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Recently, transport coefficients, viz., shear viscosity, electrical conductivity, etc., of strongly interacting
matter produced in heavy-ion collisions have drawn considerable interest. We study the normalized
electrical conductivity (σel=T) of hot QCD matter as a function of temperature (T) using the color string
percolation model (CSPM). We also study the temperature dependence of shear viscosity and its ratio with
electrical conductivity for the QCD matter. We compare CSPM estimations with various existing results
and lattice QCD predictions with (2þ 1) dynamical flavors. We find that σel=T in CSPM has a very weak
dependence on the temperature. We compare CSPM results with those obtained in the Boltzmann approach
to multiparton scatterings model. A good agreement is found between CSPM results and predictions of the
Boltzmann approach to multiparton scatterings with a fixed strong coupling constant.
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I. INTRODUCTION

Ultrarelativistic heavy-ion collision programs at the
Relativistic Heavy-Ion Collider (RHIC) and Large
Hadron Collider (LHC) produce a strongly interacting
matter known as quark-gluon plasma (QGP) [1]. Various
experimental studies have been done in order to character-
ize the properties and behavior of matter at extreme
conditions of temperature and energy densities. The trans-
port properties are very important in understanding the
evolution of the strongly interacting matter produced in
heavy-ion collisions. The transport properties are mainly
the theoretical inputs to the hydrodynamical calculations
and affect various observables such as elliptic flow, trans-
verse momentum spectra of particles created in heavy-ion
collisions [2–4]. A very small shear viscosity–to–entropy
density ratio explains the elliptic flow of identified hadrons
produced at RHIC and LHC energies [5] and suggests the
fluidity of the hot QCD matter produced. Various methods
are used to estimate the shear viscosity (η) such as Kubo
formalism [6], effective models [7–13], etc.
Electrical conductivity (σel) is another key transport

coefficient in order to understand the behavior and properties

of strongly interacting matter. This plays an important role
in the hydrodynamic evolution of the matter produced in
heavy-ion collisions in which charge relaxation takes place.
In Ref. [14], the electrical conductivity is extracted from
charge-dependent flow parameters from asymmetric heavy-
ion collisions. Experimentally, it has been observed that very
strong electric and magnetic fields are created in the early
stages (1–2 fm=c) of noncentral collisions of nuclei at the
RHIC and LHC [14,15]. The values of the electric and
magnetic fields at the RHIC are eE ≈m2

π ≈ 1021 V=cm and
eB ≈m2

π ≈ 1018 G [15]. Such a large electrical field
influences the medium, which depends on the electrical
conductivity. σel is responsible for producing an electric
current in the early stage of the heavy-ion collision.
With the prior knowledge of color charges and the

associated electric charges of the quarks, one might
presume the QCD matter to be highly conductive. In
contrast, this assumption fails due to the high interaction
rates of the produced QCD matter, which again suggests a
low shear viscosity–to–entropy density ratio (η=s).
In highly conducting quark-gluon plasma, the screening
of external electromagnetic fields happens due to the high
values of σel like the Meissner effect in superconductors as
well as the “skin effect” for the electric current [16]. The
electrical conductivity is one of the fundamental reasons for
chiral magnetic effect [17], which is a signature of CP
violation in the strong interaction. In view of this, a detailed
study of electrical conductivity in the strongly interacting
QCD matter is inevitable.
The experimental measurement of electrical conductivity

(σel) of the matter produced in heavy-ion collisions is
not possible. Its information can be extracted from flow
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parameters measured in heavy-ion collision experiments
[14]. Recently, various theoretical approaches have been
used to study the electrical conductivity [16,18–31]. σel is
also related to the soft dilepton production rate [32] and the
magnetic field diffusion in the medium [33,34].
The color string percolation model (CSPM) is a QCD-

inspired model [35–39], which can be used as an alternative
approach to a color glass condensate. In the CSPM, the
color flux tubes are stretched between the colliding partons
in terms of the color field. The strings produce a qq̄ pair in
finite space filled similarly as in the Schwinger mechanism
of pair creation in a constant electric field covering all the
space [40]. With the growing energy and the number of
nucleons of participating nuclei, the number of strings
grows. Color strings may be viewed as small disks in the
transverse space filled with the color field created by
colliding partons. The number of strings grows as the
energy and size of the colliding nuclei increase and starts
overlapping to form clusters. After a critical string density
is reached, a macroscopic cluster that marks the percolation
phase transition, which spans the transverse nuclear inter-
action area, appears. Two-dimensional (2D) percolation is a
nonthermal second-order phase transition. In the CSPM,
the Schwinger barrier penetration mechanism for particle
production, the fluctuations in the associated string tension,
and the quantum fluctuations of the color fields make it
possible to define a temperature. Consequently, the particle
spectrum is produced with a thermal distribution. When the
initial density of interacting colored strings (ξ) exceeds the
2D percolation threshold (ξc), i.e., ξ > ξc, a macroscopic
cluster, which defines the onset of color deconfinement,
appears. The critical density of percolation is related to the
effective critical temperature, and thus percolation may be a
possible way to achieve deconfinement in ultrarelativistic
heavy-ion collisions [41] and in high-multiplicity pp
collisions [42,43]. It is observed that the CSPM can be
successfully used to describe the initial stages in high-
energy heavy-ion collisions [40]. Recently, we have used
CSPM to perform the energy and centrality dependent
study of the deconfinement phase transition at RHIC Beam
Energy Scan (BES) energies [44]. We have also studied
various thermodynamical and transport properties at RHIC
BES energies in this approach [45].
In this work, for the first time, we give the formulation of

σel in the color string percolation approach. The paper is
organized as follows. In Sec. II, we give the detailed
formulation for calculation of electrical conductivity and
shear viscosity in the CSPM, and we present results and
discussions in Sec. III. Finally, we present a summary and
conclusions in Sec. IV.

II. ELECTRICAL CONDUCTIVITY
AND SHEAR VISCOSITY

In this section, we develop the formulation for evaluating
the electrical conductivity of strongly interacting matter

using the color string percolation approach. We start with
few basic equations of the CSPM. The percolation density
parameter, ξ, for central Auþ Au collisions at RHIC
energies is calculated by using the parametrization of pp
collisions at

ffiffiffi
s

p ¼ 200 GeV as discussed below. In the
CSPM, one obtains

dNch

dp2
T
¼ a

ðp0 þ pTÞα
; ð1Þ

where a is the normalization factor and p0 and α are fitting
parameters given as p0 ¼ 1.982 and α ¼ 12.877 [46].
Because of the low string overlap probability in pp
collisions, the fit parameters are then used to evaluate
the interactions of the strings in Auþ Au collisions as

p0 → p0

�hnS1=SniAuþAu

hnS1=Snipp

�
1=4

: ð2Þ

Here, Sn corresponds to the area occupied by n over-
lapping strings. Now,

�
nS1
Sn

�
¼ 1

F2ðξÞ ; ð3Þ

where FðξÞ is the color suppression factor, which is given as

FðξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−ξ

ξ

s
: ð4Þ

To calculate the electrical conductivity of strongly
interacting matter, which is one of the most important
transport properties of QCD matter, we proceed as follows.
The mean free path, which describes the relaxation of the
system far from equilibrium can be written in terms of the
number density and cross section as

λmfp ¼
1

nσtr
; ð5Þ

where n is the number density of an ideal gas of quarks and
gluons and σtr is the transport cross section. In the CSPM,
the number density is given by the effective number of
sources per unit volume:

n ¼ Nsources

SnL
: ð6Þ

Here, L is the longitudinal extension of the string ∼1 fm.
The area occupied by the strings is given by the relation
ð1 − e−ξÞSn. Thus, the effective number of sources is given
by the total area occupied by the strings divided by the area
of an effective string, S1FðξÞ, as shown below:

Nsources ¼
ð1 − e−ξÞSn
S1FðξÞ

; ð7Þ
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In general, Nsources is smaller than the number of single
strings. Nsources equals the number of strings, Ns, in the
limit of ξ ¼ 0. So,

n ¼ ð1 − e−ξÞ
S1FðξÞL

: ð8Þ

Now, using Eqs. (5) and (8), we get

λmfp ¼
L

ð1 − e−ξÞ ; ð9Þ

where σtr, the transverse area of the effective strings,
equals S1FðξÞ.
Now, we derive the formula for electrical conductivity.

For this, we use the Anderson-Witting model, in which the
Boltzmann transport equation is given as [47]

pμ∂μfk þ qFαβpβ
∂fk
∂pα ¼

−pμuμ
τ

ðfk − feq;kÞ; ð10Þ

where fk ¼ fðx; p⃗; tÞ is the full distribution function and
feq;k is the equilibrium distribution function of the kth
species. τ is the mean time between collisions, and uμ is the
fluid 4-velocity in the local rest frame. Equation (10)
provides a straightforward calculation of the quark distri-
bution after applying the electric field. The gluon distri-
bution function remains thermal and not altered by electric
field. Here, we assume that there are as many quarks
(charge q) as antiquarks (charge -q) and uncharged gluons
in the system. Fαβ is the electromagnetic field strength
tensor, which in terms of the electric field and the magnetic
flux tensor is given as [48]

Fμν ¼ uνEμ − uμEν − Bμν: ð11Þ

Since we study the effect of the electric field, the magnetic
field is set to zero, Bμν ¼ 0, in the calculations. The electric
current density of the kth species in the x direction is given as

jxk ¼ qk

Z
d3ppx

ð2πÞ3p0
fk ¼ gkτ

8

3

πq2kT
2

ð2πÞ3 E
x: ð12Þ

According to Ohm’s law, jxk ¼ σelEx. Using Eq. (12) and
relation nk ¼ gkT3=π2, electrical conductivity in the
assumption of a very small electric field and no cross-effects
between heat and electrical conductivity in the relaxation
time approximation is given by

σel ¼
1

3T

XM
k¼1

q2knkλmfp: ð13Þ

Putting Eq. (9) in Eq. (13) and considering the density of
the up quark (u) and its antiquark ðūÞ in the calculation, we
get the expression for σel:

σel ¼
1

3T
4

9
e2nqðTÞ

L
ð1 − e−ξÞ : ð14Þ

Here, the prefactor 4=9 reflects the fractional quark
charge squared ðPfq

2
fÞ, and nq denotes the total density of

quarks or antiquarks. Here, e2 in the natural unit is taken as
4πα, where α ¼ 1=137.
In the framework of a relativistic kinetic theory, the shear

viscosity–to–entropy density ratio, η=s, is given by [49–51],

η=s ≃
Tλmfp

5
; ð15Þ

In the context of the CSPM, the above equation can be
reduced using Eq. (9) as

η=s ≃
TL

5ð1 − e−ξÞ : ð16Þ

III. RESULTS AND DISCUSSIONS

In this section, we discuss the results obtained in the
CSPM along with those obtained in various approaches.
In Fig. 1, we show σel=T as a function of temperature.
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FIG. 1. σel=T vs T plot. The black solid line is the result
obtained in the CSPM, and black triangles are PHSD results [16].
The green and brown dotted lines correspond to various BAMPS
results [48]. The NCH model [29] results are shown by the red
dotted line. The blue circles are kinetic theory calculations [53].
The horizontal line is the result obtained for conformal super-
symmetric (SYM) Yang-Mills plasma [54]. Lattice data: lattices
A–G [20–26,52] are also shown by various symbols in the figure.
The results for isotropic and anisotropic QGP [55] are shown by
the blue dash-dotted and dashed lines, respectively. The red solid
line depicts the results of the QP model [28].
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The lattice QCD (lQCD) estimations, i.e., lattices A–G
[20–26,52], are shown in the figure for comparison.
The green and brown dotted lines are the result of the
microscopic transport Boltzmann approach to multiparton
scattering (BAMPS) model [48], in which the relativistic
(3þ 1)-dimensional Boltzmann equation is solved numeri-
cally to extract the electric conductivity for a dilute gas of
massless and classical particles described by the relativistic
Boltzmann equation. The green dotted line with the solid
circles is the result for only elastic processes 2 ↔ 2, in
which strong coupling constant (αs) is taken as constant
(αs ¼ 0.3) and the green dotted line with the solid stars is
with the same setup for running αs. The brown dotted line
with the brown plus symbols is the BAMPS result, in which
both elastic 2 ↔ 2 and inelastic 2 ↔ 3 processes are taken
into consideration with running αs. The BAMPS results
show a slower increase of σel=T with temperature for both
the cases of running αs as the effective cross section
changes with the temperature, while σel=T remains almost
independent of temperature for the case of constant αs. The
BAMPS results are above the lQCD results. The solid black
line shows our results of the CSPM for u quark and
antiquark calculated using Eq. (14). We observe that σel=T
is almost independent of temperature and matches with the
results of BAMPS with constant αs, which may be due to
the similar basic ingredients and procedure for the estima-
tion of σel=T.
Although the percolation of the string approach is not

directly obtained from QCD, it is QCD inspired, like how
the BAMPS model is governed by perturbative QCD. The
basic ingredients in the percolation approach are strings,
which are stretched between the partons of the projectile
and target and forms color electric and magnetic fields in
the longitudinal direction. The color strings fragment into
q − q̄ and/or qq − q̄q pairs and form hadrons [40]. In the
present study, we consider the strings to fragment into only
u − ū pairs. We use the Drude formula in the relativistic
case to estimate the electrical conductivity, which can be
obtained after solving the relativistic Boltzmann transport
equation with some approximations as mentioned in
Sec. II. So, the observation proclaims the almost similar
approach of both the models for the calculation of σel=T. It
has been shown in Ref. [56] that the real electrical
conductivity can be even more than 50% larger than the
estimate of the Drude formula unless the cross section is
isotropic (no angular dependence).
A nonconformal holographic model (NCH) [29] is used

to estimate the electrical conductivity of the strongly
coupled QGP, which is shown by the red dashed line
and explains the lQCD data qualitatively. Kinetic theory
[53] is also used to calculate electrical conductivity of
hadron gas of which the results are shown by blue circles in
the figure, which shows a decrease of σel=T with temper-
ature. The electrical conductivity for conformal Yang-Mills
plasma [54] is also shown by the horizontal line in the

figure. The blue dash-dotted and dotted lines are the results
for QGP obtained using the quasiparticle model for the
quark and gluons [55] for the isotropic and anisotropic cases,
respectively. Here, all the quarks and antiquarks have both
the masses, i.e., thermal and bare. The thermal masses of
quarks and antiquarks arise due to the interaction with the
constituents of the medium. The parton-hadron-string
dynamics (PHSD) model results [16] are also shown by
the black triangles in the figure for both the phases—hadron
gas and quark-gluon plasma with different approaches. The
hadron-string-dynamics transport approach has been used
for the hadronic sector PHSD, while the partonic dynamics
in the PHSD is based on the dynamical quasiparticle model
(DQPM). σel in PHSD decreases with temperature in the
hadronic phase when it approaches Tc and increases almost
linearly for Tc < T, in the partonic phase after a sudden drop
around Tc. The calculations of the quasiparticle (QP) model
[28] are also shown in the figure by solid red line, which
match with the PHSD results for the QGP phase.
Figure 2 shows the variation of η=s as a function of T=Tc.

Here, Tc is the critical temperature, which is different in
different model calculations. The black solid line is the
CSPM result, and the broken lines are quasiparticle model
results [55]. Here, the dashed line is the result for anisotropic
case, while the dash-dotted line is for the isotropic case.
A direct comparison with anisotropic QGP gives a feeling
of the temperature-dependent effect of anisotropy on the
discussed observables in Figs. 2 and 3. However, the
comparison with the results for the isotropic case is only

T/Tc

1 1.5 2 2.5 3 3.5 4

/s
η

2−10

1−10

1

PoSLAT 2007, Sakai et al.
PRD 76, H. B. Meyer 
PRL 94, Nakamura et al. 
PRL 94, Nakamura et al. 
Isotropic QGP 
Anisotropic QGP 
CSPM
DQPM

QP
g

FIG. 2. The ratio η=s as a function of T=Tc. The black solid line
is the CSPM result, and broken lines are results from Ref. [55].
The symbols are lattice QCD results: full triangles [57], open
squares and open triangles [58], and full squares [59]. The black
circles are the results obtained in the DQPM [60]. The red solid
line is QP model results [28].
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meaningful for CSPM calculations if the partons are
considered massless. The blue triangle symbols are results
of lQCDwith (2þ 1) dynamical flavors [57–59]. The black
circles are the estimations from theDQPM [60]. The red line
is the results obtained in the QP model [28]. In the CSPM,
η=s first decreases, and after reaching a minimum value, it
starts increasing with temperature. Thus, it forms a dip that
occurs at T=Tc ¼ 1. The quasiparticle model results [55]
show a similar behavior, but the dip does not occur at the
critical temperature in this case. We notice that the CSPM
results are close to the DQPM predictions and stay little
higher than the results obtained in the quasiparticle model.
Recently, the ratio ðη=sÞ=ðσel=TÞ has gained consider-

able interest in heavy-ion phenomenology [28]. QGP is
expected as a good conductor due to the presence of
deconfined color charges. A small value of η=s suggests
large scattering rates that can damp the conductivity. It is
observed that η=s is affected by the gluon-gluon and quark-
quark scatterings while σel is only affected by the quark-
quark scatterings [28]. Thus, the ratio between them is
important to quantify the contributions from quarks and
gluons in various temperature regions. In this work, we
have studied this ratio as a function of temperature using
the CSPM. In Fig. 3, we show the ratio of η=s and σel=T vs

T=Tc. It is observed that this ratio behaves in a fashion
similar to η=s. We have also shown the results obtained for
the isotropic and anisotropic QGP using a quasiparticle
model [55]. Again, the comparison with the isotropic case
is only meaningful. CSPM results are also confronted with
the interpolated lattice QCD data [28] and explain the
data within error bars. The dotted horizontal line is the
AdS=CFT calculation [28] for a strongly coupled system.
We also show the results obtained in the DQPM and QP by
the black circles and red line, respectively.

IV. SUMMARY AND OUTLOOK

In summary, we have developed a method to calculate
the electric conductivity of strongly interacting matter
using the color string percolation approach. We use
basically the well-known Drude formula for the estimation
of electrical conductivity, which can be obtained after
solving the Boltzmann transport equation in relaxation
time approximation assuming very small electric fields and
no cross-effects between heat and electrical conductivity.
We see that the CSPM results for the conductivity stays
almost constant with increasing temperature in a fashion
similar to that shown by BAMPS data and matches the
results obtained in BAMPS with the fixed strong coupling
constant considering the elastic cross section only. The
CSPM results lie well above the lQCD results for all the
temperatures. We have shown η=s as a function of T=Tc
and compared our results with various quasiparticle models
for isotropic and anisotropic cases, lQCD data, DQPM, and
QP model results. Similar behavior is found for CSPM
results as shown in lQCD data and other model predictions.
But our results lie above the results obtained from
quasiparticle models. CSPM results go in line with that
obtained in the DQPM. We have also studied the ratio,
ðη=sÞ=ðσel=TÞ, as a function of T, which behaves in a
manner similar to η=s. We have confronted CSPM results
with the results obtained in the quasiparticle model for the
isotropic and anisotropic QGP media, lQCD predictions,
estimations from the DQPM, and QP models. The results
obtained for electrical conductivity in the CSPM frame-
work validate the outcomes from BAMPS calculations with
a fixed strong coupling constant and fail to explain the
predictions of lQCD data.
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