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As a sequel to our preceding work [Y. Jia et al. J. High Energy Phys. 11 (2017) 151], we carry out a
comprehensive comparative study between the quasiparton distribution functions (PDFs), distribution
amplitudes (DAs), and their light-cone counterparts for various flavor-neutral mesons in the context of the
’t Hooft model, that is, the two-dimensional QCD in the large-N limit. In contrast to the original derivation
via diagrammatic techniques exemplified by Dyson-Schwinger and Bethe-Salpeter equations, here we
employ the Hamiltonian operator approach to reconstruct the celebrated ’t Hooft equation in light-front
quantization, and Bars-Green equations in equal-time quantization. The novelty of our derivation is to
employ the soft momentum cutoff as the IR regulator. As a virtue of this operator approach, the functional
form of the quasidistributions can be transparently built out of the Bars-Green wave functions and the
Bogoliubov angle with the aid of bosonization technique. Equipped with various bound-state wave
functions numerically inferred by Jia et al. [J. High Energy Phys. 11 (2017) 151], we then investigate
how rapidly the quasidistributions approach their light-cone counterparts with the increasing meson
momentum. We observe that the light mesons’ quasidistributions approach the light-cone distributions at a
slower pace than the heavy quarkonia. Curiously, lattice simulations of quasidistributions in four-
dimensional QCD also discover this feature. Furthermore, we also compute the partonic light-cone PDF
and quasi-PDF to one-loop order in perturbation theory, again employing the momentum cutoff as the IR
regulator. We explicitly verify one of the backbones underlying the large momentum effective field theory
(LaMET), namely, both quasi-PDFs and light-cone PDFs in QCD2 indeed possess the same IR behavior at
leading order in 1=Pz.

DOI: 10.1103/PhysRevD.98.054011

I. INTRODUCTION

Parton distributions functions (PDFs) and distribution
amplitudes (DAs) encapsulate the nonperturbative struc-
tures of quarks and gluons inside a hadron. Parton distri-
butions are the key ingredient for making predictions for any
hard process in the high-energy hadron collision experi-
ments. Undoubtedly, the most promising approach of
calculating the parton distributions from the first principle
of QCD is lattice simulation. Nevertheless, due to their
intrinsic Minkowski nature, it is very difficult to directly
deduce the parton distributions as functions of x on

Euclidean lattice. Until recently, only the first few Mellin
moments of parton distributions were accessible to lattice
study [1–5].
A breakthrough occurred several years ago, exemplified

by the introduction of quasidistributions and the large
momentum effective field theory (LaMET) [6,7]. This novel
approach principally paves the way for directly calculating
the x dependence of parton distributions on Euclidean
lattice. Reference [8] explicitly shows that the infrared
structures of the quark quasi-PDF and light-cone PDF are
identical at one-loop level; consequently, the matching
factor linking these two sets of PDFs was derived to this
perturbative order. The factorization theorem conjectured in
[6] that links the quasi-PDFand ordinary PDF is later proved
to all orders in αs [9]. The renormalization of quasiquark
PDFs to all orders in αs is addressed in Refs. [10,11]. The
nonperturbative matching program has also been discussed
[12,13]. A plethora of exploratory lattice simulations of
quark quasi-PDFs, DAs have become available recently
[14–23]. Moreover, studies have appeared based on lattice
perturbation theory for quasi-PDFs [24–26], and some
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improvement of quasi-PDFs is suggested in Refs. [27–29].
We also notice that one-loop matching for the gluon quasi-
PDF has also recently been explored [30].
Solving the realistic four-dimensional QCD is a notori-

ously difficult mission. Conceivably, there is still a longway
to proceed before obtaining the phenomenologically com-
petitive parton distributions from the angle of lattice
simulations. In the meanwhile, it may also look attractive
if we can learn something useful about partonic quasidis-
tributions frommuchmore tractablemodel field theories. To
date, most solvable field theories live in 1þ 1-dimensional
spacetime. In this paper, wewill utilize the two-dimensional
QCD (hereafter, abbreviated QCD2) as a specific toy model,
to unravel various aspects of (quasi)partonic distributions.
Curiously, some qualitative features observed in this work,
especiallywhen regarding the behavior of quasidistributions
under boost, are not unique to QCD2 only but instead are
also captured by realistic QCD4.
The 1=N expansion has historically served a powerful

nonperturbative tool of QCD since the theory becomes
considerably simpler in the large-N limit [31–33]. Some
essential nonperturbative features of strong interactions
are impressively captured in this limit. In a similar vein,
QCD2 in the large-N limit, often referred to as the ’t Hooft
model [34], turns out to be an exactly solvable model.
Via diagramatically based Dyson-Schwinger and Bethe-
Salpeter methods, ’t Hooft was able to resum the planar
diagrams to arrive at the bound state equation in the context
of light-cone quantization and light-cone gauge. The
resulting bound state wave function can be readily inter-
preted as the light-cone wave function (LCWFs). Light-
cone correlations can, thus, be naturally constructed out of
the ’t Hooft wave function. For instance, PDF and GPD in
QCD2 have been studied long ago by Burkardt [35].
The motif of this work is to carefully investigate the

nature and characteristics of quasi-PDFs and DAs for
various flavor-neutral mesons in the ’t Hooft model. To
this purpose, a reformulation of QCD2 in the equal-time
quantization, looks much more appropriate. A theoretical
foundation along this line was first laid down by Bars and
Green in 1978 [36]. We will illustrate how to express the
quasidistributions in terms of more fundamental building
blocks in ’t Hooft model, a pair of bound-state wave
functions first introduced in [36]. We will be particularly
interested in examining how the quasidistributions
approach the light-cone distributions as the meson gets
boosted.
All in all, we hope this work can provide some valuable

insight on unravelling some gross features of quasidistri-
butions. Moreover, QCD2 may also serve as a benchmark
to examine the efficiency among different approaches, e.g.,
quasidistribution approach versus pseudo-PDF [37,38] and
lattice cross section approach [39].
As mentioned earlier, the meson spectra of QCD2 in

the large-N limit can be obtained in two equivalent ways.

One is through solving the ’t Hooft equation [34], derived
from light-cone quantization flavored with the light-cone
gauge, while the other is through solving the Bars-Green
equations [36], which are inferred from ordinary equal-time
quantization combined with the axial gauge. The solutions
of the ’t Hooft equation correspond to the meson’s LCWFs,
denoted by φnðxÞ, where x denotes the light-cone momen-
tum fraction carried by the quark relative to that by the
meson. n ¼ 0; 1; � � � denotes the discrete quantum number,
which resembles the principal quantum number n arising
from the solution of the Schrödinger equation in one-
dimensional space. The dimensionless momentum ratio x is
restricted in the interval [0, 1]. In contrast, the solutions of
Bars-Green equations are represented by a pair of bound-
state wave functions φn

�ðk; PÞ, where k ¼ xP is the spatial
component of momentum carried by the quark and P
denotes the meson momentum’s spatial component. Here
the dimensionless ratio x is completely unbounded,
−∞ < x < ∞.
In [40], we have numerically solved the Bars-Green

equations for a variety of quark mass, and with several
different meson momenta. We have explicitly verified
the Poincaré invariance of the ’t Hooft model in the
equal-time quantization, in the sense that meson spectra
do not depend on the reference frame. We have also
numerically confirmed that, in the infinite momentum
frame (IMF), i.e., P → ∞, the Bars-Green wave functions
approach asymptotically

lim
P→∞

φnþðxP; PÞ ¼ φnðxÞ; lim
P→∞

φn
−ðxP; PÞ ¼ 0: ð1Þ

Note the “negative energy” (backward motion in time)
component of the wave functions, φ− fades away as
P → ∞, while the “positive energy” (forward motion in
time) component of the wave functions, φþ recovers the ’t
Hooft wave function in the IMF.
Our primary achievement in this work is to construct the

light-cone (quasi)distributions out of the ’t Hooft wave
function (Bars-Green) wave functions, thus developing a
concrete feel about the nature of the quasidistributions.
Based on the numerical solutions of the wave functions
reported in [40], we then quantitatively compare the
quasiparton distributions and their light-cone counterparts
accordingly. Rather than Wick-rotate into Euclidean space-
time, we stay in the Minkowski spacetime to compute the
quasidistributions.
Apart from looking into nonperturbative aspects, we also

study the quasidistributions in QCD2 from the angle of
perturbation theory. By replacing a meson with a quark (or
quark-antiquark pair), we compute these fictitious
“mesonic” light-cone PDFs and PDFs (LCDA and quasi-
DA) to one-loop order and explicitly verify that both of
them share the identical IR behavior at the leading order in
1=Pz. Hence, one of the backbones of LaMET is explicitly
validated in this novel theoretical setting.
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The rest of the paper is structured as follows. In Sec. II,
we set up the theory of QCD2 and introduce our notations.
In Sec. III, we recapitulate the Hamiltonian operator
approach to derive the ’t Hooft equation, in the context
of light-cone quantization flavored with light-cone gauge.
Though being an old subject, we feel that there still exists
some notable innovation in our derivation. In Sec. IV, in the
framework of equal-time quantization flavored with axial
gauge, we revisit the derivation of the Bars-Green equa-
tions by employing Hamiltonian operator approach, as well
as Bogoliubov transformation. The novelty of our deriva-
tion is that we adopt momentum cutoff rather than principle
value prescription as an alternative means to regularize
IR singularities encountered in the intermediate stage. In
Sec. V, with the aid of the bosonization procedure, we
present an analytic expressions for the light-cone and the
quasi-PDFs in terms of the bound-state wave functions. We
stress that quasidistributions also depend on an essential
quantity, the Bogoliubov-Chiral angle. In Sec. VI, follow-
ing the same bosonization program, we proceed to present
the analytical expressions for the LCDA and quasi-DA. In
Sec. VII, we proceed to conduct a comprehensive numeri-
cal study for light-cone and quasi-PDFs, DAs related to a
variety of meson species: chiral π, physical pion, a fictitious
“strangeonium,” and charmonium. For the quasidistribu-
tions, we choose several different reference frames for each
meson species, to illuminate how their profiles evolve with
the increasing meson momentum. In Sec. VIII, we conduct
the one-loop perturbative calculation for both light-cone
and quasi-PDFs, as well as LCDA and quasi-DA, asso-
ciated with a fictitious meson, using both covariant and
time-ordered perturbation theory. Again with the IR sin-
gularities regularized by a soft momentum cutoff, we
explicitly examine the IR cutoff dependence of the light-
cone and quasidistributions. Finally, we summarize in
Sec. IX. In Appendix A, we conduct a comparative study
between one variant of the quasi-PDF (DA) and the
canonical quasi-PDF (DA), examining which version of
quasidistributions evolve to their light-cone counterpart at a
faster pace under Lorentz boost. In Appendix B, we present
some distribution identities that are useful to express the
perturbative LCDA and quasi-DA in terms of the so-called
“4-plus” function in Sec. VIII.

II. SETUP OF THE NOTATIONS

For simplicity, throughout this work, we will only
consider a single flavor of quark. Consequently, we will
be interested only in flavor-singlet mesons (quarkonia).
Adding more flavors does not pose any principal difficulty,
and we will avoid this unnecessary complication. Bearing a
local color SUðNÞ symmetry, the Lagrangian density of the
QCD2 reads

LQCD2
¼ −

1

4
ðFa

μνÞ2 þ ψ̄ðiD −mÞψ ; ð2Þ

where m denotes the quark mass. ψ represents the quark
field, which contains two components in the Dirac
spinor space and N components in the color space. Fa

μν≡
∂μAa

ν −∂νAa
μþgsfabcAb

μAc
ν is the gluon field strength ten-

sor, with Aa
μ denoting the gluon field. Dμ ¼ ∂μ − igsAa

μTa

denotes the color covariant derivative. Here, Ta represent
the generators in the fundamental representation of the
color SUðNÞ group, which are N × N Hermitian matrices
satisfying

trðTaTbÞ ¼ δab

2
; ð3aÞ

X
a

Ta
ijT

a
kl ¼

1

2

�
δilδjk −

1

N
δijδkl

�
; ð3bÞ

where a; b ¼ 1; 2;…; N2 − 1.
Throughout this work, we define the Lorentz two-vector

as xμ ¼ ðx0; xzÞ, with the superscript 0 indicating the
temporal component and z indicating the spatial compo-
nent.1 Moreover, we will adhere to the Weyl-chiral repre-
sentation for the Dirac γ-matrices,

γ0 ¼ σ1; γz ¼ −iσ2; γ5 ≡ γ0γz ¼ σ3; ð4Þ

where σi (i ¼ 1, 2, 3) are the familiar Pauli matrices. The
advantage of choosing this specific representation is to
make the chirality projection simpler, since γ5 (which
coincides with the Lorentz boost generator in two dimen-
sions) becomes diagonal in this basis.
In this paper, we will specify the large-N limit of the

QCD2 (the ‘t Hooft model) as

N → ∞; λ≡ g2sN
4π

fixed; m ≫ gs ∼
1ffiffiffiffi
N

p : ð5Þ

where λ is dubbed the ’t Hooft coupling constant. The last
condition in Eq. (5) specifies the so-called weak coupling
phase [41]. It is necessary to state this clearly in the outset,
since the chiral limit and large-N limit do not generally
commute. It is only in the weak coupling regime, i.e., the
m → 0 limit imposed after taking the N → ∞ limit, that the
massless “Goldstone” boson (chiral pion) can arise.

III. HAMILTONIAN APPROACH IN
LIGHT-FRONT QUANTIZATION IN

LIGHT-CONE GAUGE

The bound state equation for QCD2 in the light-cone
frameworkwas originally derived by ’t Hooft in 1974, based

1It may appear unwieldy to label the spatial index by “z” in a
1þ 1-dimensional field theory. The reason we choose the
superscript z instead of 1 or x is to keep conformity with the
convention adopted by majority of the literature about quasidis-
tributions in four dimensions.
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on the Feynman diagrammatic approach [34]. In the
following years, the same equation was also reproduced
in the light-cone hamiltonian formalism [42–49]. In this
section, we rederive the ’t Hooft equation from the angle of
light-cone quantization once again. The novelty of our
derivation is that we adopt a soft momentum cutoff to
regularize severe IR divergence encountered in the inter-
mediate stage, rather than the principal value prescription
used inmost of the preceding literature. Of course, at the end
of the day, we will recover the celebrated ’t Hooft equation,
which is no longer plagued with infrared singularity.

A. The light-front Hamiltonian

We adopt the widely used Kogut-Soper convention
[50] that the light-cone coordinates are defined through
x� ¼ ðx0 � xzÞ= ffiffiffi

2
p

. Consequently, only the off-diagonal
components of the metric tensor survive, gþ− ¼ gþ− ¼ 1,
and x� ¼ x∓.
It is convenient to decompose the quark Dirac field ψ

into the right-handed (“good”) component ψR and left-
handed (“bad”) component ψL, by acting the chirality
projectors ψR;L ¼ 1�γ5

2
ψ . Owing to the diagonal form of γ5

in the Weyl representation, as specified in (4), one can
explicitly decompose

ψ ¼ 2−
1
4

�
ψR

ψL

�
; ð6Þ

where ψR;L represent the single-component Grassmann
variables.
To facilitate the light-front quantization, it is conven-

ient to reexpress the QCD2 Lagrangian (2) in terms of
light-cone coordinates. Furthermore, the theory gets
significantly simplified once imposing the light-cone
gauge Aþa ¼ 0:

LQCD2
¼ 1

2
ð∂−A−aÞ2 þ iðψ†

RDþψR þ ψ†
L∂−ψLÞ

−
mffiffiffi
2

p ðψ†
LψR þ ψ†

RψLÞ: ð7Þ

As an exhilarating virtue of the noncovariant gauge,
the characteristic complication of QCD, the triple and
quartic gluon self-interactions are absent in QCD2.
Regarding xþ as the light-front time, one observes that

only the right-handed quark field constitutes the dynamical
degree of freedom. From (7), one then derives the Euler-
Lagrange equation for the left-handed fermion field and the
gluon field:

∂2
−A−aðxÞ − gsψ

†
RðxÞTaψRðxÞ ¼ 0; ð8aÞ

i∂−ψLðxÞ −
mffiffiffi
2

p ψRðxÞ ¼ 0: ð8bÞ

Hence ψL and A−a are nonpropagating (constrained)
degrees of freedom, rather than the canonical variables.
Solutions to the equations of motion (8) are

ψLðxþ; x−Þ ¼
mffiffiffi
2

p
i

Z
dy−Gð1Þ

ρ ðx− − y−ÞψRðxþ; y−Þ; ð9aÞ

A−aðxþ; x−Þ

¼ gs

Z
dy−Gð2Þ

ρ ðx− − y−Þψ†
Rðxþ; y−ÞTaψRðxþ; y−Þ;

ð9bÞ

where Gð1Þ and Gð2Þ correspond to the Green functions
associated with the differential operators ∂− and ∂2

−,
respectively:

Gð1Þ
ρ ðx− − y−Þ ¼ i

Z þ∞

−∞

dkþ

2π
Θðjkþj − ρÞ e

−ikþðx−−y−Þ

kþ
;

ð10aÞ

Gð2Þ
ρ ðx− − y−Þ ¼ −

Z þ∞

−∞

dkþ

2π
Θðjkþj − ρÞ e

−ikþðx−−y−Þ

ðkþÞ2 :

ð10bÞ

where Θ signifies the Heaviside step function, and the
sharp momentum cutoff ρ → 0þ is introduced as an IR
regulator. We put a subscript ρ in the coordinate-space
Green function to stress its implicit dependence on the
IR cutoff upon Fourier transform. We note that this
peculiar regularization scheme has already been used by
’t Hooft [34] and Callan, Coote and Gross [51]. Einhorn
even interpreted this IR regulator as a gauge parameter
[52]. This IR regulator ρ may linger around the
intermediate steps, but must drop away in the physical
observables such as meson-meson scattering ampli-
tude [51].
Identifying the light-front Hamiltonian from the

Lagrangian (7) through the stress tensor Tþ−, eliminat-
ing the occurrences of ψL and Aaμ in line with (9), we
finally end with the desired form of the light-front
Hamiltonian2:

2Note that our light-front Hamiltonian differs from the light-
cone Hamiltonian defined in some influential paper [53],
which are connected via HLC ≡ 2PþHLF. Our HLF is frame-
dependent, while HLC in [53] is not, yet carrying mass
dimension two.
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HLF ≡ P− ¼
Z
xþ¼const

dx−
�
m2

2i
ψ†
Rðx−Þ

×
Z

dy−Gð1Þ
ρ ðx− − y−ÞψRðy−Þ

−
g2s
2

X
a

ψ†
Rðx−ÞTaψRðx−Þ

×
Z

dy−Gð2Þ
ρ ðx− − y−Þψ†

Rðy−ÞTaψRðy−Þ
�
: ð11Þ

Note only the canonical variable ψR survives in the
light-front Hamiltonian (11).3

The canonical quantization rules in equal light-front time
are then

fψ i
Rðxþ; x−Þ;ψ j

R
†ðyþ; y−Þgxþ¼yþ ¼ δijδðx− − y−Þ; ð12aÞ

fψ i
Rðxþ; x−Þ;ψ j

Rðyþ; y−Þgxþ¼yþ

¼ fψ i
R
†ðxþ; x−Þ;ψ j

R
†ðyþ; y−Þgxþ¼yþ ¼ 0: ð12bÞ

For clarity, we attach the color indices i; j ¼ 1;…; N to
the ψR field explicitly.

B. Bosonization

To quantize (11), one may expand the ψR field in terms
of the annihilation and creation operators:

ψ i
Rðx−Þ ¼

Z
∞

0

dkþ

2π
ðbiðkþÞe−ikþx− þ di†ðkþÞeikþx−Þ;

ð13Þ

where i is the color index. The Fock vacuum j0i is defined
to satisfy

biðkþÞj0i ¼ diðkþÞj0i ¼ 0 ð14Þ

for any non-negative kþ.
Following the bosonization procedure [42–49], we define

the following four color-singlet compound operators:

Mðkþ; pþÞ≡ 1ffiffiffiffi
N

p
X
i

diðkþÞbiðpþÞ;

M†ðkþ; pþÞ≡ 1ffiffiffiffi
N

p
X
i

bi†ðpþÞdi†ðkþÞ;

Bðkþ; pþÞ≡ 1ffiffiffiffi
N

p
X
i

bi†ðkþÞbiðpþÞ;

Dðkþ; pþÞ≡ 1ffiffiffiffi
N

p
X
i

di†ðkþÞdiðpþÞ: ð15Þ

The commutation relations among B, D, M and M† are

½Mðkþ1 ; pþ
1 Þ;M†ðkþ2 ; pþ

2 Þ�

¼ ð2πÞ2δðkþ1 − kþ2 Þδðpþ
1 − pþ

2 Þ þO
�

1ffiffiffiffi
N

p
�
; ð16aÞ

½Mðkþ1 ; pþ
1 Þ; Bðkþ2 ; pþ

2 Þ�

¼ ½M†ðkþ1 ; pþ
1 Þ; Bðkþ2 ; pþ

2 Þ� ¼ O
�

1ffiffiffiffi
N

p
�
; ð16bÞ

½Mðkþ1 ; pþ
1 Þ; Dðkþ2 ; pþ

2 Þ�

¼ ½M†ðkþ1 ; pþ
1 Þ; Dðkþ2 ; pþ

2 Þ� ¼ O
�

1ffiffiffiffi
N

p
�
; ð16cÞ

½Bðkþ1 ; pþ
1 Þ; Bðkþ2 ; pþ

2 Þ�

¼ ½Dðkþ1 ; pþ
1 Þ; Dðkþ2 ; pþ

2 Þ� ¼ O
�

1ffiffiffiffi
N

p
�
; ð16dÞ

½Bðkþ1 ; pþ
1 Þ; Dðkþ2 ; pþ

2 Þ� ¼ 0: ð16eÞ

Substituting the Fourier expansion of ψR, (13), into
the LF Hamiltonian (11), then expressing everything
in terms of the bosonic compound operators introduced
in (15), dropping terms that are suppressed by powers
of 1=N (with the aid of the SUðNÞ identity (B3), we can
decompose the light-front Hamiltonian into three
pieces:

HLF ¼ HLF;0 þ ∶HLF;2∶þ ∶HLF;4∶; ð17Þ

where ∶∶ denotes the standard normal ordering.
Organized by the frequency of occurrences of the
bosonic compound operators, these three parts turn
out to be

HLF;0 ¼ N
Z

dx−

2π

�
λ

2
þ λ −m2

2

Z
∞

ρ

dkþ

kþ

�
; ð18aÞ

∶HLF;2∶ ¼
ffiffiffiffi
N

p Z
∞

ρ

dkþ

2π

�
m2 − 2λ

2

1

kþ
þ λ

ρ

�
× ½Bðkþ; kþÞ þDðkþ; kþÞ�; ð18bÞ

3When concentrating on the color-singlet sectors of Fock
space, one is allowed to drop the boundary term in the light-cone
Hamiltonian, once the spatial size of the system extends to
infinity. One can refer to Hornbostel’s thesis for a comprehensive
and lucid discussion on this issue [54].
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∶HLF;4∶ ¼ λ

8π2

Z
∞

0

dkþ1

Z
∞

0

dkþ2

Z
∞

0

dkþ3

Z
∞

0

dkþ4

×

�
Θðjkþ1 − kþ2 j − ρÞM

†ðkþ2 ; kþ3 ÞDðkþ4 ; kþ1 Þ − Bðkþ1 ; kþ4 ÞMðkþ3 ; kþ2 Þ
ðkþ1 − kþ2 Þ2

δðkþ1 − kþ2 − kþ3 − kþ4 Þ

þ Θðjkþ1 − kþ2 j − ρÞDðkþ2 ; kþ3 ÞMðkþ1 ; kþ4 Þ −M†ðkþ4 ; kþ1 ÞBðkþ3 ; kþ2 Þ
ðkþ1 − kþ2 Þ2

δðkþ1 − kþ2 þ kþ3 þ kþ4 Þ

− Θðjkþ1 − kþ2 j − ρÞM
†ðkþ1 ; kþ4 ÞMðkþ2 ; kþ3 Þ þM†ðkþ2 ; kþ3 ÞMðkþ1 ; kþ4 Þ

ðkþ1 − kþ2 Þ2
δðkþ1 − kþ2 − kþ3 þ kþ4 Þ

þ Θðjkþ1 þ kþ2 j − ρÞDðkþ4 ; kþ1 ÞBðkþ3 ; kþ2 Þ þ Bðkþ1 ; kþ4 ÞDðkþ2 ; kþ3 Þ
ðkþ1 þ kþ2 Þ2

δðkþ1 þ kþ2 − kþ3 − kþ4 Þ

þ Θðjkþ1 þ kþ2 j − ρÞM
†ðkþ4 ; kþ1 ÞDðkþ2 ; kþ3 Þ − Bðkþ3 ; kþ2 ÞMðkþ1 ; kþ4 Þ

ðkþ1 þ kþ2 Þ2
δðkþ1 þ kþ2 − kþ3 þ kþ4 Þ

þ Θðjkþ1 þ kþ2 j − ρÞDðkþ4 ; kþ1 ÞMðkþ3 ; kþ2 Þ −M†ðkþ2 ; kþ3 ÞBðkþ1 ; kþ4 Þ
ðkþ1 þ kþ2 Þ2

δðkþ1 þ kþ2 þ kþ3 − kþ4 Þ

− Θðjkþ1 − kþ2 j − ρÞDðkþ2 ; kþ3 ÞDðkþ4 ; kþ1 Þ þ Bðkþ3 ; kþ2 ÞBðkþ1 ; kþ4 Þ
ðkþ1 − kþ2 Þ2

δðkþ1 − kþ2 þ kþ3 − kþ4 Þ
�
; ð18cÞ

where λ ¼ g2sN=4π is the dimensional ’t Hooft coupling
constant, and those terms suppressed by 1=N have been
suppressed. HLF;0 can be interpreted as the vacuum
light-cone energy, which is both UV and IR divergent
[55]. This constant is irrelevant for our purpose, so will
be neglected henceforth. Note the soft momentum cutoff
ρ has been introduced in (18) to regularize the IR
divergence.
A key observation is that the QCD2 is a confining theory,

and one cannot create or annihilate isolated quarks and
antiquarks. Therefore, to create a quark, one has to create
an accompanying antiquark; vice versa, to annihilate a
quark, one has to annihilate an accompanying antiquark.
Only the color-singlet qq̄ pair can be created or annihilated.
The consequence is that the operators in (15) cannot be all

independent. Rather one finds that the compound operators
B and D can be built out of M and M† [49]:

Bðkþ; pþÞ → 1ffiffiffiffi
N

p
Z

∞

0

dqþ

2π
M†ðqþ; kþÞMðqþ; pþÞ; ð19aÞ

Dðkþ;pþÞ→ 1ffiffiffiffi
N

p
Z

∞

0

dqþ

2π
M†ðkþ;qþÞMðpþ;qþÞ: ð19bÞ

As can be readily verified, these relations are compatible
with the commutation relation (16).
Substituting (19) into (18), relabelling the momenta

pþ ¼ xPþ and kþ ¼ ð1 − xÞPþ, keeping only the leading
order terms in 1=N, one finds that the ∶HLF;2∶ and ∶HLF;4∶
components now read

∶HLF;2∶ ¼ 1

ð2πÞ2
Z

∞

ρ
dPþ

Z
1

0

dxM†ðð1 − xÞPþ; xPþÞMðð1 − xÞPþ; xPþÞ

×

���
m2

2
− λ

�
1

x
þ Pþλ

ρ

�
Θ
�
x −

ρ

Pþ

�
þ
��

m2

2
− λ

�
1

1 − x
þ Pþλ

ρ

�
Θ
�
1 −

ρ

Pþ − x

��
; ð20aÞ

∶HLF;4∶ ¼ −
λ

ð2πÞ2
Z

∞

ρ
dPþ

Z
1

0

Z
1

0

dxdyΘ
�
jx − yj − ρ

Pþ

�
1

ðx − yÞ2 ×M†ðð1 − xÞPþ; xPþÞMðð1 − yÞPþ; yPþÞ: ð20bÞ

C. Diagonalization, principal value prescription,
and the ’t Hooft equation

Our goal is to diagonalize the light-front hamiltonian
(20). To this purpose, it is convenient to introduce
an infinite set of meson annihilnation/creation

operators: mnðPþÞ=m†
nðPþÞ, where n stands for the

principal quantum number, and Pþ represents the
light-cone momentum of the corresponding meson.
We postulate that the M operator basis is connected
to the mn basis through
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Mðð1 − xÞPþ; xPþÞ ¼
ffiffiffiffiffiffi
2π

Pþ

r X∞
n¼0

φnðxÞmnðPþÞ; ð21aÞ

mnðPþÞ ¼
ffiffiffiffiffiffi
Pþ

2π

r Z
1

0

dxφnðxÞMðð1 − xÞPþ; xPþÞ; ð21bÞ

where φnðxÞ is understood to be the nth coefficient
function. The physical picture is clear, since confine-
ment nature of ’t Hooft model, exciting a quark-
antiquark pair from the Fock vacuum would eventually
lead to the formation of a meson, in the large-N limit.
To the best of our knowledge, the explicit writing of the
decomposition formula (21) is new.
We postulate that the mesonic annihilation and creation

operators mn and m†
n obey the canonical commutation

relations:

½mnðPþ
1 Þ; m†

rðPþ
2 Þ� ¼ 2πδnrδðPþ

1 − Pþ
2 Þ; ð22Þ

and all other commutators vanish. It is straightforward to
check that, in order to satisfy these commutation relations,
the coefficient functions φnðxÞ must be subject to the
following orthogonality and completeness conditions:Z

1

0

dxφnðxÞφmðxÞ ¼ δnm; ð23aÞ

X
n

φnðxÞφnðyÞ ¼ δðx − yÞ; ð23bÞ

We wish that the light-front Hamiltonian in the basis of
mn and m†

n operators is in a diagonal form,

HLF ¼ HLF;0 þ
Z

dPþ

2π
P−
nm

†
nðPþÞmnðPþÞ; ð24Þ

where P− is the light-cone energy of the nth mesonic
state, P−

n ¼ M2
n=ð2PþÞ.

If the light-front Hamiltonian can be diagonalized in the
new mn operator basis, the nth mesonic state in the large-N
limit can be directly constructed via

jP−
n ; Pþi ¼

ffiffiffiffiffiffiffiffiffi
2Pþp

m†
nðPþÞj0i: ð25Þ

In order to reach the desired form (24), one should
enforce the condition that the coefficients of all the
unwanted operators of the form m†

nmr (n ≠ r) vanish.
This requirement leads to the following equations which
must be satisfied by φnðxÞ in different intervals of x:

m2

1 − x
φnðxÞ − 2λ

Z
1

xþ ρ

Pþ
dy

φnðyÞ − φnðxÞ
ðx − yÞ2

¼ M2
nφnðxÞ 0 < x <

ρ

Pþ ; ð26aÞ
�
m2

x
þ m2

1−x

�
φnðxÞ−2λ

Z
1

0

dyΘðjx−yj−ρÞφnðyÞ−φnðxÞ
ðx−yÞ2

¼M2
nφnðxÞ

ρ

Pþ<x< 1−
ρ

Pþ ; ð26bÞ

m2

x
φnðxÞ − 2λ

Z
x− ρ

Pþ

0

dy
φnðyÞ − φnðxÞ

ðx − yÞ2

¼ M2
nφnðxÞ 1 −

ρ

Pþ < x < 1; ð26cÞ

In the ρ → 0þ limit, these equations merge into a single
equation:�

m2

x
þ m2

1 − x

�
φnðxÞ − 2λ⨍ 1

0
dy

φnðyÞ − φnðxÞ
ðx − yÞ2

¼ M2
nφnðxÞ; 0 < x < 1; ð27Þ

where the dashed integral ⨍ in (27) denotes the principal
value (PV) prescription:

⨍ dy fðyÞ
ðx−yÞ2¼ lim

ϵ→0þ

Z
dyΘðjx−yj− ϵÞfðyÞ−fðxÞ

ðx−yÞ2 : ð28Þ

with fðyÞ a test function that is regular at y ¼ x.
Eq. (27) is nothing but the celebrated ’t Hooft equation.

Now the coefficient functions φnðxÞ, first introduced in
(21), can be interpreted as the ’t Hooft wave function, or the
light-cone wave function of the nth mesonic state.
We emphasize that the PV prescription as specified in

(27) needs not be unique. Here we just list two additional
popular PV prescriptions:

⨍ dy fðyÞ
ðx−yÞ2

¼ lim
ϵ→0

Z
dy

fðyÞ
2

�
1

ðx−yþ iϵÞ2þ
1

ðx−y− iϵÞ2
�
; ð29aÞ

⨍ dy fðyÞ
ðx−yÞ2¼ lim

ϵ→0þ

Z
dyΘðjx−yj− ϵÞ fðyÞ

ðx−yÞ2−
2fðxÞ
ϵ

;

ð29bÞ

where the first one was adopted in [52] (also referred to as
Mandelstam-Leibbrandt prescription [56,57]), and the sec-
ond one was introduced by Hadamard long ago [58]. All
the aforementioned PV prescriptions are mathematically
equivalent, but may practically differ in efficiency upon
numerical implementation.

PARTONIC QUASIDISTRIBUTIONS IN TWO- … PHYS. REV. D 98, 054011 (2018)

054011-7



IV. HAMILTONIAN APPROACH IN EQUAL-TIME
QUANTIZATION IN AXIAL GAUGE

The bound-state equations in QCD2 in equal-time
quantization and in axial gauge were originally derived
by Bars and Green in 1978 [36], largely utilizing Feynman
diagrammatic techniques. In 2001, Kalashnikova and
Nefediev presented an elegant derivation based on the
Hamiltonian operator approach [59]. A nice feature of this
method is that, through introducing Bogoliubov trans-
formation, the physical meaning of the Bars-Green wave
functions is greatly clarified.
It appears rather obscure to link the Bars-Green bound-

statewave functionswith the quasidistributions based on the
diagrammatic methods. On the contrary, it is quite trans-
parent to achieve this goal with the aid of the bosonization
technique. Therefore, it is rewarding to recapitulate the
derivation of the Bars-Green equations in this section, again
within the Hamiltonian approach.
Reference [59] employs the PV prescription to sweep

away the potential IR divergences. Nevertheless, to be
compatible with our treatment in light-front quantization
in Sec. III as well as in the perturbative one-loop compu-
tation for quasidistributions in Sec. VIII, here we adopt the
same momentum cutoff as the IR regulator. We will
explicitly verify that, though differing in intermediate steps,
after the IR momentum cutoff is removed in the end, the
famousmass gap equation andBars-Green equationswill be
recovered.

A. The Hamiltonian in the axial gauge

Enforcing the axial gauge condition Az ¼ 0, the QCD2

Lagrangian in (2) reduces to

LQCD2
¼ 1

2
ð∂zAa

0Þ2 þ iψ†ðD0 þ γ5∂zÞψ −mψ̄ψ : ð30Þ

Unlike the light-cone case, both components of the quark
Dirac field ψ remain as the propagating degrees of freedom.
The equation of motion for A0a’s turns out to be

∂2
zA0a ¼ gsψ†Taψ ; ð31Þ

thus, A0a is a constrained rather than dynamical variable.
The solution of Eq. (31) is

A0aðt; zÞ ¼ gs

Z
dz0G̃ð2Þ

ρ ðz − z0Þψ†ðt; z0ÞTaψðt; z0Þ; ð32Þ

where G̃ð2Þ
ρ denotes the Green function associated with the

operator ∂2
z
4:

G̃ð2Þ
ρ ðz − z0Þ ¼ −

Z þ∞

−∞

dk
2π

Θðjkj − ρÞ e
ikðz−z0Þ

k2
: ð33Þ

This Fourier integral is ill defined due to the singularity
caused by k → 0. For consistency with the rest of the paper,
we again employ a momentum cutoff ρ → 0þ to regularize
the IR divergence.
The equal-time Hamiltonian in the axial gauge, when

expressed in terms of the canonical variables, is5

H≡P0¼
Z
t¼const

dz

�
ψ†ðzÞð−iγ5∂zþmγ0ÞψðzÞ

−
g2s
2

X
a

Z
dz0ψ†ðzÞTaψðzÞG̃ð2Þ

ρ ðz−z0Þψ†ðz0ÞTaψðz0Þ
�
:

ð34Þ

The equal-time canonical quantization rule is then

fψ iðt; zÞ;ψ j†ðt0; z0Þgt¼t0 ¼ δijδðz − z0Þ; ð35aÞ

fψ iðt;zÞ;ψ jðt0;z0Þgt¼t0 ¼ fψ i†ðzÞ;ψ j†ðz0Þgt¼t0 ¼ 0; ð35bÞ

where i; j ¼ 1;…; N denote the color indices carried by ψ,
and the spinor indices have been suppressed for simplicity.

B. Dressed quark basis and mass-gap equation

To proceed, we expand the Dirac ψ field in terms of the
quark annihilation and creation operators,

ψ iðzÞ ¼
Z

dp
2π

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ẼðpÞ

p ½biðpÞuðpÞ þ di†ð−pÞvð−pÞ�eipz;

ð36Þ

where the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ẼðpÞ

p
is deliberately inserted in the

integration measure, to keep our normalization convention
compatible with the standard text [60]. Here, ẼðpÞ can be
interpreted as the energy carried by the dressed quark.
The spinor wave functions u, v are parametrized as6

uðpÞ¼
ffiffiffiffiffiffiffiffiffiffi
ẼðpÞ

q
TðpÞ

�
1

1

�
; vð−pÞ¼

ffiffiffiffiffiffiffiffiffiffi
ẼðpÞ

q
TðpÞ

�
1

−1

�
;

ð37Þ

where TðpÞ is a unitary 2 × 2matrix. In conformity with the
convention adopted in [60], the u, v spinor wave functions
carry the mass dimension of 1

2
. Combining these two

4For notational brevity, in this section, we have suppressed the
superscript “z” for the spatial component of a 2-vector, so k
should be understood as kz if no confusion arises.

5Bars and Green expounded why one is allowed to drop the
boundary terms in the color-singlet sector, in the context of equal-
time quantization and axial gauge [36].

6Note here the parametrization of the dressed quark spinor
wave functions differs from the preceding literature [36,59],
where the Dirac-Pauli representation for γ-matrices were adopted.
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equations, one sees that the field expansion in (36) actually
does not rely on the explicit form of ẼðpÞ at all, but critically
depends on the dressing function TðpÞ.
The quark vacuum state is defined to be

biðkÞj0i ¼ diðkÞj0i ¼ 0 ð38Þ

for all possible values of k.
Substituting the Fourier expansion of ψ (36), into the

Hamiltonian in (34), and rearranging it into the normal-
ordered form, we can decompose the Hamiltonian into
three pieces:

H ¼ H0 þ ∶H2∶þ ∶H4∶; ð39Þ

which contain 0, 2, and 4 quark creation/annihilation
operators accordingly,

H0 ¼ N
Z

dz
Z

dp
2π

Tr

�
ðpγ5 þmγ0ÞΛ−ðpÞ

þ λ

2

Z
dk

ðk−pÞ2Θðjk−pj− ρÞΛþðpÞΛ−ðkÞ
�
; ð40aÞ

∶H2∶ ¼
Z

dpTr½ΞðpÞΛþðpÞbi†ðpÞbiðpÞ

þ ΞðpÞΩ−ðpÞbi†ðpÞdi†ð−pÞ
þ ΞðpÞΩþðpÞdið−pÞbiðpÞ
− ΞðpÞΛ−ðpÞdi†ð−pÞdið−pÞ�; ð40bÞ

∶H4∶ ¼ −
g2s
2

X
a

Z Z
t¼const

dzdz0

∶ψ†ðzÞTaψðzÞG̃ð2Þ
ρ ðz − z0Þψ†ðz0ÞTaψðz0Þ∶; ð40cÞ

where the matrices Ξ, Λ�, and Ω� are defined as

ΞðpÞ¼pγ5þmγ0

þ
X
i

λ

2

Z
dk

2πðp−kÞ2Θðjp−kj−ρÞðΛþðkÞ−Λ−ðkÞÞ;

ð41aÞ

Λ�ðkÞ ¼ TðkÞ 1� γ0

2
T†ðkÞ; ð41bÞ

Ω�ðkÞ ¼ TðkÞ γ
0 � 1

2
γzT†ðkÞ: ð41cÞ

H0 describes the vacuum energy. Let us first focus on the
single dressed quark sector represented by ∶H2∶. We are
seeking a possible solution of TðpÞ such that ∶H2∶ has a
diagonalized form in the basis of quark annihilation and
creation operators,

∶H2∶¼
X
i

Z
∞

−∞

dk
2π

ẼiðkÞðbi†ðkÞbiðkÞþdi†ðkÞdiðkÞÞ; ð42Þ

where i is the color index, and ẼiðkÞ denotes the energy of
the dressed quark with momentum k. To proceed, one
parametrizes the TðpÞ as [36]

TðpÞ ¼ exp
h
−
1

2
θðpÞγz

i
; ð43Þ

where θðpÞ is called the Bogliubov-chiral angle, which is
an odd function of p [36,59]. As elucidated in Ref. [61],
TðpÞ is reminiscent of the Foldy-Wouthuysen transforma-
tion that decouples the positive and negative energy degrees
of freedom in Dirac field, and θðpÞ play the role of the
Foldy-Wouthuysen angle.
By the parametrization specified in (43), diagonalization

of (40b) leads to two coupled equations for θðpÞ and ẼðpÞ,
respectively,

ẼðpÞcosθðpÞ¼mþ λ

2

Z
dk

ðk−pÞ2Θðjk−pj−ρÞcosθðkÞ;

ð44aÞ

ẼðpÞsinθðpÞ¼pþ λ

2

Z
dk

ðk−pÞ2Θðjk−pj−ρÞsinθðkÞ:

ð44bÞ

After some plain linear algebra on two equations in (44),
we finally arrive at the nonlinear equation for θðpÞ,

pcosθðpÞ−msinθðpÞ

¼ λ

2
lim
ρ→0þ

Z þ∞

−∞

dk
ðp−kÞ2Θðjk−pj−ρÞsin ½θðpÞ−θðkÞ�;

ð45Þ

which is nothing but the celebrated mass-gap equation [36].
Note that the limit ρ → 0þ just serves the standard Cauchy
principal value prescription. Examining the gap equa-
tion (45), the interpretation of θðpÞ as the Foldy-
Wouthuysen angle becomes transparent if the interaction
term, which is directly responsible for dressing the bare
quark, can be temporarily turned off. The angle θðpÞ plays
a vital role for generating a nonvanishing quark vacuum
condensate. Practically speaking, the Bogoliubov-chiral
angle can only be solved numerically, even in the chi-
ral limit.
In passing, we stress that the mass-gap equation (45) can

be obtained from another quite different perspective. Rather
than diagonalize ∶H2∶, one can take a closer look at the
vacuum energy constant. One can rewrite (40a) as
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Evac½θðpÞ� ¼N
Z

dp
2π

�
−mcosθðpÞ−psinθðpÞ

þ λ

2

Z
dkΘðjk−pj−ρÞ1− cos½θðkÞ−θðpÞ�

2ðk−pÞ2
�
;

ð46Þ

where Evac ¼ H0=L is the vacuum energy density, with L
the length of the spatial interval.
Minimizing Eq. (46) with respect to θðpÞ, one can

readily obtain a variational equation, which exactly repro-
duce Eq. (45) [59]. Note that the true vacuum is no longer
chiral invariant, and a nonzero quark condensate arises in
the chiral limit, which signals the spontaneous chiral
symmetry breaking in large-N limit of QCD2 [62].
Once the Bogoliubov angle θðpÞ is known, one can then

infer the dispersive law for a dressed quark:

ẼðpÞ¼mcosθðpÞþpsinθðpÞ

þ λ

2

Z þ∞

−∞

dk
ðp−kÞ2Θðjk−pj−ρÞcos ½θðpÞ−θðkÞ�:

ð47Þ

It is straightforward to see that the energy carried by the
dressed quark blows up for all values of momentum,
ẼðpÞ → λ

ρ, after the IR regulator is removed. This symptom
is in sharp contrast to the regular dispersive law obtained in
[36,62], where the PV scheme is used to regularize the IR
divergence there. As a consequence, the free Hamiltonian
in the dressed quark sector in (42) is ill defined, due to its
sensitivity to the IR cutoff. Nevertheless, this is a harmless
and tolerable nuisance, since the colored object such as
dressed quark need not be affiliated with any physical
significance.
For future usage, it is convenient to define the regular-

ized dressed quark energy, EðpÞ:

EðpÞ≡ ẼðpÞ − λ

ρ
¼ m cos θðpÞ þ p sin θðpÞ

þ λ

2
⨍ þ∞

−∞

dk
ðp − kÞ2 cos ½θðpÞ − θðkÞ�; ð48Þ

where ⨍ denotes the PV scheme as specified in (28). It is
straightforward to see thatEðpÞ is an even function ofp, and
remain finite for all finite p. Nevertheless, being a colored
object, the dispersive relation for a dressed quark, no mattereEðpÞ or EðpÞ, clearly violates Lorentz covariance.

C. Bosonization

In order to derive the bound state equation, we must take
the interaction part of the Hamiltonian, ∶H4∶, into account.
In parallel with the bosonization procedure for the LF

Hamiltonian, here we introduce the following color-singlet
compound operators analogous to (15):

Mðp;qÞ≡ 1ffiffiffiffi
N

p
X
i

di−pbiq; M†ðp;qÞ≡ 1ffiffiffiffi
N

p
X
i

bi†q d
i†
−p;

ð49aÞ

Bðp;qÞ≡ 1ffiffiffiffi
N

p
X
i

bi†p biq; Dðp;qÞ≡ 1ffiffiffiffi
N

p
X
i

di†−pdi−q:

ð49bÞ

The commutation relations among M, M†, B, and D in
the large-N limit are

½Mðk1; p1Þ;M†ðk2; p2Þ�

¼ ð2πÞ2δðk1 − k2Þδðp1 − p2Þ þO
�

1ffiffiffiffi
N

p
�
; ð50aÞ

½Mðk1; p1Þ; Bðk2; p2Þ�

¼ ½M†ðk1; p1Þ; Bðk2; p2Þ� ¼ O
�

1ffiffiffiffi
N

p
�
; ð50bÞ

½Mðkþ1 ; pþ
1 Þ; Dðk2; p2Þ�

¼ ½M†ðk1; p1Þ; Dðk2; p2Þ� ¼ O
�

1ffiffiffiffi
N

p
�
; ð50cÞ

½Bðk1; p1Þ; Bðk2; p2Þ�

¼ ½Dðk1; p1Þ; Dðk2; p2Þ� ¼ O
�

1ffiffiffiffi
N

p
�
; ð50dÞ

½Bðk1; p1Þ; Dðk2; p2Þ� ¼ 0; ð50eÞ

which are very similar to their light-cone counterparts (16).
Due to the confinement nature of QCD2, the same

consideration that leads to (19) can also be applied here,
i.e., not all compound operators in (49) are independent. In
fact, one finds that [59]

Bðp; p0Þ ¼ 1ffiffiffiffi
N

p
Z þ∞

−∞

dq
2π

M†ðq; pÞMðq; p0Þ; ð51aÞ

Dðp; p0Þ ¼ 1ffiffiffiffi
N

p
Z þ∞

−∞

dq
2π

M†ðp; qÞMðp0; qÞ: ð51bÞ

Here we follow similar steps as what lead to (18) in light-
cone quantization. Substituting the Fourier expansion of ψ ,
(36), into the Hamiltonian (40), then expressing everything
in terms of the bosonic compound operators introduced in
(49), eliminating B, D in line with (51), and only keeping
terms at leading order in 1=N, the ∶H2∶ and ∶H4∶ pieces in
(39) read
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∶H2∶ ¼
ZZ

dPdp
ð2πÞ2 ðẼðpÞ þ ẼðP − pÞÞ

×M†ðp − P; pÞMðp − P; pÞ; ð52aÞ

∶H4∶ ¼ −
λ

8π2

Z
dP

ZZ
dpdk

ðp − kÞ2Θðjp − kj − ρÞ

× f2Cðp; k; PÞM†ðp − P; pÞMðk − P; kÞ;
þ Sðp; k; PÞ½Mðp; p − PÞMðk − P; kÞ
þM†ðp; p − PÞM†ðk − P; kÞ�g; ð52bÞ

where the functions S and C are defined as [36]

Cðp;k;PÞ¼ cos
θðpÞ−θðkÞ

2
cos

θðP−pÞ−θðP−kÞ
2

;

ð53aÞ

Sðp; k; PÞ ¼ sin
θðpÞ − θðkÞ

2
sin

θðP − pÞ − θðP − kÞ
2

:

ð53bÞ

D. Bogoliubov transformation, diagonalization,
and Bars-Green equations

The Hamiltonian ∶H2∶þ ∶H4∶ in (52) is not yet in the
diagonalized form. Parametrically, it bears the specific
structure,

H ∼H0 þ AM†M þ BðM†M† þMMÞ; ð54Þ
which is reminiscent of the Hamiltonian for the dilute
weakly interacting Bose gas [63]. The familiar strategy of
diagonalizing this type of Hamiltonian is through the
Bogoliubov transformation [63]:

m ¼ uM þ vM†; ð55aÞ
m† ¼ uM† þ vM; ð55bÞ

u2 − v2 ¼ 1: ð55cÞ

For our problem at hand, we can generalize (55) by
introducing two sets of operatorsmn and m

†
n (n ¼ 0; 1;…),

which are the counterparts of the m and m† in (55), as the
linear combination of the M and M† operators [59]:

mnðPÞ ¼
Z þ∞

−∞

dqffiffiffiffiffiffiffiffiffiffiffi
2πjPjp ½Mðq − P; qÞφþ

n ðq; PÞ þM†ðq; q − PÞφ−
n ðq; PÞ� ð56aÞ

m†
nðPÞ ¼

Z þ∞

−∞

dqffiffiffiffiffiffiffiffiffiffiffi
2πjPjp ½M†ðq − P; qÞφþ

n ðq; PÞ þMðq; q − PÞφ−
n ðq; PÞ� ð56bÞ

Mðq − P; qÞ ¼
ffiffiffiffiffiffi
2π

jPj

s X∞
n¼0

½mnðPÞφþ
n ðq; PÞ −m†

nð−PÞφ−
n ðq − P;−PÞ� ð56cÞ

M†ðq − P; qÞ ¼
ffiffiffiffiffiffi
2π

jPj

s X∞
n¼0

½m†
nðPÞφþ

n ðq; PÞ −mnð−PÞφ−
n ðq − P;−PÞ�; ð56dÞ

where mnðPÞ and m†
nðPÞ will be interpreted as the annihilation and creation operators for the nth mesonic state

carrying spatial momentum P. The functions φþ
n ðq; PÞ and φ−

n ðq; PÞ play the role of Bogoliubov coefficients u
and v in (55a).
Similar to (22) in the LF case, here we again postulate that the mesonic annihilation and creation operators, mn and m†

n,
obey the canonical commutation relations:

½mnðPÞ; m†
mðP0Þ� ¼ 2πδnmδðP − P0Þ; ð57aÞ

½mnðPÞ; mmðP0Þ� ¼ ½m†
nðPÞ; m†

mðP0Þ� ¼ 0: ð57bÞ

In order to satisfy these commutation relations, the Bogoliubov functions φn
� must obey the following orthogonality and

completeness conditions7:

7We stress that our normalization conditions differ from those in [59] by a factor of jPj, because we demand that φnþðxP; PÞ remains
dimensionless in conformity to the ’t Hooft wave function ϕðxÞ, which turns out to be particularly convenient in comparing quasi- and
light-cone distributions. Nevertheless, by adopting this convention, we are no longer capable of studying the bound-state solutions in the
rest frame (P ¼ 0) as was done in [62].
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Z þ∞

−∞
dp½φnþðp; PÞφmþðp;PÞ − φn

−ðp;PÞφm
−ðp; PÞ� ¼ jPjδnm ð58aÞ

Z þ∞

−∞
dp½φnþðp; PÞφm

−ðp − P;−PÞ − φn
−ðp; PÞφmþðp − P;−PÞ� ¼ 0; ð58bÞ

X∞
n¼0

½φnþðp;PÞφnþðq; PÞ − φn
−ðp − P;−PÞφn

−ðq − P;−PÞ� ¼ jPjδðp − qÞ ð58cÞ

X∞
n¼0

½φnþðp;PÞφn
−ðq; PÞ − φn

−ðp − P;−PÞφnþðq − P;−PÞ� ¼ 0: ð58dÞ

Note the relative minus sign in the last two equations
reflects the characteristic of the Bogoliubov transformation,
as specified in (55c) [59].
We wish to diagonalize the axial-gauge Hamiltonian in

the basis ofmn andm
†
n operators. Applying the Bogoliubov

transformation (56) into (52), we aim to obtain the intended
form

H ¼ H0
0 þ

Z
dP
2π

X
n

P0
nm

†
nðPÞmnðPÞ þOð1=

ffiffiffiffi
N

p
Þ; ð59Þ

where P0
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

n þ P2
p

, with Mn the mass of the nth
mesonic state. The interaction terms involving three or
more mesons are suppressed by powers of 1=

ffiffiffiffi
N

p
, which is

completely immaterial to the theme of this work, so will be
neglected.
The shifted vacuum energy in (59) is given by

H0
0¼H0þ

X
n

Z
dz

Z
dPdp
2πjPj

×

�
½ẼðpÞþ ẼðP−pÞ�φn

−ðp;PÞφn
−ðp;PÞ

−λ

Z þ∞

−∞

dk
ðp−kÞ2Θðjp−kj−ρÞ

× ½Cðp;k;PÞφn
−ðp;PÞφn

−ðp;PÞ

−Sðp;k;PÞðφnþðp;PÞφn
−ðk;PÞþφn

−ðp;PÞφnþðk;PÞÞ�
�
;

ð60Þ

where H0 is given in (40a).
We define the meson vacuum state jΩi by the condition

mnðPÞjΩi ¼ 0; ð61Þ

for all n and P. Consequently, a single meson state can be
constructed via

jP0
n; Pi ¼

ffiffiffiffiffiffiffiffi
2P0

n

q
m†

nðPÞjΩi: ð62Þ

Note the true vacuum state jΩi is highly nontrivial in
the equal-time quantization. This is clearly illustrated
by (56b), according to which there are actually two very
different mechanisms to create a meson. First is by
creating a pair of quark and antiquark, no matter the
vacuum is trivial or not. The other mechanism is by
removing a pair of quark and antiquark from the
vacuum. This is possible only if a flurry of correlated
multi quark-antiquark constantly popping out of the
vacuum, plausibly a consequence of the nonzero quark
condensate.8

After applying the Bogoliubov transformation to (52), in
order to achieve the diagonalized form of (59), we have to
enforce the coefficients of operators m†

nmr (n ≠ r),
m†

nm
†
r þmnmr to vanish. After some algebra, we end up

with the two following equations:

½ẼðpÞ þ ẼðP − pÞ ∓ P0
nÞ�φ�

n ðp; PÞ

¼ λ

Z þ∞

−∞

dk
ðp − kÞ2 Θðjp − kj − ρÞ

× ½Cðp; k; PÞφ�
n ðk; PÞ − Sðp; k; PÞφ∓

n ðk; PÞ�: ð63Þ

This pair of equations is not particularly convenient to
use, since both Ẽ and the integrals are sensitive to the IR
cutoff ρ. Miraculously, one can absorb the divergent λρ piece

in Ẽ into the cutoff-dependent integral, so that the modified
integral becomes regular in the ρ → 0þ limit. After some
manipulation, the axial-gauge bound state equations (63)
can be rewritten as

8Note the true vacuum jΩi is different from the quark vacuum
j0i defined in (38). It is supposed that they are connected by a
unitary operator S [64], whose explicit form is unknown yet. In
the following sections, we will always use the true (“mesonic”)
vacuum when computing QCD matrix elements.
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ðEðpÞ þ EðP − pÞ − P0Þφþðp;PÞ ¼ λ⨍∞

−∞

dk
ðp − kÞ2 ½Cðp; k; PÞφþðk; PÞ − Sðp; k; PÞφ−ðk; PÞ�; ð64aÞ

ðEðpÞ þ EðP − pÞ þ P0Þφ−ðp; PÞ ¼ λ⨍∞

−∞

dk
ðp − kÞ2 ½Cðp; k; PÞφ−ðk; PÞ − Sðp; k; PÞφþðk; PÞ�; ð64bÞ

where EðpÞ is the regularized dressed quark energy
defined in (48). Note that here we recover the principal
value prescription as introduced in (28).9

Equations (64) are the very bound-state equations in
QCD2 in axial gauge, first derived by Bars and Green back
in 1978 [36]. For this reason, these equations will be
referred to as Bars-Green equations. Consequently, the
Bogoliubov-type functions φn

� can now be interpreted as
the bound-state wave functions, or simply called Bars-
Green wave functions.
A crucial feature of QCD2 in axial gauge is that, it

preserves Poincaré invariance in physical sector in a highly
nontrivial way. Notice the dispersive law for a colored
object like dressed quark, which is encoded in (47) and
(48), is clearly not Lorentz covariant. However, as far as the
color-singlet meson is concerned, one is ensured to recover
the standard dispersion relation dictated by special rela-
tivity. Specifically speaking, irrespective of the Lorentz
frame where the Bars-Green equations (64) are tackled, one
always ends up with the identical meson spectra, where the
energy of the nth mesonic state is always found to satisfy
P0
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

n þ P2
p

. It is important to emphasize that, in
order to preserves Poincaré invariance, the Bogoliubov
angle θðpÞ and the backward-motion component of Bars-
Green wave functions, ϕn

−, appear to play a indispensable
role in (64). Thus, the ’t Hooft model in axial gauge
represents a rare example that one knows exactly how to
consistently boost a relativistic bound-state wave function
in the equal-time quantization.
A specific consequence of Poincaré invariance is

that, when the meson is viewed the IMF, that is, in
the P → ∞ limit, one would still obtain the identical
mesonic mass spectra. In this specific Lorentz frame,
θðpÞ → π

2
as p → ∞, and the C, S functions in (53)

reduce to simple step functions, one can show that the
Bars-Green equations simply reduce to the ’t Hooft
equation. Consequently, in the IMF, the ϕnþ component
of the Bars-Green wave function reduces to the ’t Hooft
light-cone wave functions, and the ϕn

− component fades
away at a rate ∝ 1=P2

z [40].

The first numerical solution of Bars-Green equations
was conducted by Li and collaborators in the late 1980s,
yet only for stationary (Pz ¼ 0) mesons [62]. Very
recently, the Bars-Green equations (64), for the first time,
were solved numerically for an arbitrary moving frame
for a variety of quark mass [40], thus explicitly establish-
ing the Poincaré invariance of the ’t Hooft model in axial
gauge. In particular, the authors of [40] concretely
observe the tendency that, when the meson gets more
and more boosted, the ϕþ component does converge to
the ’t Hooft wave function, while the ϕ− component
quickly vanishes. Moreover, some other physical quan-
tities, such as the quark condensate and meson decay
constant, were also numerically investigated in different
moving frames and prove to be Lorentz invariant [40].
These studies unequivocally confirm the key role played
by the chiral angle θðpÞ and ϕn

− to preserve the Poincaré
invariance.

V. BUILDING PDF AND QUASI-PDF OUT OF
BOUND-STATE WAVE FUNCTIONS

Parton distribution functions (PDFs) count essentially
the number density of a specific species of partons
inside a parent hadron that carries a specific momentum
fraction of the hadron, x. It is not an exaggeration to say
that they form the most indispensable inputs for yielding
predictions for any high-energy collision experiments
involving hadron beams. In this section, starting from
the operator definitions of light-cone PDFs and quasi-
PDFs, we are going to reexpress them in terms of the
light-cone wave functions and Bars-Green wave func-
tions for the QCD2 in the large-N limit. We will also see
that the Bogoliubov angle θðpÞ will explicitly enter the
expression for the quasi-PDFs. This may offer some
useful insight on the nature of quasi-PDFs in 3þ 1-
dimensional QCD. In this section, we assume the meson
is moving along the positive ẑ axis, so P > 0.

A. Light-cone PDF

Collins and Soper have given a gauge-invariant operator
definition for the PDFs [65]. One can readily adapt their
definition to QCD2. According to [65], the quark light-cone
PDF in QCD2 is defined as the nonlocal light-cone
correlators sandwiched between two equal-momentum
mesons, which are the nth mesonic states carrying the
light-cone momentum Pþ:

9One certainly can also use the equivalent PV prescriptions as
specified in (29). Another practically useful prescription is the
subtraction scheme [62], that is, for a test function fðyÞ which is
regular at y ¼ x, one has ⨍dy fðyÞ

ðx−yÞ2 ≡
R
dy 1

ðx−yÞ2 ½fðyÞ − fðxÞ−
ðy − xÞf0ðxÞ�.
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qnðxÞ¼
Z þ∞

−∞

dξ−

4π
e−ixP

þξ−

×hP−
n ;Pþjψ̄ðξ−ÞγþW½ξ−;0�ψð0ÞjP−

n ;PþiC; ð65Þ

where P−
n ¼ M2

n=ð2PþÞ, with Mn the meson mass of the
n-th state. Here ψ denotes quark Dirac field, and

W½ξ−; 0� ¼ P
�
exp

�
−igs

Z
ξ−

0

dη−Aþðη−Þ
��

ð66Þ

is the gauge link connecting the two quark fields, inserted
to ensure the gauge invariance of the PDF. x ¼ kþ=Pþ is
the light-cone momentum fraction carried by the parton
with respect to that of the meson. By construction, the light-
cone PDF in (65) is boost invariant along the z direction.
The subscript C in (65) indicates the disconnected con-
tribution such as

hP−
n ; PþjP−

n ; P
þi

Z þ∞

−∞

dξ−

4π
e−ixP

þξ−

× h0jψ̄ðξ−ÞγþW½ξ−; 0�ψð0Þj0i ð67Þ
should be discarded when calculating the forward matrix
element (65) [66].
PDF has a most transparent probabilistic interpretation in

the light-front quantization framework [66]. Moreover,
being a gauge-invariant quantity, the simplest way to
proceed is to impose the light-cone gauge A− ¼ 0 in
(65), so that the gauge link can be dropped. For simplicity,
we will adopt the LF quantization and light-cone gauge in
QCD2, as was comprehensively described in Sec. III.
The presence of γþ in (65) implies that only the ψR

component (“good” component) of the Dirac field ψ is
projected out. Applying the Fourier expansion of the ψR as
in (13), and replacing the meson state by acting m†

nðPþÞ on
the vacuum, and the light-cone PDF in (65) then becomes

qnðxÞ¼
Z þ∞

−∞

dξ−

4π
e−ixP

þξ−
ZZ

dkþ1 dk
þ
2

4π2

×h0jmnðPþÞ
ffiffiffiffiffiffiffiffiffi
2Pþp

½b†ðkþ1 Þeik
þ
1
ξ−

þdðkþ1 Þe−ik
þ
1
ξ− �½bðkþ2 Þþd†ðkþ2 Þ�

ffiffiffiffiffiffiffiffiffi
2Pþp

m†
nðPþÞj0iC:

ð68Þ

Replacing the combinations b†ðkþ1 Þbðkþ2 Þ, b†ðkþ1 Þd†ðkþ2 Þ,
dðkþ1 Þbðkþ2 Þ, and dðkþ1 Þd†ðkþ2 Þ by the bosonic operators B,
M†, M, and D as in (15) correspondingly, and rewriting B
and D in terms of M, M† according to (19), then
eliminating M, M† in favor of mn or m†

n in line with
(21), we end up with the vacuum matrix element of the
product of a string of mesonic creation and annihilation
operators. Discarding the disconnected piece (67), which
arises from the commutator between mn and m

†
n, we obtain

the intended LC PDF for the nth mesonic state,

qnðxÞ ¼ φnðxÞ2; ð69Þ

where φnðxÞ is the ’t Hooft light-cone wave function
associated with the nth mesonic state. This result confirms
what was obtained in [35] using simpler method.
Hearteningly, the light-cone PDF in ’t Hooft model looks
exceedingly simple.
It is also straightforward to account for the antiquark

distribution, by extending the support of x in (69) from
0 ≤ x ≤ 1 to −1 ≤ x ≤ 1,

qnðxÞ ¼ ϵðxÞφnðjxjÞ2; ð70Þ

with the sign function ϵðxÞ equal to 1 for positive x, and
equal to −1 for negative x. Since we are considering only
the flavor-neutral meson, the antiquark PDF is obviously
identical to the quark PDF.

B. Quasi-PDF

The quasi-PDFwas recently introduced by Ji as a proxy to
facilitate the extraction of the light-cone PDF from
Euclidean lattice QCD [6,7]. It is defined as the equal-time
spatially nonlocal correlation functions sandwiched
between two equal-momentum hadrons. Although the
quasi-PDF is obviously not boost-invariant, its profile is
expected to converge to the light-cone PDF in the IMF.
Analogous to the definition of the quasi-PDF in realistic
QCD [6], the quasi-PDF in QCD2 can be defined as
the following forward matrix element, with the external
hadron taken to be the n-th mesonic state with the spatial
momentum P:

q̃nðx;PÞ¼
Z þ∞

−∞

dz
4π

eixPzhP0
n;Pjψ̄ðzÞγzW½z;0�ψð0ÞjP0

n;PiC;

ð71Þ

where P0
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

n

p
, x ¼ k=P is the spatial momentum

fraction carried by the parton with respect to that of the
meson. Unlike the light-cone PDF, the range of x is
unconstrained, −∞ < x < ∞. The spacelike gauge link

W½z; 0� ¼ P
�
exp

�
−igs

Z
z

0

dz0Azðz0Þ
��

ð72Þ

has been inserted in (71) to ensure gauge invariance of the
quasi-PDF.
Similar to (65), the subscriptC in (71) again indicates that

only the connected contributions are included. Therefore,
the disconnected piece,

hP0
n;PjP0

n;Pi
Z þ∞

−∞

dz
4π

eixPzhΩjψ̄ðzÞγzW½z;0�ψð0ÞjΩi ð73Þ

should be discarded when calculating the matrix element
affiliated with the quasi-PDF.
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Since the quasi-PDF is time independent, it is natural to
study its property in the equal-time quantization. Moreover,
it is most convenient to compute the quasi-PDF in the axial
gauge Az ¼ 0 in (71), so that one can neglect the gauge
link. For simplicity, in this subsection, we will stay with the
equal-time quantization and work with axial gauge in
QCD2, closely following the quantization procedure
detailed in Sec. IV.
We proceed by the bosonization procedure similar to

computing the light-cone PDF in Sec. VA. First replacing
the meson state by acting m†

nðPÞ on the true vacuum jΩi,
our task then becomes to compute the vacuum matrix
element. Conducting the Fourier expansion of the Dirac
field ψ in accordance with (36), expressing the product of
two quark annihilation and creation operators in terms of B,
M†, M, and D as introduced in (49), followed by rewriting
B, D as the convolution integral betweenM, M† according
to (51), then trading M, M† for the meson annihilation and
creation operators mn or m†

n in line with (56), we end up
with the vacuummatrix element of the product of a string of
meson annihilation and creation operators. Repeatedly
applying the commutation relations

q̃nðx; PÞ ¼
P0
n

P
sin θðxPÞ½ðφnþðxP; PÞÞ2 þ ðφn

−ðxP; PÞÞ2

þ ðφnþð−xP; PÞÞ2 þ ðφn
−ð−xP; PÞÞ2�: ð74Þ

The explicit occurrences of the Bogliubov angle θðpÞ, and
the backward-moving component of the Bars-Green wave
functions φn

−, make the quasi-PDF a much more compli-
cated object than the light-cone PDF. It is reassuring to see
that, in the IMF, i.e., in the P → ∞ limit, where P0

n → P,
θðxPÞ → π

2
ϵðxÞ, and ϕn

− dies away, the quasi-PDF in (74)
does recover the light-cone PDF in (69).
Equation (74) is one of the key achievements of this

paper. We have successfully constructed the quasi-PDF in
terms of the basic building block of QCD2 in axial gauge,
the chiral angle and the Bars-Green wave functions. We are
wondering whether this reduction pattern, at least to some
extent, can also be carried over to the realistic QCD.
Charge conjugation symmetry imposes the following

relation for the q̃ðxÞ:

q̃ð−x; PÞ ¼ −q̃ðx; PÞ: ð75Þ

Reassuringly, the quasi-PDF as specified in (74), indeed
obeys this relation.
It is worth mentioning here, the definition of quasi-PDF

is by no means unique. In principle, one can construct an
infinite number of gauge-invariant quasi-PDFs, all of which
are equally legitimate provided that all of them can reduce
to the light-cone PDF in IMF. It can be said that all the legal
definitions of quasi-PDFs form a universality class [67]. In
Appendix A, we will numerically compare two different
definitions of quasi-PDF, the one just considered in this

section, versus the other defined by replacing γz in (71)
with γ0.

VI. BUILDING LCDA AND QUASI-DA OUT OF
BOUND-STATE WAVE FUNCTIONS

For hard exclusive reactions involving hadrons, it is the
light-cone distribution amplitude (LCDA), rather than the
PDF, that directly enters the QCD factorization theorem
[68]. Therefore, LCDAs represent the fundamental non-
perturbative inputs in order to describe the hard exclusive
QCD processes.
Analogous to Sec. V, we will in this section express the

LCDA and quasi-DA of a flavor-neutral meson in QCD2, in
terms of its bound-state wave functions.

A. LCDA

In line with Refs. [68,69], one defines the LCDA of a
flavor-neutrual meson in QCD2 as

ΦnðxÞ ¼
1

fðnÞ

Z þ∞

−∞

dξ−

2π
e−iðx−1

2
ÞPþξ−

	
P−
n ; Pþ





ψ̄�ξ−2
�

×W
�
ξ−

2
;−

ξ−

2

�
γþγ5ψ

�
−
ξ−

2

�



0�; ð76Þ

where W is the lightlike gauge link similar to what is
introduced in (65). fðnÞ denotes the decay constant of the
nth mesonic state, defined through [40,51]

hn; Pjψ̄γμγ5ψ jΩi ¼ fðnÞ
Pμffiffiffiffiffiffiffiffi
2P0

p : ð77Þ

Analogous to Sec. VA, it is most transparent to study
the LCDA in LF quantization supplemented with further
imposing the light-cone gauge. The expressions of the
meson decay constants are particularly simple in LF
quantization [51],

fðnÞ ¼
8<:

ffiffiffi
N
π

q R
1
0 dxφnðxÞ evenn;

0 odd n;
ð78Þ

which are particularly simple. Due to the parity consider-
ation, the decay constants of all the n-odd flavor-neutral
mesons vanish. Therefore, we will concentrate on the
LCDAs of those n-even mesonic states.
Following the essentially same bosonization techniques

that lead to the light-cone PDF in Sec. VA, we find the
LCDA for the n-even mesonic states to be

Φ2nðxÞ ¼
1

fð2nÞ

ffiffiffiffi
N
π

r
φ2nðxÞ; ð79Þ

which is simply proportional to the ’t Hooft wave function.
Since the decay constant scales as

ffiffiffiffi
N

p
, the LCDAs thereby

assume finite value in the N → ∞ limit. As a matter of fact,
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the LCDAs are subject to the normalization condition by
construction: Z

1

0

dxΦ2nðxÞ ¼ 1: ð80Þ

B. Quasi-DA

Analogous to the quasi-DA introduced in QCD4 [6,7],
here we choose to define the quasi-DA in QCD2 in its
canonical form,

Φ̃nðx;PÞ¼
1

fðnÞ

Z þ∞

−∞

dz
2π

eiðx−1
2
ÞPz

×

	
P0
n;P





ψ̄�z
2

�
W

�
z
2
;−

z
2

�
γzγ5ψ

�
−
z
2

�



Ω�;
ð81Þ

where W is the spacelike gauge link as introduced in (71).

Employing essentially the same bosonization procedure,
which leads to the analytic expression for quasi-PDF in
Sec. V B, we finally find that the quasi-DAs of those n-even
mesonic states can be formulated as

Φ̃2nðx; PÞ ¼
1

fð2nÞ

ffiffiffiffi
N
π

r ffiffiffiffiffiffi
P0

P

r
sin

θðxPÞ þ θðP − xPÞ
2

× ½φ2nþ ðxP; PÞ þ φ2n
− ðxP; PÞ�; ð82Þ

where φ2n
� denote the Bars-Green wave functions associ-

ated with the 2nth excited mesonic state. The explicit form
of the decay constant fðnÞ in axial gauge has also been
worked out [40], which looks considerably more compli-
cated than the LF quantization case:

fðnÞ ¼

8><>:
ffiffiffiffiffiffiffiffiffi
NP0

πP

r Z
∞

−∞
dx sin

θðxPÞ þ θðP − xPÞ
2

½φnþðxP; PÞ þ φn
−ðxP; PÞ� even n;

0 odd n:

ð83Þ

Note the Bars-Green wave functions and the Bogoliubov
angle conspire in a nontrivial manner so that fðnÞ is
independent of the Lorentz frame.
Comparing (82) and (83), one sees that, by construction

the quasi-DAs also obey a very simple normalization
condition: Z

∞

−∞
dxΦ̃2nðx; PÞ ¼ 1: ð84Þ

Reassuringly, in the IMF (P → ∞), one readily verifies
that, the quasi-DA in (82) does recover the LCDA as given
in (79).

VII. NUMERICAL RESULTS OF
QUASI-PDF AND -DA

Based on the analytic expressions for the light-cone and
quasidistributions worked out in the preceding sections, we
aregoing to present a comparative study for quasidistributions

FIG. 1. Bogoliubov-chiral angle θðpÞ, and the regularized dressed quark energy, EðpÞ, as functions of ξ ¼ tan−1ð pffiffiffiffi
2λ

p Þ, with different
quark masses as specified in Table I. Most curves are taken from Ref. [40], except those for the charm quark.
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and their light-cone counterparts in this section. We consider
four types of lowest-lying flavor-neutral mesons: chiral
(massless) pion (πχ), physical pion π, a fictitious “strang-
eonium” ss̄, and charmonium, varying the quark masses
according to the recipe described in Ref. [40]. For the light-
cone and quasi-PDFs, we also consider the first excited states
associated with these four meson species.
The ’t Hooft coupling λ ¼ 0.18=π GeV2 is taken to

coincide with the value of the string tension in realistic
QCD4 [35]. The quark masses (in units of

ffiffiffiffiffi
2λ

p
) are tuned in

such a way that the ground-state meson masses coincide
with the realistic meson masses of πχ , π and cc̄, while the
mass of the s quark is determined by demanding that the
Bogoliubov angle θðpÞ as a function of ξ ¼ tan−1ðp= ffiffiffiffiffi

2λ
p Þ

is closest to a straight line [40]. The numerical solutions of
the ’t Hooft equation, mass-gap equation and Bars-Green
equations have already been presented comprehensively in
Ref. [40], and we refer the interested reader to that paper for
technical details. Here we will directly present our numeri-
cal results. For the sake of clarity, the profiles of the
Bogoliubov angle θðpÞ and the dispersion relation EðpÞ,
which are affiliated with the aforementioned quark masses,
are depicted in Fig. 1.
The quark masses and the corresponding meson mass

spectra (for simplicity, we only include the ground state
n ¼ 0 and the first excited state n ¼ 1) are listed in Table I.
In light of the numerically available ’t Hooft and Bars-

Green wave functions [40], as well as (74) and (82), we
calculate the quasidistributions of those mesons in several
different reference frames. The light-cone distributions are
also juxtaposed for comparison. The numerical results of
light-cone and quasi-PDFs for lowest-lying mesons are
shown in Fig. 2, and those for the first excited state in
Fig. 3, while the numerical results for the LCDAs and
quasi-DAs of the ground-state mesons are presented
in Fig. 4.
From Figs. 2, 3, and 4, one clearly observes the general

tendency, that irrespective of the meson species, the

quasidistributions are indeed converging to their light-cone
counterparts, as the meson gets more and more boosted.
An interesting observation is that, the quasidistributions

of heavier mesons (ss̄, cc̄) appear to converge to the light-
cone distributions at a faster pace than those of lighter
mesons (πχ , π). To quantify this assertion, let us introduce
the ratio r≡ Pn=Mn. For light mesons, as exemplified by
the physical pion, even when boosted to r ¼ 8, there still
exists considerable difference between the shapes of the
light-cone and quasidistributions; on the other hand, heavy
mesons tends to exhibit a rather different pattern. When
r ¼ 5 for the ss̄ meson, or when r ¼ 2 for the cc̄ meson,11

the quasidistributions already coincide with the light-cone
distributions to a decent degree.
The correlation between the convergence behavior of the

quasidistributions under boost and the hadron species has
already been noticed in lattice simulations in realistic
QCD4 [18–22]. There it is found that, somewhat counter-
intuitively, the nucleon’s quasi-PDF approaches its light-
cone PDF at a much faster pace than the quasi DA of pion
approaches its LCDA.
If it is not a sheer accident, it will be valuable if the ’t

Hooft model can offer some insight into unraveling this
curious correlation pattern observed in real world.
We end this section by commenting on a simple fact

concerning the first excited state. As can be seen in Fig. 3,
one observes a zero at x ¼ � 1

2
for various light-cone PDFs

in the n ¼ 1 state, but not for the corresponding quasi
PDFs. This can be understood from the angle of the charge
conjugation symmetry [40],

φnð1 − xÞ ¼ ð−1ÞnφnðxÞ;
φ̃n
�ð1 − x; PÞ ¼ ð−1Þnφ̃�ðx; PÞ; ð85Þ

which implies that the light-cone as well as Bars-Green
wave functions of the n-odd states must have a zero at
x ¼ 1

2
. Nevertheless, as one can see from (74), due to the

presence of sin θðxPÞ as well as the different arguments
arising in four types of squared Bars-Green functions, the
quasi-PDFs in finite reference frame no longer possess the
simple odd symmetry under x ↔ 1 − x.

VIII. ONE-LOOP PERTURBATIVE
CALCULATIONS FOR LIGHT-CONE AND

QUASIDISTRIBUTIONS AND IR DIVERGENCES

So far, we have been completely concentrating on the
nonperturbative aspects of the light-cone and quasidistri-
butions in QCD2. In this section, we will instead switch the
gear, to address some theoretical issues within the confine
of perturbation theory.

TABLE I. Quark masses and the corresponding meson mass
spectra, where only the ground state and the first excited state are
included.10

mq u=d u=d s c

0 0.045 0.749 4.190
Mn πχ π ss̄ cc̄
n ¼ 0 0 0.41 2.18 9.03
n ¼ 1 2.43 2.50 3.72 10.08

10In Ref. [40], the charm quark mass is “erroneously” take to
be mc ¼ 4.23

ffiffiffiffiffi
2λ

p
. In this work, we take mc to be 4.19

ffiffiffiffiffi
2λ

p
,

which is tuned to reproduce the center-of-gravity mass of the
lowest-lying charmonia, MC:O:G ¼ 1

4
Mηc þ 3

4
MJ=ψ , associated

with the real world.

11We stop at r ¼ 2 for charmonium, mainly because the
technical challenge about numerical instability of boosting a
heavy meson quickly becomes insurmountable.
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FIG. 2. Quark light-cone and quasi-PDFs for the chiral pion, physical pion, lowest-lying strangeonium and charmonium. The
momentum of chiral pion is in unit of the physical pion mass.

FIG. 3. Quark light-cone and quasi-PDFs for the 1st excited state corresponding to four different quark masses as specified in Table I.
The meson momenta are in units of the ground-state mass for each quark specifies.
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The key insight underlying LaMET in QCD4 is that
quasidistributions exhibit the same IR behavior as their
light-cone counterparts in the leading power of 1=Pz [6].
Because of this peculiar feature, there arises a factorization
theorem that connects the quasi- and light-cone PDFs [6–8],

q̃ðx;Pz;ΛÞ¼
Z

1

−1

dy
jyjZ

�
x
y
;
Λ
Pz ;

μ

Pz

�
qðy;μÞþO

�Λn
QCD

Pn
z

;
Mr

Pr
z

�
;

ð86Þ
whereΛ represents a UV cutoff in the transverse momentum
space associated with the quasi-PDF, and μ is the renorm-
alization scale associated with the light-cone PDF. The
neglected terms represent the higher-twist corrections. The
factorization theorem (86) states that the Z factor takes into
account the difference between the UV regimes of the light-
cone and quasi-PDFs,which is thus amenable to perturbation
theory owing to the asymptotic freedom of QCD. Through
the one-loop order, theZ factor affiliated with the quark PDF
can be expressed as

Z

�
ξ;
Λ
Pz ;

μ

Pz

�
¼ δðξ−1Þþαs

π
Zð1Þ

�
ξ;
Λ
Pz ;

μ

Pz

�
þ��� : ð87Þ

The order-αs coefficient can be computed by the perturbative
matching procedure,

Zð1Þ
�
ξ;

Λ
Pz ;

μ

Pz

�
¼ q̃ð1Þðξ; Pz;ΛÞ − qð1Þðξ; μÞ; ð88Þ

where the physical hadron has been replaced by a single
quark, q̃ð1Þ andqð1Þ signify the correspondingquasi- and light-
cone PDF associated with this “fictitious” hadron, accurate to
the order-αs. In four spacetime dimensions, due to the severe
UV divergence emerging from the transverse momentum
integration, the limit ofPz → ∞ andΛ → ∞ generally do not
commute [8]. It is this very noncommutativity that leads to a
nontrivial matching factor in realistic QCD.
In this section, we will calculate the one-loop corrections

to the light-cone and quasidistributions in d ¼ 2 spacetime
dimensions. The major motif of such computation is to
verify one of the backbone of LaMET, that quasi- and light-
cone distributions indeed possess the same IR behavior in
the leading order in 1=Pz, even in QCD2. Recall that the
gauge coupling in QCD2 carries a positive mass dimension,
thereby the ’t Hooft model is a superrenormalizable theory.
Therefore, the (almost) absence of UV divergences in loop
diagrams12 nullifies the aforementioned noncommutativity;

FIG. 4. LCDAs and quasi-DAs for the chiral pion, pion, lowest-lying strangeonium and charmonium. The momentum of the chiral
pion is in units of the physical pion mass.

12One exception is the perturbative correction to the quark
condensate hψ̄ψi in QCD2, which receives a logarithmic UV
divergence from the one-loop tadpole diagram, and can be
eliminated through additive renormalization [70].
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thus, we do not expect a nontrivial Z factor to arise. On the
other hand, QCD2 has much more severe IR divergences
than its four-dimensional cousin, so it is interesting to
explicitly examine the IR behavior of light-cone and
quasidistributions.
At first sight, it may appear attractive to utilize dimen-

sional regularization (DR) to regularize the IR divergence.
Nevertheless, apart from automatically preserving Lorentz
and gauge invariance, this popular regularization scheme is
not suited for our purpose. First, we will encounter severe
power IR divergences, which are simply absent in DR, but
are actually what we desire to see. More importantly, DR in
1þ 1-dimensional theory has some intrinsic drawback.
When working in 2 − 2ϵ dimensions, we have artificially
introduced some fictitious transverse degrees of freedom,
which might lead to some pathological behavior when
taking the ϵ → 0 limit in the end.
In formulating the bound-state equation in the

Hamiltonian approach in Secs. III and IV, we have used

an infrared momentum cutoff to regularize the IR diver-
gence. In this section, we will again employ this “physical”
IR cutoff, which turns out to be convenient and less
confusing. It is worth mentioning that the large-N limit
is no longer required in this section.

A. Light-cone and quasi-PDFs to one-loop order

In computing the quark light-cone and quasi-PDFs, we
replace a physical meson by a single quark. For technical
simplicity, in this subsection, we will no longer stay with
the noncovariant gauge, rather conduct all the calculation in
Feynman gauge. The one-loop Feynman diagrams for
quark PDF are shown in Fig. 5.
At this stage, we will treat the one-loop corrections for

light-cone and quasi-PDF in a unified manner. Following
the Feynman rules for PDF (quasi-PDF) and gluon-gaugue
link interaction term in Ref. [66], the contributions from
real correction diagrams are [10,71]

QR
a ðx; nÞ ¼

−ig2s
2

Z
d2k
ð2πÞ2

ūðPÞγμðkþmÞ=nðkþmÞγμuðPÞ
ðk2 −m2 þ iϵÞ2½ðP − kÞ2 þ iϵ� δðn · k − xn · PÞ; ð89aÞ

QR
bþcðx; nÞ ¼ −ig2s

Z
d2k
ð2πÞ2

ūðPÞ=nðkþmÞ=nuðPÞ
ðk2 −m2 þ iϵÞ½ðP − kÞ2 þ iϵ�

δðn · k − xn · PÞ
n · ðP − kÞ ; ð89bÞ

QR
d ðx; nÞ ¼

−ig2s
2

Z
d2k
ð2πÞ2

n2ūðPÞ=nuðPÞ
ðP − kÞ2 þ iϵ

δðn · k − xn · PÞ
½n · ðP − kÞ�2 ; ð89cÞ

P

k

P − k

P − k

P

k

P − k

P

k

P

P − k

Ra Rb RdRc

P P

P − k P − kP − kP − kk

P P

VdVcVbVa

P

k P − k

P

k

P − k

P

k

P − k

P

P − k

P

P P PP

P − kP − kP − k

FIG. 5. One-loop Feynman diagrams for quark light-cone and quasi-PDF. The upper row corresponds to the real correctionsQR, while
the lower row corresponds to the virtual corrections QV which are proportional to δðx − 1Þ. The Feynman diagrams show the one-loop
corrections to the process of a quark with momentum P splitting to a quark with momentum k (Ra), the quark interacting with gauge link
though a gluon exchange (Rb;c, Vb;c), the quark’s self-energy (Va) and gauge link’s self-interaction (Rd, Vd). The double line represents
the gauge link in PDF and quasi-PDF definition in (65) and (71), while the dashed double line represents the gauge link on which no net
momentum flows. For simplicity, we have also omitted the wave function renormalization on the quark leg in the final state.
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and the contributions from virtual correction diagrams are
[10,71]

QV
a ðx;nÞ¼ δZFδð1−xÞ¼−δð1−xÞdΣðPÞ

d=P






=P¼m

; ð90aÞ

QV
bþcðx; nÞ ¼ −δðx − 1Þ

Z
dxQR

bþcðx; nÞ; ð90bÞ

QV
d ðx; nÞ ¼ −δðx − 1Þ

Z
dxQR

d ðx; nÞ; ð90cÞ

where ΣðPÞ represents the quark self-energy, and ZF
denotes the quark wave function renormalization constant.

The above expressions in (89) and (90) can be adapted to
both light-cone or quasi-PDF, depending on the specific
choice of the reference vector nμ. For the former, nμ is
chosen to be the null vector nμ ¼ nμLC such that n2LC ¼ 0,
k · nLC ¼ kþ, and γ · nLC ¼ γþ; while for the latter, the
reference vector is taken to be nμz , such that n2z ¼ −1,
k · nz ¼ kz, and γ · nz ¼ γz.
To compute the one-loop corrections to the light-cone

PDF, it is convenient to switch to the light-cone coordinate,
so one can write P · k ¼ Pþk− þ P−kþ. The integration
over kþ can be trivially carried out using the δ function,
while the k− integration is performed via the method of
residue. Summing all the real correction diagrams, we find
a null result,

qRðxÞ ¼QR
a ðx;nLCÞ þQR

bþcðx;nLCÞ þQR
d ðx;nLCÞ ¼

8>><>>:
�

−xg2sCF

πm2ð1− xÞ3
�

a
þ
�

xg2sCF

πm2ð1− xÞ3
�

bþc
þ ð0Þd 0< x < 1

0 Otherwise

¼ 0;

ð91Þ

where the subscript a, bþ c, d denote the contributions from Ra, Rb þ Rc, and Rd in Fig. 5, respectively.
In computing the virtual corrections (90), we have employed the momentum fraction η as an IR regulator, imposed on the

kþ integration,

Z
Pþ

0

dkþ ⇒ Pþ
Z

1

0

dxΘð1 − x − ηÞ; ð92Þ

where x ¼ kþ=Pþ and η → 0þ.
The sum of the virtual diagrams also vanishes:

qVðxÞ ¼ QVðx; nLCÞ ¼
�
δðx − 1Þ g

2
sCF

2πm2

�
1

η2
−
2

η
þ 1

��
a
þ
�
−δðx − 1Þ g

2
sCF

2πm2

�
1

η2
−
2

η
þ 1

��
bþc

þ ð0Þd ¼ 0: ð93Þ

Piecing all terms together, the light-cone PDF at one-loop level is

qðxÞ ¼ qRðxÞ þ qVðxÞ ¼ 0: ð94Þ

The vanishing light-cone PDF in two dimensions is not surprising. The one-loop quark PDF can be interpreted as the
probability of a parent quark splitting into a daughter quark plus a on-shell gluon. However, there is no physical gluon in
two dimensions because the lacking of transverse degree of freedom. Consequently, the one-loop light-cone PDF (splitting
function) vanishes.
For the quasi-PDF, we stay with the ordinary coordinates and the reference two-vector n is chosen as the spacelike unit

vector nz. For the real correction diagrams, first performing the kz integration using the δ function, then integrating over k0

via the method of residues, we obtain
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q̃Ra ðx;PzÞ¼QR
a ðx;nzÞ¼

g2sCFm2

4π

�
xPz½2P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þx2P2

z

p
þ2m2þxðxþ1ÞP2

z �
ðm2þx2P2

zÞ3=2ðP0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þx2P2

z

p
þm2þxP2

zÞ2
−

x
jx−1jP2

z ½jx−1jP0þðx−1ÞPz�2
�
;

ð95aÞ
q̃Rbþcðx;PzÞ¼QR

bþcðx;nzÞ

¼ g2sCF

4π

�
P0jx−1j−Pzðxþ1Þ

P2
zðx−1Þjx−1j½P0jx−1jþPzðx−1Þ�−

P0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þx2P2

z

p
þm2−xP2

z

Pzðx−1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þx2P2

z

p
ðP0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þx2P2

z

p
þm2þxP2

zÞ

�
;

ð95bÞ

q̃Rd ðx; PzÞ ¼ QR
d ðx; nzÞ ¼

g2sCF

4πP2
z jx − 1j3 : ð95cÞ

It is straightforward to check that, in the IMF, the one-loop corrections to the quasi-PDF do approach their light-cone
counterparts, in a diagram-by-diagram basis.
Next we turn to the virtual corrections for the quasi-PDF. Each individual virtual one-loop diagram yields the following

contribution, respectively,

q̃Va ðx; PzÞ ¼ δðx − 1Þ g
2
sCF

2πm2

�
P2
0 þ P2

z

2P2
zη

2
−
P2
0 þ P2

z

PzP0η
þ 1

�
; ð96aÞ

q̃Vbþcðx; PzÞ ¼ QV
bþcðx; nzÞ ¼ −δðx − 1Þ g

2
sCF

2πm2

�
1

η2
−
2P0

ηPz þ
m4tanh−1ðPz

P0Þ þ P0Pzðm2 þ P2
0Þ

P3
0P

z

�
; ð96bÞ

q̃Vd ðx; PzÞ ¼ QV
d ðx; nzÞ ¼ −δðx − 1Þ g2sCF

4πP2
zη

2
; ð96cÞ

where the quadratic IR singularity emerges in each diagram.
In computing the virtual corrections for quasi-PDFs,

analogous to (92) in the light-cone case, we again utilize the
momentum fraction η as an IR regulator, imposed on the kz

integration,Z
Pz

0

dkz ⇒ Pz

Z
1

0

dxΘð1 − x − ηÞ; ð97Þ

where x ¼ kz=Pz and η → 0þ.
Summing up q̃Ra;bþc;d and q̃Va;bþc;d, we obtain the com-

plete one-loop corrections to the quasi-PDF,

q̃ðx; PzÞ ¼ g2sm2

4πPz

�
1

ðx − 1Þðm2 þ P2
zx2Þ3=2

�
þ

þ g2s
2πηP0Pz δðx − 1Þ; ð98Þ

which is suppressed by at least one inverse power of Pz.
Note the linear IR divergence is still present, but accom-
panied with a Oð1=P2

zÞ suppression factor.
Comparing (94) with (98), we verify that, to the one-loop

order, both the light-cone and quasi-PDFs do share the
same IR behavior at the leading power in 1=Pz, which is
simply zero.
Integrating q̃ðx; PzÞ in (98) over the entire range of x

generates the one-loop correction to the vector current ψ̄γzψ .
This nonvanishing integral indicates that the vector current

no longer conserves, with the extent of violation of
Oðg2s=P2

zÞ, clearly a higher-twist effect. We suspect that
the breaking of vector current conservation may originate
from the fact that the momentum cutoff in the kz integration
likely violates Lorentz invariance. To check this assumption,
we also recalculate the one-loop correction to the vector
current in DR, and confirm that the current conservation
holds at one-loop order. Despite this nuisance, in order to be
consistent with the rest of the paper, we will still stick to the
soft momentum cutoff as a viable IR regulator.
In passing, it is worth mentioning that, in the matching

between the light-cone and quasigeneralized parton dis-
tribution functions (GPDs) in four spacetime dimensions, a
similar pattern has also been observed: for the E-type GPD,
the light-cone and quasi-GPD differ in IR at one-loop order
only by a higher-twist term [72,73].
As anticipated, due to UV finiteness of QCD2 at the one-

loop level, the matching between the quasi-PDF and light-
cone PDF turns out to be trivial, at least to this perturbative
order, thereby the corresponding Z factor is simply δðξ − 1Þ.
It is also illuminating to trace the origin of the 1=Pz-

suppressed scaling behavior of quasi-PDF (hence the
vanishing light-cone PDF) from another angle, i.e., from
the time-ordered perturbation theory (TOPT), or often
referred to as the old-fashioned perturbation theory.
From (34), one can split the axial-gauge QCD2

Hamiltonian into the free and the interaction parts:
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H ¼ H0 þHint; ð99aÞ

H0¼
Z

dzψ†ðzÞð−iγ5∂zþmγ0ÞψðzÞ; ð99bÞ

Hint ¼
ZZ

dzdz0Hintðz; z0Þ ¼ −
g2s
2

X
a

Z
dzdz0ψ†ðzÞTaψðzÞG̃ð2Þ

ρ ðz − z0Þψ†ðz0ÞTaψðz0Þ. ð99cÞ

It is convenient to conduct the TOPT calculation for the partonic quasi distributions in the Az ¼ 0 gauge, where the gauge
linksW in the quasi-PDF in (71) and quasi-DA in (81) simply disappear. Through the second order in gs, it turns out that the
quasi-PDF in (71) and quasi-DA in (81) can be recast into the equivalent TOPT format, each of which consists of two
distinct time-ordering between ψ̄γzψ and Hint:

q̃ðx;PzÞ ¼
ZZ

dz1dz2

Z
dz
4π

eixP
zz

�
hPjψ̄ðzÞγzψð0Þ 1

P0−H0

Hintðz1; z2ÞjPiCþhPjHintðz1; z2Þ
1

P0−H0

ψ̄ðzÞγzψð0ÞjPiC
�
;

ð100aÞ

Φ̃ðx;PzÞ¼
ZZ

dz1dz2

Z
dz
2π

eiðx−1
2
ÞPzz

�
hp;P−pjψ̄ðz

2
Þγzψð− z

2
Þ 1

P0−H0

Hintðz1;z2Þj0iC

þhp;P−pjHintðz1;z2Þ
1

P0−H0

ψ̄ðz
2
Þγzψð−z

2
Þj0iC

�
; ð100bÞ

whereH0 appearing in the energy denominator refers to the
free part of the Hamiltonian, and Hint represents the
instantaneous Coulomb interaction, both of which are
defined in (99).
As before, we first replace the external hadronic states in

(100a) by an on-shell quark with 2-momentum
Pμ ¼ ðP0; PzÞ. We proceed by inserting a complete set
of eigenstates of H0 immediately left to 1=ðP0 −H0Þ in
(100a). To obtain a nonvanishing result, the viable inter-
mediate states are inevitably composed of three free
particles, qq̄q, which turns out to contribute to the real
corrections for the quasi-PDF.13 We then compute the
matrix elements of ψ̄γzψ andHint separately, by contracting
the field operators with the external partonic states in all
possible way. Integrating over the spatial variables z1, z2
and z, we then end with the product of several momentum-
conserving δ-function. One finally can write down all the
order-g2s contributions to the quasi-PDF. Each individual
contribution corresponds to a particular way of contracting
field operators and external states, which is schematically
represented by the those TOPT diagrams in Fig. 6.
Since the intermediate states must contain three particles

for quasi-PDF, it is inevitable for the vacuum creation and
annihilation vertices to arise in the TOPT diagrams, as can
be clearly seen from the top row of Fig. 6. Obviously, it is

the resulting large energy denominator that is responsible
for the 1=Pz-suppressed behavior [74] of quasi-PDF. The
quasi-PDF eventually vanishes when viewed in the IMF,
which amounts to the vanishing light-cone PDF.

B. LCDA and quasi-DA to one-loop order

To access the LCDA and quasi-DA in perturbation
theory, we proceed to replace a meson by a color-singlet
qq̄ pair. To justify perturbative expansion, in this subsec-
tion, we assume the weak coupling limit, gs ≪ m, has been
taken. The corresponding one-loop diagrams for DAs are
shown in Fig. 7.
In four spacetime dimensions, the one-loop matching

factor linking the LCDA and quasi-DA, is more involved
than the one linking the light-cone PDF and quasi-PDF.
One needs to start with a more general momentum
configuration kþ ¼ xPþ and pþ ¼ yPþ. Thus the match-
ing factor Z cannot be written as a single-variable function
[72], instead must depend on both x and y. Owing to the
UV finiteness of QCD2, the matching factor is doomed to
be trivial. Therefore, for illustrative purpose, we will focus
on one specific kinematic configuration of the external
“mesonic” state, y ¼ 1

2
, that is, pþ ¼ Pþ

2
, so that the q and q̄

equally partition the fictitious meson’s total momentum. As
a consequence, the DA becomes the function of x only.
Following basically the same strategy as adopted in the

one-loop calculation for the light-cone and quasiquark
PDF, as described in Sec. VIII A, we obtain the one-loop
corrections to the LCDA, ΦðxÞ, and the quasi-DA,
Φ̃ðx; PzÞ:

13If the intermediate states only consist of the single quark q,
the matrix elements in (100a) then correspond to the virtual
correction to the quasi-PDF. For simplicity, we will not bother to
consider this piece of contribution.
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ΦðxÞ ¼
(
−
�
4g2sCFxð1 − xÞ
πm2ð1 − 2xÞ4

�
4þ

þ g2sCFð1 − 4ηÞ
16πm2η

δ00ðx − 1

2
Þ 0 < x < 1

0 Otherwise

; ð101aÞ

Φ̃ðx;PzÞ¼
�

g2sCF

πð1−2xÞ2Pz

�
−
2P0ðm2þxð1−xÞP2

zÞ
m2ð1−2xÞ2P2

z
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þð1−xÞ2P2
z

p xðx−1ÞP2
z−xP0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þðx−1Þ2P2

z

p
þ2m2ðx−1Þ

−P0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þðx−1Þ2P2

z

p
þ2m2−xP2

zþP2
z

�
þðx→1−xÞ

�
4þ−

g2sCF

16πm2ðPzÞ3δ
00
�
x−

1

2

��
4PzðP2

0−m2Þ−P3
0

η

�
; ð101bÞ

(a) (c)(b) (d)

(g) (h)(f)

FIG. 6. Various TOPT diagrams that are responsible for the Oðg2sÞ real correction contributions to quasi-PDF (a–d) and quasi-DA (e–
h). The dashed line represents the instantaneous color Coulomb potential. The horizontal (red) solid line specifies the allowed
intermediate on-shell partonic states.

FIG. 7. One-loop Feynman diagrams for the real (upper row) and virtual (lower row) corrections toDAof a fictitiousmesonwithmomentum
P, the Feynman diagrams show the one-loop corrections to the amplitude of extracting a quark (antiquark) with momentum k (P−k) from a
quarkantiquarkpairwithmomentump (P−p) correspondingly. For simplicity,wehaveomitted thewave function renormalizationdiagram for
the antiquark line. Identical to the PDF case, the virtual corrections to the DA take the form of ZFδðx−1

2
Þ. The double line represents the gauge

link in DA and quasi-DA definition (76) and (81), while the dashed double line represents the gauge link on which no net momentum flows.
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where a “4-plus” prescription has been introduced. This prescription is understood in a distributive sense, which is
defined asZ

x2

x1

dx

�
gðxÞ

jx− 1
2
j4
�
4þ
fðxÞ¼

Z
1

0

dx
gðxÞ

jx− 1
2
j4
�
fðxÞ−f

�
1

2

�
−f0

�
1

2

��
x−

1

2

�
−
f00ð1

2
Þ

2!

�
x−

1

2

�
2

−
f000ð1

2
Þ

3!

�
x−

1

2

�
3
�
; ð102Þ

where fðxÞ is any smooth functions that are regular at
x ¼ 1

2
. We further assume gðxÞ is symmetric under the

exchange x ↔ 1 − x, so that g0ð1
2
Þ ¼ 0. The integration

boundaries are x1 ¼ 0, x2 ¼ 1 for LCDA, and x1 ¼ −x2 ¼
−∞ for quasi-DA, respectively. In (101a) and (101b), we
have employed some distribution identities to express the
DAs in terms of these “4-plus” distributions. More details
about those identities can be found in Appendix B.
In contrast to (94) and (98) in the PDF case, one sees

that, to the one-loop order, the quasi-DA contains some
leading-twist pieces that are not suppressed by powers of
1=Pz. As anticipated, boosting (101b) to IMF, one readily
recovers (101a). The difference between quasi-DA and
LCDA is certainly of the higher-twist origin, of the
order g2s=P2

z.
Examining (101a) and (101b), reassuringly, we do

observe that both LCDA and quasi-DA possess the iden-

tical linear IR singularity, ∝ g2s
m2η

δ00ðx − 1
2
Þ.

It is again elucidating to see why the quark DA, in
contrast to the quark PDF, contains a leading twist term,
from the angle of time-ordered perturbation theory. Similar
to what is done to quasi-PDF, we also insert a complete set
of eigenstates of H0 immediately left to 1=ðP0 −H0Þ in
(100b). Unlike the case of quasi-PDF, here the allowed
intermediate states can be either qq̄ or qq̄qq̄, in order to
obtaina nonvanishing results for the real corrections to
quasi-DA. Computing both matrix elements involving
ψ̄γzψ andHint,exhausting all possible contractions between
Dirac field operators and the external partonic states,
integrating over the spatial variables z1, z2 and z, we
finally end up with all the order-g2s contributions to the
quasi-DA. Each contribution specifies a particular way of
contracting field operators and external states, which are
represented by the those TOPT diagrams in lower row
of Fig. 6.
In contrast to the case for quasi-PDF, apart from tetra-

quark states, the qq̄ two-particle states also constitute the
legitimate intermediate states. As a result, the correspond-
ing TOPT diagrams, e.g. Fig. 6(c,d), in the lower row, are
absent of the vacuum creation and annihilation vertices,
therefore freed from suppression by large energy denom-
inator. Consequently, the leading scaling behavior of
the quasi-DA in the large momentum limit isg2s=ðm2P0

zÞ,
which leads to a nonvanishing LCDA when viewed in
the IMF.
We now conclude this section. By explicitly working

out the one-loop corrections to quark PDF and DA in

QCD2, we have firmly established the validity of the
cornerstone of LaMET, viz., the partonic quasi- and
light-cone distributions do share the identical IR behavior
a t the leading power in 1=Pz. The one-loop correction to
the DA appears to constitute a more nontrivial example
than the PDF.

IX. SUMMARY AND OUTLOOK

In this paper, we have carried out a comprehensive study
of two important classes of meson parton distributions, the
PDF and DA, in the context of the large-N limit of QCD2.
Our approach is entirely based upon the first principles
of QCD. We have applied the Hamiltonian operator
method as well as bosonization technique to construct
both light-cone and quasidistributions out of the basic
building blocks, that is, the ’t Hooft wave function for the
former, Bars-Green wave functions and the Bogoliubov
angle for the latter. In a sense, equations (74) and (82)
are the key formulae of this work. Unlike their four-
dimensional counterparts, which can only be accessed by
numerical lattice simulation in Euclidean spacetime,
we have directly probed the quasidistributions in
Minkowski spacetime, and have developed a thorough
understanding about what they are made of in the two-
dimensional case.
We justify the ’t Hooft wave function as the valid light-

cone Fock state wave function of the hadron. Consequently,
the quark PDF and LCDA can be directly built out of ’t
Hooft wave function, in an exceedingly simple manner. On
the contrary, in the equal-time quantization, a pair of Bars-
Green wave functions alone is not sufficient to express the
quasidistributions, and one must supplement another
important ingredient, the Bogoliubov-chiral angle, which
may be viewed as characterizing the nonperturbative nature
of the vacuum.
We have presented a comparative numerical study

between light-cone PDFs and quasi-PDFs, as well as
between LCDAs and quasi-DAs, for a variety of meson
species. It is straightforward to see from (74) and (82) that,
the quasidistributions do converge to their light-cone
counterparts in the IMF. We also numerically verified the
tendency that, the quasidistributions do approach their light-
cone counterparts, when the meson gets more and more
boosted. We have also observed an interesting pattern, that
light meson’s quasidistributions, in general, approach the
light-cone distributions at a slower rate compared with the
heavy mesons under boost. This somewhat counterintuive

PARTONIC QUASIDISTRIBUTIONS IN TWO- … PHYS. REV. D 98, 054011 (2018)

054011-25



pattern is qualitatively consistent what is observed in lattice
simulations in realistic four-dimensional QCD [18,75].
Within the realm of perturbation theory, we have also

investigated the one-loop corrections to the light-cone and
quasidistributions in QCD2, yet abandoning the large-N
limit. We have verified the backbone of LaMET in this
novel theoretical setting, that the IR behaviors of quasi-
and light-cone distributions are identical at the leading
power in 1=Pz. It is theoretically interesting, since QCD2

has more severe IR divergence than QCD4. We do witness
how the linear IR divergences in LCDA and quasi-DA
agree with each in QCD2. Nevertheless, since QCD2 is
a super-renormalizable theory, the matching Z factor link-
ing the light-cone with quasidistributions turns out to be
trivial.
Equipped with the bosonization method, we are capable

of computing virtually all the nonperturbative gauge-
invariant matrix elements in the ’t Hooft model. For
instance, besides quasi-PDFs, we are also able to compute
the lattice cross section [39] as well as the pseudo- PDF
[37,38], which have been advocated as viable competitors
of the quasi-PDF, presumed to be more efficient to extract
the light-cone PDF. There is no principle difficulty in
performing a similar study for these alternative options of
parton distributions as in this work. To some extent, QCD2

may be viewed as an ideal and fruitful theoretical labo-
ratory, which can examine many interesting ideas concern-
ing a variety of parton distributions.
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APPENDIX A: ALTERNATIVE DEFINITIONS
OF QUASI-PDF AND -DA: γz Versus γ0

As mentioned in Sec. V B, one is free to invent
different operator definitions for quasidistributions,
all of which are legitimate provided that they can
reduce to the correct light-cone distributions in IMF.
It is said that they then form a universality class [67].
The difference among them must be suppressed by
powers of 1=Pz.
In this Appendix, we wish to critically compare two

simplest definitions for quasi-PDF:

q̃γzðx; PÞ ¼
Z þ∞

−∞

dz
4π

e−ixP
zz

× hP0
n; Pjψ̄ðzÞγzW½z; 0�ψð0ÞjP0

n; PiC; ðA1aÞ

q̃γ0ðx; PÞ ¼
Z þ∞

−∞

dz
4π

e−ixP
zz

× hP0
n; Pjψ̄ðzÞγ0W½z; 0�ψð0ÞjP0

n; PiC: ðA1bÞ
The first canonical definition follows from (71), which has
already been investigated in the main text. The second
definition is new, which we are going to explore. The
subscript “C” again implies that only the connected part of
the matrix element is retained.
Through the operator approach and the Bogoliubov

transformation, the functional forms of two different
definitions of quasi-PDFs in terms of the φ̃�ðx; PÞ and θ
angle can be worked out,

q̃n;γzðx;PÞ¼
P0
n

P
sinθðxPÞ½ðφnþðxP;PÞÞ2þðφn

−ðxP;PÞÞ2

þðφnþð−xP;PÞÞ2þðφn
−ð−xP;PÞÞ2�; ðA2aÞ

q̃n;γ0ðx; PÞ ¼
P0
n

P
½ðφnþðxP; PÞÞ2 − ðφn

−ðxP; PÞÞ2

þ ðφn
−ð−xP; PÞÞ2 − ðφnþð−xP; PÞÞ2�: ðA2bÞ

Here, (A2) simply duplicates (74). Absence of the factor
sin θ in (A2b) may account for why the new quasi-PDF
approaches the light-cone PDF at a faster pace than the
canonical one. We are curious to know whether this has any
connection to the realistic QCD4.
In Fig. 8, we juxtapose two versions of quasi-PDFs

viewed from different reference frames, for the four differ-
ent specifies of ground-state mesons. From the plots, we
clearly see the tendency that both versions of quasi-PDFs
would converge to the corresponding light-cone PDF in
IMF. However, they evolve quite differently under the
Lorentz boost. When the meson momentum is small, q̃γ0
appears to converge at a considerably slower pace than q̃γz ;
nevertheless, when the meson momentum gets large, q̃γ0
appears to converge faster than q̃γz . If this pattern persists in
QCD4, one may be persuaded that q̃γ0 is perhaps a more
favorable choice for lattice simulation than q̃γz .
From Fig. 8, one can also observe that how the evolution

patterns of two different quasi-PDFs depend on the quark
mass. For each meson species, one might be interested in
the critical threshold point of the momentum-to-mass ratio,
rcrt ¼ Pz

crt=M, after which the q̃γ0 starts to have a better
convergence behavior than q̃γz . For lighter mesons (πχ , π),
the critical r values are quite large, r

πχ
crt, r

π
crt are about 5. In

contrast, for heavier mesons (ss̄, cc̄), the critical r values
are rather small, rss̄crt ≈ 0.2, and rcc̄crt ≈ 0.025.
Next, we turn to the quasi-DAs. Like the quasi-PDF case,

we also intend to compare two simplest definitions for
quasi-DAs:
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Φ̃2n;γzðx; PÞ ¼
1

fð2nÞ

Z þ∞
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dz
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2n; P
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Φ̃2n;γ0ðx; PÞ ¼
1

fð2nÞ

Z þ∞
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dz
2π

eiðx−1
2
ÞPz

	
P0
2n; P





ψ̄�z
2
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�
z
2
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z
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�
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�
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Utilizing the operator approach together with the Bogoliubov transformation, these two different versions of quasi-DA
can be expressed as

Φ̃2n;γzðx; PÞ ¼
1

fð2nÞ

ffiffiffiffi
N
π

r ffiffiffiffiffiffi
P0

P

r
sin

θðxPÞ þ θðP − xPÞ
2

½φ2nþ ðxP; PÞ þ φ2n
− ðxP; PÞ�; ðA4aÞ

Φ̃2n;γ0ðx; PÞ ¼
1

fð2nÞ

ffiffiffiffi
N
π

r ffiffiffiffiffiffi
P0

P

r
cos

θðxPÞ − θðP − xPÞ
2

½φ2nþ ðxP; PÞ − φ2n
− ðxP; PÞ�; ðA4bÞ

where fð2nÞ is the decay constant of the 2nth mesonic
state, one of whose explicit expressions has been given in
(83). From Eq. (3.10) of Ref. [40], one can find another
equivalent expression of fð2nÞ, from which one immediately
sees that Φ̃2n;γ0 in (A4b) also obeys the normalization
condition (84).
For the canonical quasi-DA, we have actually duplicated

(82) for (A4a). The new quasi-DA assumes the form of
(A4b). One readily sees that both types of quasi-DAs

approach the LCDA in the IMF, therefore they belong to the
same universality class. Nevertheless, it is not straightfor-
ward to see which trigonometric function, sin½ðθðxPÞ þ
θðP − xPÞÞ=2� or cos½ðθðxPÞ − θðP − xPÞÞ=2�, approaches
unity at a faster pace as P → ∞. Therefore, just by
inspection of the analytical form, it is difficult to judge
which definition of quasi-DAs bears better convergence
behavior.

FIG. 8. Comparison between two versions of the quark quasi-PDF defined with γz (open circles) and γ0 (filled diamond), for four
different ground-state mesons as specified in Table I.
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From Fig. 9, we see that two versions of quasi-DAs for
the chiral pion are identical. This can be readily proved,
since the analytical expressions for Bars-Green wave
functions for πγ are exactly known [40,59]. For other
massive mesons, it turns out that Φ̃γz has always better
convergence behavior than Φ̃γ0 , irrespective of the velocity
of the boosted frame. The difference between these two
quasi-DAs are always insignificant.

APPENDIX B: DISTRIBUTION IDENTITIES
ENCOUNTERED IN MOMENTUM CUTOFF

IR REGULARIZATION

In this Appendix, we collect some useful distribution
identities that enable us to rewrite the LCDA and quasi-DA
in terms of the “4-plus” distributions in Eq. (101). The
validity of the following identities can be examined by
picking up an arbitrary test function fðxÞ. Rather than

specialize to the “4-plus” distribution, for the sake of
generality, here we will introduce a “n-plus” distribution
that would appear in a loop calculation implementing the
IR momentum cutoff. For the light-cone loop integral, the
“n-plus” distribution is defined asZ

1

0

dx

�
gðxÞ

j1
2
−xjn

�
nþ
fðxÞ

≡
Z

1

0

dx
gðxÞ

j1
2
−xjn

�
fðxÞ−

Xn
i¼0

1

i!
fðiÞ

�
1

2

��
x−

1

2

�
i
�
: ðB1Þ

For our purpose, we assume gðxÞ is symmetric under the
exchange x ↔ 1 − x.
In Sec. VIII, we have adopted a soft momentum fraction

η as the IR regulator in the loop integration using light-cone
coordinates [see (92)]. We often encounter the following
type of integral:

lim
η→0

Z
1

0

dxΘ
�
jx − 1

2
j − η

�
gðxÞfðxÞ
j 1
2
− xjn

¼
Z

1

0

dx

��
gðxÞ

j 1
2
− xjn

�
nþ
fðxÞ þ fðxÞ

X½n2�
i¼0

δð2iÞðx − 1
2
Þ

ð2iÞ! lim
η→0

Z
1

0

dyΘ
�
jy − 1

2
j − η

�
gðyÞjy − 1

2
j2i

jy − 1
2
jn

�
: ðB2Þ

FIG. 9. Comparison between two versions of the quasi-DA defined with γz (open circles) and γ0 (filled diamond), for four different
ground-state mesons as specified in Table I.
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In the second line, this integral has been rewritten in
terms of the “n-plus” distribution together with a series of
products of the δ function and some integrals in the η → 0
limit. Since we only consider the DA of the flavor-neutral
mesons, we have dropped the odd number of derivatives of
the δ function, because those terms do not contribute when

gðxÞ is symmetric under x ↔ 1 − x, since the odd number
of derivatives of gðxÞ vanishes at x ¼ 1=2.
The “n-plus” distribution in (B1) can be readapted to a

convolution integral with unrestricted domain, −∞<
x<∞, which is relevant to the loop calculation for the
quasi-DAs:

Z þ∞

−∞
dx

�
gðxÞ

j 1
2
− xjn

�
nþ
fðxÞ ¼

Z þ∞

−∞
dx

gðxÞ
j 1
2
− xjn

�
fðxÞ −

Xn
i¼0

1

i!
fðiÞ

�
1

2

��
x −

1

2

�
i
�

ðB3Þ

In Sec. VIII, we have also adopted a soft momentum fraction η as the IR regulator in the loop integration using ordinary
coordinates [see (97)]. We often confront the following type of integrals:

lim
η→0

Z þ∞

−∞
dxΘ

�



x − 1

2





 − η

�
gðxÞfðxÞ
j 1
2
− xj4

¼
Z þ∞

−∞
dx

��
gðxÞ

j 1
2
− xjn

�
nþ
fðxÞ þ fðxÞ

X½n2�
i¼0

δð2iÞðx − 1
2
Þ

ð2iÞ! lim
η→0
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−∞
dyΘ

�



y − 1

2





 − η

�
gðyÞjy − 1

2
j2i

jy − 1
2
jn

�
ðB4Þ

In the second line, we again have dropped the odd number of derivatives of the δ function. In this identity, it is necessary to
assume that the test function fðxÞ falls off sufficiently fast as jxj → ∞.
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