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We investigate the mass spectra of the lowest-lying singly heavy baryons, based on the self-consistent
chiral quark-soliton model. We take into account the rotational 1=Nc and strange current quark mass (ms)
corrections. Regardingms as a small perturbation, we expand the effective chiral action to the second order
with respect to ms. The mass spectra of heavy baryons are computed and compared with the experimental
data. Fitting the classical masses of the heavy baryon to the center mass of each representation, we
determine the masses of all the lowest-lying singly heavy baryons. We predict the mass of the Ω�

b baryon to
be 6081.9 MeV, when the second-order ms corrections are included.
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I. INTRODUCTION

Interest in heavy baryons is renewed as a series of new
experimental data on them was reported [1–10]. A conven-
tional heavy baryon is composed of a heavy quark and two
light quarks. Since the mass of the heavy quark is very large
in comparison to that of the light quarks, we can take the
limit of the infinitely heavy mass of the heavy quark, i.e.,
mQ → ∞. This leads to the conservation of the heavy-
quark spin JQ, which results also in the conservation of the
total spin of light quarks, J ≡ J0 − JQ, where J0 is the spin
of the heavy baryon [11–13]. The conservation of the quark
spins is called heavy-quark spin symmetry that makes J a
good quantum number. In this limit, the heavy quark can be
regarded merely as a static color source, and dynamics
inside a heavy baryon is mostly governed by the light
quarks consisting of it. Thus, the two light quarks
determine to which flavor SUð3Þf representation a heavy-
baryon belongs. There are two different representations:
3 ⊗ 3 ¼ 3̄ ⊕ 6. The antitriplet (3̄) has J ¼ 0 and total
J0 ¼ 1=2, whereas the sextet (6) has J ¼ 1. Thus, the spin
of a heavy baryon is determined by the spin alignment of
the light-quark pair together with a heavy quark. It becomes

either J0 ¼ 1=2 or J0 ¼ 3=2. So, there are 15 different
lowest-lying heavy baryons classified as shown in Fig. 1 in
the case of charmed baryons.
The masses of singly heavy baryons have been studied

within various chiral solitonic models, in particular, based
on bound-state approaches [14,15]. The model was origi-
nally applied to hyperons, the strange quark being regarded
as a heavy one. This bound-state approach was employed to
describe charmed baryons as soliton-D meson bound states
[16]. In the advent of heavy-quark symmetry, Refs. [17–20]
incorporated this symmetry and described singly heavy
baryons as a bound state of a soliton and heavy mesons.
Moreover, in the original bound-state approach, the whole
soliton-heavy meson bound state was quantized collec-
tively, whereas Refs. [17–20] first quantized the soliton and
then coupled it to heavy mesons. In Ref. [21], it was shown
that these two different quantization schemes in the bound-
state approach are in fact equivalent.
In the chiral quark-soliton model (χQSM), singly heavy

baryons were examined only very recently. Reference [22]
put forward a mean-field approach to describe the masses of
singly heavy baryons, being motivated by Ref. [23].
The main idea of this mean-field approach is rooted in
Refs. [24,25], in which Witten suggests that in the limit of
the large number of colors (Nc) the nucleon can be viewed as
a bound state ofNc valence quarks in a pion mean field with
a hedgehog symmetry [26,27], as the quantum fluctuation
around the saddle point of the pion field is 1=Nc suppressed.
In this largeNc limit, the presence ofNc valence quarks that
constitute the lowest-lying baryons brings about the vacuum
polarization, which produces the pion mean field. The Nc
valence quarks are also self-consistently influenced by this
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pion mean field. Because of the hedgehog symmetry, an
SU(2) soliton is embedded into the isospin subgroup of the
flavor SUð3Þf [25], which was also employed by various
chiral solitonmodels [28–30]. The collective quantization of
the chiral soliton yields the collective Hamiltonian with
effects of flavor SUð3Þf symmetry breaking. Thismean-field
approach is called the χQSM [31–33]. One salient feature of
the χQSM is that the right hypercharge is constrained to be
Y 0 ¼ Nc=3 imposed by the Nc valence quarks. This right
hypercharge selects allowed representations of light baryons
such as the baryon octet (8), the decuplet (10), etc. The
χQSM describes successfully the properties of the lowest-
lying light baryons such as the mass splittings [34], the form
factors [35–38], and parton distributions [39].
In the present work, we investigate the mass spectra

of singly heavy baryons in the ground states within the
framework of the χQSM. Since a singly heavy baryon
contains Nc − 1 light valence quarks, the imposed con-
straint Y 0 should be modified as Ȳ ¼ ðNc − 1Þ=3. This
allows the lowest-lying representations: the baryon anti-
triplet (3̄) and the baryon sextet (6). While in Ref. [22] all
dynamical parameters were fixed by using the experimental
data, we will compute them here explicitly in a self-
consistent way. This explicit calculation has a certain
advantage over the previous model-independent analysis.
Since we calculate the valence and sea contributions
separately, we can correctly consider the pion mean
field that is produced only by the Nc − 1 valence quarks,
whereas the vacuum polarization is kept the same as in the
case of light baryons. On the other hand, the model
calculation suffers from a deficiency: the classical soliton
mass turns out to be rather large in the model, which is a
usual problem in any chiral soliton models. It means that
the predicted values of baryon masses from the model tend
to be systematically overestimated. Thus, we will first
concentrate on the mass splittings of the lowest-lying heavy
baryons in the present work, focusing on the effects of
SU(3) symmetry breaking.

Regarding the mass of the strange current quark as a
small perturbation, we first consider its linear-order
corrections to the masses of heavy baryons and then take
into account the second-order corrections. However, a
caveat on the second-order corrections should be men-
tioned. In principle, the effective chiral action may include
a term that is proportional to the square of the current
quark masses. However, so far, any rigorous theoretical
method for that is not known. Thus, the second-order
corrections in the present work imply only the contribu-
tions arising from the second-order perturbation theory.
Bearing this warning in mind, we will examine the masses
of both the singly charmed and bottom baryons. Taking a
practical point of view, we fix the center masses in each
representation by using the experimental data as in
Ref. [22]. Then, we are able to produce all the values
of the lowest-lying singly heavy baryons. We also predict
the mass of the Ω�

b baryon, of which the value is
experimentally yet unknown.
The structure of the present work is sketched as follows.

In Sec. II, we briefly review the χQSM for singly heavy
baryons. In Sec. III, we examine numerically the effects of
SUð3Þf symmetry breaking. We then present the prediction
of the heavy-baryon masses, fixing the center masses in
each representation by the data. The last section is devoted
to the summary and conclusions of the present work. In the
Appendices, we have compiled all necessary formulas
explicitly.

II. GENERAL FORMALISM

A heavy quark inside a heavy baryon can be regarded
as a static color source in the limit of the infinite heavy-
quark mass mQ → ∞. In this case, the heavy quark is
only required to make the heavy baryon a color singlet.
So, it can be described as the correlation function of the
Nc − 1 light-quark field operators in Euclidean space,
defined by

FIG. 1. The antitriplet (3̄) and sextet (6) representations of the lowest-lying heavy baryons. The left panel draws the weight diagram for
the antitriplet with the total spin 1=2. The centered panel corresponds to that for the sextet with the total spin 1=2, and the right panel
depicts that for the sextet with the total spin 3=2.
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ΠBð0; TÞ ¼ hJBð0; T=2ÞJ†Bð0;−T=2Þi0
¼ 1

Z

Z
DUDψ†DψJBð0; T=2ÞJ†Bð0;−T=2Þ

× e
R

d4xψ†ði∂þiMUγ5þim̂Þψ ; ð1Þ

where JB denotes the light-quark current consisting of
Nc − 1 light quarks for a heavy baryon B,

JBðx; tÞ ¼
1

ðNc − 1Þ! ε
β1���βNc−1Γffg

J0J0
3
;TT3

Ψβ1f1ðx; tÞ � � �

×ΨβNc−1fNc−1
ðx; tÞ: ð2Þ

βi represent color indices, and Γff1���fNc−1g
J0J0

3
;TT3

is a matrix

with both flavor and spin indices. J0 and T are the spin
and isospin of the heavy baryon, respectively. J03 and T3

are their third components, respectively. The notation
h� � �i0 in Eq. (1) stands for the vacuum expectation
value. M denotes the dynamical quark mass, and Uγ5 is
defined as

Uγ5 ¼ U
1þ γ5

2
þU† 1 − γ5

2
; ð3Þ

with

U ¼ exp

�
i
πaλa

fπ

�
: ð4Þ

πa represents the pseudo-Goldstone field, and fπ is the
pion decay constant. m̂ is the flavor matrix of the current
quark masses, written as m̂ ¼ diagðmu; md; msÞ. We
assume in the present work isospin symmetry, i.e.,
mu ¼ md. The strange current quark mass will be treated
perturbatively.
Integrating over the quark fields, we obtain the corre-

lation function as

ΠBð0; TÞ ¼
1

Z
Γffg
J0J0

3
;TT3

Γfgg
J0J0

3
;TT3

×
Z

DU
YNc−1

i¼1

h0; T=2j 1

DðUÞ j0;−T=2ie
−SeffðUÞ;

ð5Þ

where DðUÞ is defined as

DðUÞ ¼ iγ4∂4 þ iγk∂k þ iMUγ5 þ im̂ ð6Þ

and Seff represents the effective chiral action written as

Seff ¼ −NcTr logDðUÞ: ð7Þ

The correlation function at large separation of the
Euclidean time τ picks up the ground-state energies [31,32]

lim
τ→∞

ΠBðτÞ ∼ exp½−ðNc − 1ÞEval þ Eseaτ�; ð8Þ

where Eval and Esea the valence- and sea-quark energies.
The soliton mass is then derived by minimizing self-
consistently the energies around the saddle point of the
chiral field U,

δ

δU
½ðNc − 1ÞEval þ Esea�

���
Uc

¼ 0; ð9Þ

which yields the soliton mass

Msol ¼ ðNc − 1ÞEvalðUcÞ þ EseaðUcÞ: ð10Þ

Since a singly heavy baryon contains the heavy quark, its
classical mass of a heavy baryon should be expressed as

Mcl ¼ Msol þmQ; ð11Þ

wheremQ is the effective heavy-quark mass that is different
from that discussed in QCD and will be absorbed in
the center mass of each representation, which will be
discussed later.
As in the light-baryon sector, we expect that the lowest-

lying heavy baryons will arise from rotational excitations
of the light-quark soliton, whereas the heavy quark is kept
static. Keeping in mind that the SU(2) soliton UcðrÞ has
hedgehog symmetry, we embed it into SU(3) [25]:

UðrÞ ¼
�
UcðrÞ 0

0 1

�
: ð12Þ

To find the 1=Nc quantum fluctuations, we need to
integrate the meson fields over small oscillations of the
UðrÞ field around the saddle point. However, we will not
carry out this procedure, and this is often called the mean-
field approximation. On the other hand, we have to
consider explicitly the rotational zero modes that are not
small and cannot be neglected. Thus, we restrict ourselves
to taking into account these zero modes only. Considering a
slowly rotating hedgehog field UðrÞ in Eq. (12),

Uðr; tÞ ¼ AðtÞUðrÞA†ðtÞ; ð13Þ

where AðtÞ is an element of the flavor SU(3) matrix, we can
find the collective Hamiltonian to describe heavy baryons.
For a detailed formalism of the semiclassical quantization,
we refer to Ref. [32]. Regarding the angular velocity of
the soliton and the current strange-quark mass as small
parameters, we can expand the quark propagator in Eq. (5)
with respect to them.
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Having quantized the chiral soliton, we arrive at the
collective Hamiltonian for singly heavy baryons,

H ¼ Hsym þHð1Þ
sb þHð2Þ

sb ; ð14Þ

whereHsym represents the flavor SU(3) symmetric part and

Hð1Þ
sb and Hð2Þ

sb are the SU(3) symmetry-breaking parts to
the first and second orders, respectively, which will be
discussed later. Hsym is expressed as

Hsym ¼ Mcl þ
1

2I1

X3
i¼1

Ĵ2i þ
1

2I2

X7
a¼4

Ĵ2a; ð15Þ

where I1 and I2 denote the moments of inertia of the
soliton. The explicit expressions for I1;2 are given in
Eq. (A6). The operators Ĵi are the SU(3) generators. In
the ðp; qÞ representation of the SU(3) group, we find the
eigenvalue of the Casimir operator

P
8
i¼1 J

2
i as

C2ðp; qÞ ¼
1

3
½p2 þ q2 þ pqþ 3ðpþ qÞ�: ð16Þ

Thus, the eigenvalues of Hsym are obtained as

Esymðp;qÞ¼Mclþ
1

2I1
JðJþ1Þ

þ 1

2I2
½C2ðp;qÞ−JðJþ1Þ�− 3

8I2
Ȳ2: ð17Þ

The right hypercharge Ȳ is constrained to be ðNc − 1Þ=3,
which is imposed by the Nc − 1 valence quarks inside a
singly heavy baryon. The wave functions of the singly
heavy baryon are derived as

ψ ðRÞ
B ðJ0J03; J;AÞ ¼

X
m3¼�1=2

C
J0J0

3

JQm3JJ3
χm3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðp; qÞ

p

× ð−1Þ−Ȳ
2
þJ3DðRÞ�

ðY;T;T3ÞðȲ;J;−J3ÞðAÞ; ð18Þ

where

dimðp; qÞ ¼ ðpþ 1Þðqþ 1Þ
�
1þ pþ q

2

�
: ð19Þ

Note that a similar expression can be found in Ref. [20],
though its formalism is rather different from the present
one. J and JQ stand for the soliton spin and heavy-quark
spin, respectively. J3 and m3 represent the corresponding
third components, respectively. Since the spin operator for
the heavy baryon is given by the addition of the soliton and
heavy-quark spin operators

J0 ¼ JQ þ J; ð20Þ

the relevant Clebsch-Gordan coefficients appear in
Eq. (18). The SU(3) Wigner D function in Eq. (18) is just
the wave function for the quantized soliton consisting of the
Nc − 1 valence quarks, whereas χm3

is the Pauli spinor for
the heavy quark. R stands for a SU(3) irreducible repre-
sentation corresponding to ðp; qÞ.
Since a singly heavy baryon consists of Nc − 1 valence

quarks, we have two irreducible representations when
Nc ¼ 3: 3 ⊗ 3 ¼ 3̄ ⊕ 6. Thus, we have the following
representations for the lowest-lying singly heavy baryons:

½3̄0� ¼ Dð0; 1Þ∶ the anti-triplet with J ¼ 0;

½61� ¼ Dð2; 0Þ∶ the sextet with J ¼ 1: ð21Þ

The soliton being coupled to the heavy quark, we finally get
three different representations, which have been illustrated
already in Fig. 1. Since the soliton in the sextet (J ¼ 1) is
coupled to the heavy quark (JQ ¼ 1=2), we have two sextet
representations with spins 1=2 and 3=2, respectively, which
are degenerate. The hyperfine spin-spin interaction will lift
this degeneracy.
Since a singly heavy baryon consists of Nc − 1 valence

quarks, the pion mean fields should be changed. In
Refs. [22,40], a scale factor was introduced to explain
the modification of the mean field, of which the value was
taken to be in the range of 1 − 0.66. Because all dynamical
variables being proportional to the color factor were fixed
by the experimental data in Refs. [22,40], it was impos-
sible to decompose the valence and sea parts. On the other
hand, we can treat separately the valence- and sea-quark
contributions in the present work. So, we will replace the
Nc factor with Nc − 1 only in front of the valence part of
the dynamical parameters, while we keep the sea part
intact.
To describe the mass splittings of SU(3) baryons in a

specific representation, we have to consider the effects of
flavor SU(3) symmetry breaking, dealing with the mass of
the strange current quark, ms, as a small perturbation. First,
we consider the first-order corrections that are proportional
to the linear ms, and then we proceed to take into account
the second-order corrections. In this case, the baryon wave
functions are no longer in pure states but are mixed with
those of higher representations. Thus, there are two differ-
ent contributions: one from the collective Hamiltonian and
the other from the baryon wave functions. Both corrections
will be considered second-order contributions.

A. Mass splittings to the linear order

The symmetry-breaking part of the collective
Hamiltonian is given as [32,34]
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Hð1Þ
sb ¼ Σ̄πN

m0

ms

3
þ αDð8Þ

88 þ βŶ þ γffiffiffi
3

p
X3
i¼1

Dð8Þ
8i Ĵi; ð22Þ

where

α ¼
�
−
Σ̄πN

3m0

þ K2

I2
Ȳ

�
ms; β ¼ −

K2

I2
ms;

γ ¼ 2

�
K1

I1
−
K2

I2

�
ms: ð23Þ

The first term in Eq. (22) can be absorbed into the
symmetric part of the Hamiltonian, since it does not
contribute to the mass splittings of heavy baryons in a
given representation. The m0 represents the averaged mass
of the up and down quarks. The three parameters α, β, and γ
are expressed in terms of the moments of inertia I1;2 and
K1;2, of which the valence parts are different from those in
the light-baryon sector by the color factor Nc − 1 in place
of Nc. The valence part of Σ̄πN is different from the πN
sigma term by the prefactor Nc − 1, that is, Σ̄πN ¼
ðNc−1ÞN−1

c ΣπN , where ΣπN ¼ðmuþmdÞhNjūuþ d̄djNi¼
ðmuþmdÞσ. The explicit expressions for the moments of
inertia and the πN sigma term can be found in Appendix A.
Note that their sea parts are the same as in the light-baryon
sector.
Taking into account the ms corrections to the first order,

we can write the masses of the singly heavy baryons in
representation R as

MQ
B;R ¼ MQ

R þMð1Þ
B;R; ð24Þ

where

MQ
R ¼ mQ þ Esymðp; qÞ: ð25Þ

MQ
R is called the center mass of a heavy baryon in

representation R. Esymðp; qÞ is defined in Eq. (17). Note
that the lower index B denotes a certain baryon belonging
to a specific representation R. The upper index Q stands
for either the charm sector (Q ¼ c) or the bottom sector
(Q ¼ b). The center masses for the antitriplet and sextet
representations can be explicitly written as

MQ
3̄
¼ Mcl þ

1

2I2
; MQ

6 ¼ MQ
3̄
þ 1

I1
; ð26Þ

where Mcl was defined in Eq. (11). The second term in
Eq. (24) denotes the linear-order ms corrections to the
heavy-baryon mass

Mð1Þ
B;R ¼ hB;RjHð1Þ

sb jB;Ri ¼ YδR; ð27Þ

where

δ3̄ ¼
3

8
αþ β; δ6 ¼

3

20
αþ β −

3

10
γ: ð28Þ

The values of the matrix elements for the relevant SU(3)
Wigner D functions are tabulated in Appendix B. Thus,
we obtain the masses of the lowest-lying singly heavy
baryons,

MQ
B;3̄

¼ MQ
3̄
þ Yδ3̄; MQ

B;6 ¼ MQ
6 þ Yδ6; ð29Þ

with the linear-order ms corrections taken into account.

B. Mass splittings to the second order

We now consider the second-order ms corrections.
When we include the second-order corrections, the collec-
tive wave function of baryons is no longer in a pure state
but is mixed with those in higher representations. Using the
standard method of perturbation theory, we can derive the
second-order ms corrections to the baryon mass, which
arise from the baryon wave functions [41],

Mð2ÞðwfÞ
B ¼

X
R≠R0

jhR0; BjHð1Þ
sb jR; Bij2

MQ
R −MQ

R0
; ð30Þ

where R0 denote higher representations that are different
from R. These representations are determined by the
irreducible decomposition of the following products:
3̄ ⊗ 8 ¼ 3̄ ⊕ 6 ⊕ 15 and 6 ⊗ 8 ¼ 3̄ ⊕ 6 ⊕ 15 ⊕ 24.
The corresponding baryon wave function is then expressed
as a mixed state with those in higher representations,

jBðRÞi ¼ jR; Bi −
X
R≠R0

jhR0; BjHð1Þ
sb jR; Bij

MQ
R −MQ

R0
jR0; Bi: ð31Þ

Explicit calculation yields the collective wave functions of
the baryon antitriplet and sextet, respectively, as

jB3̄0i ¼ j3̄0; Bi þ pB
1̄5
j150; Bi;

jB61i ¼ j61; Bi þ qB
1̄5
j151; Bi þ qB

2̄4
j241; Bi; ð32Þ

with the mixing coefficients

pB
15
¼p

15

�
2ffiffiffi
3

p
�
; qB

15
¼ q

15

2
64
2

ffiffiffi
2

p
ffiffiffi
3

p

0

3
75; qB

24
¼ q24

2
64

1ffiffiffiffiffiffiffiffi
3=2

p
ffiffiffiffiffiffiffiffi
3=2

p

3
75;

ð33Þ
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where

p
15

¼ −
3

16
ffiffiffi
5

p αI2; q
15

¼ −
1

4
ffiffiffi
5

p
�
αþ 2

3
γ

�
I2;

q24 ¼ −
2

25

�
α −

1

3
γ

�
I2; ð34Þ

in the bases of ½ΛQ;ΞQ� and ½ΣQ;Ξ0
Q;ΩQ�, respectively.Then,

we obtain the second-order corrections to the masses of the
singly heavy baryons from the baryon wave functions as

Mð2ÞðwfÞ
ΛQ

¼ −I2
9

160
α2;

Mð2ÞðwfÞ
ΞQ

¼ −I2
27

640
α2;

Mð2ÞðwfÞ
ΣQ

¼ −I2
1

90
ð3αþ 2γÞ2 − I2

2

1125
ð3α − γÞ2;

Mð2ÞðwfÞ
Ξ0
Q

¼ −I2
1

240
ð3αþ 2γÞ2 − I2

1

375
ð3α − γÞ2;

Mð2ÞðwfÞ
ΩQ

¼ −I2
1

375
ð3α − γÞ2: ð35Þ

There are yet other second-order ms corrections that
come from the collective Hamiltonian [32,41],

Hð2Þ
sb ¼ m2

s

�
2

3

K2
1

I1

X3
i¼1

Dð8Þ
8i ðAÞDð8Þ

8i ðAÞ þ
2

3

K2
2

I2

X7
a¼4

Dð8Þ
8a ðAÞDð8Þ

8a ðAÞ −
2

3
N1

X3
i¼1

Dð8Þ
8i ðAÞDð8Þ

8i ðAÞ

−
2

3
N2

X7
a¼4

Dð8Þ
8a ðAÞDð8Þ

8a ðAÞ −
2

9
N0ð1 −Dð8Þ

88 ðAÞÞ2
�
; ð36Þ

where N0, N1, and N2 are defined in Appendix A. Comput-
ing the matrix elements of Eq. (36), we obtain the second-
order ms corrections to the masses of the singly heavy
baryons, which arise from the collective Hamiltonian,

Mð2ÞðopÞ
ΛQ

¼ m2
s

�
3

20

K2
1

I1
þ 2

5

K2
2

I2
þ 13

180
N0 −

3

20
N1 −

2

5
N2

�
;

Mð2ÞðopÞ
ΞQ

¼ m2
s

�
3

10

K2
1

I1
þ 3

10

K2
2

I2
−

7

90
N0 −

3

10
N1 −

3

10
N2

�
;

Mð2ÞðopÞ
ΣQ

¼ m2
s

�
19

90

K2
1

I1
þ 16

45

K2
2

I2
þ 1

90
N0 −

19

90
N1 −

16

45
N2

�
;

Mð2ÞðopÞ
Ξ0
Q

¼ m2
s

�
4

15

K2
1

I1
þ 1

3

K2
2

I2
−

2

45
N0 −

4

15
N1 −

1

3
N2

�
;

Mð2ÞðopÞ
ΩQ

¼ m2
s

�
1

3

K2
1

I1
þ 4

15

K2
2

I2
−
1

9
N0 −

1

3
N1 −

4

15
N2

�
:

ð37Þ
We will call them the second-order ms corrections from the
operator so that we distinguish them from those coming from
the wave function corrections. Considering these second-
order ms corrections, we can extend Eq. (24) to

MQ
B;R ¼ MQ

R þMð1Þ
B;R þMð2Þ

B;R; ð38Þ

whereMð2Þ
B;R denote the second-order corrections to a baryon

in representation R.

III. RESULTS AND DISCUSSION

We are now in a position to compute the mass splittings
of the lowest-lying singly heavy baryons. Reference [34]

shows in detail how model parameters such as the cutoff
masses and the current quark masses can be fixed in the
vacuum sector. In the present work, we choose the
constituent quark mass M ¼ 420 MeV, which provided
the best prediction of baryon observables [32]. The mass of
the strange current quark,ms, was taken to be 180MeValso
in previous works, since it describes the mass splittings of
the baryon octet and decuplet. In fact, the value of the ms
can be fixed by fitting the mass splittings of the singly
heavy baryon antitriplet and sextet. The smaller values
of ms yield better results of the mass splittings of the
singly heavy baryons in comparison with those of the
baryon octet and decuplet. In the bottom baryon sector,
even the smaller value of ms is favored. Though it is
interesting to see why the dropping of the ms value in the
heavy-baryon sector is different from that in the light-quark
sector, we will use the canonical value of ms ¼ 180 MeV
as in the previous works [32,35–37].
We follow Refs. [32,34] for the numerical methods of

diagonalizing the Dirac equation in the presence of the pion
field and deriving the self-consistent solutions of the
equations of motion. However, we use a much larger size
of the box in solving the one-body Dirac equation such
that we are able to reduce a numerical instability and
uncertainties.1 Detailed numerical techniques and relevant
references are also given in Refs. [32,34].
In Table I, we list the numerical results of the moments of

inertia, the πN sigma term, and the classical soliton mass
Msol. As discussed in Sec. II, the expressions for the
valence parts of all relevant quantities should be modified.

110 fm is taken for the box size in the present work, whereas
5 fm was used in Ref. [34].
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The prefactor Nc in those expressions for light baryons,
which counts the number of valence quarks, should be
replaced by the factor Nc − 1, since a singly heavy baryon
consists of Nc − 1 light valence quarks. So, the difference
between the left panel of Table I and the right one arises
from the different prefactor of each valence part. The
definition of Σ̄πN is just the same as ΣπN except for the
valence contribution as shown in Eq. (A1).
We are not able to determine the masses of singly heavy

baryons, because the center mass given in Eq. (26) in each
representation seems overestimated, compared with the
experimental data. In addition, we must know the hyperfine
interaction that will lift the degeneracy of different spin
states in the sextet representation. Thus, we will fix each
center mass and parameters for the hyperfine splitting,
using the experimental data such that we can determine the
masses of the lowest-lying singly heavy baryons. We will
follow the method proposed by Ref. [22] in which the spin-
spin interaction Hamiltonian is given as

HsolQ ¼ 2

3

κ

mQMsol
J · JQ ¼ 2

3

ϰ

mQ
J · JQ; ð39Þ

where κ represents the flavor-independent hyperfine cou-
pling constant. Note that the baryon antitriplet does not
acquire any contribution from the hyperfine interaction,
since the corresponding soliton has spin J ¼ 0. On the
other hand, the baryon sextet has J ¼ 1. Being coupled to
the heavy-quark spin, it produces two different multiplets,
i.e., J0 ¼ 1=2 and J0 ¼ 3=2, of which the masses are
expressed, respectively, as

MQ
B;61=2

¼MQ
B;6−

2

3

ϰ

mQ
; MQ

B;63=2
¼MQ

B;6þ
1

3

ϰ

mQ
: ð40Þ

Thus, we find the hyperfine mass splitting,

MQ
B;63=2

−MQ
B;61=2

¼ ϰ

mQ
; ð41Þ

where the corresponding numerical value can be deter-
mined by using the center value of the sextet masses. In the
charmed and bottom baryon sectors, we obtain the corre-
sponding numerical values, respectively,

ϰ

mc
¼ 68.1 MeV;

ϰ

mb
¼ 20.3 MeV: ð42Þ

Combining Eq. (40) with Eq. (38), we can derive the final
masses of the lowest-lying singly heavy baryons:

MQ
B;3̄

¼ MQ
3̄
þMð1Þ

B;3̄
þMð2Þ

B;3̄
;

MQ
B;61=2

¼ MQ
6 þMð1Þ

B;6 þMð2Þ
B;3 −

2

3

ϰ

mQ
;

MQ
B;63=2

¼ MQ
6 þMð1Þ

B;6 þMð2Þ
B;6 þ

1

3

ϰ

mQ
: ð43Þ

The numerical results of the charmed baryons are listed
in Table II. As expected, the inclusion of the second-order
ms corrections produces the results in better agreement with
the experimental data. It is of interest to compare the
present results with those of Ref. [22], in which the model-
independent approach was employed. Theoretically, the
present approach has a certain advantage over Ref. [22],
since we can consistently treat both the valence-quark and
sea-quark contributions with the correctNc − 1 factor taken
into account. In the model-independent analysis, an addi-
tional scale factor had to be introduced, since it was not
possible to decompose each contribution into the valence
and sea parts [40,42,43].
Table III presents the results of the bottom baryon

masses. Similarly, the second-orderms corrections improve
the results. The mass of the Ω�

b is predicted to be
6081.9 MeV, whereas the model-independent approach
of Ref. [22] predicts MΩ�

b
¼ ð6095� 4.4Þ MeV. The

difference is found to be less than 1%.

TABLE II. Results of the masses of the charmed baryon masses
in the unit of MeV. In the third and fourth columns, those with
the first-order and second-orderms corrections are listed. The last
column represents the experimental data.

ms corrections

RQ
J Bc 1st order 2nd order Experiment

3̄c1=2 Λc 2274.4 2280.7 2286.5� 0.1
3̄c1=2 Ξc 2481.5 2475.2 2469.4� 0.3
6c1=2 Σc 2455.7 2448.5 2453.5� 0.1
6c1=2 Ξ0

c 2575.2 2576.8 2576.8� 2.1
6c1=2 Ωc 2694.6 2700.1 2695.2� 1.7
6c3=2 Σ�

c 2523.9 2516.7 2518.1� 0.8
6c3=2 Ξ�

c 2643.3 2645.0 2645.9� 0.4
6c3=2 Ω�

c 2762.7 2768.3 2765.9� 2.0

TABLE I. Numerical results of the moments of inertia, the ΣπN
term, and the classical mass of the soliton. Note that the valence
parts of the moments of inertia for singly heavy baryons have the
Nc − 1 factor, whereas Nc for light baryons.

Light baryon Singly heavy baryon

I1 (fm) 1.108 I1 (fm) 0.844
I2 (fm) 0.529 I2 (fm) 0.404
K1 (fm) 0.428 K1 (fm) 0.286
K2 (fm) 0.272 K2 (fm) 0.181
N0 (fm) 0.457 N0 (fm) 0.499
N1 (fm) 0.410 N1 (fm) 0.380
N2 (fm) 0.323 N2 (fm) 0.286
ΣπN (MeV) 43.7 Σ̄πN (MeV) 40.0
Msol (MeV) 1291.8 Msol (MeV) 1093.3
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IV. SUMMARY AND CONCLUSIONS

In the present work, we investigated the mass spectra of
the lowest-lying singly heavy baryons within the frame-
work of the self-consistent SU(3) chiral quark-soliton
model. In the model, the Nc − 1 light valence quarks
polarize the Dirac sea. We obtained the soliton energy
consisting of the Nc − 1 valence-quark and sea-quark
energies. Minimizing the soliton energy around the saddle
point of the classical pion field self-consistently, we derived
the soliton mass. Because of the hedgehog symmetry, we
embedded the SU(2) soliton into the flavor SU(3). While
we ignore the 1=Nc quantum fluctuations in this mean-field
approximation, the rotational zero modes or rotational
1=Nc corrections are taken into account, a rigid rotation
of the soliton being assumed. All the moments of inertia
were computed in the present work explicitly.
We consider the effects of flavor SU(3) symmetry breaking

to the second order in perturbation.As expected, the inclusion
of the second-orderms corrections leads to better results of the
mass splittings of both the charmed and bottom heavy
baryons than those with the linear ms corrections, in com-
parison with the experimental data. Having fixed the center
mass in each representation, we were able to obtain the
numerical values of all the lowest-lying singly heavy baryons
both in the charm and bottom sectors. With the second-order
ms corrections included, the present results are in very good
agreement with the experimental data. The mass of the Ω�

b
baryon is predicted to be 6081.9 MeV in the present work.
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APPENDIX A: MOMENTS OF INERTIA

In this Appendix, we compile all relevant formulas for
the modified πN sigma term and the moments of inertia
I1;2, K1;2, and N1;2. All terms consist of the vacuum and sea
parts. The modified πN sigma term is written as

Σ̄πN ¼ Σ̄val
πN þ Σsea

πN; ðA1Þ
where thevalence and sea parts are expressed, respectively, as

Σ̄val
πN ¼ m0ðNc − 1Þhvaljγ4jvali;

Σsea
πN ¼ m0

2
Nc

X
n

hnjγ4jnisignðEnÞRΣðEnÞ; ðA2Þ

where γ4 is the Dirac γ matrix in Euclidean space
represented as

γ4 ¼
�
1 0

0 −1

�
: ðA3Þ

The function RΣðEnÞ denotes a regularization function
written as

RΣðEnÞ ¼
1ffiffiffi
π

p
Z

∞

0

duffiffiffi
u

p e−uϕðu=E2
nÞ; ðA4Þ

where ϕðuÞ [34] is a cutoff function defined by

ϕðuÞ ¼ cθðu − 1=Λ2
1Þ þ ð1 − cÞθðu − 1=Λ2

2Þ: ðA5Þ

The free parameters Λ1, Λ2, and c are determined in the
mesonic sector by reproducing the pion decay constant
fπ ¼ 93 MeV and the pion mass mπ ¼ 139 MeV. Their
numerical values are explicitly given as Λ1 ¼ 381.15 MeV,
Λ2 ¼ 1428.00 MeV, and c ¼ 0.7276.
The moment of inertia tensor Iab is given as

Iab ¼ Ivalab þ Iseaab ; ðA6Þ

where

Ivalab ¼ ðNc − 1Þ
2

X
val;n≠val

hnjλajvalihvaljλbjni
En − Eval

;

Iseaab ¼ Nc

4

X
m;n

hnjλajmihmjλbjniRIðEn; EmÞ; ðA7Þ

with the different regularization function RIðEn; EmÞ

TABLE III. Results of the masses of the bottom baryon masses
in the unit of MeV. In the third and fourth columns, those with the
first-order and second-order ms corrections are listed. The last
column represents the experimental data.

ms corrections

RQ
J Bb 1st order 2nd order Experiment

3̄b1=2 Λb 5602.7 5609.0 5619.5� 0.2

3̄b1=2 Ξb 5809.9 5803.6 5793.1� 0.7

6b1=2 Σb 5812.7 5805.5 5813.4� 1.3

6b1=2 Ξ0
b 5932.1 5933.8 5935.0� 0.05

6b1=2 Ωb 6051.6 6057.1 6048.0� 1.9

6b3=2 Σ�
b 5834.7 5830.3 5833.6� 1.3

6b3=2 Ξ�
b 5954.2 5958.6 5955.3� 0.1

6b3=2 Ω�
b 6073.6 6081.9 � � �
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RIðEn; EmÞ ¼
1

2
ffiffiffi
π

p
Z

∞

0

duffiffiffi
u

p ϕðuÞ
�
e−uE

2
n − e−uE

2
m

uðE2
m − E2

nÞ

−
Ene−uE

2
n þ Eme−uE

2
m

Em þ En

�
: ðA8Þ

λa in Eq. (A7) denote the Gell-Mann matrices for the flavor
SU(3) group, satisfying trðλaλbÞ ¼ 2δab and ½λa; λb� ¼
2ifabcλc, a ¼ 1;…; 8. The moments of inertia I1 and I2
are defined by

Iab ≡
8<
:

I1δab a; b ¼ 1; 2; 3

I2δab a; b ¼ 4; 5; 6; 7

0 a; b ¼ 8

: ðA9Þ

Similarly, the anomalous moments-of-inertia tensor is
expressed as

Kab ¼ Kval
ab þ Ksea

ab ; ðA10Þ

where

Kval
ab ¼ ðNc − 1Þ

2

X
val;n≠val

hnjλajvalihvaljλbγ4jni
En − Eval

;

Ksea
ab ¼ Nc

8

X
m;n

hnjλajmihmjγ4λbjni
signðEnÞ − signðEmÞ

En − Em
:

ðA11Þ

The anomalous moments of inertia K1 and K2 are
defined by

Kab ≡
8<
:

K1δab a; b ¼ 1; 2; 3

K2δab a; b ¼ 4; 5; 6; 7

0 a; b ¼ 8

: ðA12Þ

Finally, we express the third moments-of-inertia tensor,
which appears only when the second-order ms corrections
are considered,

Nab ¼ Nval
ab þ Nsea

ab . ðA13Þ

Then the moment of inertia

Nval
ab ¼ ðNc − 1Þ

2

X
val;n≠val

hnjλaγ4jvalihvaljλbγ4jni
En − Eval

;

Nsea
ab ¼ Nc

4

X
m;n

hnjλaγ4jmihmjλbγ4jniRNðEn; EmÞ; ðA14Þ

with the regularization function

RNðEn; EmÞ ¼
1

2
ffiffiffi
π

p
Z

∞

0

duffiffiffi
u

p ϕðuÞEne−uE
2
n − Eme−uE

2
m

En − Em
:

ðA15Þ

N0, N1, and N2 are defined by

Nab ≡
8<
:

N1δab a; b ¼ 1; 2; 3

N2δab a; b ¼ 4; 5; 6; 7
1
3
N0 a; b ¼ 8

: ðA16Þ

APPENDIX B: MATRIX ELEMENTS OF THE SU(3) WIGNER D FUNCTIONS

In this Appendix, we tabulate in Tables IV–VI all relevant matrix elements of the SU(3) Wigner D functions in each
representation.

TABLE IV. Matrix elements of the SU(3) Wigner D functions Dð8Þ
88 and Dð8Þ

8i Ji.

R T Y hRYTJjDð8Þ
88 jRYTJi hRYTJjDð8Þ

8i JijRYTJi
Λc 3̄ 0 2=3 1=4 0
Ξc 1=2 −1=3 −1=8 0
Σc 6 1 2=3 1=10 −

ffiffiffi
3

p
=5

Ξc 1=2 −1=3 −1=20
ffiffiffi
3

p
=10

Ωc 0 −4=3 −1=5 2
ffiffiffi
3

p
=5
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