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The two-photon-exchange (TPE) effects in the process ete™ — &

*7~ at large momentum transfer are

discussed within the perturbative QCD (pQCD). The contributions from the twist-2 and twist-3 distribution
amplitudes (DAs) of the pion are considered in the estimation. Different from the results under the one-
photon-exchange (OPE) approximation, the TPE effects result in an asymmetry of the differential cross
section on the scattering angle. The precise measurement of this asymmetry by the further experiment is a
precise test of pQCD at large momentum transfer. The timelike electromagnetic form factor of the pion at
the leading order (LO) of pQCD is rediscussed, and the comparison of our results with those in the
references is presented. Our results show that the contributions from the twist-2 and twist-3 DAs in the LO
of pQCD are much smaller than the experimental data at Q> = 14.2, 17.4 GeV?, which is very different

from the conclusion given in the references.

DOI: 10.1103/PhysRevD.98.054003

I. INTRODUCTION

The pion and the proton are the most elemental bound
states due to the strong interaction. The knowledge on their
structures is important to test our understanding of QCD.
The electromagnetic (EM) form factor is one of the most
simple and naive nonperturbative quantity reflecting the
structures of these bound states.

In 2000, the measurements of the ratio of the EM form
factors of the proton by the polarized method [1,2] gave very
different results from those given by the Rosenbluth method
[3,4]. This suggests the extraction of the EM form factors
from the experimental data is a nontrivial problem. The two-
photon-exchange (TPE) effects in the unpolarized ep scat-
tering are expected to explain the discrepancy between the
results from the polarized method and Rosenbluth method.
Many theoretical methods have been used to estimate
the TPE effects, such as the hadronic model [5-8], GPD
method [9,10], phenomenological parametrizations [11,12],
dispersion relation approach [13-18], pQCD calculations
[19,20], and SCEF method [21]. The recent experimental
results on the R” =o,+ petp/Oetpoe-p [22] Which mea-
sures the TPE effect directly shows the estimation by the
most recent calculation [ 18] does not match the experimental
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data very well. All these mean our understanding on the TPE
effects in the e p scattering still needs to be improved in both
its theoretical and experimental aspects.

The TPE effects in the other processes also are interest-
ing and are discussed in the references; these include, e.g.,
ete™ — pp [23], er scattering [24,25] and unpolarized up
scattering [26-29]. In the literature, the TPE effects in the
process eTe” — xtx~ are usually ignored since the TPE
effects will not affect the total cross section or the timelike
EM form factor of the pion, while the TPE effects still play
their role in the angle dependence of the differential cross
section. The EM form factor of the pion in the spacelike
region at high momentum transfer has played an important
role in the test of pQCD factorization [30-32], while the
experimental measurement of the EM form factor of the
pion in the spacelike region is not a trivial problem since
there is no pion target. The study of the EM form factor of
the pion in the timelike region is another window to test the
pQCD factorization [33—-36]. The study of the TPE effects
in this process also play a similar role to test the pQCD
factorization and to help us understand the TPE effects. In
this work, we estimate this effect and we also clarify some
discussion on the timelike EM form factor of the pion at
the leading order (LO) of pQCD given in the literature. We
arrange our work as follows: in Sec. II, we give a simple
introduction on the cross section of e™e™ — 7zt 2~ and the
timelike EM form factor of the pion by pQCD under the
one-photon-exchange (OPE) approximation; in Sec. III we
discuss the TPE effects in this process; in Sec. IV, we
discuss the input used in our practical estimation; and in
Sec. V, we give the numerical results and our conclusion.
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II.e*te™ - a*n~ VIA ONE-PHOTON-EXCHANGE

In the OPE approximation, the process e*e™ — 7z~
can be described by the diagram shown in Fig. 1, and the
corresponding amplitude can be expressed as

MY = [i(=pa. m.)(=iey")u(pi. me)IDy ()
x [~ie(ps = p3)"Fa(s)],

(1)
where p;, p,, p3, and p, are the momenta of the initial
electron, initial antielectron, final 7~ and z ™, D,,(q) is the
photon propagator, ¢ = p\ + py = p3 + ps, 0> = ¢°, and
F,(Q?) is the timelike EM form factor of the pion which is
defined as

(m*2717,(0)|0) = —=(pa — P3),F2(Q). (2)

e (p1)

e (—p2) N (ps)

+

FIG. 1.
(OPE).

Diagram for e" e~ — 7"z~ with one-photon exchange

d(—(1 = y)ps + kio)

u(yps +Kkia)

u(—(1—2)ps + ki)

d(—=(1 = y)ps+ki2)

d(zps+kiq)

a(—(1—a)ps +ki1)

(©

et (=p2)

with j, = > e;q;7,4;» q; the quark fields, i the flavor
indexes of the quarks, and e; the corresponding electric
charge (—1 for electron).

By Eq. (1), the unpolarized differential cross section can
be expressed as

1 .
doyy = 5 € Fa(Q*)F1(Q%)sin’0), (3)
where 6 is the angle between the three momenta of the
initial electron(p;) and final z~(p3) in the center frame,
e = —le| = —\/4magep.

In the large momentum transfer region, the perturbative
QCD (pQCD) can be applied to estimate the electromag-
netic form factor F,(Q?) [37]. In the LO of the strong
interaction coupling a, the corresponding Feynman dia-

grams are shown as Fig. 2 and the corresponding con-
tribution can be expressed as

— 1 (e
_(”47”3)”2 / dxdy / d*b,d%b,
—ie(ps—p3)” Jo —

S SR S
* ) r) (22 €

% e—S(x.y.b1.b1,0) S,(x)S,(y) Tz(a) ’

F(0%) =

(4)

where by =|b,|,b,=|b,|, S(x,y, by, by, Q) is the Sudakov
factor in b space and S, is the threshold resummation factor
whose expressions can be found in [38,39] (we also list
them in the Appendix),

67(p1> d(—(1 —y)ps +kyi2)

d(zps +ki1)

(b)

u(yps + Ki2)

d(=(1 = y)ps + kia)

d(xps + k1)

a(—(1—z)ps + k1)

()

e (—pa)

FIG. 2. Diagrams for ete™ — z7z~ with OPE in the LO of pQCD.
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T4 = clyTlr[q)< " (pas v,k 12)(=ig,r%)
in 1.
X CI)S,f— )(P3,X, k) <_3l€7’y>

X Sq(qq)(_igsyp)]Dpa(qg>’ (5)

where C}V 5” 2T T% .6, = 4 is the global color factor of
the amphtude, gs is the strong coupling, —1/3 is the charge
of d-quark, e = —|e| is the electromagnetic coupling, S(q,)
and D,,(g,) are the propagators of the quark and gluon
without the color indexes, g, and g, are the momenta of the

corresponding quark and gluon in the propagators with

[P3 + Pal,
[—(1 =x)p3 + k1], (6)

q,=[xps + k|-
q,=1[yps + ki) -

f .
and CDifl) are the wave functions of 7+ expressed as

O™ (py,y.k o) = Ya {1747’547;: () = Mz {cbﬁ (v)—io,

X(ﬁﬁpé ¢2’(y)_pﬂ</)2(y) 0 )H
ps-p3 6 ‘6 Ik |5, ’

fﬂ {ﬂ3y5¢ﬂ(x) —Hzls |:¢,I;(X) - io/w

piph 7 (x) L, d5(x) O
X(pg-m 6 o am)”’
(7)

‘D(ﬁm(l%vx kil)

with f, = 0.131 GeV,

After including the contributions from the other dia-
grams and some algebraic calculation, the final expression
for F,(Q?) can be expressed as

1 o0
Fn(Qz)—/ dxdy/ bydb,bydbya(u?)
0 0

1672
9

« e—S(x,y.bl,bz,Q)St(x)

2
><Q2{to+ - [nmw]} (/E50b)
x [0(b; —bz)Hél)(\/)_Cle)Jo(\/)_Csz)
+0(by — b)) HY (Vx0by)J (VX0by), (8)

where the scale y in the coupling is taken as max{./xQ,
l/bl, l/bz} and

1
fp = — §x¢n()’)¢n(x)’

=00t L= a0, )

Comparing Egs. (8) and (9) with the expressions used in
Refs. [30,31,34-36], two properties of Eq. (8) should be

= (1 = x)¢7 ()7 (x).

clarified. The first one is that Eq. (8) is consistent with the
one in Ref. [30] in the spacelike region, and the factor 1/3 in
the term 75 is different from the factor 1/2 given in Ref. [31].
After some careful checking, we conclude this difference is
due to the different deal on the term 0K ;/ Ik | ;,. When one
takes it as |, one gets 1/3, when one takes it as y* one gets
1/2. We take the factor 1/3 in the final expression. In the
practical numerical calculation, the contribution from this
difference is very small in the spacelike region and usually
neglected in some calculations, while it is not small in the
timelike region and should be included. The second property
of Eq. (8) is that there is a sign difference in the term #,
between Eq. (8) and the one used in Ref. [34-36].

After some careful checking, we find the sign difference
can be traced back to the definition of Eq. (7) and the
corresponding Feynman diagrams in Fig. 2. After combining
Eq. (7) and Fig. 2, one sees that the distribution of the u
quark in 7 is the same as the distribution of the d quark in
x~. This is right due to the isospin symmetry. In the practical
calculation, this combination leads to the property that the
four diagrams give the same expression #; + f, + t; except
for some global factors. If one uses Eq. (7) and explains y as
the distribution of the antiquark, then one can get | + 1, + 13
for two diagrams and #; — t, + 3 for another two diagrams.
The correctness of Eq. (8) can also be verified via analytical
continuation of the spacelike form factor to the timelike
region. For example, if one applies the exchange x — 1 —y,
y—1—x to Eq. (8) of Ref. [30], uses the property
45”()6) = ¢7r(1 —x),¢0()€) = ¢6(1 —X),¢T(X) = _¢T(1 _x)’
and does the analytical continuation for the Q?, one finally
gets the same results as our Eq. (8).

Il.e*e™ — n*x~ VIA TWO-PHOTON-EXCHANGE

When the TPE contributions in the process ete™ —
#tz~ are considered, one has the corresponding diagrams
shown in Fig. 3 in the LO.

The amplitude corresponding to Fig. 3(a) can be
expressed as

iM?r(a) / dxdy / d*b,d?b, / & k)ﬂ ”(lzk)ij

« e—zb]~kL1—zb2~ki2e—S(x,y,b,,bz,Q)THs< a)

= /K*Tf,““), (10)
where
T\ = a(=py. 52) (—ier")S.(q.) (—iey)u(py. s1)

. 2
X D/’U(Ql )D/w<q2)627Tr |:q)7(zf) (P4’ Y, bz) (g le}/l/)

I
X <I>5,{2.n(p3, x,by) (—5 leJ/")]

2 a(=pr )y ru(pr.si)
X Qe,wTL(/l)(Qz’e’bl’kJ_l’b2’kj_2)7 (11)
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e (p)

e"(—p2) T (ps)
(a)
FIG. 3.
with ¢y, = % % :% the global color factor and the

373
momenta in the propagators

qe = —D2 T+ q2,
¢, = [xp3 + k] = [=(1=y)ps + k1o,
g2 = [yps + K o] = [=(1 = x)p3 + k4], (12)

and

T'(0%.0.b,.k 1. by k |»)

2,
= Cz},TI' |:(I)7r(p4’ Y, bZ) <§ 16}’”> q)lr(p_“w X, bl)

1 , =i =i
X | —=1i —i . 13
< 3zeyp>}( ie) q} +ieqs + ie g + ie (13)

The hard kernel Ti,y’@ is not gauge invariant itself, while
the sum Tﬁ/’(ﬁb) is gauge invariant. The check of the gauge
invariance of the hard kernel Tg'(‘“rb) is much simpler than
that in the case of the next-to-leading-order contribution of
the OPE amplitude, while it should also be verified care-

fully. In the practical calculation, one can separate the hard
kernel as follows,

2y, - - )
T (pr. 515 P2r 523 D3 Pa) = (=P $2)77 (P $1) Qe Too) = (=P 52)7”u(p1, $1) e Tht

et (=p2)

d(—yps +ki2)

u((1 = y)ps +ki2)

d((1—2)ps +ki1)

T (p3)

Diagrams for TPE for eTe™ — z7z~ with two-photon exchange (TPE) in the LO of pQCD.

2y.(a+b H
Vi 7. ) = I,”pDﬂﬁ(ql)D/w(QZ> ov» (1 )
with

L¥ = ii(=ps, s,)(—iey*)S.(p1 — q1)(=iey”)u(py, s1)
+ #(=pa, 52)(=iey”)S.(p1 — q2)(=iey* )u(pi, s1),
(15)

where for simplicity we have exchanged the indexes of
the lepton part in Fig. 3(b) to make sure the hadron parts
of Figs. 3(a) and 3(b) are the same. The direct calculation
shows

L*q,, =0, L* g, = 0. (16)

These properties mean that the hard kernel T 2"(“+b) is not
dependent on the gauge parameter in the photon propa-
gators D,,(q,) and D,,(q;). This reflects that the result is
not dependent on the choice of the gauge.

Using the relation

Y =gy — ¢y + gt — iy e oy, (17)

the amplitude iM?(@ can be expressed in a similar form
as iM'7 and one has

a)

+ i(=pas )7 u(pys $1)qe, Ty = (=P 52)77u(pys 51)i75€ 4o o Tht))

(@)

- [it(_pZ? me)yﬂu(pl ) me)] [Qe,wT((jl) - qe,yTﬂﬂ + Qe,pTl(lZ)]

(a)

+ [H(—pz, me)yﬁyﬂu(pl s me)] [_iemwﬂqe,(uTU ]’

& [a(=pa,m)(—ier, u(pr, ml D ()T
o+ [(=pa, me) (—ieysy, Ju(pr, me)| D () T, (18)

with
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eff 1 q
Ty = —o ;4. T = 4, Thy) + 40, T4y,
_ 1 g%
T](/a),eff — zl [ le{m,png.sz()“;)]- (19)
Generally, Tl(,a)’ef ! can be written as c1P1, + ca2pa, + ¢3p3,- Using the approximation m, = 0, the first two terms give no

(a).eff

contributions and one gets T, x (p4 — p3), and finally

iMPra /K*[ (=pa,m,)(~iey,)u(py, m,)|D*(q)T5"]

+/K*[ (=pa.m )(—iey5y”)u(pl,me)]DW(q)ﬁff,m)]

£ [a(=p2.m.)(~iey,)u(pr.m.) D" (g)[~ie(ps ~ p3), Fi" (Q%.0)]
+ [#(=pa. m,) (=ieysy,)u(pr. m)|D*(q)[=ie(ps — p3),G¥" (Q%.0)], (20)
where F,(Q2,0), G,(Q?,0) are expressed as

Fﬁf)(QZ,Q) _ / '(P4 - P3) ZTI(Ju),eff’

—ie(ps = p3)
G902, 0) = / (PP e o)
—ie(ps = p3)
The contribution from Fig. 3(b) can de found in a similar way. Due to the similar form with F,(Q?), we call

F 2“>(Q2, 0), G,(,“)(Qz, 0) the general form factors in the following and the final expressions for the general form factors
can be derived from Egs. (13), (19), and (21).
After some calculation, one has

Fo(0%0) £ F(020)+ FY(0%0),

FO(Q2.0) = -F(0%.0 + ). (22)
where
5 2f2Q2
F902,0) = / bydb, / dxdye=S&yb1.52.0)
x {5¢ﬂ<x>¢ﬂ<y>Q2<—cose by 1) 4 IR (~cosd+ x4y~ 1)
1 1 1 3
— 36PN () (=cosO + x4y = 1) + 57 dr(x)g7(y) + ﬁ(ﬁﬂ(x)gbi(y)]}H(x,y, 0.by,0), (23
and

2\/56%(— Pil)(x.y-Q~kL3xs'9>—i€)

\/P(ll)(x’ Y, Q’ kJ_3x’ 9) - iePgl)(x7 Y, Qv kJ_Sx’ G)Pgl)(x7 Yy, Qv kJ_3x’ 9)

H(x.y.Q.b,.0) = /d¢b2dkl3x€_ib2‘km

\’72,\-\(— P(lz)(x,y,Q.,kux)—ie)
e

VPP (5,3, 0.k15,) — iePP (x,y. 0) PP (x. v, 0.k 5., 0)

\/72}.\ (— —ie)
e

\/P(13) (0.3, 0.k 13,) — iePS) (x,y, Q)P (x.y. Q. k13,.6)

: (24)
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with by, £ bysing,,, by, 2 bycosgy,, ks = ki,

1
P ) X, ¥, Q’klf)xa

P\l) x7y9 Q’kl?’xa
P 52) (x y 0,kj3,
P (x,y,0) =

Py k

3 ()C,y,Q, 13x )
P(3)(x y Q.k3) =
)=
0) =

0)
) = ki + QX x = 1)y,
Q*(x —y),
P (x,y, 0. k13,,0),
K5, + 0% x(y - 1),
PP (x.y.0).
P (x.y. Q. k13,.6).

P xy, 0
P;B)(x,y,Q,ka,

From Eq. (25), one can see that there are some singularities
in the integrated kernel, and these singularities are located
at x =y or the end points with k; = 0. In the practical
calculation, the contributions of these singularities are sup-
pressed by the behavior of the corresponding Sudkov factors,
and the final results are safe without any divergence.

Furthermore, the cross section from the interference of
M?” and M can expressed as

1 -
doih = Eezsin2¢9{2Re[F,*,(QZ)F,,(QZ, 0)]}. (26)
and there is no contribution from G,(Q?,6).

IV. THE INPUT

In the timelike region, in principle, the contributions
from the resonances should also be considered. In this
work, we limit our discussion to the high-energy region and
focus on the TPE effects, so we neglect the contributions
from the resonances at present, and the needed inputs are
the same as those used in the spacelike region. For
simplicity, we directly take n; =3, A = 0.2 GeV in the
Sudakov factor and neglect the dependence of ny and A on
Q?, 1/by, and 1/b,. All other inputs are taken as the same
as those used in Ref. [35] which means the asymptotic two-
parton twist-2 and twist-3 DAs are taken as

¢a(x) = 6x(1 = x)[1 + @03 (1 = 2x)],

Pr(x) =1,

¢5(x) = 6x(1 - x),

PL(x) = dip(x)/dx = 6(1 — 2x), (27)

with a, = 0.2 and the Gegenbauer polynomial C;/ 2(u) =
(3/2)(5u* — 1). The normalization of the above DAs is a

— ki = {ki3 ki3,}, €=0" and

g ( 0) = 2k% 5, + 2k 3,0sin0+ Q*(—cosO(x +y—1) +2xy —x —y + 1) + 2m2,
Pgl)(x,y,Q,kMx,G) =2k 3,0sinf+ Q*(—cosO(x +y—1)+x—y+ 1) +2m2,
o =2k,3,0sinf+ Q*(—cosO(x +y—1) —x+y+ 1) +2m?,

(25)

little different from that in Ref. [35]. The associated chiral
scale is taken as yu, = 1.3 GeV, the shape parameter in the
threshold resummation factor S,(x) is taken as ¢ = 0.4,
and the renormalization scale used in the ag and Sudakov
factor is taken as u = max(y/xQ, 1/by,1/b,).

Other forms of DAs are also used for estimation and the
practical numerical results show the form factors are a little
sensitive on the input DAs. Since our focus is on the TPE
effects in ete™ — 772, we do not discuss the details of
the dependence of the pion form factor Q2|F,(Q?)| on the
input DAs.

V. NUMERICAL RESULTS AND DISCUSSION

Using the inputs suggested in the last section, the form
factors F,(Q?), F,(Q?, 0) can be calculated directly by the
numerical method. In our numerical calculation, we use the
Nlntegrate function in MATHEMATICA to do the integration
and also the Bessel function. The Vegas function in the
package CuBA [40] is also used to check the numerical
calculation, and we find it gives the same results. We want
to point out that the integration that includes the Bessel
function should be dealt with carefully. The integration of
Q?|F,(Q?, 0)|is heavy, and in the practical calculation, we
at first calculate the results at some points with the relative
precision about 1% and then fit the results.

The numerical results for Q*|F,(Q?)| and the phase of
F,(Q?) are presented in Fig. 4. The red dashed curves refer
to the contribution from twist-2 DA, the blue dotted curves
refer to the contribution from twist-3 DAs, the black solid
curves refer to the contribution from their sum and the Ex-
data sets are taken from Ref. [41]. The contribution from
the twist-2 DA is almost same with that presented in [35].
The contribution from the twist-3 DAs is much smaller than
that from the twist-2 DA, which is very different from the
property presented in [35,36]. This property leads to the full
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C
~L 04| i
o
o 02 = o _ E
b = TS e en em en en e en e e -
00 1 1 ...T 1 1 1 1
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360 T T T T T T T
D 330f ]
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D 300~ . ]
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1
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FIG. 4. Results for Q*F,(Q?) vs Q. The left panel is the result for Q*|F,(Q?)| vs Q2 and the right panel is the result for the phase of
F,(0Q?%) vs Q2. The red dashed curves refer to the contribution from twist-2 DA, the blue dotted curves refer to the contribution from
twist-3 DAs, the black solid curves refer to the contribution from their sum, and the Ex-data sets are taken from Ref. [41].

results in the LO of pQCD are much smaller than the
experimental data at Q> = 14.2, 17.4 GeV?2. For compari-
son, three results are presented in Fig. 5 to show the reason
for the large difference.

In Fig. 5, the olive dashed curves labeled as “twist-3-
refs” refer to the results by replacing ¢; + #, + t3 in Eq. (8)
with #; —t, which was given in [34] and then used in
Refs. [35,36], the pink dashed-doted curves labeled as
“twist-3-corrected” refer to the results by replacing #; +
1, + t3 in Eq. (8) with #; 4 5, and the black solid curves
labeled as “twist-3-full” refer to the results from Eq. (8).
The numerical results “twist-3-Refs” are almost the same
as the corresponding results in Fig. 5 of Ref. [35]. The
comparison of the results “twist-3-refs” and “twist-3-
corrected” shows that there is large cancellation between
the contributions from the terms #; and ¢,. The comparison
of the results “twist-3-corrected” and “twist-3-full” shows
the contribution from the term #; is also important. The
property of the contribution from the term #; is very
different from that in the spacelike region where the
contribution from this term is small.

10 A T T T T T T T
\ - = twist-3-refs
\ .
08l N - = twist-3-corrected | |
N; N | eeeee twist-3-full
[ N\
9 osf S o ]
= S e
o
< T~<s
w4 T--a]
o
g
0.2F e
—_~.~.°'~ ..... cece
DOl - T o o o o o o ol o e e W ]
10 15 20 25 30 35 40 45 50
Q° (GeV?)

From the numerical results of Figs. 4 and 5, one can see
that the results in the LO of pQCD are incomplete to
explain the current experimental data at Q7 = 14.2,
17.4 GeV? which are located at the masses of the
resonances y(3770) and y(4160). This is natural since,
in these regions, the contributions from the resonances
play important roles due to their strong coupling with the
pion pair and should be considered in a nonperturbative
way. The pQCD results are expected to be good only when
Q? is large enough and far away from these resonances.
This conclusion is very different from that given by
Refs. [35,36], and the main reason is due to the sign
difference in Eq. (8).

The numerical results for Q2|F,(Q? 6)| vs Q% at 6 =
(1/9,2/9,1/3,4/9)x are presented in Fig. 6. The red
dashed curves refer to the contribution from twist-2 DA,
the blue dotted curves refer to the contribution from twist-3
DAs, and the black solid curves refer to the contribution
from their sum. One can see the magnitudes of Q*|F,(Q?, 6)|
are about (10%-20%) of Q% F,(Q?)| at small @, which

360 T T T T T T T
3
5 30F s e
o)
& e —
(\8 300 p=°" |
I‘: = = twist-3-refs
uw 270F — = twist-3-corrected |
o 1 === twist-3-full
©
3
S 240t |
l - - = = = - e o on o o= o

- -
210 c = L L 1 1 1 1 1

10 15 20 25 30
Q° (GeV?)

35 40 45 50

FIG. 5. Comparison of the contributions from twist-3 DAs to Q?|F,(Q?)| and the phase of F,(Q?) with different expressions. The
olive dashed curves labelled as “twist-3-refs” refers to the results by replacing #; 4 ¢, + t3 in Eq. (8) with #; — ¢, which was given in [34]
and then used in Refs. [35,36], the pink dashed-doted curves labeled as “twist-3-corrected” refers to the results by replacing t; + 1, + #3
in Eq. (8) with #; 4, and the black solid curves labeled as “twist-3-full” refers to the results by Eq. (8).
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FIG. 6. The numerical results for Q*|F,(Q?,0)| vs Q° at 0 =
(1/9,2/9,1/3,4/9)x from twist-2 DA (red dashed), twist-3 DAs
(blue dotted), and their sum (black solid), respectively.

means the absolute contributions from the TPE effects are
not small. This is natural since naively the ratio is expected
as agpp/as due to Figs. 2 and 3. This property is different
from the TPE corrections in the elastic ep scattering at
small momentum transfer where the relative corrections
are expected as aggp. The Q2|F,(Q?, 0)| also shows strong
angle dependence which is the most interesting property
difference from F,(Q?). The manifest dependence of
Q?|F,(Q% 0)| on @ at Q> = (20, 50) GeV? is presented in
Fig. 7.

The normalized cross sections do,,Q*/ sin”> @ from the
OPE (black solid curves) and OPE + TPE (red dashed

— T T~ T T T T T 1 T T T T T T
__004| | = = twist2 1 i
< ceee twist-3
[0 — tWist-2+twist-3
O o003t + .
= Q%*=20 GeV?
®
~ | .
g 0.02

B’
a
~_ 0.01F _
g

0.00 L=t .‘.’~ - ae®l Ll Seany --'\"'. L

0 30 60 90 120 150 O 30 60 90 120 150 180
0 (Degree) 0 (Degree)

FIG. 7. The numerical results for Q?|F,(Q?, 8)| vs 8 at Q% =
(20,50) GeV? from twist-2 DA (red dashed), twist-3 DA (blue
dotted), and their sum (black solid), respectively.

curves) are presented in Fig. 8, where one can see a
manifest asymmetry in the angle dependence of the cross
section after including the TPE effects. The existence
of such asymmetry is a direct single of the TPE effects.
The measurements of such asymmetry can help us under-
stand the TPE effects.

In summary, in this work, the TPE effects in the process
ete™ — nn~ at large momentum transfer are discussed
within the pQCD. The TPE contributions to the cross
section are calculated, and we find the asymmetry of the
differential cross section on the scattering angle reaches
about 10%-20% at small angle. The timelike electro-
magnetic form factor of the pion at the LO of agy from
the twist-3 DAs is also discussed, and the comparison
of our results with those in the references is presented.
Our results show the contributions from the twist-2
and twist-3 DAs in the LO of pQCD are much smaller
than the experimental data at Q* = 14.2, 17.4 GeV?,
which is very different from the conclusion given in the
Refs. [35,36].

T T T T T T T T T T T T T T T T T T
80 Ty g 80 E
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FIG. 8.
dashed), respectively.

The numerical results for do,,Q*/sin>@ vs @ at Q% = (20,50) GeV? from the OPE (black solid) and OPE + TPE (red
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APPENDIX: SOME BASIC EXPRESSIONS

In this Appendix, some expressions used in the practical
calculation are listed.
The Sudkov factor S(x, y, b, by, Q) [38] is expressed as

S(x,y,b1,by,0) = s(xQ,by) + s(y0, by)
+s((1 =x)0,by) +s((1 =)0, by)

1 7 1 7
——In[——] ——1 — |, Al
Bo n(—b1> Po n<—b2> (A1)

where

A g A@ /g A
s(x0,1/b)=—2qaIn| = | +—5 | -1 ) ——(b+
(Q.1/b) =554 <—b> 4ﬁ%(-b ) 2, "+

4408, [1 +1In(=2b) 1—|—1n(2?])]

1653 ~b q
2 1 ~
— [A(Z)—A()ln (16275—1>} ln( qA)
A A \2 —b
4A0) B,

with

~>
I

m( i ) t = max(v/xQ. 1/by. 1/by),
Aqcp

~ xQ
b =In(bA , g=In|——|,
(bAqcp) 1 |:\/§AQCD:|

AN =Cp = %,

A® = (g—z—%z)zvc —%Nf +§[}Oln(§>,
po=e L2 g 2T Py,
N.=N; =3, (A3)

The jet function S,(x;) [39] is expressed as
S,(0) = O e (A

VaL(1 + ¢)

The running strong coupling ag [42] is expressed as

_ V3 B nf ln(ln(,uz/AéCD))
Po ln(,uz/ AécD) ﬂglnz (ﬂz/ AéCD)

a(u?) (AS)
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