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As a sequel to our preceding work [Y. Jia ef al. J. High Energy Phys. 11 (2017) 151], we carry out a
comprehensive comparative study between the quasiparton distribution functions (PDFs), distribution
amplitudes (DAs), and their light-cone counterparts for various flavor-neutral mesons in the context of the
’t Hooft model, that is, the two-dimensional QCD in the large-N limit. In contrast to the original derivation
via diagrammatic techniques exemplified by Dyson-Schwinger and Bethe-Salpeter equations, here we
employ the Hamiltonian operator approach to reconstruct the celebrated 't Hooft equation in light-front
quantization, and Bars-Green equations in equal-time quantization. The novelty of our derivation is to
employ the soft momentum cutoff as the IR regulator. As a virtue of this operator approach, the functional
form of the quasidistributions can be transparently built out of the Bars-Green wave functions and the
Bogoliubov angle with the aid of bosonization technique. Equipped with various bound-state wave
functions numerically inferred by Jia et al. [J. High Energy Phys. 11 (2017) 151], we then investigate
how rapidly the quasidistributions approach their light-cone counterparts with the increasing meson
momentum. We observe that the light mesons’ quasidistributions approach the light-cone distributions at a
slower pace than the heavy quarkonia. Curiously, lattice simulations of quasidistributions in four-
dimensional QCD also discover this feature. Furthermore, we also compute the partonic light-cone PDF
and quasi-PDF to one-loop order in perturbation theory, again employing the momentum cutoff as the IR
regulator. We explicitly verify one of the backbones underlying the large momentum effective field theory
(LaMET), namely, both quasi-PDFs and light-cone PDFs in QCD, indeed possess the same IR behavior at

leading order in 1/P=.

DOI: 10.1103/PhysRevD.98.054011

I. INTRODUCTION

Parton distributions functions (PDFs) and distribution
amplitudes (DAs) encapsulate the nonperturbative struc-
tures of quarks and gluons inside a hadron. Parton distri-
butions are the key ingredient for making predictions for any
hard process in the high-energy hadron collision experi-
ments. Undoubtedly, the most promising approach of
calculating the parton distributions from the first principle
of QCD is lattice simulation. Nevertheless, due to their
intrinsic Minkowski nature, it is very difficult to directly
deduce the parton distributions as functions of x on
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Euclidean lattice. Until recently, only the first few Mellin
moments of parton distributions were accessible to lattice
study [1-5].

A breakthrough occurred several years ago, exemplified
by the introduction of quasidistributions and the large
momentum effective field theory (LaMET) [6,7]. This novel
approach principally paves the way for directly calculating
the x dependence of parton distributions on Euclidean
lattice. Reference [8] explicitly shows that the infrared
structures of the quark quasi-PDF and light-cone PDF are
identical at one-loop level; consequently, the matching
factor linking these two sets of PDFs was derived to this
perturbative order. The factorization theorem conjectured in
[6] that links the quasi-PDF and ordinary PDF is later proved
to all orders in a; [9]. The renormalization of quasiquark
PDFs to all orders in a; is addressed in Refs. [10,11]. The
nonperturbative matching program has also been discussed
[12,13]. A plethora of exploratory lattice simulations of
quark quasi-PDFs, DAs have become available recently
[14-23]. Moreover, studies have appeared based on lattice
perturbation theory for quasi-PDFs [24-26], and some
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improvement of quasi-PDFs is suggested in Refs. [27-29].
We also notice that one-loop matching for the gluon quasi-
PDF has also recently been explored [30].

Solving the realistic four-dimensional QCD is a notori-
ously difficult mission. Conceivably, there is still along way
to proceed before obtaining the phenomenologically com-
petitive parton distributions from the angle of lattice
simulations. In the meanwhile, it may also look attractive
if we can learn something useful about partonic quasidis-
tributions from much more tractable model field theories. To
date, most solvable field theories live in 1 + 1-dimensional
spacetime. In this paper, we will utilize the two-dimensional
QCD (hereafter, abbreviated QCD,) as a specific toy model,
to unravel various aspects of (quasi)partonic distributions.
Curiously, some qualitative features observed in this work,
especially when regarding the behavior of quasidistributions
under boost, are not unique to QCD, only but instead are
also captured by realistic QCDy.

The 1/N expansion has historically served a powerful
nonperturbative tool of QCD since the theory becomes
considerably simpler in the large-N limit [31-33]. Some
essential nonperturbative features of strong interactions
are impressively captured in this limit. In a similar vein,
QCD; in the large-N limit, often referred to as the 't Hooft
model [34], turns out to be an exactly solvable model.
Via diagramatically based Dyson-Schwinger and Bethe-
Salpeter methods, 't Hooft was able to resum the planar
diagrams to arrive at the bound state equation in the context
of light-cone quantization and light-cone gauge. The
resulting bound state wave function can be readily inter-
preted as the light-cone wave function (LCWFs). Light-
cone correlations can, thus, be naturally constructed out of
the "t Hooft wave function. For instance, PDF and GPD in
QCD, have been studied long ago by Burkardt [35].

The motif of this work is to carefully investigate the
nature and characteristics of quasi-PDFs and DAs for
various flavor-neutral mesons in the ’t Hooft model. To
this purpose, a reformulation of QCD, in the equal-time
quantization, looks much more appropriate. A theoretical
foundation along this line was first laid down by Bars and
Green in 1978 [36]. We will illustrate how to express the
quasidistributions in terms of more fundamental building
blocks in ’t Hooft model, a pair of bound-state wave
functions first introduced in [36]. We will be particularly
interested in examining how the quasidistributions
approach the light-cone distributions as the meson gets
boosted.

All in all, we hope this work can provide some valuable
insight on unravelling some gross features of quasidistri-
butions. Moreover, QCD, may also serve as a benchmark
to examine the efficiency among different approaches, e.g.,
quasidistribution approach versus pseudo-PDF [37,38] and
lattice cross section approach [39].

As mentioned earlier, the meson spectra of QCD, in
the large-N limit can be obtained in two equivalent ways.

One is through solving the 't Hooft equation [34], derived
from light-cone quantization flavored with the light-cone
gauge, while the other is through solving the Bars-Green
equations [36], which are inferred from ordinary equal-time
quantization combined with the axial gauge. The solutions
of the ’t Hooft equation correspond to the meson’s LCWFs,
denoted by ¢"(x), where x denotes the light-cone momen-
tum fraction carried by the quark relative to that by the
meson. n = 0, 1, - - - denotes the discrete quantum number,
which resembles the principal quantum number n arising
from the solution of the Schrodinger equation in one-
dimensional space. The dimensionless momentum ratio x is
restricted in the interval [0, 1]. In contrast, the solutions of
Bars-Green equations are represented by a pair of bound-
state wave functions ¢’ (k, P), where k = xP is the spatial
component of momentum carried by the quark and P
denotes the meson momentum’s spatial component. Here
the dimensionless ratio x is completely unbounded,
—00 < x < 0.

In [40], we have numerically solved the Bars-Green
equations for a variety of quark mass, and with several
different meson momenta. We have explicitly verified
the Poincaré invariance of the 't Hooft model in the
equal-time quantization, in the sense that meson spectra
do not depend on the reference frame. We have also
numerically confirmed that, in the infinite momentum
frame (IMF), i.e., P — oo, the Bars-Green wave functions
approach asymptotically

lim @' (xP, P) = ¢"(x),

P—oco

lim " (xP,P) =0. (1)
P—oo

Note the “negative energy” (backward motion in time)
component of the wave functions, ¢_ fades away as
P — oo, while the “positive energy” (forward motion in
time) component of the wave functions, ¢, recovers the 't
Hooft wave function in the IMF.

Our primary achievement in this work is to construct the
light-cone (quasi)distributions out of the 't Hooft wave
function (Bars-Green) wave functions, thus developing a
concrete feel about the nature of the quasidistributions.
Based on the numerical solutions of the wave functions
reported in [40], we then quantitatively compare the
quasiparton distributions and their light-cone counterparts
accordingly. Rather than Wick-rotate into Euclidean space-
time, we stay in the Minkowski spacetime to compute the
quasidistributions.

Apart from looking into nonperturbative aspects, we also
study the quasidistributions in QCD, from the angle of
perturbation theory. By replacing a meson with a quark (or
quark-antiquark pair), we compute these fictitious
“mesonic” light-cone PDFs and PDFs (LCDA and quasi-
DA) to one-loop order and explicitly verify that both of
them share the identical IR behavior at the leading order in
1/P.. Hence, one of the backbones of LaMET is explicitly
validated in this novel theoretical setting.
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The rest of the paper is structured as follows. In Sec. II,
we set up the theory of QCD, and introduce our notations.
In Sec. III, we recapitulate the Hamiltonian operator
approach to derive the 't Hooft equation, in the context
of light-cone quantization flavored with light-cone gauge.
Though being an old subject, we feel that there still exists
some notable innovation in our derivation. In Sec. IV, in the
framework of equal-time quantization flavored with axial
gauge, we revisit the derivation of the Bars-Green equa-
tions by employing Hamiltonian operator approach, as well
as Bogoliubov transformation. The novelty of our deriva-
tion is that we adopt momentum cutoff rather than principle
value prescription as an alternative means to regularize
IR singularities encountered in the intermediate stage. In
Sec. V, with the aid of the bosonization procedure, we
present an analytic expressions for the light-cone and the
quasi-PDFs in terms of the bound-state wave functions. We
stress that quasidistributions also depend on an essential
quantity, the Bogoliubov-Chiral angle. In Sec. VI, follow-
ing the same bosonization program, we proceed to present
the analytical expressions for the LCDA and quasi-DA. In
Sec. VII, we proceed to conduct a comprehensive numeri-
cal study for light-cone and quasi-PDFs, DAs related to a
variety of meson species: chiral 7, physical pion, a fictitious
“strangeonium,” and charmonium. For the quasidistribu-
tions, we choose several different reference frames for each
meson species, to illuminate how their profiles evolve with
the increasing meson momentum. In Sec. VIII, we conduct
the one-loop perturbative calculation for both light-cone
and quasi-PDFs, as well as LCDA and quasi-DA, asso-
ciated with a fictitious meson, using both covariant and
time-ordered perturbation theory. Again with the IR sin-
gularities regularized by a soft momentum cutoff, we
explicitly examine the IR cutoff dependence of the light-
cone and quasidistributions. Finally, we summarize in
Sec. IX. In Appendix A, we conduct a comparative study
between one variant of the quasi-PDF (DA) and the
canonical quasi-PDF (DA), examining which version of
quasidistributions evolve to their light-cone counterpart at a
faster pace under Lorentz boost. In Appendix B, we present
some distribution identities that are useful to express the
perturbative LCDA and quasi-DA in terms of the so-called
“4-plus” function in Sec. VIII.

II. SETUP OF THE NOTATIONS

For simplicity, throughout this work, we will only
consider a single flavor of quark. Consequently, we will
be interested only in flavor-singlet mesons (quarkonia).
Adding more flavors does not pose any principal difficulty,
and we will avoid this unnecessary complication. Bearing a
local color SU(N) symmetry, the Lagrangian density of the
QCD, reads

1 .
Locp, = ~a (Fffu)z +y(ib —m)y, (2)

where m denotes the quark mass. y represents the quark
field, which contains two components in the Dirac
spinor space and N components in the color space. Fj, =
0,A%—0,A4+ g, f*P°ALAS is the gluon field strength ten-
sor, with Aj denoting the gluon field. D, = 9, — ig,A;T¢
denotes the color covariant derivative. Here, T“ represent
the generators in the fundamental representation of the
color SU(N) group, which are N x N Hermitian matrices
satisfying

5ab
tr(T°T") = 5

1 1
ZT?]‘TZI =3 (5i15ﬂ< - ﬁ‘sijfskl)’ (3b)

a

(3a)

where a,b=1,2,....N* —1.

Throughout this work, we define the Lorentz two-vector
as x* = (x%,x%), with the superscript 0 indicating the
temporal component and z indicating the spatial compo-
nent.! Moreover, we will adhere to the Weyl-chiral repre-
sentation for the Dirac y-matrices,

0 _
Yy =0y,

y'=—icy,  rs=1"r"=03 (4)
where o; (i = 1, 2, 3) are the familiar Pauli matrices. The
advantage of choosing this specific representation is to
make the chirality projection simpler, since ys (which
coincides with the Lorentz boost generator in two dimen-
sions) becomes diagonal in this basis.

In this paper, we will specify the large-N limit of the
QCD, (the ‘t Hooft model) as

fixed,

where 4 is dubbed the 't Hooft coupling constant. The last
condition in Eq. (5) specifies the so-called weak coupling
phase [41]. It is necessary to state this clearly in the outset,
since the chiral limit and large-N limit do not generally
commute. It is only in the weak coupling regime, i.e., the
m — 0 limit imposed after taking the N — oo limit, that the
massless “Goldstone” boson (chiral pion) can arise.

III. HAMILTONIAN APPROACH IN
LIGHT-FRONT QUANTIZATION IN
LIGHT-CONE GAUGE

The bound state equation for QCD, in the light-cone
framework was originally derived by 't Hooft in 1974, based

[T

Tt may appear unwieldy to label the spatial index by “z” in a
1 + 1-dimensional field theory. The reason we choose the
superscript z instead of 1 or x is to keep conformity with the
convention adopted by majority of the literature about quasidis-
tributions in four dimensions.
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on the Feynman diagrammatic approach [34]. In the
following years, the same equation was also reproduced
in the light-cone hamiltonian formalism [42—49]. In this
section, we rederive the ’t Hooft equation from the angle of
light-cone quantization once again. The novelty of our
derivation is that we adopt a soft momentum cutoff to
regularize severe IR divergence encountered in the inter-
mediate stage, rather than the principal value prescription
used in most of the preceding literature. Of course, at the end
of the day, we will recover the celebrated ’t Hooft equation,
which is no longer plagued with infrared singularity.

A. The light-front Hamiltonian

We adopt the widely used Kogut-Soper convention
[50] that the light-cone coordinates are defined through
x* = (x° £ x%)/v/2. Consequently, only the off-diagonal
components of the metric tensor survive, g,._ = g"~ = 1,
and x* = x;.

It is convenient to decompose the quark Dirac field y
into the right-handed (“good”) component yy and left-

handed (“bad”) component y;, by acting the chirality

projectors yp; = lizh . Owing to the diagonal form of y5

in the Weyl representation, as specified in (4), one can
explicitly decompose

()

where g, represent the single-component Grassmann
variables.

To facilitate the light-front quantization, it is conven-
ient to reexpress the QCD, Lagrangian (2) in terms of
light-cone coordinates. Furthermore, the theory gets
significantly simplified once imposing the light-cone
gauge AT =0:

(0_A=")? + i(ypD wr +w,0-yy)

N =

Locp, =

- \% (Wiwr +viwe). (7)

As an exhilarating virtue of the noncovariant gauge,
the characteristic complication of QCD, the triple and
quartic gluon self-interactions are absent in QCD,.

Regarding x™ as the light-front time, one observes that
only the right-handed quark field constitutes the dynamical
degree of freedom. From (7), one then derives the Euler-
Lagrange equation for the left-handed fermion field and the
gluon field:

DZA™(x) = g,y (X) Ty (x) = 0, (8a)

Twrx)=0.  (8b)

i0_yp (x) — ﬁ

Hence y; and A7 are nonpropagating (constrained)
degrees of freedom, rather than the canonical variables.
Solutions to the equations of motion (8) are

) =2 / dy=GY (x =y (. y7). (%)

A7 (xt,x7)
) —\7a -
=gs/dy Gy (= =y Wk (3 ) Towrp(x, y7),
(9b)
where G") and G® correspond to the Green functions

associated with the differential operators d_ and 02,
respectively:

N fredkt ik (=)
6=y =i [ T ek |-
(10a)
. +oo it =ik (o)
6 =y == [ TG ek |-
(10b)

where © signifies the Heaviside step function, and the
sharp momentum cutoff p — 0T is introduced as an IR
regulator. We put a subscript p in the coordinate-space
Green function to stress its implicit dependence on the
IR cutoff upon Fourier transform. We note that this
peculiar regularization scheme has already been used by
’t Hooft [34] and Callan, Coote and Gross [51]. Einhorn
even interpreted this IR regulator as a gauge parameter
[52]. This IR regulator p may linger around the
intermediate steps, but must drop away in the physical
observables such as meson-meson scattering ampli-
tude [51].

Identifying the light-front Hamiltonian from the
Lagrangian (7) through the stress tensor 77, eliminat-
ing the occurrences of y; and A% in line with (9), we
finally end with the desired form of the light-front
Hamiltonian®:

*Note that our light-front Hamiltonian differs from the light-
cone Hamiltonian defined in some influential paper [53],
which are connected via Hy o =2P"Hp. Our Hp is frame-
dependent, while H;c in [53] is not, yet carrying mass
dimension two.
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m2
Hyp=P~ :/+:» ‘tdx_{Z_iw;(x_)
/dy G (o =y Ywey)
=3 2T ()
< [arafie —y->w};<y->ww<y->}. ()

Note only the canonical variable yjy survives in the
light-front Hamiltonian (1 1).3

The canonical quantization rules in equal light-front time
are then

RO )y )y = 8980 —y7). (12a)
UZCaNE R (A

= v ()R 0y ) e, =0, (12b)

For clarity, we attach the color indices i, j =1, ..., N to

the yp field explicitly.

B. Bosonization

To quantize (11), one may expand the yp field in terms
of the annihilation and creation operators:

o [edkt e L e e
Yr(x) = (B (k7)e™ " 4 dH (kF)et ),
0 27[

(13)

where i is the color index. The Fock vacuum |0) is defined
to satisfy

b'(k*)[0) = d'(k*)[0) =0 (14)

for any non-negative k.
Following the bosonization procedure [42-49], we define
the following four color-singlet compound operators:

*When concentrating on the color-singlet sectors of Fock
space, one is allowed to drop the boundary term in the light-cone
Hamiltonian, once the spatial size of the system extends to
infinity. One can refer to Hornbostel’s thesis for a comprehensive
and lucid discussion on this issue [54].

M(kt, pt) = \/Lﬁzcﬂ(lﬁ)b
M*(k*, p+) = \/Lﬁzbﬁ(pﬂdﬁr(kﬂ’

B, p?) == S B (),
Dk p7) == 37" (k) (). (15)

The commutation relations among B, D, M and M' are

(M (k. pi). M (k3. py)]

— (2m)8(kF — k)3(p — pE) + O(ﬁ) (162)
Mk ). Bk pb)]
1
M ). B p)] = O(ﬁ)’ (16b)
Mk ). DK pp)]
1
= Mk pt). DS p)] = O(ﬁ)’ (160)

Bk pi). B pb)]
— Dkt ). D(KE . p1)] = OQN) (164)
Bkt pi). DS pE)] = 0 (160)

Substituting the Fourier expansion of yp, (13), into
the LF Hamiltonian (11), then expressing everything
in terms of the bosonic compound operators introduced
in (15), dropping terms that are suppressed by powers
of 1/N (with the aid of the SU(N) identity (B3), we can

decompose the light-front Hamiltonian into three
pieces:

HLF:HLF;0+ :HLF;Z: + :HLF;4:v (17)
where denotes the standard normal ordering.

Organized by the frequency of occurrences of the
bosonic compound operators, these three parts turn
out to be

A /1 m? o dkT
HLFON/ [ / k—+} (18a)
p
odkt [m> =211 A
‘Hyp. ::\/ZV/ —[7—+—]
L2 , 2n 2kt p
x [B(kH, k+) + D(k™, k)], (18b)
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:HLF;4: — / dk+/ dk+/ k+/ dk+
Mt ky ki)D(ki, ki ki kDM (KT, kS
{ (|k+ k+|_ ) ( 2 4(k+) k+)(21 4) ( 3 2)5(k~1|»_k;»_ _kj()
1 2

+O(k — k3| = p) Dl MG f,‘? :,jf)gki’ kB ) S(ki =k + k3 + k)
1 2
—mw—@MmMWiquW?fﬁy?@WW”®aH—@—@+w)
1 2
mw+@rm”w”““”fﬁjﬁ?”w®””aw+@—@—@)
1 2

(kI +Kk3)?
D(ki kN )M(k$ . k3) =M™ (k3. k3 )B(k{ . k)

Ok + k5| = p)

—O(lky -k [ - p)

(ki + k3 )?
D(k3.k3)D(ki . ki) + B(ki. k3 )B(k{ . k)

L25(kf + Ky + kY —k))

where A = ¢gN/4x is the dimensional 't Hooft coupling
constant, and those terms suppressed by 1/N have been
suppressed. Hyp, can be interpreted as the vacuum
light-cone energy, which is both UV and IR divergent
[55]. This constant is irrelevant for our purpose, so will
be neglected henceforth. Note the soft momentum cutoff
p has been introduced in (18) to regularize the IR
divergence.

A key observation is that the QCD, is a confining theory,
and one cannot create or annihilate isolated quarks and
antiquarks. Therefore, to create a quark, one has to create
an accompanying antiquark; vice versa, to annihilate a
quark, one has to annihilate an accompanying antiquark.
Only the color-singlet ¢g pair can be created or annihilated.
The consequence is that the operators in (15) cannot be all
|

Hipy: =

Hipy: =—

C. Diagonalization, principal value prescription,
and the ’t Hooft equation

Our goal is to diagonalize the light-front hamiltonian
(20). To this purpose, it is convenient to introduce
an infinite set of meson annihilnation/creation

(ki — k3 )?

Sk — ki + kf — m}, (18¢)

independent. Rather one finds that the compound operators
B and D can be built out of M and M" [49]:

)= 5 o
7wk

As can be readily verified, these relations are compatible
with the commutation relation (16).

Substituting (19) into (18), relabelling the momenta
pT =xP" and k* = (1 — x)P", keeping only the leading
order terms in 1/N, one finds that the : H g, : and : Hyp4:
components now read

"(q" k" )M(q*. p*). (19a)

D(k*.p") ﬂf*k+,q )M(p*.q7). (19b)

G | AP [ A (=Pt P m( =P )
A5 -)3Ee e )+ [(5-
@gzémdPﬁéiéﬂu@@<u—ﬂ_£;>

(20a)

1 PtA p
ﬂ>1—x+ﬂ®(1?”)}

x MY((1 = x)P*, xPH)M((1 = y)P*,yP*).  (20b)

1
(x—y)?
|

operators: m,(Pt)/m}(Pt), where n stands for the
principal quantum number, and PT represents the
light-cone momentum of the corresponding meson.
We postulate that the M operator basis is connected
to the m, basis through
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M((1=x)Pt,xPT) = %iq)n(x)mn(Pﬂ, (21a)
n=0
m,(PT) = \/g[)] dxg,(x)M((1 —x)P*,xP*), (21b)

where ¢,(x) is understood to be the nth coefficient
function. The physical picture is clear, since confine-
ment nature of 't Hooft model, exciting a quark-
antiquark pair from the Fock vacuum would eventually
lead to the formation of a meson, in the large-N limit.
To the best of our knowledge, the explicit writing of the
decomposition formula (21) is new.

We postulate that the mesonic annihilation and creation
operators m, and mj, obey the canonical commutation
relations:

[, (PY), mi(P)] = 228,,8(Pf = Pf),  (22)

and all other commutators vanish. It is straightforward to
check that, in order to satisfy these commutation relations,
the coefficient functions ¢,(x) must be subject to the
following orthogonality and completeness conditions:

/ 420 () (3) = S (23a)

0

D 0u(X)ga(y) = 8(x - ). (23b)

We wish that the light-front Hamiltonian in the basis of
m,, and m,, operators is in a diagonal form,

dPt .
HLF = HLF;O + ﬁpnmn(P+)mt1(P+)’ (24)

where P~ is the light-cone energy of the nth mesonic
state, P, = M?%/(2P7).

If the light-front Hamiltonian can be diagonalized in the
new m,, operator basis, the nth mesonic state in the large-N
limit can be directly constructed via

|P;, PTY = V2P mj(P)|0). (25)

In order to reach the desired form (24), one should
enforce the condition that the coefficients of all the
unwanted operators of the form my,m, (n # r) vanish.
This requirement leads to the following equations which
must be satisfied by ¢, (x) in different intervals of x:

2 | ~
= (pn<x>—za/ iy 20) = #n(x)
— »

! (x—y)?
= Mlp,(x) O<x< (26a)
n+n P+7
" Y00 -22 [ as0ie—yl -y =)
x 1=x)"" 0 (x—y)?
=M2p,(x) L P (26b)
- n(pn P+ P+a
m’ / 7w n(Y) = @al¥)
—,(x) =24 dy i/ TR
x ! ®) 0 g (x = y)?
p
= M2p,(x) 1 —pr <x< 1, (26¢)

In the p — 0" limit, these equations merge into a single
equation:

(nﬂ m? )%(x) _M][ldym) ~9,(x)

x 1-x 0 (x—y)?
=M2p,(x), 0<x<l, (27)

where the dashed integral f in (27) denotes the principal
value (PV) prescription:

][dy f(yy))zzlim/dy(a(|x—y|—€)JM. (28)

(x— e—0*t (x— y)z

with f(y) a test function that is regular at y = x.

Eq. (27) is nothing but the celebrated ’t Hooft equation.
Now the coefficient functions ¢, (x), first introduced in
(21), can be interpreted as the ’t Hooft wave function, or the
light-cone wave function of the nth mesonic state.

We emphasize that the PV prescription as specified in
(27) needs not be unique. Here we just list two additional
popular PV prescriptions:

f(y)
Y=y

= 1'
g | >

1) L 1 1 (29a)

2 |(x—y+ie)? (x—y—ie)?]’

fly) . fy)  2f(x)
][dy(x_y)z—elgg/dy@(lx—yI—6) GP e

(29b)

where the first one was adopted in [52] (also referred to as
Mandelstam-Leibbrandt prescription [56,57]), and the sec-
ond one was introduced by Hadamard long ago [58]. All
the aforementioned PV prescriptions are mathematically
equivalent, but may practically differ in efficiency upon
numerical implementation.
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IV. HAMILTONIAN APPROACH IN EQUAL-TIME
QUANTIZATION IN AXTAL GAUGE

The bound-state equations in QCD, in equal-time
quantization and in axial gauge were originally derived
by Bars and Green in 1978 [36], largely utilizing Feynman
diagrammatic techniques. In 2001, Kalashnikova and
Nefediev presented an elegant derivation based on the
Hamiltonian operator approach [59]. A nice feature of this
method is that, through introducing Bogoliubov trans-
formation, the physical meaning of the Bars-Green wave
functions is greatly clarified.

It appears rather obscure to link the Bars-Green bound-
state wave functions with the quasidistributions based on the
diagrammatic methods. On the contrary, it is quite trans-
parent to achieve this goal with the aid of the bosonization
technique. Therefore, it is rewarding to recapitulate the
derivation of the Bars-Green equations in this section, again
within the Hamiltonian approach.

Reference [59] employs the PV prescription to sweep
away the potential IR divergences. Nevertheless, to be
compatible with our treatment in light-front quantization
in Sec. III as well as in the perturbative one-loop compu-
tation for quasidistributions in Sec. VIII, here we adopt the
same momentum cutoff as the IR regulator. We will
explicitly verify that, though differing in intermediate steps,
after the IR momentum cutoff is removed in the end, the
famous mass gap equation and Bars-Green equations will be
recovered.

A. The Hamiltonian in the axial gauge

Enforcing the axial gauge condition A* = 0, the QCD,
Lagrangian in (2) reduces to

1 o _
Locp, = 3 (0,A8)* + iw" (Do + y°0, )y — mpy.  (30)

Unlike the light-cone case, both components of the quark
Dirac field y remain as the propagating degrees of freedom.
The equation of motion for A%’s turns out to be

A% = gy Ty, (31)

thus, A% is a constrained rather than dynamical variable.
The solution of Eq. (31) is

anz%/ﬂ@%r¢WW¢ﬂwmm,@m

where G,(,z) denotes the Green function associated with the

4
operator 9%

*For notational brevity, in this section, we have suppressed the
superscript “z” for the spatial component of a 2-vector, so k
should be understood as k* if no confusion arises.

(2 +o0 dk eik(z—z’)
=) == [ ek -p) e (33)

o 2T
This Fourier integral is ill defined due to the singularity
caused by k — 0. For consistency with the rest of the paper,
we again employ a momentum cutoff p — 0% to regularize
the IR divergence.

The equal-time Hamiltonian in the axial gauge, when
expressed in terms of the canonical variables, is®

H=P'= / dZ{l//T (2)(=ir°0. +my%)y(2)
t=const
2
gS a ~ a
-5 > / dw' (2) T ()G (2= 2w ()T W(Z’)}~
(34)
The equal-time canonical quantization rule is then

(62 (1. 2)} 1y = 88— 7).

{w'(t.2).y/ (1. ) oy = {y' () 97" (&) }ioy = 0.

(35a)
(35b)

where i, j = 1, ..., N denote the color indices carried by v,
and the spinor indices have been suppressed for simplicity.

B. Dressed quark basis and mass-gap equation

To proceed, we expand the Dirac y field in terms of the
quark annihilation and creation operators,

[b'(p)u(p) + d(=p)v(=p)]e’?,

iy [dp_ ]
SN

(36)

where the factor \/2E(p) is deliberately inserted in the
integration measure, to keep our normalization convention
compatible with the standard text [60]. Here, E(p) can be
interpreted as the energy carried by the dressed quark.
The spinor wave functions u, v are parametrized as®

u(p)= \/%T(p) G) v(=p)= \/%T(p) <_11>
(37)

where T'(p) is a unitary 2 X 2 matrix. In conformity with the
convention adopted in [60], the u, v spinor wave functions
carry the mass dimension of % Combining these two

>Bars and Green expounded why one is allowed to drop the
boundary terms in the color-singlet sector, in the context of equal-
time quantization and axial gauge [36].

Note here the parametrization of the dressed quark spinor
wave functions differs from the preceding literature [36,59],
where the Dirac-Pauli representation for y-matrices were adopted.
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equations, one sees that the field expansion in (36) actually
does not rely on the explicit form of E(p) at all, but critically
depends on the dressing function 7'(p).

The quark vacuum state is defined to be

b'(k)|0) =

for all possible values of k.

Substituting the Fourier expansion of y (36), into the
Hamiltonian in (34), and rearranging it into the normal-
ordered form, we can decompose the Hamiltonian into
three pieces:

di(k)[0) = 0 (38)

H=Hy+ :Hy: + :H,:, (39)

which contain 0, 2, and 4 quark creation/annihilation
operators accordingly,

Hy= N/dZ/ Tr{py +my®)A_(p)
5 [ G Ok=pl=pA (A (K)]. (400)

Hy: = / dpTrE(p)A, (p)bi* (p)b (p)

+E(p)Q_(p)b"(p)d" (-p)
+E(p)Q(p)d (=p)b'(p)
—E(p)A_(p)d (=p)d'(=p)]. (40b)
e = _92_%2“: //:const deds
(T ()G (2 = 2w () Tp(d):. (40c)
where the matrices E, A, and Q, are defined as
E(p)=pr’+my’
+305 / O(|p—k|—p)(A. (k)= A_(K),
(41a)
As(k) = T(k)liTyoT*(k), (41b)
Q. (k) = T(k) yozi Lotk (41¢)

H, describes the vacuum energy. Let us first focus on the
single dressed quark sector represented by :H,:. We are
seeking a possible solution of 7(p) such that : H,: has a
diagonalized form in the basis of quark annihilation and
creation operators,

‘H,: _Z / kg (b (k)b (k) +d'T (k)di (k)), (42)

where i is the color index, and E;(k) denotes the energy of
the dressed quark with momentum k. To proceed, one
parametrizes the T(p) as [36]

7(p) = exp [ 50(p)r°]. (43)

where 6(p) is called the Bogliubov-chiral angle, which is
an odd function of p [36,59]. As elucidated in Ref. [61],
T(p) is reminiscent of the Foldy-Wouthuysen transforma-
tion that decouples the positive and negative energy degrees
of freedom in Dirac field, and (p) play the role of the
Foldy-Wouthuysen angle.

By the parametrization specified in (43), diagonalization
of (40b) leads to two coupled equations for 8(p) and E(p),

respectively,

E(p)cosO(p)=m+= /(kdk O(|k— p|—p)cosO(k),
(44a)

E(p)sind(p) = p+5 [ = 550(1k=pl=p)sine(0).
(44b)

After some plain linear algebra on two equations in (44),
we finally arrive at the nonlinear equation for 6(p),

pcosO(p) —msind(p)
:g,}f& _:o (pikk)z(aﬂk— pl—p)sin[0(p) —6(k)],

(45)

which is nothing but the celebrated mass-gap equation [36].
Note that the limit p — 07 just serves the standard Cauchy
principal value prescription. Examining the gap equa-
tion (45), the interpretation of 6(p) as the Foldy-
Wouthuysen angle becomes transparent if the interaction
term, which is directly responsible for dressing the bare
quark, can be temporarily turned off. The angle 6(p) plays
a vital role for generating a nonvanishing quark vacuum
condensate. Practically speaking, the Bogoliubov-chiral
angle can only be solved numerically, even in the chi-
ral limit.

In passing, we stress that the mass-gap equation (45) can
be obtained from another quite different perspective. Rather
than diagonalize :H,:, one can take a closer look at the
vacuum energy constant. One can rewrite (40a) as
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o] =N [ 5] =meoso(p) - psinatp

1—cos[0(k) —6’(19)]}
2(k=p)? ’

+5 [ akell=pl=p)
(46)

where &,,. = Hy/L is the vacuum energy density, with L
the length of the spatial interval.

Minimizing Eq. (46) with respect to O(p), one can
readily obtain a variational equation, which exactly repro-
duce Eq. (45) [59]. Note that the true vacuum is no longer
chiral invariant, and a nonzero quark condensate arises in
the chiral limit, which signals the spontaneous chiral
symmetry breaking in large-N limit of QCD, [62].

Once the Bogoliubov angle 6(p) is known, one can then
infer the dispersive law for a dressed quark:

E(p) =mcosO(p)+ psind(p)

A [+ dk
z (k-
=R

It is straightforward to see that the energy carried by the
dressed quark blows up for all values of momentum,
E(p) - /4) after the IR regulator is removed. This symptom

is in sharp contrast to the regular dispersive law obtained in
[36,62], where the PV scheme is used to regularize the IR
divergence there. As a consequence, the free Hamiltonian
in the dressed quark sector in (42) is ill defined, due to its
sensitivity to the IR cutoff. Nevertheless, this is a harmless
and tolerable nuisance, since the colored object such as
dressed quark need not be affiliated with any physical
significance.

For future usage, it is convenient to define the regular-
ized dressed quark energy, E(p):

—p)cos[0(p) - 0(k)].

(47)

E(p)=E(p )_,%: mcos@(p) + psinf(p)

+ ][_oo - ikk)z cos[0(p) —O(K)], (48

where f denotes the PV scheme as specified in (28). It is
straightforward to see that E£( p) is an even function of p, and
remain finite for all finite p. Nevertheless, being a colored
object, the dispersive relation for a dressed quark, no matter

E(p) or E(p), clearly violates Lorentz covariance.

C. Bosonization

In order to derive the bound state equation, we must take
the interaction part of the Hamiltonian, : H, :, into account.
In parallel with the bosonization procedure for the LF

Hamiltonian, here we introduce the following color-singlet
compound operators analogous to (15):

' 1 it i
M(p.q) \de-p . MT(p,Q)Eﬁqu d,,
(49a)

Zdl* d,.

(49b)

3\

Zb’,} bi,  D(p,

B(p.q)

The commutation relations among M, M*, B, and D in
the large-N limit are

[M(klﬂpl)’MT(kZ’ pZH
1

— (2x)25(k, — k)5(py — pa) + O<\/N> L (50

[M(kl’ P1)vB(k2, Pz)]

— (M (ky, 1), Blky, p)] = o(ﬁ) (50b)

(M(ky. py). D(ka. p2)]

— M (k. p1). Dk p2)] = O(%ﬁ) (500)

[B(ky, p1), B(k, p>)]
= Dlk1. ) Dlks.p2)] = O ). (500)
[B(ky, p1), D(ky, p2)] = 0, (50e)

which are very similar to their light-cone counterparts (16).

Due to the confinement nature of QCD,, the same
consideration that leads to (19) can also be applied here,
i.e., not all compound operators in (49) are independent. In
fact, one finds that [59]

B(p.p') \/—/m 94 5y "(q.p)M(q.p').  (5la)

D(p.p') \/—/mdq (p.a)M(p'.q).  (51b)

Here we follow similar steps as what lead to (18) in light-
cone quantization. Substituting the Fourier expansion of i,
(36), into the Hamiltonian (40), then expressing everything
in terms of the bosonic compound operators introduced in
(49), eliminating B, D in line with (51), and only keeping
terms at leading orderin 1 /N, the : H,: and : H,: pieces in
(39) read
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L dPdp - = D. Bogoliubov transformation, diagonalization,
- // (27;)2 (E(p) +E(P = p)) and Bars-Green equations
xM'(p—P,p)M(p—P,p), (52a) The Hamiltonian :H,: + :H,: in (52) is not yet in the
diagonalized form. Parametrically, it bears the specific
y) dpdk structure,
™ (p—k) H~Hy+AM'M + B(M'M' + MM),  (54)

T _ —
x {2C(p.k. P)M' (p = P. p)M(k = P. k), which is reminiscent of the Hamiltonian for the dilute

+S(p,k,P)[M(p,p— P)M(k — P, k) weakly interacting Bose gas [63]. The familiar strategy of
] ] diagonalizing this type of Hamiltonian is through the
i _ Tk — g g yp g
+M'(p.p— P)M(k - P.k)]}. (52b) Bogoliubov transformation [63]:
where the functions S and C are defined as [36] m=uM + vM", (55a)
O(p)—0(k) O(P—p)—0(P—k T =uM’ + oM, 55b
C(p.k.P) = cos (p)2 (k) o & p)2 (P=k) m' =uM'+v (55b)
(538_) M2 - 1)2 =1. (55C)
_ N _ For our problem at hand, we can generalize (55) by
S(p,k,P) = sine(p) 0(k) sin o(P—p)—0(P -k ) introducing two sets of operators , and mj, (n = 0,1, ...),
2 2 which are the counterparts of the m and m" in (55), as the
(53b) linear combination of the M and MT operators [59]:
|
+o0 dq N ; B
m,(P) = 2P M(q - P.q)¢y (q.P) +M'(q.q — P)g; (q. P)] (56a)
ppy = [T 4D + -
mn(P) = P [M"(q = P.q)¢, (q.P) +M(q.q — P, (q. P)] (56b)
27 & ;
Miq=P.q9) =[5 > [mu(P)gif (q. P) = miy(=P)g (g — P.—P)] (56¢)
n=0
20N 4
M'(q~P,q) 7] [ma(P)os (g, P) — my(=P)gy (g = P,—P)], (56d)
n=0

where m,(P) and mj(P) will be interpreted as the annihilation and creation operators for the nth mesonic state
carrying spatial momentum P. The functions ¢; (¢, P) and ¢, (g, P) play the role of Bogoliubov coefficients u
and v in (55a).

Similar to (22) in the LF case, here we again postulate that the mesonic annihilation and creation operators, m,, and my,
obey the canonical commutation relations:

[m, (P), m},(P")] = 228,,,6(P — P'), (57a)

[m,(P). m,,(P")] = [m(P). miu(P')] = 0. (57b)

In order to satisfy these commutation relations, the Bogoliubov functions ¢’ must obey the following orthogonality and
completeness conditions’:

"We stress that our normalization conditions differ from those in [59] by a factor of | P|, because we demand that @"(xP, P) remains
dimensionless in conformity to the 't Hooft wave function ¢(x), which turns out to be particularly convenient in comparing quasi- and
light-cone distributions. Nevertheless, by adopting this convention, we are no longer capable of studying the bound-state solutions in the
rest frame (P = 0) as was done in [62].
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Note the relative minus sign in the last two equations
reflects the characteristic of the Bogoliubov transformation,
as specified in (55¢) [59].

We wish to diagonalize the axial-gauge Hamiltonian in
the basis of m,, and m], operators. Applying the Bogoliubov
transformation (56) into (52), we aim to obtain the intended
form

H=H)+ / ZPO (P)m,,(P) +O(1/V/N), (59)

where PO = \/M? + P?, with M, the mass of the nth
mesonic state. The interaction terms involving three or

more mesons are suppressed by powers of 1/4/N, which is
completely immaterial to the theme of this work, so will be
neglected.

The shifted vacuum energy in (59) is given by

H{):Ho—l—Z/dz/Z;c;pl
{[E<p>+E<P Pl (9. Pg (.P)

/ o(p—k-p)
C(p,

)rp (p P)o™(p,P)
—S(p,k’P)(fﬂi(p,P)(ﬂ’i(k’P)+wi(p,P)¢’i(k,P))]}’

(60)

where H, is given in (40a).
We define the meson vacuum state |Q) by the condition

m,(P)|Q) =0, (61)

for all n and P. Consequently, a single meson state can be
constructed via

(p—P,—P) = (p,P)g"(p— P,—P)] =0,

- ¢ (p—P,—P)p

— ¢ (p.P)gZ(p.P)] = |P|5"" (58a)

(58b)

“(qg =P, =P)] = |Pl5(p - q) (58¢)
—¢%(p—P,=P)¢l(q—P,-P)] = 0. (58d)
|P§, P) = \/2P\m}(P)|Q). (62)

Note the true vacuum state |2) is highly nontrivial in
the equal-time quantization. This is clearly illustrated
by (56b), according to which there are actually two very
different mechanisms to create a meson. First is by
creating a pair of quark and antiquark, no matter the
vacuum is trivial or not. The other mechanism is by
removing a pair of quark and antiquark from the
vacuum. This is possible only if a flurry of correlated
multi quark-antiquark constantly popping out of the
vacuum, plausibly a consequence of the nonzero quark
condensate.”

After applying the Bogoliubov transformation to (52), in
order to achieve the diagonalized form of (59), we have to
enforce the coefficients of operators mlm, (n#r),
mym, + m,m, to vanish. After some algebra, we end up

with the two following equations:

[E(p) + E(P—p) F P)oi(p. P)

+oo  dk
:/1/_00 WGQP—H—P)
x [C(p. k. P)gy (k. P) = S(p. k. P)pii (k. P)].  (63)

This pair of equations is not particularly convenient to
use, since both £ and the integrals are sensitive to the IR
cutoff p. Miraculously, one can absorb the divergent % piece

in E into the cutoff-dependent integral, so that the modified
integral becomes regular in the p — 0+ limit. After some
manipulation, the axial-gauge bound state equations (63)
can be rewritten as

¥Note the true vacuum |Q) is different from the quark vacuum
|0) defined in (38). It is supposed that they are connected by a
unitary operator S [64], whose explicit form is unknown yet. In
the following sections, we will always use the true (“mesonic”)
vacuum when computing QCD matrix elements.
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(5]

(E(p) + E(P—p)—P%)g.(p.P) = 1][

o]

(E(p) + E(P= p) + P)p(p. P) — ,1][

where E(p) is the regularized dressed quark energy
defined in (48). Note that here we recover the principal
value prescription as introduced in (28).9

Equations (64) are the very bound-state equations in
QCD; in axial gauge, first derived by Bars and Green back
in 1978 [36]. For this reason, these equations will be
referred to as Bars-Green equations. Consequently, the
Bogoliubov-type functions ¢’} can now be interpreted as
the bound-state wave functions, or simply called Bars-
Green wave functions.

A crucial feature of QCD, in axial gauge is that, it
preserves Poincaré invariance in physical sector in a highly
nontrivial way. Notice the dispersive law for a colored
object like dressed quark, which is encoded in (47) and
(48), is clearly not Lorentz covariant. However, as far as the
color-singlet meson is concerned, one is ensured to recover
the standard dispersion relation dictated by special rela-
tivity. Specifically speaking, irrespective of the Lorentz
frame where the Bars-Green equations (64) are tackled, one
always ends up with the identical meson spectra, where the
energy of the nth mesonic state is always found to satisfy
PY = /M2 + P?. 1t is important to emphasize that, in
order to preserves Poincaré invariance, the Bogoliubov
angle O(p) and the backward-motion component of Bars-
Green wave functions, ¢”, appear to play a indispensable
role in (64). Thus, the 't Hooft model in axial gauge
represents a rare example that one knows exactly how to
consistently boost a relativistic bound-state wave function
in the equal-time quantization.

A specific consequence of Poincaré invariance is
that, when the meson is viewed the IMF, that is, in
the P — oo limit, one would still obtain the identical
mesonic mass spectra. In this specific Lorentz frame,
o(p) — % as p— oo, and the C, S functions in (53)
reduce to simple step functions, one can show that the
Bars-Green equations simply reduce to the ’t Hooft
equation. Consequently, in the IMF, the ¢’. component
of the Bars-Green wave function reduces to the 't Hooft
light-cone wave functions, and the ¢” component fades
away at a rate o 1/P? [40].

°One certainly can also use the equivalent PV prescriptions as
specified in (29). Another practically useful prescription is the
subtraction scheme [62], that is, for a test function f(y) which is
regular at y = x, one has fdy (){f)))y = fdyﬁ [f(») = f(x)—
(y = x)f ()]

oo (p — k)?

—o (p—k)?

[C(p, k, P)p(k, P) = S(p, k, P)p_(k, P)], (64a)

[C(p,k, P)p_(k, P) = S(p, k, P)p.(k, P)], (64b)

|

The first numerical solution of Bars-Green equations
was conducted by Li and collaborators in the late 1980s,
yet only for stationary (P, =0) mesons [62]. Very
recently, the Bars-Green equations (64), for the first time,
were solved numerically for an arbitrary moving frame
for a variety of quark mass [40], thus explicitly establish-
ing the Poincaré invariance of the 't Hooft model in axial
gauge. In particular, the authors of [40] concretely
observe the tendency that, when the meson gets more
and more boosted, the ¢, component does converge to
the 't Hooft wave function, while the ¢_ component
quickly vanishes. Moreover, some other physical quan-
tities, such as the quark condensate and meson decay
constant, were also numerically investigated in different
moving frames and prove to be Lorentz invariant [40].
These studies unequivocally confirm the key role played
by the chiral angle 6(p) and ¢” to preserve the Poincaré
invariance.

V. BUILDING PDF AND QUASI-PDF OUT OF
BOUND-STATE WAVE FUNCTIONS

Parton distribution functions (PDFs) count essentially
the number density of a specific species of partons
inside a parent hadron that carries a specific momentum
fraction of the hadron, x. It is not an exaggeration to say
that they form the most indispensable inputs for yielding
predictions for any high-energy collision experiments
involving hadron beams. In this section, starting from
the operator definitions of light-cone PDFs and quasi-
PDFs, we are going to reexpress them in terms of the
light-cone wave functions and Bars-Green wave func-
tions for the QCD; in the large-N limit. We will also see
that the Bogoliubov angle 6(p) will explicitly enter the
expression for the quasi-PDFs. This may offer some
useful insight on the nature of quasi-PDFs in 3 + 1-
dimensional QCD. In this section, we assume the meson
is moving along the positive Z axis, so P > 0.

A. Light-cone PDF

Collins and Soper have given a gauge-invariant operator
definition for the PDFs [65]. One can readily adapt their
definition to QCD,. According to [65], the quark light-cone
PDF in QCD, is defined as the nonlocal light-cone
correlators sandwiched between two equal-momentum
mesons, which are the nth mesonic states carrying the
light-cone momentum P*:
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+oodé:_ —ixPte
('In(x>:/ ——e " ¢

o 4r
X (P PHp (&) r P WIS, Olw (0)[P7. PH)e.  (65)

where P, = M?%/(2P"), with M, the meson mass of the
n-th state. Here y denotes quark Dirac field, and

Wie0] = P{exp (—igs I d:rAW)ﬂ (66)

is the gauge link connecting the two quark fields, inserted
to ensure the gauge invariance of the PDF. x = k™/P™ is
the light-cone momentum fraction carried by the parton
with respect to that of the meson. By construction, the light-
cone PDF in (65) is boost invariant along the z direction.
The subscript C in (65) indicates the disconnected con-
tribution such as

+oo JE~
ey [T

e 4m
x (Ol (£7)y " WIE™, 0ly(0)[0) (67)

should be discarded when calculating the forward matrix
element (65) [66].

PDF has a most transparent probabilistic interpretation in
the light-front quantization framework [66]. Moreover,
being a gauge-invariant quantity, the simplest way to
proceed is to impose the light-cone gauge A_ =0 in
(65), so that the gauge link can be dropped. For simplicity,
we will adopt the LF quantization and light-cone gauge in
QCD,, as was comprehensively described in Sec. III.

The presence of y* in (65) implies that only the wpg
component (“good” component) of the Dirac field y is
projected out. Applying the Fourier expansion of the y as
in (13), and replacing the meson state by acting m),(P*) on
the vacuum, and the light-cone PDF in (65) then becomes

vode oo ([ dkfdk}
qn(x):/ Ee L //\#
X (0 m,, (P*)V2P*[b (K )ei<

e—i)cPJr '

+d(k)e M ][b(k3) +d"(k3)]V2P s (P)|0)

(68)

Replacing the combinations b7 (k])b(k3), b (k{)d' (k5),
d(k{)b(k3), and d(k{)d" (k3 ) by the bosonic operators B,
M?*, M, and D as in (15) correspondingly, and rewriting B

and D in terms of M, M' according to (19), then

eliminating M, M in favor of m, or mj, in line with

(21), we end up with the vacuum matrix element of the
product of a string of mesonic creation and annihilation
operators. Discarding the disconnected piece (67), which

arises from the commutator between m,, and m};, we obtain
the intended LC PDF for the nth mesonic state,

4n(x) = @, (x)*, (69)

where ¢,(x) is the 't Hooft light-cone wave function
associated with the nth mesonic state. This result confirms
what was obtained in [35] using simpler method.
Hearteningly, the light-cone PDF in 't Hooft model looks
exceedingly simple.

It is also straightforward to account for the antiquark
distribution, by extending the support of x in (69) from
0<x<lto-1<x<1,

q(x) = e(x)@, ([x])?, (70)

with the sign function e(x) equal to 1 for positive x, and
equal to —1 for negative x. Since we are considering only
the flavor-neutral meson, the antiquark PDF is obviously
identical to the quark PDF.

B. Quasi-PDF

The quasi-PDF was recently introduced by Ji as a proxy to
facilitate the extraction of the light-cone PDF from
Euclidean lattice QCD [6,7]. It is defined as the equal-time
spatially nonlocal correlation functions sandwiched
between two equal-momentum hadrons. Although the
quasi-PDF is obviously not boost-invariant, its profile is
expected to converge to the light-cone PDF in the IMF.
Analogous to the definition of the quasi-PDF in realistic
QCD [6], the quasi-PDF in QCD, can be defined as
the following forward matrix element, with the external
hadron taken to be the n-th mesonic state with the spatial
momentum P:

- +00dz ix _
)= [P PR W OO PP

(71)

where PO = \/P? + M2, x = k/P is the spatial momentum
fraction carried by the parton with respect to that of the
meson. Unlike the light-cone PDF, the range of x is
unconstrained, —oo < x < co. The spacelike gauge link

W0 = Plexp(-ig, [“aza))| - 02)

has been inserted in (71) to ensure gauge invariance of the
quasi-PDF.

Similar to (65), the subscript C in (71) again indicates that
only the connected contributions are included. Therefore,
the disconnected piece,

PLPiPLP) [T e @@ O 0)l) (73

e 4m

should be discarded when calculating the matrix element
affiliated with the quasi-PDF.
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Since the quasi-PDF is time independent, it is natural to
study its property in the equal-time quantization. Moreover,
it is most convenient to compute the quasi-PDF in the axial
gauge A* =0 in (71), so that one can neglect the gauge
link. For simplicity, in this subsection, we will stay with the
equal-time quantization and work with axial gauge in
QCD,, closely following the quantization procedure
detailed in Sec. IV.

We proceed by the bosonization procedure similar to
computing the light-cone PDF in Sec. V A. First replacing
the meson state by acting m,(P) on the true vacuum |Q2),
our task then becomes to compute the vacuum matrix
element. Conducting the Fourier expansion of the Dirac
field y in accordance with (36), expressing the product of
two quark annihilation and creation operators in terms of B,
M?*, M, and D as introduced in (49), followed by rewriting
B, D as the convolution integral between M, M" according
to (51), then trading M, M T for the meson annihilation and
creation operators m,, Or m',I; in line with (56), we end up
with the vacuum matrix element of the product of a string of
meson annihilation and creation operators. Repeatedly
applying the commutation relations

0
4,6, P) = "2sin 0(xP)[(g1 (eP. P)? + (o2 (xP. P))?

+ (¢ (=xP. P))? + (¢L(=xP.P))?].  (74)

The explicit occurrences of the Bogliubov angle 6(p), and
the backward-moving component of the Bars-Green wave
functions ¢”, make the quasi-PDF a much more compli-
cated object than the light-cone PDF. It is reassuring to see
that, in the IMF, i.e., in the P — oo limit, where P) — P,
O(xP) — 5e(x), and ¢ dies away, the quasi-PDF in (74)
does recover the light-cone PDF in (69).

Equation (74) is one of the key achievements of this
paper. We have successfully constructed the quasi-PDF in
terms of the basic building block of QCD, in axial gauge,
the chiral angle and the Bars-Green wave functions. We are
wondering whether this reduction pattern, at least to some
extent, can also be carried over to the realistic QCD.

Charge conjugation symmetry imposes the following
relation for the g(x):

q(=x.P) = —=q(x. P). (75)

Reassuringly, the quasi-PDF as specified in (74), indeed
obeys this relation.

It is worth mentioning here, the definition of quasi-PDF
is by no means unique. In principle, one can construct an
infinite number of gauge-invariant quasi-PDFs, all of which
are equally legitimate provided that all of them can reduce
to the light-cone PDF in IMF. It can be said that all the legal
definitions of quasi-PDFs form a universality class [67]. In
Appendix A, we will numerically compare two different
definitions of quasi-PDF, the one just considered in this

section, versus the other defined by replacing y* in (71)
with y°.

VI. BUILDING LCDA AND QUASI-DA OUT OF
BOUND-STATE WAVE FUNCTIONS

For hard exclusive reactions involving hadrons, it is the
light-cone distribution amplitude (LCDA), rather than the
PDF, that directly enters the QCD factorization theorem
[68]. Therefore, LCDAs represent the fundamental non-
perturbative inputs in order to describe the hard exclusive
QCD processes.

Analogous to Sec. V, we will in this section express the
LCDA and quasi-DA of a flavor-neutral meson in QCD,, in
terms of its bound-state wave functions.

A. LCDA

In line with Refs. [68,69], one defines the LCDA of a
flavor-neutrual meson in QCD, as
(&
2

1 /ﬂod‘f_e—i(x—i)lﬁﬁ p;, Pt
f(”) e 2m
- £
—, = - 7
XW[z, 2]7 rsv(=5)0) (76)
where W is the lightlike gauge link similar to what is

introduced in (65). f(") denotes the decay constant of the
nth mesonic state, defined through [40,51]

pH
V2pPY

Analogous to Sec. VA, it is most transparent to study
the LCDA in LF quantization supplemented with further
imposing the light-cone gauge. The expressions of the

meson decay constants are particularly simple in LF
quantization [51],

fln) = \/gfol dx,(x)
0

@, (x) =

(n, Plpy"yw|Q) = f (77)

evenn,

odd n,

(78)

which are particularly simple. Due to the parity consider-
ation, the decay constants of all the n-odd flavor-neutral
mesons vanish. Therefore, we will concentrate on the
LCDAs of those n-even mesonic states.

Following the essentially same bosonization techniques
that lead to the light-cone PDF in Sec. VA, we find the
LCDA for the n-even mesonic states to be

1 N
®,, (X) - ]W \/;¢2n ()C), (79)

which is simply proportional to the °t Hooft wave function.

Since the decay constant scales as v/N, the LCDAs thereby
assume finite value in the N — oo limit. As a matter of fact,
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the LCDAs are subject to the normalization condition by

construction:
1
/ dx®,,(x) = 1.
0

B. Quasi-DA

Analogous to the quasi-DA introduced in QCD, [6,7],
here we choose to define the quasi-DA in QCD, in its
canonical form,

1 [+edz
o) 22°

(rrlo (Wi (- ;)1a>(,81)

where W is the spacelike gauge link as introduced in (71).

(30)

B, (x.P)= tere

Q(xP +0(P—

Employing essentially the same bosonization procedure,
which leads to the analytic expression for quasi-PDF in
Sec. V B, we finally find that the quasi-DAs of those n-even
mesonic states can be formulated as

[P° . 0(xP)+ 9(P xP)
q)zn X, P 2n \/7
x [@¥ (xP, P) + ¢>"(xP, P)] (82)
where ¢%" denote the Bars-Green wave functions associ-

ated with the 2nth excited mesonic state. The explicit form
of the decay constant f(") in axial gauge has also been
worked out [40], which looks considerably more compli-
cated than the LF quantization case:

xP)

/NPO/ .
P 2

Note the Bars-Green wave functions and the Bogoliubov
angle conspire in a nontrivial manner so that f(") is
independent of the Lorentz frame.

Comparing (82) and (83), one sees that, by construction
the quasi-DAs also obey a very simple normalization
condition:

oo ~
/ dx®,,(x, P) = 1. (84)
—00
E9 3]
e
2 = 7 !
3r z e =)
8 /7 !
n 4 /!
4 7 < /
\\\\\\\ ,I
E ‘\‘\‘, . ’
8| S -
R T 3 i
8 4 Y 2
£=tan™! [L
V22

FIG. 1.

Bogoliubov-chiral angle 6(p), and the regularized dressed quark energy,
quark masses as specified in Table I. Most curves are taken from Ref. [40], except those for the charm quark.

[@" (xP,P)+ ¢"(xP,P)] evenn,

(83)
odd n.

Reassuringly, in the IMF (P — o), one readily verifies
that, the quasi-DA in (82) does recover the LCDA as given
in (79).

VII. NUMERICAL RESULTS OF
QUASI-PDF AND -DA

Based on the analytic expressions for the light-cone and
quasidistributions worked out in the preceding sections, we
are going to present a comparative study for quasidistributions

E€) /Y22

m, =0

15

— —m, =0.045V22
10

m, = 0.749 V21

—m--m. = 4.190 V22

o
® |3
I

E(p), as functions of & = tan~! (-2, with different

V217’
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TABLE 1. Quark masses and the corresponding meson mass
spectra, where only the ground state and the first excited state are
included. "’

m, u/d u/d s c

0 0.045 0.749 4.190
M, 7, b4 S8 cc
n=20 0 0.41 2.18 9.03
n=1 2.43 2.50 3.72 10.08

and their light-cone counterparts in this section. We consider
four types of lowest-lying flavor-neutral mesons: chiral
(massless) pion (r,), physical pion z, a fictitious “strang-
eonium” s¥, and charmonium, varying the quark masses
according to the recipe described in Ref. [40]. For the light-
cone and quasi-PDFs, we also consider the first excited states
associated with these four meson species.

The ’t Hooft coupling A= 0.18/7 GeV? is taken to
coincide with the value of the string tension in realistic

QCDy [35]. The quark masses (in units of V/22) are tuned in
such a way that the ground-state meson masses coincide
with the realistic meson masses of T, T and cc, while the
mass of the s quark is determined by demanding that the
Bogoliubov angle #(p) as a function of £ = tan~"(p/v/24)
is closest to a straight line [40]. The numerical solutions of
the ’t Hooft equation, mass-gap equation and Bars-Green
equations have already been presented comprehensively in
Ref. [40], and we refer the interested reader to that paper for
technical details. Here we will directly present our numeri-
cal results. For the sake of clarity, the profiles of the
Bogoliubov angle 6(p) and the dispersion relation E(p),
which are affiliated with the aforementioned quark masses,
are depicted in Fig. 1.

The quark masses and the corresponding meson mass
spectra (for simplicity, we only include the ground state
n = 0 and the first excited state n = 1) are listed in Table I.

In light of the numerically available 't Hooft and Bars-
Green wave functions [40], as well as (74) and (82), we
calculate the quasidistributions of those mesons in several
different reference frames. The light-cone distributions are
also juxtaposed for comparison. The numerical results of
light-cone and quasi-PDFs for lowest-lying mesons are
shown in Fig. 2, and those for the first excited state in
Fig. 3, while the numerical results for the LCDAs and
quasi-DAs of the ground-state mesons are presented
in Fig. 4.

From Figs. 2, 3, and 4, one clearly observes the general
tendency, that irrespective of the meson species, the

"In Ref. [40], the charm quark mass is “erroneously” take to
be m, = 4.23v/24. In this work, we take m, to be 4.19v/24,
which is tuned to reproduce the center-of-gravity mass of the
lowest-lying charmonia, Mcog =41M, +3M,,, associated
with the real world.

quasidistributions are indeed converging to their light-cone
counterparts, as the meson gets more and more boosted.

An interesting observation is that, the quasidistributions
of heavier mesons (s5, c¢c) appear to converge to the light-
cone distributions at a faster pace than those of lighter
mesons (n){, 7). To quantify this assertion, let us introduce
the ratio r = P,,/M,,. For light mesons, as exemplified by
the physical pion, even when boosted to » = 8, there still
exists considerable difference between the shapes of the
light-cone and quasidistributions; on the other hand, heavy
mesons tends to exhibit a rather different pattern. When
r = 5 for the s5 meson, or when r = 2 for the c¢ meson,11
the quasidistributions already coincide with the light-cone
distributions to a decent degree.

The correlation between the convergence behavior of the
quasidistributions under boost and the hadron species has
already been noticed in lattice simulations in realistic
QCD, [18-22]. There it is found that, somewhat counter-
intuitively, the nucleon’s quasi-PDF approaches its light-
cone PDF at a much faster pace than the quasi DA of pion
approaches its LCDA.

If it is not a sheer accident, it will be valuable if the ’t
Hooft model can offer some insight into unraveling this
curious correlation pattern observed in real world.

We end this section by commenting on a simple fact
concerning the first excited state. As can be seen in Fig. 3,
one observes a zero at x = i% for various light-cone PDFs
in the n =1 state, but not for the corresponding quasi
PDFs. This can be understood from the angle of the charge
conjugation symmetry [40],

¢"(1-x) = (=1)"¢"(x),
PL(l =x, P) = (=1)"¢+(x, P), (85)

which implies that the light-cone as well as Bars-Green
wave functions of the n-odd states must have a zero at
X = % Nevertheless, as one can see from (74), due to the
presence of sinf(xP) as well as the different arguments
arising in four types of squared Bars-Green functions, the
quasi-PDFs in finite reference frame no longer possess the
simple odd symmetry under x <> 1 —x.

VIII. ONE-LOOP PERTURBATIVE
CALCULATIONS FOR LIGHT-CONE AND
QUASIDISTRIBUTIONS AND IR DIVERGENCES

So far, we have been completely concentrating on the
nonperturbative aspects of the light-cone and quasidistri-
butions in QCD,. In this section, we will instead switch the
gear, to address some theoretical issues within the confine
of perturbation theory.

""We stop at r=2 for charmonium, mainly because the
technical challenge about numerical instability of boosting a
heavy meson quickly becomes insurmountable.
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FIG. 2. Quark light-cone and quasi-PDFs for the chiral pion, physical pion, lowest-lying strangeonium and charmonium. The
momentum of chiral pion is in unit of the physical pion mass.
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FIG. 3. Quark light-cone and quasi-PDFs for the 1st excited state corresponding to four different quark masses as specified in Table I.
The meson momenta are in units of the ground-state mass for each quark specifies.
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FIG. 4. LCDAs and quasi-DAs for the chiral pion, pion, lowest-lying strangeonium and charmonium. The momentum of the chiral

pion is in units of the physical pion mass.

The key insight underlying LaMET in QCD, is that
quasidistributions exhibit the same IR behavior as their
light-cone counterparts in the leading power of 1/P% [6].
Because of this peculiar feature, there arises a factorization
theorem that connects the quasi- and light-cone PDFs [6-8],

. Idy _(x A M) <A6CD M')
x, P, A) = —7Z| - —.,— M)+ O = |

al ) /_1 |yl <y P Pr a0) P Pl
(86)

where A represents a UV cutoff in the transverse momentum
space associated with the quasi-PDF, and y is the renorm-
alization scale associated with the light-cone PDF. The
neglected terms represent the higher-twist corrections. The
factorization theorem (86) states that the Z factor takes into
account the difference between the UV regimes of the light-
cone and quasi-PDFs, which is thus amenable to perturbation
theory owing to the asymptotic freedom of QCD. Through
the one-loop order, the Z factor affiliated with the quark PDF
can be expressed as

z<g,%,§> =5(e-1)+=21) (5,%,%) 4o (87)

The order-a, coefficient can be computed by the perturbative
matching procedure,

20 (6 e) AP — g ), (59

where the physical hadron has been replaced by a single
quark, gV and ¢(V) signify the corresponding quasi- and light-
cone PDF associated with this “fictitious’ hadron, accurate to
the order-a,. In four spacetime dimensions, due to the severe
UV divergence emerging from the transverse momentum
integration, the limit of P* — oo and A — oo generally do not
commute [8]. It is this very noncommutativity that leads to a
nontrivial matching factor in realistic QCD.

In this section, we will calculate the one-loop corrections
to the light-cone and quasidistributions in d = 2 spacetime
dimensions. The major motif of such computation is to
verify one of the backbone of LaMET, that quasi- and light-
cone distributions indeed possess the same IR behavior in
the leading order in 1/P%, even in QCD,. Recall that the
gauge coupling in QCD, carries a positive mass dimension,
thereby the 't Hooft model is a superrenormalizable theory.
Therefore, the (almost) absence of UV divergences in loop
diagrams12 nullifies the aforementioned noncommutativity;

20ne exception is the perturbative correction to the quark
condensate () in QCD,, which receives a logarithmic UV
divergence from the one-loop tadpole diagram, and can be
eliminated through additive renormalization [70].
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thus, we do not expect a nontrivial Z factor to arise. On the
other hand, QCD, has much more severe IR divergences
than its four-dimensional cousin, so it is interesting to
explicitly examine the IR behavior of light-cone and
quasidistributions.

At first sight, it may appear attractive to utilize dimen-
sional regularization (DR) to regularize the IR divergence.
Nevertheless, apart from automatically preserving Lorentz
and gauge invariance, this popular regularization scheme is
not suited for our purpose. First, we will encounter severe
power IR divergences, which are simply absent in DR, but
are actually what we desire to see. More importantly, DR in
1 4+ 1-dimensional theory has some intrinsic drawback.
When working in 2 — 2¢ dimensions, we have artificially
introduced some fictitious transverse degrees of freedom,
which might lead to some pathological behavior when
taking the ¢ — O limit in the end.

In formulating the bound-state equation in the
Hamiltonian approach in Secs. III and IV, we have used

|

an infrared momentum cutoff to regularize the IR diver-
gence. In this section, we will again employ this “physical”
IR cutoff, which turns out to be convenient and less
confusing. It is worth mentioning that the large-N limit
is no longer required in this section.

A. Light-cone and quasi-PDFs to one-loop order

In computing the quark light-cone and quasi-PDFs, we
replace a physical meson by a single quark. For technical
simplicity, in this subsection, we will no longer stay with
the noncovariant gauge, rather conduct all the calculation in
Feynman gauge. The one-loop Feynman diagrams for
quark PDF are shown in Fig. 5.

At this stage, we will treat the one-loop corrections for
light-cone and quasi-PDF in a unified manner. Following
the Feynman rules for PDF (quasi-PDF) and gluon-gaugue
link interaction term in Ref. [66], the contributions from
real correction diagrams are [10,71]

_—ig? [ d®k u(P)y*(K+ m)f(K+ m)y,u(P)
Qalor.m) =— /(27[)2 @ = e P[P =02 +ig " kTP, (892)
. d*k u(P)h(K+ m)pu(P) 8(n-k—xn-P)
brclxsm) = =iy / Q) (R —m+ie)[(P-KP+id n-(P-k) (89b)
_ —igi [ d’k n*u(P)pu(P)5(n-k—xn-P)
Qix.m) == / a2 (P—kP+ic - (P=KF (89¢)
k k
00000_090000
P—k
P P
R,
P
k )P— k
P P P P P P P P
v, Vi V. Vi

FIG. 5.

One-loop Feynman diagrams for quark light-cone and quasi-PDF. The upper row corresponds to the real corrections OF, while

the lower row corresponds to the virtual corrections @V which are proportional to §(x — 1). The Feynman diagrams show the one-loop
corrections to the process of a quark with momentum P splitting to a quark with momentum k (R,,), the quark interacting with gauge link
though a gluon exchange (R, ., V), the quark’s self-energy (V) and gauge link’s self-interaction (R, V). The double line represents
the gauge link in PDF and quasi-PDF definition in (65) and (71), while the dashed double line represents the gauge link on which no net
momentum flows. For simplicity, we have also omitted the wave function renormalization on the quark leg in the final state.
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and the contributions from virtual correction diagrams are
[10,71]

QY (x.n) = 6Z56(1 —x) :-5(1-x)di(lf>'ﬂ . (90a)
0} () = ol = 1) [ dxQf. (ron). (90b)
QY(x,n) = —8(x — 1)/de§(x,n), (90c)

where X(P) represents the quark self-energy, and Zp
denotes the quark wave function renormalization constant.
|

—XQ% Cr

The above expressions in (89) and (90) can be adapted to
both light-cone or quasi-PDF, depending on the specific
choice of the reference vector n*. For the former, n* is
chosen to be the null vector n* = n{ such that n = 0,
k-nic=k", and y-n;c = y"; while for the latter, the
reference vector is taken to be n%, such that n% =—1,
k-n,=k% and y - n, = y~.

To compute the one-loop corrections to the light-cone
PDF, it is convenient to switch to the light-cone coordinate,
so one can write P -k = P"k~ 4+ P k". The integration
over k™ can be trivially carried out using the & function,
while the k™ integration is performed via the method of
residue. Summing all the real correction diagrams, we find
a null result,

XQ%CF

q" (x) = Qq (x.nic) + Qffy (%, nuc) + Qi (x.nc) = (ﬂm2(1 —X)3>a <ﬂm2(1 - x)°

0

) +(0), 0<x<1
b+c

Otherwise

o1

where the subscript a, b + ¢, d denote the contributions from R, RY + R¢, and R? in Fig. 5, respectively.
In computing the virtual corrections (90), we have employed the momentum fraction 7 as an IR regulator, imposed on the

k* integration,

Pt 1
/ K+ = P+/ dxO(1 —x—7), (92)
0 0

where x = k™ /PT and n - 0.
The sum of the virtual diagrams also vanishes:

27xm?

¢'(x) = Q¥ (x. mc) = {5@— 1 &Cr (lz—%+ 1)] 4 [—5(x— 1) &Cr (lz—%+

n

2rm

1>} ot 0),=0. (93)

Piecing all terms together, the light-cone PDF at one-loop level is

q(x) = q"(x) + ¢"(x) = 0. (94)

The vanishing light-cone PDF in two dimensions is not surprising. The one-loop quark PDF can be interpreted as the
probability of a parent quark splitting into a daughter quark plus a on-shell gluon. However, there is no physical gluon in
two dimensions because the lacking of transverse degree of freedom. Consequently, the one-loop light-cone PDF (splitting

function) vanishes.

For the quasi-PDF, we stay with the ordinary coordinates and the reference two-vector n is chosen as the spacelike unit
vector n,. For the real correction diagrams, first performing the k* integration using the & function, then integrating over k°

via the method of residues, we obtain
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3R (x, P) = O (x.n.) g%Csz{ xP 2P \/m? + x*P? +2m?* + x(x + 1) P?] X }
GR(x,P?) = QR(x,n,) = — ’
. dr (m2+x2P?)3/2<P01 /m2+x2P§+m2+xP?)2 |X—1|P%[|X—I|PO+(X— 1>PZ]2
(95a)
q§+c(x’PZ): §+c(x’nz)
_g?CF{ Pllx—1]=Pi(x+1) PY\/m?* + x> P? + m? — xP? }
4z | P2x=1)x=1[Plx=1|+P(x=1)]  Pi(x—1)y/m?+x2P2(PO\/m?® + x2P2 +m? +xP?)}’
(95b)
2
~ gSCF
g4 (x. P*) = Qf(x.n;) = 4P x— 1] (95¢)

It is straightforward to check that, in the IMF, the one-loop corrections to the quasi-PDF do approach their light-cone

counterparts, in a diagram-by-diagram basis.

Next we turn to the virtual corrections for the quasi-PDF. Each individual virtual one-loop diagram yields the following

contribution, respectively,

Ga (x. P7) = 8(x = 1)

2zm?* \ 2P%n?

gC

ZIZ+C(X’ P?) = QZ+c<x’”z) = —5(x — 1)2:”"1;
92~CF

a5, ) = Q4 r.m) = =o(x— 1) 0L

where the quadratic IR singularity emerges in each diagram.

In computing the virtual corrections for quasi-PDFs,
analogous to (92) in the light-cone case, we again utilize the
momentum fraction # as an IR regulator, imposed on the k°
integration,

P I
/ dk* = PZ/ dxO(1 —x —1n), (97)
0 0

where x = k*/P? and n — 0.
Summing up X, ., and g}, .., we obtain the com-
plete one-loop corrections to the quasi-PDF,

ate.p) =51 :
’ 4P | (x — 1)(m? + P2x2)32] |
92
P sx—1), 98
T PO (x=1) (98)

which is suppressed by at least one inverse power of P*.
Note the linear IR divergence is still present, but accom-
panied with a O(1/P?2) suppression factor.

Comparing (94) with (98), we verify that, to the one-loop
order, both the light-cone and quasi-PDFs do share the
same IR behavior at the leading power in 1/P%, which is
simply zero.

Integrating g(x, P*) in (98) over the entire range of x
generates the one-loop correction to the vector current yryy.
This nonvanishing integral indicates that the vector current

§2Cp (P3+ P2 PA+P?
P* PO;7

* 1)’ (96a)
1 2P°  m*tanh™!(5) + POP:(m? + P})
el 3 : (96b)
nP* P} P:
(96¢)

[

no longer conserves, with the extent of violation of
O(g?/P?), clearly a higher-twist effect. We suspect that
the breaking of vector current conservation may originate
from the fact that the momentum cutoff in the £* integration
likely violates Lorentz invariance. To check this assumption,
we also recalculate the one-loop correction to the vector
current in DR, and confirm that the current conservation
holds at one-loop order. Despite this nuisance, in order to be
consistent with the rest of the paper, we will still stick to the
soft momentum cutoff as a viable IR regulator.

In passing, it is worth mentioning that, in the matching
between the light-cone and quasigeneralized parton dis-
tribution functions (GPDs) in four spacetime dimensions, a
similar pattern has also been observed: for the E-type GPD,
the light-cone and quasi-GPD differ in IR at one-loop order
only by a higher-twist term [72,73].

As anticipated, due to UV finiteness of QCD, at the one-
loop level, the matching between the quasi-PDF and light-
cone PDF turns out to be trivial, at least to this perturbative
order, thereby the corresponding Z factor is simply 6(& — 1).

It is also illuminating to trace the origin of the 1/P*-
suppressed scaling behavior of quasi-PDF (hence the
vanishing light-cone PDF) from another angle, i.e., from
the time-ordered perturbation theory (TOPT), or often
referred to as the old-fashioned perturbation theory.
From (34), one can split the axial-gauge QCD,
Hamiltonian into the free and the interaction parts:
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H=H,+ Hiy,

Hy= / dzy’ (2)(=iy°0, 4+ my°)y (z).

Hi, = // dzdz" Hin (2, 2)

Z [zt QT @6 = T )

(99a)

(99b)

(99¢)

It is convenient to conduct the TOPT calculation for the partonic quasi distributions in the A* = 0 gauge, where the gauge
links W in the quasi-PDF in (71) and quasi-DA in (81) simply disappear. Through the second order in g, it turns out that the
quasi-PDF in (71) and quasi-DA in (81) can be recast into the equivalent TOPT format, each of which consists of two

distinct time-ordering between yy*y and H;y:

~ z dz ixPz v ¥4 1 1 v’ z
atep) = [[ derdzs [ 42 L PR@rVO) o Hinder 2 Phe + PlHin(er22) PO

)C Pz //dZ]de/—e x=3)P<

Iz oz
P plHin(e1.22) P ErW-Sl0)c

where H(, appearing in the energy denominator refers to the
free part of the Hamiltonian, and H;, represents the
instantaneous Coulomb interaction, both of which are
defined in (99).

As before, we first replace the external hadronic states in
(100a) by an on-shell quark with 2-momentum
P* = (P, P%). We proceed by inserting a complete set
of eigenstates of H, immediately left to 1/(P° — H,) in
(100a). To obtain a nonvanishing result, the viable inter-
mediate states are inevitably composed of three free
particles, ggg, which turns out to contribute to the real
corrections for the quasi—PDF.13 We then compute the
matrix elements of y*y and H;, separately, by contracting
the field operators with the external partonic states in all
possible way. Integrating over the spatial variables z;, z,
and z, we then end with the product of several momentum-
conserving J-function. One finally can write down all the
order-g> contributions to the quasi-PDF. Each individual
contribution corresponds to a particular way of contracting
field operators and external states, which is schematically
represented by the those TOPT diagrams in Fig. 6.

Since the intermediate states must contain three particles
for quasi-PDF, it is inevitable for the vacuum creation and
annihilation vertices to arise in the TOPT diagrams, as can
be clearly seen from the top row of Fig. 6. Obviously, it is

BIf the intermediate states only consist of the single quark g,
the matrix elements in (100a) then correspond to the virtual
correction to the quasi-PDF. For simplicity, we will not bother to
consider this piece of contribution.

{ p.P— pll//( e l//(——)

(100a)

HOHint(Zl 712)|0>c

(100b)

[

the resulting large energy denominator that is responsible
for the 1/P*-suppressed behavior [74] of quasi-PDF. The
quasi-PDF eventually vanishes when viewed in the IMF,
which amounts to the vanishing light-cone PDF.

B. LCDA and quasi-DA to one-loop order

To access the LCDA and quasi-DA in perturbation
theory, we proceed to replace a meson by a color-singlet
qq pair. To justify perturbative expansion, in this subsec-
tion, we assume the weak coupling limit, g, < m, has been
taken. The corresponding one-loop diagrams for DAs are
shown in Fig. 7.

In four spacetime dimensions, the one-loop matching
factor linking the LCDA and quasi-DA, is more involved
than the one linking the light-cone PDF and quasi-PDF.
One needs to start with a more general momentum
configuration k™ = xP™* and p* = yP™. Thus the match-
ing factor Z cannot be written as a single-variable function
[72], instead must depend on both x and y. Owing to the
UV finiteness of QCD,, the matching factor is doomed to
be trivial. Therefore, for illustrative purpose, we will focus
on one specific kinematic configuration of the external
“mesonic” state, y = % thatis, p™ = P%, so that the ¢ and g
equally partition the fictitious meson’s total momentum. As
a consequence, the DA becomes the function of x only.

Following basically the same strategy as adopted in the
one-loop calculation for the light-cone and quasiquark
PDF, as described in Sec. VIII A, we obtain the one-loop
corrections to the LCDA, ®(x), and the quasi-DA,
®(x, P?):
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FIG. 6. Various TOPT diagrams that are responsible for the O(g?) real correction contributions to quasi-PDF (a—d) and quasi-DA (e~
h). The dashed line represents the instantaneous color Coulomb potential. The horizontal (red) solid line specifies the allowed
intermediate on-shell partonic states.
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FIG. 7. One-loop Feynman diagrams for the real (upper row) and virtual (lower row) corrections to DA of a fictitious meson with momentum
P, the Feynman diagrams show the one-loop corrections to the amplitude of extracting a quark (antiquark) with momentum k (P —k) from a
quark antiquark pair with momentum p (P — p) correspondingly. For simplicity, we have omitted the wave function renormalization diagram for
the antiquark line. Identical to the PDF case, the virtual corrections to the DA take the form of Z 5 (x —%) The double line represents the gauge
link in DA and quasi-DA definition (76) and (81), while the dashed double line represents the gauge link on which no net momentum flows.

42Crx(1 — 2Cr(1 -4 1
_ 'n 2Fx( )i) 9s F( > ’7) 5//<x__) 0<x<1
D(x) = am=(1=2x)* |, 16zm=n 2 , (101a)
0 Otherwise
&(x. P?) { g>Cp [ 2P°(m2+x(1—)c)P§)+ 1 x(x=1)P2=xP°/m*+ (x—1)*P2+2m?(x—1)
X, = -
m(1=2x)*P m*(1-2x)*P2 m>+(1-x)2P2  —PO\/m>+ (x—1)2P% +2m?*— xP2 + P2
2 3
gsCF 1 PO
+(X—)1—)C>}4+—W5// (X—§> |:4PZ(P(2)—m2)—7 s (IOIb)
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where a “4-plus” prescription has been introduced. This prescription is understood in a distributive sense, which is

defined as

g(x)

[ o] s oo ()-r - L]

where f(x) is any smooth functions that are regular at
x =3. We further assume g(x) is symmetric under the
exchange x <> 1 —x, so that ¢(}) = 0. The integration
boundaries are x; = 0, x, = 1 for LCDA, and x; = —x, =
—oo for quasi-DA, respectively. In (101a) and (101b), we
have employed some distribution identities to express the
DAs in terms of these “4-plus” distributions. More details
about those identities can be found in Appendix B.

In contrast to (94) and (98) in the PDF case, one sees
that, to the one-loop order, the quasi-DA contains some
leading-twist pieces that are not suppressed by powers of
1/P%. As anticipated, boosting (101b) to IMF, one readily
recovers (10la). The difference between quasi-DA and
LCDA is certainly of the higher-twist origin, of the
order g2/ P>.

Examining (101a) and (101b), reassuringly, we do
observe that both LCDA and quasi-DA possess the iden-
tical linear IR singularity, o ’332"7 & (x=1).

It is again elucidating to see why the quark DA, in
contrast to the quark PDF, contains a leading twist term,
from the angle of time-ordered perturbation theory. Similar
to what is done to quasi-PDF, we also insert a complete set
of eigenstates of H, immediately left to 1/(P° — Hy) in
(100b). Unlike the case of quasi-PDF, here the allowed
intermediate states can be either gg or ggqg, in order to
obtaina nonvanishing results for the real corrections to
quasi-DA. Computing both matrix elements involving
wy“w and H,,,exhausting all possible contractions between
Dirac field operators and the external partonic states,
integrating over the spatial variables z;, z, and z, we
finally end up with all the order-g? contributions to the
quasi-DA. Each contribution specifies a particular way of
contracting field operators and external states, which are
represented by the those TOPT diagrams in lower row
of Fig. 6.

In contrast to the case for quasi-PDF, apart from tetra-
quark states, the gg two-particle states also constitute the
legitimate intermediate states. As a result, the correspond-
ing TOPT diagrams, e.g. Fig. 6(c,d), in the lower row, are
absent of the vacuum creation and annihilation vertices,
therefore freed from suppression by large energy denom-
inator. Consequently, the leading scaling behavior of
the quasi-DA in the large momentum limit isg?/(m>P?),
which leads to a nonvanishing LCDA when viewed in
the IMF.

We now conclude this section. By explicitly working
out the one-loop corrections to quark PDF and DA in

|

QCD,, we have firmly established the validity of the
cornerstone of LaMET, viz., the partonic quasi- and
light-cone distributions do share the identical IR behavior
a t the leading power in 1/P%. The one-loop correction to
the DA appears to constitute a more nontrivial example
than the PDF.

IX. SUMMARY AND OUTLOOK

In this paper, we have carried out a comprehensive study
of two important classes of meson parton distributions, the
PDF and DA, in the context of the large-N limit of QCD,.
Our approach is entirely based upon the first principles
of QCD. We have applied the Hamiltonian operator
method as well as bosonization technique to construct
both light-cone and quasidistributions out of the basic
building blocks, that is, the ’t Hooft wave function for the
former, Bars-Green wave functions and the Bogoliubov
angle for the latter. In a sense, equations (74) and (82)
are the key formulae of this work. Unlike their four-
dimensional counterparts, which can only be accessed by
numerical lattice simulation in Euclidean spacetime,
we have directly probed the quasidistributions in
Minkowski spacetime, and have developed a thorough
understanding about what they are made of in the two-
dimensional case.

We justify the 't Hooft wave function as the valid light-
cone Fock state wave function of the hadron. Consequently,
the quark PDF and LCDA can be directly built out of ’t
Hooft wave function, in an exceedingly simple manner. On
the contrary, in the equal-time quantization, a pair of Bars-
Green wave functions alone is not sufficient to express the
quasidistributions, and one must supplement another
important ingredient, the Bogoliubov-chiral angle, which
may be viewed as characterizing the nonperturbative nature
of the vacuum.

We have presented a comparative numerical study
between light-cone PDFs and quasi-PDFs, as well as
between LCDAs and quasi-DAs, for a variety of meson
species. It is straightforward to see from (74) and (82) that,
the quasidistributions do converge to their light-cone
counterparts in the IMF. We also numerically verified the
tendency that, the quasidistributions do approach their light-
cone counterparts, when the meson gets more and more
boosted. We have also observed an interesting pattern, that
light meson’s quasidistributions, in general, approach the
light-cone distributions at a slower rate compared with the
heavy mesons under boost. This somewhat counterintuive
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pattern is qualitatively consistent what is observed in lattice
simulations in realistic four-dimensional QCD [18,75].

Within the realm of perturbation theory, we have also
investigated the one-loop corrections to the light-cone and
quasidistributions in QCD,, yet abandoning the large-N
limit. We have verified the backbone of LaMET in this
novel theoretical setting, that the IR behaviors of quasi-
and light-cone distributions are identical at the leading
power in 1/P%. It is theoretically interesting, since QCD,
has more severe IR divergence than QCD,. We do witness
how the linear IR divergences in LCDA and quasi-DA
agree with each in QCD,. Nevertheless, since QCD, is
a super-renormalizable theory, the matching Z factor link-
ing the light-cone with quasidistributions turns out to be
trivial.

Equipped with the bosonization method, we are capable
of computing virtually all the nonperturbative gauge-
invariant matrix elements in the ’t Hooft model. For
instance, besides quasi-PDFs, we are also able to compute
the lattice cross section [39] as well as the pseudo- PDF
[37,38], which have been advocated as viable competitors
of the quasi-PDF, presumed to be more efficient to extract
the light-cone PDF. There is no principle difficulty in
performing a similar study for these alternative options of
parton distributions as in this work. To some extent, QCD,
may be viewed as an ideal and fruitful theoretical labo-
ratory, which can examine many interesting ideas concern-
ing a variety of parton distributions.
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APPENDIX A: ALTERNATIVE DEFINITIONS
OF QUASI-PDF AND -DA: y* Versus 7"

As mentioned in Sec. VB, one is free to invent
different operator definitions for quasidistributions,
all of which are legitimate provided that they can
reduce to the correct light-cone distributions in IMF.
It is said that they then form a universality class [67].
The difference among them must be suppressed by
powers of 1/P%.

In this Appendix, we wish to critically compare two
simplest definitions for quasi-PDF:

. todz _op
q},z(x,P):/ Ee P

x (Py. Plip(2)y Wz, Oy (0)| Py, P)c.  (Ala)
. todz _op
q;,O(X,P):/_oo Ee Pz

x (Py. Plip(2)y"W[z. Oy (0)|Py. P)¢. (Alb)

The first canonical definition follows from (71), which has
already been investigated in the main text. The second
definition is new, which we are going to explore. The
subscript “C” again implies that only the connected part of
the matrix element is retained.

Through the operator approach and the Bogoliubov
transformation, the functional forms of two different
definitions of quasi-PDFs in terms of the ¢ (x, P) and 6
angle can be worked out,

o (0 P) = 2SInOCP) () (P P))? + (g (xP. P))?

(@ (3P PP+ (<P )R] (A2
0
00 (. P) = 2 ({91 (<P, P))? = (g (P, P))?
F(p2(=xP.P)? ~ (g1 (~P. ). (A2D)

Here, (A2) simply duplicates (74). Absence of the factor
sin@ in (A2b) may account for why the new quasi-PDF
approaches the light-cone PDF at a faster pace than the
canonical one. We are curious to know whether this has any
connection to the realistic QCDy,.

In Fig. 8, we juxtapose two versions of quasi-PDFs
viewed from different reference frames, for the four differ-
ent specifies of ground-state mesons. From the plots, we
clearly see the tendency that both versions of quasi-PDFs
would converge to the corresponding light-cone PDF in
IMF. However, they evolve quite differently under the
Lorentz boost. When the meson momentum is small, g,
appears to converge at a considerably slower pace than g,:;
nevertheless, when the meson momentum gets large, 4,
appears to converge faster than g,.. If this pattern persists in
QCDy, one may be persuaded that g, is perhaps a more
favorable choice for lattice simulation than g,:.

From Fig. 8, one can also observe that how the evolution
patterns of two different quasi-PDFs depend on the quark
mass. For each meson species, one might be interested in
the critical threshold point of the momentum-to-mass ratio,
et = Pé&y/M, after which the g,0 starts to have a better
convergence behavior than g,-. For lighter mesons (z,,, 7),

the critical r values are quite large, r, 1%, are about 5. In
contrast, for heavier mesons (ss, cc), the critical r values
are rather small, r$ ~ 0.2, and r¢§ ~ 0.025.

Next, we turn to the quasi-DAs. Like the quasi-PDF case,
we also intend to compare two simplest definitions for
quasi-DAs:
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Comparison between two versions of the quark quasi-PDF defined with y* (open circles) and y° (filled diamond), for four
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Jror(98)
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Utilizing the operator approach together with the Bogoliubov transformation, these two different versions of quasi-DA

can be expressed as

@, (x, P) 7 \/7\/ﬁ ot +9(P XP)[ "(xP, P) + ¢ (xP, P)], (Ada)
®,,,0(x, P) 7om \/7 \/7 (P xP) [ (xP, P) — ' (xP, P)], (A4b)

where f®") is the decay constant of the 2nth mesonic
state, one of whose explicit expressions has been given in
(83). From Eq. (3.10) of Ref. [40], one can find another
equivalent expression of f(>*), from which one immediately
sees that (i)zn’},o in (A4b) also obeys the normalization
condition (84).

For the canonical quasi-DA, we have actually duplicated
(82) for (Ada). The new quasi-DA assumes the form of
(A4b). One readily sees that both types of quasi-DAs

approach the LCDA in the IMF, therefore they belong to the
same universality class. Nevertheless, it is not straightfor-

ward to see which trigonometric function, sin[(@(xP) +
O(P — xP))/2] or cos[(6(xP) — O(P — xP)) /2], approaches
unity at a faster pace as P — oo. Therefore, just by
inspection of the analytical form, it is difficult to judge
which definition of quasi-DAs bears better convergence
behavior.
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FIG. 9. Comparison between two versions of the quasi-DA defined with y* (open circles) and y° (filled diamond), for four different

ground-state mesons as specified in Table I.

From Fig. 9, we see that two versions of quasi-DAs for
the chiral pion are identical. This can be readily proved,
since the analytical expressions for Bars-Green wave
functions for x, are exactly known [40,59]. For other
massive mesons, it turns out that d~>y: has always better
convergence behavior than &)70, irrespective of the velocity

of the boosted frame. The difference between these two
quasi-DAs are always insignificant.

APPENDIX B: DISTRIBUTION IDENTITIES
ENCOUNTERED IN MOMENTUM CUTOFF
IR REGULARIZATION

In this Appendix, we collect some useful distribution
identities that enable us to rewrite the LCDA and quasi-DA
in terms of the “4-plus” distributions in Eq. (101). The
validity of the following identities can be examined by
picking up an arbitrary test function f(x). Rather than
|

lim 01 dx®<|x—%| _,7> %
-/ “x{ L ffm RERE 2[_];

8% (x -3 ! 1 gy =317
—zlim/ d®< —=|- >—2}
2 am @ y=5l=n =1}

specialize to the “4-plus” distribution, for the sake of
generality, here we will introduce a “n-plus” distribution
that would appear in a loop calculation implementing the
IR momentum cutoff. For the light-cone loop integral, the
“n-plus” distribution is defined as

[ i) e

[ S ()]

i=0

For our purpose, we assume g(x) is symmetric under the
exchange x < 1 —x.

In Sec. VIII, we have adopted a soft momentum fraction
n as the IR regulator in the loop integration using light-cone
coordinates [see (92)]. We often encounter the following
type of integral:

(B2)
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In the second line, this integral has been rewritten in
terms of the “n-plus” distribution together with a series of
products of the § function and some integrals in the n — 0
limit. Since we only consider the DA of the flavor-neutral
mesons, we have dropped the odd number of derivatives of
the & function, because those terms do not contribute when

|

/_::" . [|%g£x))c|nL+f(X) = /_::o dx

gfx))qn {f (x) = ZO % £ G) <x ~ %) ,}

g(x) is symmetric under x <> 1 — x, since the odd number
of derivatives of g(x) vanishes at x = 1/2.

The “n-plus” distribution in (B1) can be readapted to a
convolution integral with unrestricted domain, —oo<
x<oo0, which is relevant to the loop calculation for the
quasi-DAs:

(B3)

=l

In Sec. VIII, we have also adopted a soft momentum fraction # as the IR regulator in the loop integration using ordinary
coordinates [see (97)]. We often confront the following type of integrals:

+o0
lim / dx@(
=0 J_s

© i=0

x—1)

A == RCME > e | (s3] -) )

(B4)

In the second line, we again have dropped the odd number of derivatives of the ¢ function. In this identity, it is necessary to
assume that the test function f(x) falls off sufficiently fast as |x| — oo.
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