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We study how an external magnetic field modifies the chiral phase structure of QCD, in particular the
phases characterized by inhomogeneous chiral condensates. The magnetic field can be systematically
incorporated into a generalized Ginzburg-Landau framework, and it turns out to induce a model
independent universal coupling between the magnetic field and the axial isospin current. The resulting
effect is found to be drastic especially in the chiral limit; no matter how small the magnetic intensity is, the
tricritical Lifshitz point is totally washed out, and the real kink crystal is replaced by amagnetically induced
chiral spiral. The current quark mass, on the other hand, has an opposite effect, protecting the chiral critical
point from the magnetically induced chiral spiral. But once the magnetic intensity exceeds a critical value,
the critical point no longer exists. We draw a semiquantitative conclusion that the critical point disappears
for

ffiffiffiffiffiffi
eB

p ≳ 50 MeV.

DOI: 10.1103/PhysRevD.98.054006

I. INTRODUCTION

There has recently been a growing interests in possible
crystal structures formed in dense QCD matter governed by
the strong interaction [1–3]. The effect of magnetic field on
QCD matter has also been the subject of intensive studies.
Phenomenologically, exploring possible forms of strongly
interacting matter under the magnetic field is relevant to the
physics of magnetars; the compact stellar objects known to
have a strong magnetic field B ∼ 1011 T at its surface, and
an even stronger field B ∼ 1014 T might be realized in their
cores [4–6].
How the magnetic field affects the chiral symmetry

breaking in homogeneous QCD matter has been a matter of
active debates for last decades. Phenomenological models
predict the magnetic catalysis [7–10] while lattice QCD
simulations show the opposite; the inverse magnetic
catalysis [11,12]. The mechanism for the magnetic catalysis
is rather transparent, but that for the inverse one still seems
to lack a common consensus [13–17].
The effect of an external magnetic field is even more

significant for inhomogeneous matter [18–23]. For exam-
ple, in [19] the authors have shown that the magnetic field
strongly stabilizes the chiral spiral (χ-spiral) aka the dual
chiral density wave (DCDW) in the chiral limit, and as a
consequence it brings about a new critical point on the
temperature axis in the phase diagram. On the other hand,
the effect of current quark mass is known to favor the real
kink crystal phase (RKC), but the chiral spiral might
survive as the “massive dual chiral density wave” where

the complex phase of condensate is skewed from a linear
function of space coordinate [24].
In this article, we study the effect of magnetic fields on

the chiral phases with a particular focus put on how it
modifies the (inhomogeneous) phase structure in the
vicinity of the critical point. Several studies are already
devoted on how the magnetic field affects the critical point
itself [25–27]. We concentrate on the phase structure in the
neighborhood of the critical point. We first show that it is
possible to derive systematically the generalized Ginzburg-
Landau (gGL) action in the presence of an external
magnetic field (B) without specifying any details of spatial
form of the chiral condensate. We find a B-odd term which
couples to the axial isospin current. This term is considered
to be universal in the sense that it is independent of any
model parameters such as coupling strength and cutoff. We
evaluate the strength of the coupling as a function of μ and
T for an arbitrary intensity of magnetic field. We then study
the impact of B-odd term on the phases near the critical
point. It turns out that the term strongly favors the chiral
spiral, the condensate accompanied by a complex phase,
bringing a dramatic change in the phase diagram.

II. DERIVING GENERALIZED GINZBURG-
LANDAU ACTION.

In any quark-based model, the generalized Ginzburg-
Landau (gGL) action density in the absence of the external
magnetic field can be derived in the same way as described
in [28–30]. For two-flavor, the quark loop contribution to
the effective action can be expanded in the powers of the
quark self-energy ΣðxÞ ¼ mq þ σðxÞ þ iγ5τ · πðxÞ as, up
to the second order in Σ,*abuki@auecc.aichi-edu.ac.jp
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δSeff ¼
T
2

X
n

X
x;y

× tr½Sð0Þðiωn;x − yÞΣðyÞSð0Þðiωn; y − xÞΣðxÞ�:
ð1Þ

Here Sð0Þðiωn;xÞ ¼ −
R
dpeip·x iωnγ0−p·γ

ω2
nþp2 is the quark propa-

gator with ωn ¼ πTð2n − 1Þ being the Matsubara fre-
quency. Expressing ΣðyÞ ¼ ΣðxÞ þP∞

i¼1
1
i! ½ðy − xÞ ·

∇ΣðxÞ�i, we can perform a systematic derivative expansion
of the effective action. Writing the action with the gGL
action density ω as Seff ¼

R
dxωðxÞ, the result is found up

to the sixth order in σ, πa (a ¼ 1, 2, 3) and ∇≡ ∂x as

ωðxÞ ¼ −hσ þ α2
2
ϕ2 þ α4

4
ðϕ4 þ ð∇ϕÞ2Þ

þ α6
6

�
ϕ6 þ 1

2
ðΔϕÞ2 þ 3½ϕ2ð∇ϕÞ2

− ðϕ · ∇ϕÞ2� þ 5ðϕ · ∇ϕÞ2
�
; ð2Þ

where we have switched to the chiral four-vector notation
ϕ ¼ ðσ; πÞ. h and αn (n ¼ 2, 4, 6), are the gGL couplings
which depend on quark chemical potential μ and temper-
ature T. The first term −hσ, which we call “h-term”
hereafter, is responsible for the explicit symmetry breaking
by the current quark mass mq. In fact, h is actually
proportional to mq:

h ¼ mqð8NcÞT
X
n

Z
dp

ð2πÞ3
1

ðωn − iμÞ2 þ p2
; ð3Þ

where Nc ¼ 3 specifies a number of colors. The integral is
divergent in ultraviolet and needs some regularization to be
evaluated. In the spirit of the gGL approach, we simply take
h as a parameter characterizing the explicit symmetry
breaking. Similarly the expressions for αn can be found as

α2i ¼
δi;1
2G

þ 8NcT
X
n

Z
dp

ð2πÞ3
ð−1Þi

ððωn − iμÞ2 þ p2Þi ; ð4Þ

for i ¼ 1; 2;…. It is only α2 that has an extra tree-level
counter contribution 1=2G with G being a four-Fermi
coupling in the standard NJL model [2]. α2 and α4 should
be vanishing at the tricritical point (TCP) (μTCP, TTCP)
which is expected to show up in the phase diagram in the
chiral limit h ¼ 0. In order to illustrate how (α2, α4) maps
onto the (μ, T) phase diagram in the chiral limit within the
NJL-type model, we show in Fig. 1 the lines for α2 ¼ 0
and α4 ¼ 0 for two different values of coupling G. The
intersection of these two curves indicated by a circle
represents the location of TCP. From the figure, we can
see how the GL couplings (α2, α4) spans a local coordinate
in the vicinity of TCP.

We now move onto the effect of external magnetic
field. There is a direct effect on the quark propagator. It is
easy to expand quark propagator in the powers of magnetic
field along with the line described in [31]. At the leading
order in B,

Sðiωn;pÞ ¼ Sð0Þðiωn;pÞ þ ðQBiÞ
pk þ =μ

½ðiωn þ μÞ2 − p2�2

×
iϵijkγjγk

2
; ð5Þ

where we have used the four vector notation pμ
k ¼ ðiωn þ

μ;pkÞ with pk ¼ ðp · BÞB=jBj2 being the momentum
component parallel to the magnetic field. Q ¼ diagð2e=3;
−e=3Þ is the electric charge matrix in the flavor space.
Plugging Eq. (5) into Sð0Þ in the integrand of Eq. (1), and
extracting the term linear in B in the gGL action density, we
have a universal (anomalous) coupling [32]:

δωBðxÞ ¼
1

4Nf

∂α4
∂μ eB · ðσ∇π3 − π3∇σÞ: ð6Þ

FIG. 1. The illustrative figure that shows how (α2, α4) spans the
local coordinate in the vicinity of the TCP within the NJL type
model. This is depicted for two values of coupling g≡ GΛ2 ¼
2.0 (upper panel) and g ¼ 2.5 (lower panel). The solid line (red
online) shows the curve on which α2 ¼ 0, while the dotted-
dashed line (blue online) does that for α4 ¼ 0. The point of
intersection gives the location of the TCP. The region for α4 > 0
is shaded. The solid line in the shaded area represents the second-
order chiral transition, while that in the unshaded area only gives
the spinodal line staying still in the broken phase, and once
α2 < 0 the symmetric phase with σ ¼ 0 starts to constitute a local
minimum. The figure was taken from Ref. [29].
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μ-derivative of the fourth gGL coefficient α4 can be
evaluated without any UV divergence.

1

4Nf

∂α4
∂μ ¼ −

Nc

8π2T
fðe−μ=TÞ;

where fðe−yÞ ¼ 1
2π Imψ ð1Þð1

2
− i y

2πÞ, with ψ ð1Þ the trigamma
function. Several remarks are in order here. (i) The same
result was obtained in quite a different manner in [19]
where only the lowest Landau level (LLL) was taken into
account. In our approach the full set of Landau levels are
incorporated, and this procedure gives the identical result.
This is because the spectral asymmetry lies only in the
LLL. (ii) This term was derived for the specific ansatz, i.e.,
DCDW in [19]. In our approach, the spatial profile of
condensate in three space dimensions is not postulated to be
in any specific form. (iii) A similar term is obtained also at
zero temperature [33].
We display in Fig. 2, f as a function of fugacity

z ¼ e−μ=T by a solid curve. Dashed curves correspond to
the following approximations:

fðe−μ=TÞ ¼
8<
:

7ζð3Þ
2π2

μ
T −

31ζð5Þ
4π4

ðμTÞ2 þ � � � for μ ≪ T;

T
μ þ π2

3

�
T
μ

�
2 þ � � � for μ ≫ T:

ð7Þ

f takes maximum value 0.45 at the point μ=T ≅ 1.91which
is marked by a circle placed on the solid curve in Fig. 2.
In principle, in order to evaluate the magnitude of

universal coupling, we need to fix μ=T at the exact location
of TCP because we are working in the neighborhood of
TCP within gGL framework. However, this does depend on
the detail of model, so we define here

b≡ Nc

8π2T
fðe−μ=TÞðeBÞ; ð8Þ

call δωB ¼ −b · ðσ∇π3 − π3∇σÞ “b-term”. We regard b as
as a gGL coupling constant whose magnitude serves as a

measure of the intensity of the external magnetic field. From
the symmetry viewpoint, h-term only breaks the chiral
symmetry to the isospin SU(2), while the b-term explicitly
breaks several symmetries: the time reversal symmetry,
the rotational symmetry, in addition to the isospin SU(2)
symmetry which is to be broken down to UQð1Þ.
Switching to the complex notation for the condensate

Δ ¼ σ þ iπ3, the gGL action density can be cast into the
form

ωðxÞ ¼ −b · Im½Δ�∇Δ� − hRe½Δ� þ α2
2
jΔj2

þ α4
4
ðjΔj4 þ j∇Δj2Þ þ α6

6

�
jΔj6 þ 3jΔj2j∇Δj2

þ 2ðRe½Δ�∇Δ�Þ2 þ 1

2
j∇2Δj2

�
: ð9Þ

The first two terms are the symmetry breaking sources,
responsible for the current quark mass and the magnetic
field, respectively. It can be easily guessed that the h-term
favors the real condensate, while the b-term stabilizes the
complex condensate such as the chiral spiral. We note that
our b-term is exactly in the same form as the one obtained
in one-dimensional (1D) Gross-Neveau model [34], where
it was shown that the spiral phase dominates the phase
diagram. This term is forbidden in the three dimensional
NJL model because it breaks the rotational symmetry. The
magnetic field induces this term even in 3D so that it opens
the possibility that the complex condensate comes into play
in the QCD phase diagram.
Apart from the above new coupling appearing at the

leading (linear) order in eB, there should also be correc-
tions to the original GL couplings α2, α4, etc. However, the
corrections to these terms should start from the quadratic
order in eB because of the rotational invariance. In the
Appendix B, we demonstrate that this is actually the case
by performing the explicit gradient expansion to α2 and α4.
In principle these corrections bring about a shift of the
location of TCP. However, this effect occurs at order ðeBÞ2,
and in the present study we focus on the effects at the
leading order in ðeBÞ on to the phase diagram.

III. HOW DO MAGNETIC FIELDS MODIFY
THE PHASE DIAGRAM?

Let us first begin with the chiral limit. This corresponds
to ignoring the h-term in the gGL energy density (2). We
measure every dimensionful quantity with the proper power
of ðα6Þ−1=2. Then, we can also scale out the effect of b, by
taking jbj4=3 (jbj2=3) for the unit of α2 (α4). The phase
diagram for jbj ¼ 0 is depicted in the upper panel of Fig. 3.
First, note that the Lifshitz tricritical point (TCP) is located
at the origin which, in principle, has a unique map onto the
(μTCP, TTCP) in QCD phase diagram. Second, the real kink
crystal (RKC) condensate characterized by the spatial form
[28,29,35]:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

e T

f

FIG. 2. f as a function of the fugacity z ¼ e−μ=T. z ¼ 1
corresponds to μ ¼ 0, while z ¼ 0 represents the high density
limit μ → ∞. The circle placed on the curve is the point where
f takes maximum.
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σðxÞ ¼ ksnða; νÞ
�
ν2snðk · x; νÞsnðk · xþ a; νÞ

þ cnða; νÞdnða; νÞ
sn2ða; νÞ

�
;

enters in between the chiral symmetric phase (χSR) and the
chiral symmetry broken phase (χSB). One might wonder
why jbj comes in the units of α2 and α4 in spite of zero
magnetic field b ¼ 0. This is just for a convenience, and in
this case jbj is arbitrary. In fact, the phase boundaries are
independent of jbj, since any critical lines are expressed
by α24 ∝ α2.
In the lower panel of Fig. 3, the phase diagram for

nonvanishing jbj is displayed. The phase structure is com-
pletely changed by the emergence of a complex chiral spiral,
ΔðxÞ ¼ Δ0eiq·x, denoted by “χ-spiral” in the figure. In this
phase the direction of q is locked to the direction of the
magnetic field. TCP is killed by the stabilization of the
χ-spiral phase, and there is only a second order phase
transition line between χSR and χ-spiral phases. We stress
that this drastic change happens for an arbitrary intensity of
magnetic field. It means that the standard χSB phase
becomes unstable against the formation of density wave,
and TCP will never be realized in the presence of magnetic
field.

We here briefly try to figure out why the TCP is totally
washed out by the magnetic field with an arbitrary strength.
In order to make this point clear, we here make the stability
analysis of the symmetric phase with respect to the
formation of chiral condensate. Since we are interested
in the border line separating the symmetric phase and the
broken phase, we take the ansatz Δ ¼ σ þ iπ3 ¼ Δ0eiq·x;
this covers both the homogeneous condensate (q ¼ 0) and
the chiral spiral (q ≠ 0) which is known to be degen-
erate with the RKC on the phase boundary. Then making
every dimensionful quantity dimensionless by 1=

ffiffiffiffiffi
α6

p
, the

thermodynamic potential becomes

Ω¼
�
α2
2
þα4q2

4
þ q4

12
−b ·q

�
Δ2

0þ
�
α4
4
þ5q2

12

�
Δ4

0þ
1

6
Δ6

0:

The effect of the magnetic field appears through ð−b · qΔ2
0Þ

term, which is linear in q. The favorable configuration is the
alignment of q into the direction of magnetic field, q ¼ qb̂.
Solving the stationary condition ∂Ω

∂q ¼ 0 results in q as some

algebraic function of α4, Δ2
0, and b. There are two extreme

cases where the naive expansion about b becomes possible;
(i) α4 ≪ 0 and (ii) α4 ≫ 0. Let us start with the case
(i) where α4 ≪ 0. In this case, we have

q ¼
 ffiffiffiffiffiffiffiffiffiffi

3jα4j
2

r
þ b
jα4j

!
þ 5ð4b −

ffiffiffiffiffiffiffiffiffiffiffiffi
6jα4j3

p
Þ

12α24
Δ2

0 þ � � � :

Plugging this into Ω results in

Ω¼
 
α2
2
−
3α24
16

−

ffiffiffiffiffiffiffiffiffiffi
3jα4j
2

r
b

!
Δ2

0þ
 
3

8
jα4jþ

5b

2
ffiffiffiffiffiffiffiffiffiffi
6jα4j

p
!
Δ4

0

þ�� � :

Then we see that the second order phase transition takes
place at

α2
α24

¼ 3

8
þ

ffiffiffi
6

p
b

jα4j3=2
þOððbjα4j−3=2Þ2Þ; ð10Þ

and the wave number that the instability develops is

q ¼
ffiffiffiffiffiffiffiffiffiffi
3jα4j
2

r �
1þ

ffiffiffi
2

3

r
b

jα4j3=2
�
: ð11Þ

We see that the critical wave number increases because of
the magnetic field. Equation (10) explains the magnetic
shift of critical line from the unperturbed one [α2 ¼ 3

8
α24

ðα4 < 0Þ] to the positive α2 direction, which is actually
what is seen in Fig. 3. In the case (ii) where α4 ≫ 0, solving
the stationary condition for q yields

FIG. 3. The phase diagrams in the chiral limit, h ¼ 0. Upper
panel: The phase diagram for zero magnetic field. Lower panel:
The phase diagram for nonvanishing magnetic field b.
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q ¼ 2b
α4

−
10b
α24

Δ2
0 þ � � � :

Substituting the above expression into Ω, and performing
expansion about Δ0, we arrive at

Ω ¼
�
α2
2
−
b2

α4

�
Δ2

0 þ
�
α4
4
þ 5b2

3α24

�
Δ4

0 � � � :

From these we see that the system has an instability to the
formation of density wave at

α2
α24

¼ b2

α34
þOððbα−3=24 Þ3Þ; ð12Þ

where the wave number where the instability sets in is

q ¼ 2b
α4

: ð13Þ

It is remarkable that q ≠ 0 for b ≠ 0 so that the transition
is always from the symmetric phase to density wave with
magnetically induced small wave number. This is quite
different from b ¼ 0 case where the system has an
instability to homogeneous condensate, as is seen in the
upper panel of Fig. 3.
From the discussion above, we notice that the expansion

in b breaks down when jα4j becomes small because the
combination b=jα4j3=2 becomes large. Then we need to
solve the instability condition numerically. Figure 4 shows
the numerically obtained critical wave number as a function
of α4. We see that the both situations (α4 ≪ 0 and α4 ≫ 0)
are well explained by the analytic formulas, Eqs. (11) and
(13). For b ¼ 0, we see that α4 ¼ 0 (TCP) is realized as a
bifurcation point across which the inhomogeneous phase
with q ≠ 0 develops. Sign of q there may be determined by

the direction of an infinitesimal magnetic field. The point
α4 ¼ 0 is actually the second order phase transition from
homogeneous to inhomogeneous condensate. For b ≠ 0,
we notice that the instability always occurs at a non-
vanishing momentum q ≠ 0. This means that the transition
is always from the symmetric phase to the density wave
irrespective of the value of α4. This is in fact the case as we
see in the lower panel of Fig. 3. There is no longer TCP in
the phase diagram for b ≠ 0, because the b-term acts as an
external field to make the condensate inhomogeneous in
space, and this external field smears the bifurcation
structure (equivalently the second order phase transition)
at α4 ¼ 0 as seen in Fig. 4. This is why an infinitesimal
magnetic field washes the TCP totally out from the phase
diagram.

IV. QUARK MASS VERSUS MAGNETIC FIELD

Next we consider the effect of current quark mass h
together with the magnetic field b. In this case, making
every dimensionful quantities dimensionless by takingffiffiffiffiffiffiffiffiffiffi
1=α6

p
as a natural energy unit, and then performing a

scale transformation Δ → h1=5Δ, ∇x → h1=5∇x (that is
x → h−1=5x), the (dimensionless) gGL energy density
Eq. (9) becomes

h−6=5ωðxÞ ¼ −h−3=5b · Im½Δ�∇Δ� − Re½Δ� þ h−4=5α2
2

jΔj2

þ h−2=5α4
4

ðjΔj4 þ j∇Δj2Þ

þ 1

6

 
jΔj6 þ 3jΔj2j∇Δj2 þ 2ðRe½Δ�∇Δ�Þ2

þ 1

2
j∇2Δj2

!
: ð14Þ

This means that the phase diagram only depends on three
parameters α2=h4=5, α4=h2=5 and b=h3=5, and these are
nothing but α2, α4 and b measured in proper units, h4=5,
h2=5, and h3=5, respectively. So when h ≠ 0, the important
combinatorial parameter is b=h3=5 which determines how
large the magnetic effect on to the phase structure is. When
this parameter is large, the effect of magnetic field prevails
over that of current quark mass. This parameter is a linear
function of the magnetic intensity eB and is inversely
proportional to m3=5

q , i.e., b=h3=5 ∝ eB=m3=5
q . The value of

b=h3=5 should have one to one correspondence to eB once
mq, μTCP, and TTCP are all set. Just for a guide, we show in
Fig. 5 the parameter 8 × ðb=h3=5Þ as a function of eB,
for T ¼ 50 MeV (a solid curve) and for T ¼ 100 MeV
(a dashed curve). For evaluation, we took a choice Λ ¼
600 MeV for a momentum cutoff, mq ¼ 5 MeV and fixed
μ ¼ 1.91T corresponding to the point indicated by circle in

b 0

b 0

b 1

b 1

10 5 0 5
4

2

0

2

4

4

q

FIG. 4. The wave number q in the unit of 1=
ffiffiffiffiffi
α6

p
at the onset of

instability to the formation of chiral condensate as a function of
α4. The solid (blue online) lines represent the b ¼ 0 case, while
the dashed (red online) lines represent the b ¼≠ 0 case. The
formation of chiral density wave is signaled by q ≠ 0 branch.
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Fig. 2. Therefore the corresponding curves should be
considered to be the upper limits.
In Fig. 6 we show the phase diagrams for four different

values of magnetic field. Displayed in Fig. 6(a) is for
8b ¼ 0.2 × h3=5, where the effect of b is relatively weaker
than that of the current quark mass (h-term). Note, however,
even in this case the magnetic energy is quite large in

physical unit; the estimated value is
ffiffiffiffiffiffi
eB

p
∼ 20–30 MeV

corresponding to B ∼ 7 × 1012 − 1013 T. We see that the
phase diagram is not much modified at this magnetic
intensity. The magnetic field replaces only a tiny thin
region near the phase boundary between the χSR and
RKC phases with a modified χ-spiral defined byΔ ¼ M0 þ
Δ0eiq·x with M0, q and Δ0 the variational parameters. This
is magnetically induced chiral spiral. However, a major part
of the RKC and the Lifshitz critical point itself remain
intact. The Lifshitz critical point is hereinafter referred to
as “critical point” or “CP” simply. We conclude that the
current quark mass plays a role to protect the critical point
and the RKC phase from a weak magnetic field. Figure 6(b)
presents the phase diagram for 8b ¼ 1.0 × h3=5, that roughly
corresponds to

ffiffiffiffiffiffi
eB

p
∼ 40–60 MeV (B ∼ ð3–6Þ × 1013 T).

At this magnetic intensity, we see a sizable region for the
modified χ-spiral. AccordinglyCP is killed and replaced by a
new critical point where the second order phase transition
from the χ-spiral to the χSR turns into a first order one from
the χ-spiral to the RKC (or χSB). In Fig. 6(c), the phase
diagram for a stronger magnetic field 8b ¼ 5.0 × h3=5 is
depicted. This corresponds to

ffiffiffiffiffiffi
eB

p
∼ 100–130 MeV

(B ∼ ð1–3Þ × 1014 T). The region for the modified χ-spiral

0 40 80 120 160
0

5

10

15

e B MeV

8
b

h3
5

FIG. 5. 8b=h3=5 as a function of eB in the physical unit MeV.
The solid curve corresponds to T ¼ 50 MeV, while the dashed
one stands for T ¼ 100 MeV. Each curve should be considered to
be the upper limit for corresponding temperature because it is
evaluated at the fugacity parameter at which b takes maximum.

(a) (b)

(c) (d)

FIG. 6. The phase diagrams off the chiral limit. (a) 8b ¼ 0.2 × h3=5 [
ffiffiffiffiffiffi
eB

p
∼ 20–30 MeV]. (b) 8b ¼ 1.0 × h3=5 [

ffiffiffiffiffiffi
eB

p
∼ 40–60 MeV].

(c): 8b ¼ 5.0 × h3=5 [
ffiffiffiffiffiffi
eB

p
∼ 100–130 MeV]. (d): 8b ¼ 15 × h3=5 [

ffiffiffiffiffiffi
eB

p
∼ 170–230 MeV].
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gets significantly magnified, and it now completely covers
the original critical point. There is a new critical point,
denoted by a black square, where the second order phase
transition at which the χ-spiral ends at large α2 side, changes
into a first order one at small α2 side. Figure 6(d) represents
the phase diagram at an even stronger magnetic field 8b ¼
15 × h3=5, that is estimated to be

ffiffiffiffiffiffi
eB

p
∼ 170–230 MeV

(B ∼ ð5–9Þ × 1014 T). In this extreme case, the effect of
magnetic field completely dominates over that from h-term.
The RKC phase is replaced by the χ-spiral, which now
spreads over a wide region.We see that the new critical point
still exists on the phase boundary, where the second order
phase transition turns into a first order one.

V. CONCLUSION AND OUTLOOK

We studied the effects of an external magnetic field on the
chiral phase structure of QCD within the generalized
Ginzburg-Landau (gGL) effective action. We first derived
the gGL action performing a derivative expansion up to the
sixth order in condensates and spatial derivatives. Expanding
the action also up to the lowest nontrivial order in a current
quark mass and a magnetic field, we obtained the explicit
symmetry breaking sources, h-term and b-term, respectively.
The h-term explicitly breaks the chiral symmetry to the
diagonal isospin SU(2), while the b-term violates the time
reversal symmetry, and reduces the isospin SU(2) down to
UQð1Þ, the spatial rotational symmetry SO(3) down to O(2),
the rotation about the magnetic axis. It is clearly seen in the
obtained gGLaction that these two symmetry breaking terms
have competing effects on the condensate; the former prefers
the real condensate, while the latter favors the complex
condensate spatially modulated in the direction of magnetic
field. We have computed the phase diagrams for nonvanish-
ing magnetic fields. In the chiral limit, the effect of an
external magnetic field is such drastic that it completely
washes out the tricritical point as well as the real kink crystal
(RKC) phase. There is only a second order phase transition at
which the chiral spiral phase (χ-spiral) terminates. On the
other hand, the effect of current quark mass was found to
protect theRKCphase and the chiral critical point frombeing
invaded by a magnetically induced χ-spiral. However, as the
intensity of magnetic field increases, the χ-spiral phase
gradually eats the coast region of the high density boundary
between the RKC and nearly symmetric phases. When the
magnetic field strength exceeds a critical value, the effect of
magnetic field prevails over that of current quark mass, and
the critical point and RKC phase get completely replaced by
the χ-spiral phase. We estimated the critical magnetic field
ranging in between

ffiffiffiffiffiffi
eB

p
∼ 40–60 MeV depending on the

location of the critical point.We confirmed that, in the regime
of strong magnetic fields, the shape of the phase structure
approaches the extreme one obtained in the chiral limit.
There are several possible directions of extension of

current work. First, it is interesting to go beyond the

standard gGL expansion, e.g., along the line described
in [36]. Second, nonequilibrium dynamics, in particular the
relaxation dynamics of inhomogeneous condensates under
the magnetic field is worth to be explored [37]. This is
because the b-term explicitly breaks the time reversal
symmetry so is expected to bring a sizable effects on the
time dependence of the condensates. Lastly, it would be
important and interesting subject to see if the chiral spiral is
also stabilized by a magnetic field in nuclear matter [38,39].
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APPENDIX A: QUARK PROPAGATOR IN
A MAGNETIC BACKGROUND

In this section, we briefly review how to derive the
expression Eq. (5) following the procedure described in
[10]. The fermion propagator in the presence of a magnetic
field can be separated into two parts, the Schwinger phase
breaking the translational invariance, and the translationally
invariant part:

Sðx; yÞ ¼ eiΦðx;yÞS̄ðx − yÞ: ðA1Þ

Let the direction of B be the z-direction (B ¼ ð0; 0; BÞ) and
Q be the electric charge of the fermion, the Schwinger
phase in the Landau gauge AμðxÞ ¼ ð0; 0; Bx1; 0Þ can be
computed as

Φðx; yÞ ¼ −Q
Z

x

y
dzμAμðzÞ ¼ QB

2
ðx1 þ y1Þðx2 − y2Þ;

ðA2Þ

where the integration path is just a straight line connecting
y and x. For the remaining part S̄ðx − yÞ, introducing the
momentum p and expanding in the Landau levels, we
arrive at the expression

S̄ðiωn;pk;p⊥Þ¼ 2−l
2p2⊥
X∞
k¼0

ð−1ÞkDkðpÞ
ðiωnþμÞ2−2k=l2−p2

k−m2
;

ðA3Þ

where l ¼ 1=
ffiffiffiffiffiffiffiffiffiffijQBjp

is the magnetic length, m is the
fermion mass, μ is the chemical potential, ωn¼πTð2nþ1Þ
with n being an integer is the Matsubara frequency,
pk ¼ pz and p⊥ ¼ ðpx; pyÞ is the momentum component
perpendicular to the magnetic field. P� is the spin
projection onto the direction of magnetic field, defined by
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P� ¼ 1

2
ð1� sgnðQBÞiγ1γ2Þ:

Introducing the four-momentum notation pμ ¼ ðiωn;
p⊥; pkÞ, the expression of DkðpÞ is obtained as follows.

DkðpÞ ¼ fðpk þ=μþmÞ½PþL0
kð2l2p2⊥Þ−P−L0

k−1ð2l2p2⊥Þ�
þ ð2p⊥ · γ⊥ÞL1

k−1ð2l2p2⊥Þg; ðA4Þ

where Lα
kðxÞ is the Sonine polynomial defined by

X∞
k¼0

zkLα
kðxÞ ¼

1

ð1 − zÞ1þα e
zx
z−1: ðA5Þ

It is related to the Laguerre polynomial LkðxÞ ¼ ex dk

dxk

ðe−xxkÞ via Lα
kðxÞ ¼ 1

ðnþαÞ! ð− d
dxÞαLkþαðxÞ.

Strong field limit. In the limit of strong field
ffiffiffiffiffiffiffiffiffiffijQBjp

≫
maxðμ; T;mÞ, only the contribution from the lowest
Landau level may be retained:

iS̄ðiωn; pk; p⊥Þ → 2e−l
2p2⊥

pk þ =μ

ðiωn þ μÞ2 − p2
k
:

This prescription is called the lowest Landau level (LLL)
approximation.
Weak field limit. On the other hand, In the case that the

magnetic field is not so strong, we need to sum up over all
Landau levels. This can be done by introducing the proper
time s as follows. Let μ be positive without loss of any
generality, we have

1

ðiωn þ μÞ2 − 2k=l2 − p2
k −m2

¼ −iθðωnÞ
Z

∞

0

dse−sðAþi2k=l2Þ

þ iθð−ωnÞ
Z

∞

0

dseþsðAþi2k=l2Þ;

where we have introduced A just for notational simplicity as

A ¼ 2μωn þ iðω2
n − μ2 þ p2

k þm2Þ:
Using this expression, the summation over the Landau
levels can be performed with the help of Eq. (A5), resulting
in the expression

S̄ðpÞ ¼ −i
Z

∞

0

dse−sAe−il
2p2⊥ tanðs=l2Þfðpþ =μþmÞ

− sgnðQBÞγ1γ2ðpk þ =μþmÞ tanðs=l2Þ
− p⊥ · γ⊥tan2ðs=l2Þg: ðA6Þ

In the weak field case where jQBj ≪ minðμ; T;mÞ, we can
expand the integrand of above expression with respect to
1=l2 ¼ jQBj, and perform the s integration exactly. Up to

the quartic order in l (corresponding to the quadratic order
in jQBj) we have

S̄ðpÞ ¼ Sð0Þ þ ðQBÞSð1Þ þ ðQBÞ2Sð2Þ þ � � � ; ðA7Þ
where

Sð0Þ ¼ pþ=μþm
ðiωn þ μÞ2 − p2 −m2

;

Sð1Þ ¼ pk þ =μþm

ððiωnÞ2 − p2 −m2Þ2 ðiγ
1γ2Þ;

Sð2Þ ¼ 2p⊥ · γ⊥
ððiωn þ μÞ2 − p2 −m2Þ3 −

2p2⊥ðpþ =μþmÞ
ððiωn þ μÞ2 − p2 −mÞ4 :

ðA8Þ
If we ignore the last term, staying at the lowest nontrivial
order in the expansion, the expression above reduces to
Eq. (5).

APPENDIX B: WEAK FIELD EXPANSION OF
GINZBURG-LANDAU COEFFICIENTS

Using the fermion propagator Eq. (A8), we can derive
the weak field expansion of the GL energy functional at any
order in principle, when required. Apart from the new term
Eq. (6) obtained at the lowest nontrivial order in B, there
should also be the corrections to the original GL couplings
α2, α4 and etc. But the corrections should be at least
quadratic order in B because of the rotational symmetry of
the system. There is no vector except for B itself which can
be used to make the scalar product. We here show this by
explicit computation of the magnetic field corrections to α2
and α4.

1. Evaluation of α2

The expression for α2, except for the model dependent
constant term, is given by

α2 ¼ NcT
X
f¼u;d

Z
1=T

0

dτdτ2

Z
dx2tr½Sfðx; x2ÞSfðx2; xÞ�;

where Sf is the quark propagator for flavor f ¼ ðu; dÞ in the
presence ofmagnetic field, x and x2 is understood as the four-
vectors, i.e., x ¼ ð−iτ;xÞ, x2 ¼ ð−iτ2;x2Þ. The Schwinger
phase cancels out sowe can evaluate the functional tracewith
the Fourier decomposition of S̄fðx − x2Þ as,

α2 ¼ NcT
X
i¼u;d

X
n

Z
dp

ð2πÞ3 tr½S̄fðpÞS̄fðpÞ�:

If we write the expansion of α2 in B as

α2 ¼ αð0Þ2 þ ðeBÞαð1Þ2 þ ðeBÞ2αð2Þ2 þ � � � ;
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using Eq. (A8), we have

αð1Þ2 ¼ 2Nc

X
f¼u;d

Qf

e
T
X
n

Z
dp

ð2πÞ3 tr½S̄
ð1ÞS̄ð0Þ�;

αð2Þ2 ¼Nc

X
i¼u;d

�
Qf

e

�
2

T
X
n

Z
dp

ð2πÞ3 tr½S̄
ð1ÞS̄ð1Þ þ2S̄ð0ÞS̄ð2Þ�;

where Qu ¼ 2e=3, and Qd ¼ −e=3. After computing the

trace over Dirac indices we see αð1Þ2 is actually vanishing as
guaranteed by the rotational symmetry. On the other hand,

we obtain αð2Þ2 ¼ 5
27
αð0Þ6 with the help of the prescription

introduced [2]. As a consequence, the final expression for α2
up to the quadratic order in B can be summarized as

α2ðμ; TÞ ¼ αð0Þ2 ðμ; TÞ þ 5

27
ðeBÞ2αð0Þ6 ðμ; TÞ: ðB1Þ

fαð0Þ2n g are the GL coefficients in the absence of magnetic
field, Eq. (4).
Although it is beyond the scope of the present paper, let

us briefly discuss the effect of B2 to the chiral restoration in
the chiral limit. It can be shown that α6ðμ; TÞ changes its
sign at some critical value of μ=T which we denote by c.
For the NJL type model we obtain c ∼ 0.5. For μ=T < c,

α6 < 0 and for μ=T > c, α6 > 0. This suggest that for low
density α2 has a negative feedback from the magnetic field
so that the magnetic field enhances the chiral symmetry
breaking, and thus increases the critical temperature. That
is magnetic catalysis of chiral symmetry breaking. On the
other hand, for high density the B2 effect increases α2, so
the chiral symmetry tends to be restored. The magnetic
field is expected to decrease the critical temperature. This is
the inverse magnetic catalysis.

2. Evaluation of α4

Similarly we expand α4 in powers of eB as

α4 ¼ αð0Þ4 þ ðeBÞαð1Þ4 þ ðeBÞ2αð2Þ4 þ � � � :
The microscopic expression for α4 is

α4 ¼ NcT
X
f¼u;d

Z
1=T

0

dτdτ2dτ3dτ4

Z
dx2dx3dx4

× ftr½Sfðx; x2ÞSfðx2; x3ÞSfðx3; x4ÞSfðx4; xÞ�g: ðB2Þ
The effect of the Schwinger phase should be carefully
examined in this case, because it no longer vanishes. In fact

Φfðx; x2Þ þΦfðx2; x3Þ þΦfðx3; x4Þ þΦfðx4; xÞ ¼ Qf

I
∂S
dz · AðzÞ; ðB3Þ

where ∂S is the closed boundary which follows the straight
paths x → x4 → x3 → x2 → x. Making use of the Stokes’
theorem, we have

I
∂S
dz · AðzÞ ¼ B · S; ðB4Þ

where S is the sum of planar area vectors which all together
has the boundary ∂S. The simplest choice is the sum of two
triangles, one made by x4 − x and x − x3 and the other
made by x3 − x and x − x2, namely

S ¼ ðx3 − xÞ × ðx4 − x2Þ
2

: ðB5Þ

Although an individual Schwinger phase is neither gauge
invariant nor translationally invariant, the above combination
is properly in the invariant form; as for translational invari-
ance, it is seen by making the spatial translation xi → c
withc being an arbitrary shift.As a result,α4 does not depend
on x as it should.
Plugging Eq. (B3) together with Eqs. (B4) and (B5) in to

Eq. (B2), and performing some momentum integrations, we
obtain

α4 ¼ NcT
X
f¼u;d

X
n

Z
dp1

ð2πÞ3
dp3

ð2πÞ3
Z

dx3e−iðp1−p3Þ·x3

× tr

�
S̄fðiωn;p1ÞS̄f

�
iωn;p1 −

Qf

2
x3 × B

�

× S̄fðiωn; p3ÞS̄f
�
iωn;p3 þ

Qf

2
x3 × B

��
: ðB6Þ

The momentum shifts in two propagators are originated in
the Schwinger phase. Remaining task is to evaluate the
integral by expanding the integrand in powers of ðeBÞ.
For example, the propagator having the finite magnetic
momentum shift can be expanded up to the first order in
ðeBÞ as follows

S̄fðiωn;p1 −
Qf

2
x3 × BÞ

¼ S̄ð0Þðiωn;p1Þ þ ðQfBÞS̄ð1Þðiωn;p1Þ

−
Qf

2
ðx3 × BÞ ·∇p1

S̄ð0Þðiωn;p1Þ:
Collecting terms up to the order ðeBÞ2 corrections in the
integrand, and making some tedious computations, we

arrive at the conclusion that the first order correction αð1Þ4 is
in fact vanishing (as expected from the rotational sym-
metry) and the second order correction is
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αð2Þ4 ¼ 2Nc

X
f

�
Qf

e

�
2

T
X
n

Z
dp

ð2πÞ3 tr½2ðS̄
ð0ÞÞ3Sð2Þ þ ðS̄ð0ÞS̄ð1ÞÞ2 þ 2ðS̄ð0ÞÞ2ðS̄ð1ÞÞ2�

− 2iNcϵ3ij
X
f

�
Qf

e

�
2

T
X
n

Z
dp

ð2πÞ3 tr½S̄
ð0ÞS̄ð1ÞS̄ð0ÞðγiðS̄ð0ÞÞ2γjS̄ð0Þ þ S̄ð0ÞγiðS̄ð0ÞÞ2γj þ γiðS̄ð0ÞÞ3γjÞ�

−
Nc

4
ϵ3ijϵ3lm

X
f

�
Qf

e

�
2

T
X
n

Z
dp

ð2πÞ3 tr½γiðS̄
ð0ÞÞ2γjðS̄ð0ÞÞ2γlðS̄ð0ÞÞ2γmðS̄ð0ÞÞ2 þ ðS̄ð0ÞÞ2fγiS̄ð0Þγl − γlS̄ð0Þγig

× ðS̄ð0ÞÞ2fγjS̄ð0Þγm − γmS̄ð0ÞγjgðS̄ð0ÞÞ2�≡ 5

9
αð0Þ8 :

Our results can be summarized in the following compact form:

α4ðμ; TÞ ¼ αð0Þ4 ðμ; TÞ þ 5

9
ðeBÞ2αð0Þ8 ðμ; TÞ: ðB7Þ
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