ¢; and e; of (8). The request that their
contributions to the baryon masses are renormalization
scale invariant is readily derived with

d 1 1
2 Citgp = = —5 T,
H d//l2 Cl,[ab] 4 <4ﬂ,f)2 Cilab)?
d 1 1
2 —eiee = ————51, . 25
H d/ﬂ € (66| 4 (4n’f)2 €i[66] ( )
where all FCIM and Fei,[ab] are detailed in Appendix B. They

depend on the symmetry conserving two-body terms g and
h in (7), but also on the symmetry breaking parameters b
and d in (4). In turn if we insist on the leading order sum

Cile6] €2,[66] =

- Fel[()()] )’

6]

€1,66] °
FCI.[36] = 5\/§(FC3.[66]

€2,[66]

FCZ.[

2M?* +2AM + A? o A(2M + A)
(2M + A)(M + A)? M? ’

(24)

rules for the c¢; and e¢; of Appendix A the following
conditions arise

I ]:O for all n,

Cn,[66] = €n,[66] €36

133

€3,66] ° €433 C4,[66]

C1,66] ° €233 = C2,[66] °

(26)

€333 Cs.[66]
If supplemented by the leading order sum rules for the
remaining low-energy constants we arrive at the additional
relations

—(8) _A=(8 _ (v) .
91,66] = 290,[33] = =7 Mg, ¢ With
M _ V) _n_ =)
M =Mpg = Mg =Mpg or g =0=0pjy
(27)

This is an amazing prediction since now altogether we have
40 = 36 + 4 sum rules at leading order. Thus from the 54
low-energy constants we started out, there remain only 5 =
14 — 8 — 1 parameters that we have to adjust to the QCD
lattice data set on the charmed baryon masses. In our
parameter count we subtract the 8 charmed baryon masses
known from the PDG and one axial coupling constant Cp5)
which is determined by the empirically known decay
process L 7(2520) - Afxnt.

We close this section by a study of such sum rules at
subleading order in the 1/N, expansion. From Appendix A
we obtain the following conditions

r : +FC2.[33] =r

€133

] = 5\/§(FC4.[()6] - F€4.jﬁﬁ])’

+I.,

C1,[66] 66]°

(28)

36
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which we supplement by sum rules for low-energy constants valid at subleading order. This leads to the following five

additional conditions

) baes) —dajss) 48M )

(s ) MMMy~ M) (Mg + M)
9p.J66) — "2.[66)

4Myy (M5 — M) (M54 3Mg))

vy MMy —2Myj+Mg) (M5 +2Mp + M) -y,
2.]66]

My (M5 = Mig)) (M3 + 3Mg))
A (S) —(S) 7(S) (S)
Mg 166 =789, 33T 35 [ié] = 7895166) ~ 333 jo6) — —4h,
b j66) — da J66) 936M;, 4]

_V
R e T

4.[o6]

99( 3] +2M[ 351 M¢) _59M[26])
163(M[3] + 3M[6])
byjes) —dajes)  22176Mg)

M[g] _M[6] 163(M[§] +3M[6])’

bz,[éé] —d; j66)
O Mp - Mg

[

’

I ] ]
~ W+ (7834, 5+ 831 45 + 3571 )

—27(by 33— dajse)) —

_ (V) -(S) 7.(8) 7(S)
=Ml 661 =49, 166) T4y 65 T P j66)

Superficially the expressions (29) appear singular at either
Mg — My or Mg — M 3. However this is not the case
since in the later limits there are additional relations that
ensure that all low-energy constants remain finite in those
limits. We remind the reader of the sum rules that arise in
large-N, QCD at leading order with Mg = My = M3
Since the heavy-quark mass limit leads to Mjs) = My only,
it follows the scaling relation

baj66) = dajes) ~ (Ms) = M4)) (Mg — M[3)),  (30)

which implies that the low-energy parameters in (29)
remain finite in the latter two limits. More specifically,
the first three identities in (29) approach the leading order
V)

. _ _(8
large-N,. relations 9,66 = 0 and gg)’)b 6 = h [)66] and
QSJVE%] = l_zgv[éé] of Appendix A. The remaining two iden-
tities recover the two scale relations gf[)“} = ZQ(()% 5=
— 1M\ in this limit with M = M) = My = My [see

Eq. (27)]. Note a subtle issue concerning the order at which
the two limits M, — oo and N. — oo have to be applied.
Consistent results follow only if the heavy-quark mass limit
with Mg — My at M5 # My is applied first.

At subleading order altogether we have 22 =17 +5
sum rules. Thus from the 54 low-energy constants, there
remain only 23 = 32 — 8 — 1 parameters that we have to
adjust to the QCD lattice data set on the charmed baryon
masses. Even at subleading order we deem this to be a
significant result which paves the way toward a quantitative
and controlled approach to chiral dynamics of charmed
baryons.

(29)

V. A CONVERGENCE STUDY
FOR THE BUBBLE LOOP

The purpose of the following section is to decompose the
loop function £5"°" into power counting moments

i%ubble — ill);ubble—3 + i%ubble—4 + i%ubblc—ﬁ 4oy (31)

and illustrate the convergence properties of such an
expansion at hand of the physical meson and baryon
masses. It is emphasized that any conventional chiral
expansion in terms of bare meson and baryon masses
appears futile at physical up, down and strange quark
masses, at least for the baryon masses with zero charm
content. From our previous study of the chiral expansion
for the charm meson masses [2] we already learned that
such a conventional strategy appears ill defined even for
charmed systems. Though, a conventional expansion for
the charm baryon masses may not be as disastrous as it is
for the baryons with zero charm content, we anticipate that
our expansion in terms of on-shell masses generates much
more useful and convincing results.

Given our framework and notations the required expres-
sions can be readily deduced from our previous work [1],
where however a slight adaptation is necessary. Any of the
moments in (31) receives three types of contributions

Zbubble n

S"bubble—n S"bubble—n S“bubble—n
bubble-n — 3 + 5 + 5

pela ) Zoelas) T Zhelaa s (32)
which are classified according to the flavor or spin
multiplicity of the intermediate charmed baryon states.
We will exemplify such results for the leading order term in
the expansion.
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For the spin-three-half baryons in the flavor sextet we write

1 25 (m? m z

Thible?s — Y (—G<B)> —{—Q <1—log—Q> -=m }(m2 — (Mg - Mpg)?)

Bel4].[4 OR 0 0 R B)")»

SRRy ociiTre 47 f 9 | 2Mp Mg) 2

S“bubble—. E 1 B 2'6 Ky Sy S

Ztléeb[t‘)ll],[i}3 N 0€l8].Re[3] <4ﬂf G(ng> % {52Amé ¥ [1a =01 (Ms = Ma)lAg = 18" (Mp = M + Aa)
€|[38].Re

(2M + A)M 1 sz
—I—m AzQ_EmZQ (MB—MR)IOgW-I-Az(IOg(MR—MB_AQ)_log(MR_MB+AQ))

m? ~ ~ m>

Q 2 2 0
+ A, <—52AQ + d3my log M%) },
Mpg

M+ A’

Ao = [(Mp—Mpg)* —mp]'2,  Ag=A

~ (M +A) 9 2(M+A) L
= — A, —
o 2M  OA 2M + A (81 =61) + 01,

A2 s s MEM+A) 20
2 1 — 1+ 2 n )
2M 1 A) eV

~ 1 -
0y =0, + 5(51 — 1) (33)

where A = My — M3 and M = M3 in this case. Note that the coefficients | and §;, 5, we encountered already in the

definitions of the subtraction terms a(QBlg in (24). A complete collection of such coefficients is provided in Appendix B of [1].

It is left to detail the contribution ZRL7<S. It follows from i';“eb['j‘lf[g? by the simple replacement [3] — [6] in (33).

We turn to the spin-one-half baryons in the flavor antitriplet

E— 1 p\2( m> m n
Shittle s = 3 (de;) {—2MQ (1 —logM—Q> —Emg}(ng — (Mg — Mp)?),
oclt] Rel3 s !

ibubble—3 —

1 B 2a N - N
Be[3). |4 —G(ng> ~ {72Am2Q +[r1Ap =71 (Mg — Mp)]AL + 71 A% (Mg — Mg — Ap)

oe[s R4 (4”f 3

2M 4+ A 1 m2
T oM [(AZQ _§m2Q> (Mg — Mp) IOgM—g+A3Q(10g(MR - My -|-AQ) —log(Mg — Mg — AQ))
R

2

2
MO | o A2 o2 100
+A—B —Ag +Tsmplog s o

R

2 21172 Mg
Do = [(My—Mp)? —m3)'2 Ap=a=l,
j MM D 28M
V1= M 8A2M+Ay1 71 71>

1 A? DM+ A 2/A|

Vo — — — 7 ¥, = —_ . 34
=12+ —71) 1=n 7 nM+A (34)

2 (2M + A)?’
where A = My — M3 and M = M. The dimension less coefficients ; and y,, 7, are detailed not only in (21) but also in
Appendix A of [1]. They depend on the ratio A/M only. In this case the missing term X°“P%'=3 can be obtained from

Be[3],[6]
$bubble—3 . :
236[3],[4] with

3

Sbubble—3 __ = S bubble— 3 — _ — -
23116[31]?[6]3 = 52312)[%]6[4f with A = M[(,] - M[3] and M = M[3], (35)

where, however, one must use a; = (2M + A)?/(4M?) as given already in (21).
It remains to detail the chiral decomposition for the masses of the spin-one-half baryons in the flavor sextet. The terms
ig‘g’%‘?ﬁ and ig“eb[%lf[jlf follow directly from (34) by the overall replacement [3] — [6]. Then, the missing term
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ig‘g’[zlf[‘gf is obtained from (3/ 2)2%‘2’%116 ]3 by the identifi-

cations A=—M g +M5 <0, M = Mg together with a; =
(2M + A)?/(4M?).

With the construction of the third order terms (33), (34) it
is straightforward to correctly identify the corresponding
fourth and fifth order terms from [1]. Note that the higher
order terms involve additional coefficients «,,, &, and y,,, 7,
and f8,, B, and 8,, 5, that are detailed at the beginnings of
Appendices A and B of our previous work [1]. All such
coefficients are dimension less and depend on the ratio
A/M only. It should be noted that if the ratio A /M turns out
to be significantly smaller than 1/3 a further expansion of
our results in powers of such a ratio may be justified.
However, this can be decided only after a full analysis of
the lattice data set has been performed.

VI. SOME NUMERICAL RESULTS

We now generate some numerical results illustrating the
convergence properties of the chiral expansion. Since the
relevant set of low-energy parameters is basically unknown
we focus on the chiral decomposition of the one-loop
bubble functions as detailed in the previous chapter.

Any numerical estimate requires the values of the on-
shell baryon and meson masses involved. Those we take
from the PDG [22]. While for any of the hadron masses m,,
or Mg, M, we apply an isospin average to the values of the
PDG [22], for the chiral limit masses M 3), Mg and M4 we
take the flavor SU(3) average of the corresponding multi-
plet masses from the PDG. The latter assumption is ad-hoc
and constitutes a zeroth order estimate for such values only.

It is left to set the axial-vector coupling constants F* and
C. In [10] the estimates F36) ~ 0.82 and C[z ~ 1.36 were
derived from the hadronic decay widths of spin-one-half
/% (2455) and spin-three-half X/ (2520) baryons. We
provide an update of such values as is implied by the latest
decay widths claimed in the PDG [22]. We confirm that

st 0455 o ntnt = 1.891015 MeV - Frg = 0.753* 057
F2i+(2520)—>/\r7[+ — 1478j828 MeV d C[ie] — 1378j88113,
Is00520)=A8 - = 15-30j8.'§8 MeV - Ci = 1-401J—r8.'821§ ,

(36)

translate into estimates for F|z5 and Cjz which are

compatible with the large-N, relation Cjsq =+/3F 36 at
the 5% level. In the following we use the leading 0rder
relations (A1). This leaves undetermined the axial-coupling
constant Fgg only.

We consider two scenarios, in the first one we use the
value Cpzs) = 1.35 together with Figq = 0, in the second
one Cjzg =0 with Figs) = 1. Once a value for Fgg 1s
known the physical self-energies can be reconstructed
unambiguously in terms of our decomposition into the

TABLE V. Baryon self-energies evaluated with physical meson
and baryon masses using the leading order large-N . relations for
the axial vector coupling constants (Al). The table collects all

contributions of our first scenario with Cjzq) = 1.35 = V3F [36]

and F[66] = F[g "‘5] = C[66] = H[Gﬁ] =0.
B Shubble  Sbubble—(3+4+5)  Fhubble=3  Fhubble—4  Fbubble—5
B

A, —146.20 —146.24 —128.46 —17.87 0.09
E. —318.74 —318.66 —336.11 10.21 7.25
. -—-11521 —-115.22 -107.36 —8.03 0.17
E. —98.95 —98.95 -99.02  -0.58 0.65
Q. -9%4.19 -94.18 —97.69 2.87 0.64

w —103.57 —-103.72 -94.23 -11.03 1.55
i  —68.87 —68.84 —69.27  -2.00 243

. —46.66 —46.57 —49.63 1.21 1.84
TABLE VI. Baryon self-energies evaluated with physical meson

and baryon masses using the leading order large-N, relations for
the axial vector coupling constants (Al). The table collects all

contributions of our second scenario with Cp3s) = Fi3 = F33 =0

and Fjgq = 1 together with Higg) = —\/_C66 =1.5.

B i%ubble il;ubble—(3+4+5) i%ubble—3 i%ubble—4 ill)?ubble—ﬁ
¢ 0 0 0 0 0

E. 0 0 0 0 0

X, —276.81 -276.87 —237.25 —44.82 5.19

E. —359.00 —357.15 —386.09 18.47 10.47

Q. —473.89 —471.62 —565.31 82.41 11.29

Xy =322.17 —322.25 -269.53  —-60.14 7.42

Ey —410.54 —407.88 —446.25 23.98 14.39

Qi =535.12 —531.82 -653.02  105.61 15.58

two cases. For both scenarios we illustrate with Tables V
and VI that our chiral decomposition of the one-loop
bubble functions is very well converging.

Consider the first scenario in Table V. The self-energy
Tubble truncated at the fifth order is reproduced with an
uncertainty of at most 0.2 MeV. Already with the fourth
order term Z5"°*=* the full one-bubble loop function is
recovered with an uncertainty of at most 7 MeV only.
The contributions from the bubble loop are sizable and can
be as large as 320 MeV. Thus such contributions will play
a decisive role in any chiral extrapolation study of the
charmed baryon masses.

We turn to our second scenario in Table VI. Here we do
not know the absolute size of the self-energy contributions.
The table shows our values at the ad-hoc choice Fgq) = 1.
For instance at half its value with Fsq = 0.5 all entries in
the table are reduced by a factor of four. Note that according
to [12,13] the quark model suggests the value |Flgq| =

2|F [36]|/ v/3 ~0.90. Once a reliable estimate for the axial
coupling constant Fg¢ is available the total contribution of
the bubble loop is obtained by adding the values in Table V
with F [266] times the corresponding values of Table VI.
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In fact such sums may be compared with the values in
Table II of the previous work [12], which relies on the heavy-
baryon mass formulation of yPT. From such a comparison
we conclude again, that indeed the latter approach does not
provide any significant results if truncated at N>LO or N3LO.

Like for the contributions in Table V we observe a
stunning convergence behaviour. The self-energy Zbubble
truncated at the fifth order is reproduced with an uncer-
tainty of about 0.5%. Note that in this scenario the flavor
antitriplet baryons do not receive any contributions. This is
so since at leading order in the large-N . expansion it holds

We conclude that a chiral decomposition of the one-loop
contributions formulated in terms of on-shell meson and
baryon masses appears well converging also for the
charmed baryon masses. Thus, in any realistic application
to QCD lattice data, which should be minimally at N3LO, it
is not required to work with loop expressions truncated to
some order. Since the fifth order terms are about 10 MeV on
average it is well justified to apply the loop functions as
they are specified in Chapter III for the finite volume case.
This is the strategy followed also in our previous works on
the chiral extrapolation of other hadron masses in [1,2].
Note that the size of the systematic error in the charmed
baryon masses from current QCD lattice ensembles is at
least of that size. As we repeatedly emphasized, any
significant results from a fit to the lattice data can be
expected only if for a given lattice ensemble the set of eight
coupled and nonlinear equations is solved that determines
the charmed baryon masses.

VII. SUMMARY

We considered the self-energies for the charmed baryon
masses from the chiral Lagrangian with three light flavors at
N3LO. Explicit and renormalization-scale invariant expres-
sions for all ground-state baryons with J© = 1* and J* = 3*
quantum numbers are derived. The results are given in terms
of on-shell meson and baryon masses as it is required to
obtain significant results that can be applied at physical up,
down and strange quark masses. The convergence of the
chiral expansion is illustrated at the hand of the one-bubble
loop contributions. Given our results significant fits of the
low-energy parameters to the data set on charmed baryon
masses from the QCD lattice community are feasible. While
at leading order in the 1 /N, expansion there are 5 unknown
parameters, at subleading order we derived the relevance of
21 low-energy parameters.
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APPENDIX A

We provide with Table VII a glossary of physical and
technical quantities used throughout this work. Note that
our notation is in part context specific. Table VIII summa-
rizes the conventions used for the various low-energy

constants.

TABLE VIIL

tities as used in this work.

Some notations for physical and technical quan-

Index Values SU(3) multiplet — label Defined in
0  mKKn 8]~ [8 (1)
B, R Ag, B, 3] = [3] (D
2e, Zb, QF [6] — [4] (1
E”C’ ZC’ QC [6] - [6] (1)
Physical quantities Type Defined in
mo Meson mass PDG
Mp, My Baryon mass PDG
PN Baryon self-energy  (9), (11), (17), (22)
() Clebsch coefficient Table I
Ggo
(8.) Clebsch coefficient Table 1
Ggo
G'8) Clebsch coefficient ~ Tables III and IV
OR
Technical quantities Type Defined in
a(;}g Subtraction term (17), (21), (22), (24)
R Subtraction term (18), (20)
Z(Q")jg Scalar tadpole (11), (12), (18)
Tor(Mp) Scalar bubble (18)
a, b Label for multiplets
a,b=3,6,4
ot Scale dependence (25), Appendix B
eniod Scale dependence (25), Appendix B
TABLE VIII. Notation for the low-energy constants as used in
this work.
LEC Chiral order Defined in
My, Q° (10)
Flap) Q' (3)
Clas) 0! 3)
Hap) o' 3)
(8.V) ~(S.V) —(S.V) 2
gn,[ab]’ n,Jab]® In.[ab) Q @, (13)’ (19)
(SV) 7(SV) 7(SV) 2
hn,[ab]’ hn.[ab]’ hn.[ab] Q 7). (B3), (23)
bn.[ah] Q2 )
dn.[ab] Q2 )
Cny[ab]s Z‘n,[ab] Q4 (8)7 (14)7 (16)
€n,[ab]> én,[ab] Q4 (8), (16)

054012-14



FRAMEWORK FOR THE CHIRAL EXTRAPOLATION OF THE ... PHYS. REV. D 98, 054012 (2018)

The large number of unknown low-energy constants is reduced by sets of sum rules that follow from a systematic 1/N..
expansion [10,11]. While at leading order the large-N,. operator analysis predicts 36 =4 + 16 + 16 sum rules

3
Hig) = =V3Clg) =5 Fiedy  Cpg = V3Fpg,  Fsg =0,
bpjss) = dnjes) = bup3z forn=12, by 36 =0,

Cnjes] = €nfes) forn=1,....5,

Cn,[,;')ﬁ] =0 forn= 1,2,

1
C1.;33] = C1,[66) +§Cs.[66] €233 = Ca.fe6] ~ 5 C5.[66]-
€333 = C3.j66) T 2C5 [66)+ €433 = Caj66] — 2C5.[66):
() _7() _5(s) 7(5) 5 _Llys 7
Ip33 — h2q[66] —hy [66] ~ 2hs [66]° 0,;33] §h4 (6] + hs,[es]v
=(8) _ (5 _ =(8)  _ 7(5) 25() =(8)  _ 705
0.666) = Ip.36) = 0, 91 166 = Majos) T §h5 [66]° Ip66) = 12 [66)
7S _ 78 _ 78 _
ho66) = M fss) = 1366 = 05
AV)  __AV) 12wy V) HalV) (V) (V)
053 = ~9an t e bz = 20053~ iss T+ P ee)
AV) (V) (V) (V) _ 7(V) V) _ 7(V)
0.666) — Ip.;36) = "0,j66] = 0, 91.j66) = h, [66]° Ip.jes] — hz.[sﬁ]’ (A1)
at subleading order there remain 17 = 3 + 8 4+ 6 sum rules only
1 1
Cleg) = 75(2F[5 3 — Hies)) F33 = 3Fs6) — 2H g4, Fizq) = 7§C[36]
by s = d1je6) = b1 33> by e = 5V3(baj66) — dafse))-
C1.136) = 5\/§<C3,[66] - 63,[66])7 C2,[66] = €2,[66]
Ca 6] = 5V/3(ca 6] — €4 66))-
3¢y 33+ ca33 F cag3z = 3¢ 66) T C266) + Cafos] — C5.[66)s
3e1(66) T €a66] — €566 = 3C1./66] T Ca[66] — C5.[66]>
5 _ Lo g (8 _ () 7S _ 7 _
9p [36] — _3 (gD [66] hz,[ss])’ 9o.l66) = ho,[és] hl,[66] - h3,[66] =0
N SN (O I () AV) _2(V)
956 = 3 (@p.166) = 2,166 0.166] = 0.j66)" (A2)
where we apply the notation
A(V) 2w 2 (V) 1w
gn, ab] — gn ab h = _h1 aal® (AS)
bl = Mgy + My Ol faa] = Mgyl

We close this Appendix with a short summary of the implications from the heavy-quark spin symmetry that arises in the
limit of an infinitely heavy charm quark mass [13,14,19,23]. The mass parameters M [13/]2, M [16/]2 and Mﬁs/]z may be expanded

in inverse powers of the charm quark mass M,.. A matching with QCD’s properties [13,14,19,23] leads to the scaling

properties

1
3/2 _ agl/2 1/2 _ agl/2 310
Mg =My~ 3. My =My~ M2, (A4)
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which implies that the two sextet masses are degenerate in
this limit. We recall that all sum rules valid at leading order
in the 1/N_ expansion are compatible with the expectation
from the heavy-quark spin symmetry [10]. Note however,
that the implications of the large-N . analysis are typically
more restrictive, i.e., there are additional constraints arising.

= 0 from
|

The only exception from this is the relation f (IA)

[10] which is requested by the heavy-quark spin symmetry,
but not foreseen by the 1/N, expansion. However, the low-
energy constant f <1A) is of no relevance in the current work.

At subleading order in the 1/N, expansion heavy-spin
symmetry breaking terms are allowed. For instance b 3
or ¢, ;3 heed no longer to vanish.

APPENDIX B

The renormalization scale dependence of the c’s and e’s as implied is

, d 11 ,d 11
H d—’uzci,[ab] = —ZWFQWV H d—'uzei,[éé] = _ZWFEM%V (Bl)
with a, b = 3, 6 and
Ty = % (10by 55 + 3by;53) = é (1sg(§f[>3§] + 13g§j>[3§]) - % (15-3% 3= 1g") a3+ 133,y Em)
Fsz - %blm] - 21_7 (339((5[)33] - 492?[3 é]) - % (333 V[l 3 + 419(1‘/[% 3 457;)‘/,?3 3])’
Feypy = %bl[ﬁﬂ _zgjgg)[ﬁ 3) %(529(1% 3) 26§(DV[)§ 3])’
Loy = %bl[ﬁ 3+ _EJS,>B 3t @ (QEDV.[)é 37 29(1‘./[% é])’
Leing = % by e — 2#,699[561 - % (M5 +M [6])?}5;[)36]’
Leypg = ébl 56+ T s + é (M5 + M) 5
Fcl,m = % (101717[66] + 3b2,[66]) - % (15_8,8[)66] + 295?66] + 13@9{660 3? (153 (()[26 + 295 [26 + 1395) )66])
Loy = 292b 1,[66] — 217 (33_(()S[>66] - Zgg,s[)é 6] 495) )[66]) 108 (3390 66 ~ 295 [26] 4Q(DYE66]>’
Lesoq = %bl[“] 9(29(1 ) 1395))[66) %(291 66] T 1390 )
Ty = %bz,[%] + % (966 + 3 5) + % (9116 + 37 66
Lesa = % E[) 66] —%gg‘%ﬁ],
Leog = 3 (10d1 i66) + 3d2,j66)) — 9 (15}~l((),s[)66] + 2il§?66] + 13;’;8[)66]) - 3? (15718‘,1[26] + 2];5‘,/[%6] + 130 44))-
Fezm - 292 dy fe6] — 217 (33il(()s[)66] 2]2(1?[)66] - 4%?66]) % (33il(()‘,/[é6] - 2]1(1?/[26] - 4719,/[26])v
Fems] = %dl[%] - % (zhlf[)66] + 13]7155[)66]) Af—g] (2]15‘/[26] + 13h2/[%6])’
Feuee] = %dZ l66] + 3 (ﬁg,s[)és] + 3}~1$[)66]) + # (il(lf/[éﬂ + 3%9,/[26])’
Dejg == % il(l?ﬁﬁ] - @ Eg,v[g)ﬁ]’ (B2)

and
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© | P o 2P o M
=(5) (s 1. =) (s s, =) (s .
ho 66) = Mo.jos) T 3 hy66) = Mtafos) T+ 3 hy 166 = 12,66~ 3
7(5) 7(5) 7(5)
W _gwm M w _pw sk v o e (B3)
0,[66 0,]66 ’ 1,[66 1,[66 ’ 2,[66 2,[66
o6 = oiss = 3pq,, 66 = "issl = 31, o6 = "2i66 30,
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