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The two-photon-exchange (TPE) effects in the process eþe− → πþπ− at large momentum transfer are
discussed within the perturbative QCD (pQCD). The contributions from the twist-2 and twist-3 distribution
amplitudes (DAs) of the pion are considered in the estimation. Different from the results under the one-
photon-exchange (OPE) approximation, the TPE effects result in an asymmetry of the differential cross
section on the scattering angle. The precise measurement of this asymmetry by the further experiment is a
precise test of pQCD at large momentum transfer. The timelike electromagnetic form factor of the pion at
the leading order (LO) of pQCD is rediscussed, and the comparison of our results with those in the
references is presented. Our results show that the contributions from the twist-2 and twist-3 DAs in the LO
of pQCD are much smaller than the experimental data at Q2 ¼ 14.2, 17.4 GeV2, which is very different
from the conclusion given in the references.
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I. INTRODUCTION

The pion and the proton are the most elemental bound
states due to the strong interaction. The knowledge on their
structures is important to test our understanding of QCD.
The electromagnetic (EM) form factor is one of the most
simple and naive nonperturbative quantity reflecting the
structures of these bound states.
In 2000, the measurements of the ratio of the EM form

factors of the proton by the polarized method [1,2] gave very
different results from those given by the Rosenbluth method
[3,4]. This suggests the extraction of the EM form factors
from the experimental data is a nontrivial problem. The two-
photon-exchange (TPE) effects in the unpolarized ep scat-
tering are expected to explain the discrepancy between the
results from the polarized method and Rosenbluth method.
Many theoretical methods have been used to estimate
the TPE effects, such as the hadronic model [5–8], GPD
method [9,10], phenomenological parametrizations [11,12],
dispersion relation approach [13–18], pQCD calculations
[19,20], and SCEF method [21]. The recent experimental
results on the R2γ ≡ σeþp→eþp=σeþp→e−p [22] which mea-
sures the TPE effect directly shows the estimation by the
most recent calculation [18] does not match the experimental

data very well. All thesemean our understanding on the TPE
effects in the ep scattering still needs to be improved in both
its theoretical and experimental aspects.
The TPE effects in the other processes also are interest-

ing and are discussed in the references; these include, e.g.,
eþe− → pp̄ [23], eπ scattering [24,25] and unpolarized μp
scattering [26–29]. In the literature, the TPE effects in the
process eþe− → πþπ− are usually ignored since the TPE
effects will not affect the total cross section or the timelike
EM form factor of the pion, while the TPE effects still play
their role in the angle dependence of the differential cross
section. The EM form factor of the pion in the spacelike
region at high momentum transfer has played an important
role in the test of pQCD factorization [30–32], while the
experimental measurement of the EM form factor of the
pion in the spacelike region is not a trivial problem since
there is no pion target. The study of the EM form factor of
the pion in the timelike region is another window to test the
pQCD factorization [33–36]. The study of the TPE effects
in this process also play a similar role to test the pQCD
factorization and to help us understand the TPE effects. In
this work, we estimate this effect and we also clarify some
discussion on the timelike EM form factor of the pion at
the leading order (LO) of pQCD given in the literature. We
arrange our work as follows: in Sec. II, we give a simple
introduction on the cross section of eþe− → πþπ− and the
timelike EM form factor of the pion by pQCD under the
one-photon-exchange (OPE) approximation; in Sec. III we
discuss the TPE effects in this process; in Sec. IV, we
discuss the input used in our practical estimation; and in
Sec. V, we give the numerical results and our conclusion.
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II. e+ e − → π +π − VIA ONE-PHOTON-EXCHANGE

In the OPE approximation, the process eþe− → πþπ−
can be described by the diagram shown in Fig. 1, and the
corresponding amplitude can be expressed as

M1γ ¼ ½ūð−p2; meÞð−ieγμÞuðp1; meÞ�DμνðqÞ
× ½−ieðp4 − p3ÞνFπðsÞ�; ð1Þ

where p1, p2, p3, and p4 are the momenta of the initial
electron, initial antielectron, final π− and πþ, DμνðqÞ is the
photon propagator, q ¼ p1 þ p2 ¼ p3 þ p4, Q2 ¼ q2, and
FπðQ2Þ is the timelike EM form factor of the pion which is
defined as

hπþπ−jjμð0Þj0i≡ −ðp4 − p3ÞμFπðQ2Þ; ð2Þ

with jμ ¼
P

eiq̄iγμqi, qi the quark fields, i the flavor
indexes of the quarks, and ei the corresponding electric
charge (−1 for electron).
By Eq. (1), the unpolarized differential cross section can

be expressed as

dσ1γun ¼ 1

2
e2FπðQ2ÞF�

πðQ2Þsin2θ; ð3Þ

where θ is the angle between the three momenta of the
initial electron(p1) and final π−ðp3Þ in the center frame,
e ¼ −jej ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παQED

p
.

In the large momentum transfer region, the perturbative
QCD (pQCD) can be applied to estimate the electromag-
netic form factor FπðQ2Þ [37]. In the LO of the strong
interaction coupling αs, the corresponding Feynman dia-
grams are shown as Fig. 2 and the corresponding con-
tribution can be expressed as

FðaÞ
π ðQ2Þ ¼ ðp4 − p3Þν

−ieðp4 − p3Þ2
Z

1

0

dxdy
Z

∞

−∞
d2b1d2b2

×
Z

∞

−∞

d2k⊥1

ð2πÞ2
d2k⊥2

ð2πÞ2 e−ib1·k⊥1−ib2·k⊥2

× e−Sðx;y;b1;b2;QÞStðxÞStðyÞTν;ðaÞ
H ; ð4Þ

where b1¼jb1j;b2¼jb2j, Sðx; y; b1; b2; QÞ is the Sudakov
factor in b space and St is the threshold resummation factor
whose expressions can be found in [38,39] (we also list
them in the Appendix),

FIG. 1. Diagram for eþe− → πþπ− with one-photon exchange
(OPE).

(a) (b)

(c) (d)

FIG. 2. Diagrams for eþe− → πþπ− with OPE in the LO of pQCD.
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Tν;ðaÞ
H ¼ c1γf Tr½ΦðfinÞ

πþ ðp4; y;k⊥2Þð−igsγσÞ

×ΦðfinÞ
π− ðp3; x;k⊥1Þ

�
−
1

3
ieγν

�

× SqðqqÞð−igsγρÞ�DρσðqgÞ; ð5Þ

where c1γf ¼ δij
3

δmn
3
Ta
jmT

b
niδab ¼ 4

9
is the global color factor of

the amplitude, gs is the strong coupling, −1=3 is the charge
of d-quark, e ¼ −jej is the electromagnetic coupling, SðqqÞ
and DρσðqgÞ are the propagators of the quark and gluon
without the color indexes, qq and qg are the momenta of the
corresponding quark and gluon in the propagators with

qq ≡ ½xp3 þ k⊥1� − ½p3 þ p4�;
qg ≡ ½yp4 þ k⊥2� − ½−ð1 − xÞp3 þ k⊥1�; ð6Þ

and ΦðfinÞ
π� are the wave functions of π� expressed as

ΦðfinÞ
πþ ðp4;y;k⊥2Þ¼

ifπ
4

�
p4γ5ϕπðyÞ−μπγ5

�
ϕP
π ðyÞ− iσμν

×

�
pμ
4p

ν
3

p4 ·p3

ϕσ0
π ðyÞ
6

−pμ
4

ϕσ
πðyÞ
6

∂
∂k⊥2ν

���
;

ΦðfinÞ
π− ðp3;x;k⊥1Þ¼

ifπ
4

�
p3γ5ϕπðxÞ−μπγ5

�
ϕP
π ðxÞ− iσμν

×

�
pμ
3p

ν
4

p3 ·p4

ϕσ0
π ðxÞ
6

−pμ
3

ϕσ
πðxÞ
6

∂
∂k⊥1ν

���
;

ð7Þ
with fπ ¼ 0.131 GeV,
After including the contributions from the other dia-

grams and some algebraic calculation, the final expression
for FπðQ2Þ can be expressed as

FπðQ2Þ¼
Z

1

0

dxdy
Z

∞

0

b1db1b2db2αsðμ2Þ

×e−Sðx;y;b1;b2;QÞStðxÞ
16πf2π

9

×Q2

�
t0þ

μ2π
Q2

½t1þ t2þ t3�
�
Hð1Þ

0 ð ffiffiffiffiffi
xy

p
Qb2Þ

× ½θðb1−b2ÞHð1Þ
0 ð ffiffiffi

x
p

Qb1ÞJ0ð
ffiffiffi
x

p
Qb2Þ

þθðb2−b1ÞHð1Þ
0 ð ffiffiffi

x
p

Qb2ÞJð1Þ0 ð ffiffiffi
x

p
Qb1Þ�; ð8Þ

where the scale μ in the coupling is taken as maxf ffiffiffi
x

p
Q;

1=b1; 1=b2g and

t0 ¼ −
1

2
xϕπðyÞϕπðxÞ; t1 ¼ ð1 − xÞϕP

π ðyÞϕP
π ðxÞ;

t2 ¼ −
ð1þ xÞ

6
ϕP
π ðyÞϕT

π ðxÞ; t3 ¼
1

3
ϕP
π ðyÞϕσ

πðxÞ: ð9Þ
Comparing Eqs. (8) and (9) with the expressions used in

Refs. [30,31,34–36], two properties of Eq. (8) should be

clarified. The first one is that Eq. (8) is consistent with the
one in Ref. [30] in the spacelike region, and the factor 1=3 in
the term t3 is different from the factor 1=2 given in Ref. [31].
After some careful checking, we conclude this difference is
due to the different deal on the term ∂=k⊥i=∂k⊥iμ. When one
takes it as γμ⊥, one gets 1=3, when one takes it as γμ one gets
1=2. We take the factor 1=3 in the final expression. In the
practical numerical calculation, the contribution from this
difference is very small in the spacelike region and usually
neglected in some calculations, while it is not small in the
timelike region and should be included. The second property
of Eq. (8) is that there is a sign difference in the term t2
between Eq. (8) and the one used in Ref. [34–36].
After some careful checking, we find the sign difference

can be traced back to the definition of Eq. (7) and the
corresponding Feynman diagrams in Fig. 2. After combining
Eq. (7) and Fig. 2, one sees that the distribution of the u
quark in πþ is the same as the distribution of the d quark in
π−. This is right due to the isospin symmetry. In the practical
calculation, this combination leads to the property that the
four diagrams give the same expression t1 þ t2 þ t3 except
for some global factors. If one uses Eq. (7) and explains y as
the distribution of the antiquark, then one can get t1 þ t2 þ t3
for two diagrams and t1 − t2 þ t3 for another two diagrams.
The correctness of Eq. (8) can also be verified via analytical
continuation of the spacelike form factor to the timelike
region. For example, if one applies the exchange x → 1 − y;
y → 1 − x to Eq. (8) of Ref. [30], uses the property
ϕπðxÞ¼ϕπð1−xÞ;ϕσðxÞ¼ϕσð1−xÞ;ϕTðxÞ¼−ϕTð1−xÞ,
and does the analytical continuation for the Q2, one finally
gets the same results as our Eq. (8).

III. e + e − → π + π − VIA TWO-PHOTON-EXCHANGE

When the TPE contributions in the process eþe− →
πþπ− are considered, one has the corresponding diagrams
shown in Fig. 3 in the LO.
The amplitude corresponding to Fig. 3(a) can be

expressed as

iM2γ;ðaÞ ¼
Z

dxdy
Z

d2b1d2b2

Z
d2k⊥1

ð2πÞ2
d2k⊥2

ð2πÞ2
× e−ib1·k⊥1−ib2·k⊥2e−Sðx;y;b1;b2;QÞT2γ;ðaÞ

H

≜
Z

K � T2γ;ðaÞ
H ; ð10Þ

where

T2γ;ðaÞ
H ¼ ūð−p2; s2Þð−ieγμÞSeðqeÞð−ieγρÞuðp1; s1Þ

×Dρσðq1ÞDμνðq2Þc2γTr
�
ΦðfÞ

π ðp4; y;b2Þ
�
2

3
ieγν

�

×ΦðfÞ
mn;πðp3; x;b1Þ

�
−
1

3
ieγσ

��

≜ ūð−p2; s2Þγμγωγρuðp1; s1Þ
× qe;ωT

ðaÞ
μρ ðQ2; θ;b1;k⊥1;b2;k⊥2Þ; ð11Þ
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with c2γ ¼ δij
3

δij
3
¼ 1

3
the global color factor and the

momenta in the propagators

qe ¼ −p2 þ q2;

q1 ¼ ½xp3 þ k⊥1� − ½−ð1 − yÞp4 þ k⊥2�;
q2 ¼ ½yp4 þ k⊥2� − ½−ð1 − xÞp3 þ k⊥1�; ð12Þ

and

TðaÞ
μρ ðQ2; θ;b1;k⊥1;b2;k⊥2Þ

¼ c2γTr
�
Φπðp4; y;b2Þ

�
2

3
ieγμ

�
Φπðp3; x;b1Þ

×

�
−
1

3
ieγρ

��
ð−ieÞ2 −i

q21 þ iϵ
−i

q22 þ iϵ
i

q2e þ iϵ
: ð13Þ

The hard kernel T2γ;ðaÞ
H is not gauge invariant itself, while

the sum T2γ;ðaþbÞ
H is gauge invariant. The check of the gauge

invariance of the hard kernel T2γ;ðaþbÞ
H is much simpler than

that in the case of the next-to-leading-order contribution of
the OPE amplitude, while it should also be verified care-
fully. In the practical calculation, one can separate the hard
kernel as follows,

T2γ;ðaþbÞ
H ≡ LμρDρσðq1ÞDμνðq2ÞHσν; ð14Þ

with

Lμρ ¼ ūð−p2; s2Þð−ieγμÞSeðp1 − q1Þð−ieγρÞuðp1; s1Þ
þ ūð−p2; s2Þð−ieγρÞSeðp1 − q2Þð−ieγμÞuðp1; s1Þ;

ð15Þ

where for simplicity we have exchanged the indexes of
the lepton part in Fig. 3(b) to make sure the hadron parts
of Figs. 3(a) and 3(b) are the same. The direct calculation
shows

Lμρq1ρ ¼ 0; Lμρq2μ ¼ 0: ð16Þ

These properties mean that the hard kernel T2γ;ðaþbÞ
H is not

dependent on the gauge parameter in the photon propa-
gators Dρσðq1Þ and Dμνðq2Þ. This reflects that the result is
not dependent on the choice of the gauge.
Using the relation

γμγωγρ ¼ gμωγρ − gμργω þ gωργμ − iγ5ϵμωρσγσ; ð17Þ

the amplitude iM2γ;ðaÞ can be expressed in a similar form
as iM1γ and one has

T2γ;ðaÞ
H ðp1; s1;p2; s2;p3; p4Þ ¼ ūð−p2; s2Þγρuðp1; s1Þqe;ωTðaÞ

ωρ − ūð−p2; s2Þγωuðp1; s1Þqe;ωTðaÞ
μμ

þ ūð−p2; s2Þγμuðp1; s1Þqe;ρTðaÞ
μρ − ūð−p2; s2Þγσuðp1; s1Þiγ5ϵμωρσqe;ωTðaÞ

μρ Þ
¼ ½ūð−p2; meÞγμuðp1; meÞ�½qe;ωTðaÞ

ωμ − qe;μT
ðaÞ
ρρ þ qe;ρT

ðaÞ
μρ �

þ ½ūð−p2; meÞγ5γμuðp1; meÞ�½−iϵσωρμqe;ωTðaÞ
σρ �;

≜ ½ūð−p2; meÞð−ieγμÞuðp1; meÞ�DμνðqÞTðaÞ;eff
ν

þ ½ūð−p2; meÞð−ieγ5γμÞuðp1; meÞ�DμνðqÞT̄ðaÞ;eff
ν ; ð18Þ

with

(a) (b)

FIG. 3. Diagrams for TPE for eþe− → πþπ− with two-photon exchange (TPE) in the LO of pQCD.
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TðaÞ;eff
ν ¼ 1

−ie
q2

−i
½qe;ωTðaÞ

ων − qe;νT
ðaÞ
ρρ þ qe;ρT

ðaÞ
νρ �;

T̄ðaÞ;eff
ν ¼ 1

−ie
q2

−i
½−iϵσωρνqe;ωTðaÞ

σρ �: ð19Þ

Generally, TðaÞ;eff
ν can be written as c1p1ν þ c2p2ν þ c3p3ν. Using the approximation me ¼ 0, the first two terms give no

contributions and one gets TðaÞ;eff
ν ∝ ðp4 − p3Þν and finally

iM2γ;ðaÞ ¼
Z

K � ½ūð−p2; meÞð−ieγμÞuðp1; meÞ�DμνðqÞTeff
ν �

þ
Z

K � ½ūð−p2; meÞð−ieγ5γμÞuðp1; meÞ�DμνðqÞT̃eff;ðaÞ
ν �

≜ ½ūð−p2; meÞð−ieγμÞuðp1; meÞ�DμνðqÞ½−ieðp4 − p3ÞνF̃ðaÞ
π ðQ2; θÞ�;

þ ½ūð−p2; meÞð−ieγ5γμÞuðp1; meÞ�DμνðqÞ½−ieðp4 − p3ÞνG̃ðaÞ
π ðQ2; θÞ�; ð20Þ

where F̃πðQ2; θÞ; G̃πðQ2; θÞ are expressed as

F̃ðaÞ
π ðQ2; θÞ ¼

Z ðp4 − p3Þν
−ieðp4 − p3Þ2

TðaÞ;eff
ν ;

G̃ðaÞ
π ðQ2; θÞ ¼

Z ðp4 − p3Þν
−ieðp4 − p3Þ2

T̄ðaÞ;eff
ν : ð21Þ

The contribution from Fig. 3(b) can de found in a similar way. Due to the similar form with FπðQ2Þ, we call

F̃ðaÞ
π ðQ2; θÞ; G̃ðaÞ

π ðQ2; θÞ the general form factors in the following and the final expressions for the general form factors
can be derived from Eqs. (13), (19), and (21).
After some calculation, one has

F̃πðQ2; θÞ ≜ F̃ðaÞ
π ðQ2; θÞ þ F̃ðbÞ

π ðQ2; θÞ;
F̃ðbÞ
π ðQ2; θÞ ¼ −F̃ðaÞ

π ðQ2; θ þ πÞ; ð22Þ
where

F̃ðaÞ
π ðQ2; θÞ ¼ c2γe2f2πQ2

36π

Z
b2db2

Z
dxdye−Sðx;y;b1;b2;QÞ

×

�
1

2
ϕπðxÞϕπðyÞQ2ð− cos θ þ xþ y − 1Þ þ μ2π½ϕP

π ðxÞϕP
π ðyÞð− cos θ þ xþ y − 1Þ

−
1

36
ϕT
π ðxÞϕT

π ðyÞð− cos θ þ xþ y − 1Þ þ 1

24
ϕT
π ðxÞϕσ

πðyÞ þ
1

24
ϕσ
πðxÞϕT

π ðyÞ�
�
H̃ðx; y;Q; b2; θÞ; ð23Þ

and

H̃ðx; y;Q; b2; θÞ ¼
Z

dϕb2dk⊥3xe−ib2xk⊥3x

8>>><
>>>:

2
ffiffiffi
2

p
e
jb2y jffiffi

2
p
	
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1Þ
1
ðx;y;Q;k⊥3x;θÞ−iϵ

p 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1Þ
1 ðx; y;Q; k⊥3x; θÞ − iϵ

q
Pð1Þ
2 ðx; y; Q; k⊥3x; θÞPð1Þ

3 ðx; y;Q; k⊥3x; θÞ

−
e
jb2yj

	
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð2Þ
1
ðx;y;Q;k⊥3xÞ−iϵ

p 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð2Þ
1 ðx; y;Q; k⊥3xÞ − iϵ

q
Pð2Þ
2 ðx; y;QÞPð2Þ

3 ðx; y; Q; k⊥3x; θÞ

þ e
jb2yj

	
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð3Þ
1
ðx;y;Q;k⊥3xÞ−iϵ

p 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð3Þ
1 ðx; y; Q; k⊥3xÞ − iϵ

q
Pð3Þ
2 ðx; y; QÞPð3Þ

3 ðx; y;Q; k⊥3x; θÞ

9>>>=
>>>;
; ð24Þ
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with b2y ≜ b2 sinϕb2 , b2x ≜ b2 cosϕb2 , k⊥3 ¼ k⊥2 − k⊥1 ¼ fk⊥3x; k⊥3yg, ϵ ¼ 0þ and

Pð1Þ
1 ðx; y;Q; k⊥3x; θÞ ¼ 2k2⊥3x þ 2k⊥3xQ sin θ þQ2ð− cos θðxþ y − 1Þ þ 2xy − x − yþ 1Þ þ 2m2

e;

Pð1Þ
2 ðx; y;Q; k⊥3x; θÞ ¼ 2k⊥3xQ sin θ þQ2ð− cos θðxþ y − 1Þ þ x − yþ 1Þ þ 2m2

e;

Pð1Þ
3 ðx; y;Q; k⊥3x; θÞ ¼ 2k⊥3xQ sin θ þQ2ð− cos θðxþ y − 1Þ − xþ yþ 1Þ þ 2m2

e;

Pð2Þ
1 ðx; y;Q; k⊥3xÞ ¼ k2⊥3x þQ2ðx − 1Þy;

Pð2Þ
2 ðx; y;QÞ ¼ Q2ðx − yÞ;

Pð2Þ
3 ðx; y;Q; k⊥3x; θÞ ¼ Pð1Þ

3 ðx; y; Q; k⊥3x; θÞ;
Pð3Þ
1 ðx; y;Q; k⊥3xÞ ¼ k2⊥3x þQ2xðy − 1Þ;

Pð3Þ
2 ðx; y;QÞ ¼ Pð2Þ

2 ðx; y; QÞ;
Pð3Þ
3 ðx; y;Q; k⊥3x; θÞ ¼ Pð1Þ

2 ðx; y; Q; k⊥3x; θÞ: ð25Þ

FromEq. (25), one can see that there are some singularities
in the integrated kernel, and these singularities are located
at x ¼ y or the end points with kT ¼ 0. In the practical
calculation, the contributions of these singularities are sup-
pressed by the behavior of the corresponding Sudkov factors,
and the final results are safe without any divergence.
Furthermore, the cross section from the interference of

M2γ and M1γ can expressed as

dσ2γun ¼ 1

2
e2sin2θf2Re½F�

πðQ2ÞF̃πðQ2; θÞ�g; ð26Þ

and there is no contribution from G̃πðQ2; θÞ.

IV. THE INPUT

In the timelike region, in principle, the contributions
from the resonances should also be considered. In this
work, we limit our discussion to the high-energy region and
focus on the TPE effects, so we neglect the contributions
from the resonances at present, and the needed inputs are
the same as those used in the spacelike region. For
simplicity, we directly take nf ¼ 3;Λ ¼ 0.2 GeV in the
Sudakov factor and neglect the dependence of nf and Λ on
Q2, 1=b1, and 1=b2. All other inputs are taken as the same
as those used in Ref. [35] which means the asymptotic two-
parton twist-2 and twist-3 DAs are taken as

ϕπðxÞ ¼ 6xð1 − xÞ½1þ a2C
3=2
2 ð1 − 2xÞ�;

ϕP
π ðxÞ ¼ 1;

ϕσ
πðxÞ ¼ 6xð1 − xÞ;

ϕT
π ðxÞ ¼ dϕσ

πðxÞ=dx ¼ 6ð1 − 2xÞ; ð27Þ

with a2 ¼ 0.2 and the Gegenbauer polynomial C3=2
2 ðuÞ ¼

ð3=2Þð5u2 − 1Þ. The normalization of the above DAs is a

little different from that in Ref. [35]. The associated chiral
scale is taken as μπ ¼ 1.3 GeV, the shape parameter in the
threshold resummation factor StðxÞ is taken as c ¼ 0.4,
and the renormalization scale used in the αS and Sudakov
factor is taken as μ ¼ maxð ffiffiffi

x
p

Q; 1=b1; 1=b2Þ.
Other forms of DAs are also used for estimation and the

practical numerical results show the form factors are a little
sensitive on the input DAs. Since our focus is on the TPE
effects in eþe− → πþπ−, we do not discuss the details of
the dependence of the pion form factor Q2jFπðQ2Þj on the
input DAs.

V. NUMERICAL RESULTS AND DISCUSSION

Using the inputs suggested in the last section, the form
factors FπðQ2Þ; F̃πðQ2; θÞ can be calculated directly by the
numerical method. In our numerical calculation, we use the
NIntegrate function in MATHEMATICA to do the integration
and also the Bessel function. The Vegas function in the
package CUBA [40] is also used to check the numerical
calculation, and we find it gives the same results. We want
to point out that the integration that includes the Bessel
function should be dealt with carefully. The integration of
Q2jF̃πðQ2; θÞj is heavy, and in the practical calculation, we
at first calculate the results at some points with the relative
precision about 1% and then fit the results.
The numerical results for Q2jFπðQ2Þj and the phase of

FπðQ2Þ are presented in Fig. 4. The red dashed curves refer
to the contribution from twist-2 DA, the blue dotted curves
refer to the contribution from twist-3 DAs, the black solid
curves refer to the contribution from their sum and the Ex-
data sets are taken from Ref. [41]. The contribution from
the twist-2 DA is almost same with that presented in [35].
The contribution from the twist-3 DAs is much smaller than
that from the twist-2 DA, which is very different from the
property presented in [35,36]. This property leads to the full
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results in the LO of pQCD are much smaller than the
experimental data at Q2 ¼ 14.2, 17.4 GeV2. For compari-
son, three results are presented in Fig. 5 to show the reason
for the large difference.
In Fig. 5, the olive dashed curves labeled as “twist-3-

refs” refer to the results by replacing t1 þ t2 þ t3 in Eq. (8)
with t1 − t2 which was given in [34] and then used in
Refs. [35,36], the pink dashed-doted curves labeled as
“twist-3-corrected” refer to the results by replacing t1 þ
t2 þ t3 in Eq. (8) with t1 þ t2, and the black solid curves
labeled as “twist-3-full” refer to the results from Eq. (8).
The numerical results “twist-3-Refs” are almost the same
as the corresponding results in Fig. 5 of Ref. [35]. The
comparison of the results “twist-3-refs” and “twist-3-
corrected” shows that there is large cancellation between
the contributions from the terms t1 and t2. The comparison
of the results “twist-3-corrected” and “twist-3-full” shows
the contribution from the term t3 is also important. The
property of the contribution from the term t3 is very
different from that in the spacelike region where the
contribution from this term is small.

From the numerical results of Figs. 4 and 5, one can see
that the results in the LO of pQCD are incomplete to
explain the current experimental data at Q2 ¼ 14.2,
17.4 GeV2 which are located at the masses of the
resonances ψð3770Þ and ψð4160Þ. This is natural since,
in these regions, the contributions from the resonances
play important roles due to their strong coupling with the
pion pair and should be considered in a nonperturbative
way. The pQCD results are expected to be good only when
Q2 is large enough and far away from these resonances.
This conclusion is very different from that given by
Refs. [35,36], and the main reason is due to the sign
difference in Eq. (8).
The numerical results for Q2jF̃πðQ2; θÞj vs Q2 at θ ¼

ð1=9; 2=9; 1=3; 4=9Þπ are presented in Fig. 6. The red
dashed curves refer to the contribution from twist-2 DA,
the blue dotted curves refer to the contribution from twist-3
DAs, and the black solid curves refer to the contribution
from their sum.One can see themagnitudes ofQ2jF̃πðQ2; θÞj
are about (10%–20%) of Q2jFπðQ2Þj at small θ, which

FIG. 5. Comparison of the contributions from twist-3 DAs to Q2jFπðQ2Þj and the phase of FπðQ2Þ with different expressions. The
olive dashed curves labelled as “twist-3-refs” refers to the results by replacing t1 þ t2 þ t3 in Eq. (8) with t1 − t2 which was given in [34]
and then used in Refs. [35,36], the pink dashed-doted curves labeled as “twist-3-corrected” refers to the results by replacing t1 þ t2 þ t3
in Eq. (8) with t1 þ t2 and the black solid curves labeled as “twist-3-full” refers to the results by Eq. (8).

FIG. 4. Results for Q2FπðQ2Þ vs Q2. The left panel is the result for Q2jFπðQ2Þj vs Q2 and the right panel is the result for the phase of
FπðQ2Þ vs Q2. The red dashed curves refer to the contribution from twist-2 DA, the blue dotted curves refer to the contribution from
twist-3 DAs, the black solid curves refer to the contribution from their sum, and the Ex-data sets are taken from Ref. [41].
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means the absolute contributions from the TPE effects are
not small. This is natural since naively the ratio is expected
as αQED=αS due to Figs. 2 and 3. This property is different
from the TPE corrections in the elastic ep scattering at
small momentum transfer where the relative corrections
are expected as αQED. TheQ2jF̃πðQ2; θÞj also shows strong
angle dependence which is the most interesting property
difference from FπðQ2Þ. The manifest dependence of
Q2jF̃πðQ2; θÞj on θ at Q2 ¼ ð20; 50Þ GeV2 is presented in
Fig. 7.
The normalized cross sections dσunQ4= sin2 θ from the

OPE (black solid curves) and OPEþ TPE (red dashed

curves) are presented in Fig. 8, where one can see a
manifest asymmetry in the angle dependence of the cross
section after including the TPE effects. The existence
of such asymmetry is a direct single of the TPE effects.
The measurements of such asymmetry can help us under-
stand the TPE effects.
In summary, in this work, the TPE effects in the process

eþe− → πþπ− at large momentum transfer are discussed
within the pQCD. The TPE contributions to the cross
section are calculated, and we find the asymmetry of the
differential cross section on the scattering angle reaches
about 10%–20% at small angle. The timelike electro-
magnetic form factor of the pion at the LO of αS from
the twist-3 DAs is also discussed, and the comparison
of our results with those in the references is presented.
Our results show the contributions from the twist-2
and twist-3 DAs in the LO of pQCD are much smaller
than the experimental data at Q2 ¼ 14.2, 17.4 GeV2,
which is very different from the conclusion given in the
Refs. [35,36].

FIG. 8. The numerical results for dσunQ4= sin2 θ vs θ at Q2 ¼ ð20; 50Þ GeV2 from the OPE (black solid) and OPEþ TPE (red
dashed), respectively.

FIG. 7. The numerical results for Q2jF̃πðQ2; θÞj vs θ at Q2 ¼
ð20; 50Þ GeV2 from twist-2 DA (red dashed), twist-3 DA (blue
dotted), and their sum (black solid), respectively.

FIG. 6. The numerical results for Q2jF̃πðQ2; θÞj vs Q2 at θ ¼
ð1=9; 2=9; 1=3; 4=9Þπ from twist-2 DA (red dashed), twist-3 DAs
(blue dotted), and their sum (black solid), respectively.
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APPENDIX: SOME BASIC EXPRESSIONS

In this Appendix, some expressions used in the practical
calculation are listed.
The Sudkov factor Sðx; y; b1; b2; QÞ [38] is expressed as

Sðx; y; b1; b2; QÞ ¼ sðxQ; b1Þ þ sðyQ; b2Þ
þ sðð1 − xÞQ; b1Þ þ sðð1 − yÞQ; b2Þ

−
1

β0
ln

�
t̂

−b̂1

�
−

1

β0
ln

�
t̂

−b̂2

�
; ðA1Þ

where

sðxQ;1=bÞ¼Að1Þ

2β0
q̂ ln

�
q̂

−b̂

�
þAð2Þ

4β20

�
q̂

−b̂
−1

�
−
Að1Þ

2β0
ðb̂þ q̂Þ

−
4Að1Þβ1
16β30

q̂

�
1þ lnð−2b̂Þ

−b̂
−
1þ lnð2q̂Þ

q̂

�

−
�
Að2Þ

4β20
−
Að1Þ

4β0
ln

�
1

2
e2γE−1

��
ln

�
q̂

−b̂

�

−
4Að1Þβ1
32β30

½ln2ð−2b̂Þ− ln2ð2q̂Þ�; ðA2Þ

with

t̂ ¼ ln

�
t

ΛQCD

�
; t ¼ maxð ffiffiffi

x
p

Q; 1=b1; 1=b2Þ;

b̂ ¼ lnðbΛQCDÞ; q̂ ¼ ln

�
xQffiffiffi
2

p
ΛQCD

�
;

Að1Þ ¼ CF ¼ 4

3
;

Að2Þ ¼
�
67

27
−
π2

9

�
Nc −

10

27
Nf þ

8

3
β0 ln

�
eγE

2

�
;

β0 ¼
11Nc − 2Nf

12
¼ 9

4
; β1 ¼

51Nc − 19Nf

24
¼ 4;

Nc ¼ Nf ¼ 3: ðA3Þ

The jet function StðxiÞ [39] is expressed as

StðxiÞ ¼
21þ2cΓð3=2þ cÞffiffiffi

π
p

Γð1þ cÞ ½xið1 − xiÞ�c: ðA4Þ

The running strong coupling αS [42] is expressed as

αsðμ2Þ ¼
π

β0 lnðμ2=Λ2
QCDÞ

−
πβ1 lnðlnðμ2=Λ2

QCDÞÞ
β30ln

2ðμ2=Λ2
QCDÞ

: ðA5Þ
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