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The D�
s0ð2317ÞD and D�

s1ð2460ÞD� heavy meson systems can exchange a kaon that is emitted in the
S-wave due to the opposite intrinsic parity of the D�

s0ðD�
s1Þ and DðD�Þ mesons. As a consequence of the

mass difference of the D�
s0ðD�

s1Þ and DðD�Þ mesons, the range of the kaon exchange potential will be
significantly longer than expected, corresponding to an effective mass of about 200 MeV. The potential will
be very strong: the strength of the interaction is proportional to ðmDs0

−mDÞ2=f2π and ðmDs1
−mD� Þ2=f2π .

This combination of range and strength almost guarantees the existence of D�
s0ð2317ÞD and D�

s1ð2460ÞD�

bound states with JP ¼ 0− and JP ¼ 0−, 2−, respectively. Concrete calculations indicate a binding energy
of 5–15 MeV independently of JP. The D�

s0ð2317ÞD and D�
s1ð2460ÞD� molecules have manifestly exotic

flavor quantum numbers: C ¼ 2, S ¼ 1, and I ¼ 1=2. We expect the existence of bottom counterparts
composed of the BBs0 and B�B�

s1 mesons, which will be more bound and have a richer spectrum that might
include a shallow P-wave state and an excited S-wave state.

DOI: 10.1103/PhysRevD.98.054001

The existence of hadronic molecules was conjectured
long ago [1,2] on the basis of a very simple idea: the
exchange of light mesons between two hadrons generates
a potential that might be able to bind them. The discovery
of the Xð3872Þ by Belle [3] more than a decade ago
provided a very strong candidate for a molecular state,
due to its small width and to its closeness to the D0D̄0�
threshold. Subsequently, other molecular candidates have
been discovered, among them the Zc’s [4,5] (which are
conjectured to be DD̄� and D�D̄� molecules [6,7]), the
Zb’s [8,9] (BB̄� and B�B̄� molecules [10,11]) and the
Pcð4450Þ pentaquarklike state [12] (a Σ�

cD̄� [13] or a ΣcD̄�
molecule [14–17], in the latter case probably with a
sizable Λcð2590ÞD̄ component [18,19]).
Though it is easy to conjecture the existence of

hadronic molecules from theoretical principles, making
concrete predictions is considerably harder. The reason is
that in most cases hadronic molecules are generated as a

consequence of unknown short-range physics. This is
manifest from the necessity of cutoffs/form factors. If we
consider the one pion exchange (OPE) potential, which is
expected to be the longest range piece of the interaction
between two hadrons (provided they contain at least one
light quark), we will quickly realize that it requires
regularization: the OPE potential contains a tensor piece
that is singular at short distances. The tensor force, if
attractive, will be able to hold an infinite number of bound
states. This situation is circumvented by the introduction
of a form factor, cutoff or other regulator that renders
predictions possible at the price of the introduction of an
unknown new parameter [20–25]. Educated guesses are
possible by making a judicious choice of the cutoff, the
work by Törnqvist on heavy meson-antimeson bound
states being an astonishing example [20], but there always
remains a large degree of arbitrariness.
Yet the tensor force is not present in every hadron

molecule. The richness of the hadron spectrum gives
rise to other possibilities even if we only consider the
exchange of a pseudo–Nambu-Goldstone boson. If a pion
or a kaon is exchanged in a vertex involving hadrons with
different parities a series of interesting situations can arise.
If in addition a vertex involves hadrons with different
masses, this can lead to interactions with an unusual
long range for strong interactions. A recent example is a
Coulomb-like force in the Λcð2590ÞΣc and Λcð2590ÞΣ̄c
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systems [26]. In this case we have a 1=r potential that is
regular at short distances: we can make predictions that
do not crucially depend on a cutoff, though we still expect
the unknown details of the short-range physics to have a
certain impact.
Here we consider the DD�

s0ð2317Þ and D�D�
s1ð2460Þ

systems, which share interesting similarities with the
Λcð2590ÞΣc molecule theorized in Ref. [26]. The D and
D� mesons have negative parity, while for the D�

s0ð2317Þ
and D�

s1ð2460Þ mesons (D�
s0 and D�

s1 from now on) the
parity is positive. That is, they can exchange a kaon in
S-wave. In addition the mass difference mðD�

s0Þ −mðDÞ
and mðD�

s1Þ −mðD�Þ is similar to the kaon mass, which
means that the exchanged kaon will be near the mass shell
and hence the range of the interaction will be unusually
large. If this were not enough, chiral symmetry implies that
the strength of the D�

s0DK and D�
s1D

�K vertices are
proportional to the mass difference, which translates into
an exceptional strength for the resulting Yukawa potential.
This mechanism is also present in the Λð1405ÞN and
Ξð1690ÞΣ via antikaon exchange and in the Λð1520ÞΣ� via
pion exchange.
This type of kaon exchange leads to a different spectrum

than the one obtained from standard OPE [20]. The strength
of the former is independent of spin and isospin, while the
later is proportional to�S⃗1 · S2T⃗1 · T2, with S⃗1;2 and T⃗1;2 the
spin and isospin of hadrons 1 and 2 and the þ=− sign for
hadron-hadron/hadron-antihadron [14]. For standard pion
exchange flavor exotic states are suppressed as they require
a symmetric/antisymmetric wave function. This limits the
choices of total spin and isospin for which attraction is
strong. In turn CP exotic states are suppressed as they
usually require P-wave, for which binding is less likely. The
type of kaon exchange discussed here is independent of spin
(the kaon is emitted in S-wave) and of isospin (the D�

s0 and
D�

s1 are isoscalars). We nonetheless stress that the production
of flavor exotic states is experimentally difficult and has only
been achieved recently [27].
The DD�

s0ð2317Þ and D�D�
s1ð2460Þ molecules are also

interesting for another reason: their quark content is ccs̄ q̄
with q̄ ¼ ū, d̄. This configuration is unlikely to form
compact tetraquarks but narrow molecules instead, as
argued by Manohar and Wise [28]. Lattice QCD [29,30]
and quark model calculations [31–37] seem to indicate that
compact QQq̄ q̄ structures exist in the bottom sector, but
not in the charm one (maybe with the exception of an
isoscalar ccū d̄ state with JP ¼ 1þ). As a consequence the
potential discovery of a structure with ccs̄ q̄ quark-content
and negative parity will unmistakably point to a molecule.
Now we calculate the one kaon exchange (OKE)

potential in the DD�
s0 and D�D�

s1 molecules. We begin
with theD,D� S-wave heavy mesons, which can be written
as the heavy quark symmetric superfield:

Ha ¼
1þ =v
2

½D�μ
a γμ −Daγ5�; ð1Þ

where a is an SU(3)-flavor index such that

Da ¼

0
B@

D0

Dþ

Ds

1
CA; D�

a ¼

0
B@

D�0

D�þ

D�
s

1
CA: ð2Þ

If we consider now the D0 and D1 P-wave heavy mesons
(to which the D�

s0, D
�
s1 belong), they can be arranged in the

superfield

Sa ¼ 1þ =v
2

½Daμ
1 γμγ5 −Da

0�; ð3Þ

with the SU(3)-flavor structure

Da
0 ¼

0
B@

D0
0

Dþ
0

D�
s0

1
CA; Da

1 ¼

0
B@

D0
1

Dþ
1

D�
s1

1
CA: ð4Þ

While theD�
s0 andD

�
s1 are narrow and thus good candidates

for being part of a molecule, the D0
0, D

þ
0 , D

0
1 and Dþ

1 are
broad (Γ ∼ 200–300 MeV) and as a consequence unlikely
to form bound state, except with kaons [38]. Besides the
D�

s0 and D�
s1 are expected to contain a non-negligible DK

and D�K molecular component [38–40] (about 50%–70%
according to Refs. [41,42]) plus a Dsη and D�

sη component
[43]. The binding momentum is about 200 MeV for theDK
and D�K and about 400 MeV for the Dsη and D�

sη. If the
binding momentum of a DD�

s0=D
�D�

s1 molecule is smaller
than these figures, it will be safe to ignore the possible
compound structure of the D�

s0 and D�
s1 mesons.

The heavy meson chiral lagrangian for the interaction
between the S- and P-wave heavy mesons is [44]

L ¼ h
2
Tr½H̄aSb=Aabγ5� þ H:c:; ð5Þ

with a, b SU(3)-indices, Aμ
ab the axial current of the

pseudo–Nambu-Goldstone field and where H.c. indicates
the Hermitian conjugate. We have Aμ ¼ − 1

fπ
∂μM with

fπ ≃ 130 MeV, where

M ¼

0
BBB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 −
ffiffi
2
3

q
η

1
CCCA: ð6Þ

We determine the coupling h from two different assump-
tions of the structure of D�

s0 and D�
s1 states. In the first

scenario, assuming that the D�
s0 and D�

s1 are cs̄ states, we
can infer h from the decays of D0 and D1 mesons
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ΓðD0 → DπÞ ¼ ΓðD0 → Dπ0Þ þ ΓðD0 → Dπ�Þ

¼ 3

2
ΓðD0 → Dπ�Þ

¼ 3

2

mD

mD0

qπ
2π

h2

f2π
ðmD0

−mDÞ2; ð7Þ

plus the analogous formula for theD1 → D�π decay, where

qπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmD0

−mDÞ2 −m2
π

q
is the momentum of the pion.

If the widths of the D0 and D1 heavy mesons are saturated
by the pion decays above, we obtain h ∼ 0.5–0.9 where the
large spread comes from the uncertainties in the masses
and widths of the D0 and D1 mesons and also because it
depends on whether we use theD0

0, theD
þ
0 or theD0

1 decay
width (notice that the Dþ

1 has not been detected yet). For
instance Ref. [45] obtains the values h ¼ 0.61� 0.07,
0.50� 0.06 and 0.8� 0.2 for the three previous cases.
Determinations of this coupling fromQCDsum rules [46,47]
and lattice QCD [48] lie in the previous range. That is, if the
D�

s0 and D�
s1 are compact cs̄ states the uncertainty in h is

likely to be large, for instance h ¼ 0.7� 0.2.
In the second scenario we deduce h from the molecular

hypothesis, where theD�
s0 → DK (D�

s1 → D�K) coupling g
is extracted from the residues of the scattering amplitude at
the pole [41,49]. We have the relation

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mD�

s0
2mD

q
ωK

h
fπ

; ð8Þ

from which a typical g ∼ 10–12 GeV [41,49] translates into
h ∼ 0.7–0.8, where the higher value comes from analyzing
lattice QCD data [50]. In this scenario we can use h ¼
0.7� 0.1 for fπ ¼ 130 MeV. Choosing fK ¼ 160 MeV
instead of fπ only amounts to the change h ¼ 0.9� 0.1.
This makes no difference because the potential is propor-
tional to g2.
The leading order (LO) potential for the DD�

s0 and
D�D�

s1 system is generated from kaon exchange and is not
diagonal. If we consider the bases fDD�

s0; D
�
s0Dg and

fD�D�
s1; D

�
s1D

�g, the momentum space potential reads

VOKEðq⃗Þ ¼ −h2
ω2
K

f2π

1

m2
K − ω2

K þ q⃗2

�
0 1

1 0

�
; ð9Þ

with ωK ¼ mD�
s0
−mD or mD�

s1
−mD� depending on the

case. We have used fπ instead of fK as they are only
different at next-to-leading order in the chiral expansion.
The interesting point is that the range of the potential is set
by the effective kaon mass μK

μ2K ¼ m2
K − ω2

K; ð10Þ

which is about 200 MeV, moderately long-ranged. This
enhanced range also happens in Λð1405ÞN [51]. For S ¼ 0,

2 we have the linear combinations ½jDD�
s0i þ jD�

s0Di�= ffiffiffi
2

p

and ½jD�D�
s1i þ jD�

s1D
�i�= ffiffiffi

2
p

for which the potential is
attractive1 and reads as

VOKEðrÞ ¼ −h2
ω2
K

f2π

e−μKr

4πr
; ð11Þ

in configuration space, which has bound states if

λB ¼ 2μH
μK

ω2
K

4πf2π
h2 ≥ 1.68; ð12Þ

with μH the reduced mass of the system. This condition is
probably satisfied: the evaluation of the expression above
yields 9.16h2 and 10.70h2 for the DD�

s0 and DD�
s1 cases,

respectively, and a bound state exists for jhj > 0.43 and
0.40. For λB ≥ 6.45 there will be two bound states, a
condition that requires jhj > 0.84 and 0.78, which makes
the existence of the second state less probable but still
possible.
Concrete calculations of the bindingwill be divided in two

scenarios: a compact and a molecular D�
s0=D

�
s1. In the first

case, the predictions will be subjected to large errors due to
the poor knowledge of the coupling h. In the second the
coupling h is well determined, but the finite size of the DK
andD�K molecule has to be considered. The OKE potential
is regular but its short-range behavior is not necessarily
physical. We regularize it in order to obtain more realistic
results. For that, we apply a nonlocal gaussian regulator to
the momentum space OKE potential with a cutoff of the
order of the hard scale (Λ ¼ 0.5–1.0 GeV), which we plug
into the Lippmann-Schwinger equation [52,53]. This choice
is not the easiest one—it generates a nonlocal potential—but
it is more convenient for a prospective three body DDK
calculation. Choices such as a monopolar or a gaussian form
factor depending on q⃗will lead to a local potential that can be
used in the Schrödinger equation.
In the first scenario—D�

s0=D
�
s1 as a compact meson—a

DD�
s0 (D�D�

s1) bound state is very likely but the uncer-
tainties are large. For h ¼ 0.7 the binding energy is
EB ¼ −ð4–13Þ MeV, with the spread reflecting the cutoff
range. This figure decreases to EB ¼ −ð1–5Þ MeV if we
choose fK instead of fπ in the OKE potential. The system
binds for most choices of the parameters except for h ¼ 0.5
with fK (though there is still a virtual state at EV ¼
−0.7 MeV). The resilience against short-range physics
can be illustrated by changing the regulator to

1This is a consequence of extended Bose-Einstein statistics.
The potential exchanges the D by the D�

s0 and vice versa, which
means that it is convenient to consider the D and Ds0 as identical
particles. Alternatively, we can notice that the potential is defined
in the DDs0 → DDs0 channel, which leads to an overall ð−1ÞS
factor (see for instance Ref. [51]).
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Vðr;RcÞ ¼ VðrÞθðr − RcÞ; ð13Þ

where Rc is a cutoff radius. With this regulator OKE binds
for Rc ≤ 0.8–1.3 fm (0.9–1.4 fm) depending on whether
we use fπ or fK. This is larger than the typical range of
short distance physics, which as we will see below also
happen to be suppressed. If we consider the exchange of
other light mesons, we notice that SU(3) flavor symmetry
and the OZI rule imply that the coupling of the D�

s0=D
�
s1 to

the sigma and omega mesons vanishes. The only nonsup-
pressed light meson exchange is that of the K�, which
generates a spin-spin interaction that vanishes for D�

s0D
while it is repulsive (attractive) for S ¼ 0 (S ¼ 2) D�

s1D
�.

That is, OKE dominates the low energy physics of this
system.
The importance of OKE can also be understood by

reinterpreting the previous predictions as the leading order
(LO) calculation in an effective field theory (EFT) with the
heavy mesons and the pseudo–Nambu-Golstone bosons as
the low energy degrees of freedom. Within this framework,
the longest range correction to the OKE potential comes
from two pion exchange (TPE),2 in particular the football
and triangle diagrams [54]. These diagrams enter at Q2

naively, where the Q notation denotes the ratio of a light
scale (e.g., the pion mass or the effective kaon mass) over a
hard scale (e.g., the rho mass). Yet they involve theD�

s0π →
D�

s0π and D�
s1π → D�

s1π amplitudes that vanish at lowest
order, demoting TPE to order Q3. In addition for the
football diagram the lowest order Dπ → Dπ amplitude
cancels with D�

s0π → D�
s0π due to their isospin structure.

As a consequence the football diagram is at leastQ4. This is
to be compared with OKE, which we count as Q−1

following Refs. [55–57]. In short, OKE is well protected
from subleading corrections.
In the second scenario—theD�

s0=D
�
s1 are molecular—the

couplings are rather well constrained and the binding
energy is amenable to error estimations. Concrete calcu-
lations indicate the existence of a DD�

s0 (D�D�
s1) bound

state with EB ¼ −4þ3
−5 MeV (EB ¼ −5þ3

−5 MeV) for Λ ¼
0.5 GeV and EB ¼ −13þ8

−13 MeV (EB ¼ −15þ9
−13 MeV) for

Λ ¼ 1.0 GeV, with other regulators yielding similar num-
bers.3 For a sharp cutoff Rc, OKE binds for Rc ≤ 1.3þ0.3

−0.3 fm
(1.4þ0.3

−0.3 fm), which is a factor of 2 larger than the mean

square radius
ffiffiffiffiffiffiffiffi
hr2i

p
∼ 0.7 fm of a DK=D�K bound state,

from which we deduce that binding is a solid prediction.

Yet the binding momenta of the D�
s0D=D�

s1D molecules
is about 100–200 MeV, comparable to that of a DK=D�K
molecule. This points to corrections from the underlying
DDK structure. The interactions in the DDK system are of
a short-range nature, which makes a Faddeev calculation
simple in this system (details will be provided in a future
publication). If we fix the DK contact-range interaction to
reproduce the D�

s0 pole and assume that there is no DD
interaction, for Λ ¼ 0.5–1.0 GeV we find a bound state at
EB ¼ −ð44–57Þ MeV below theDs0K threshold. From rho
and omega exchange we expect the DD potential to be
repulsive at short distances. This is taken into account by
saturating the DD contact-range coupling by the exchange
of these two mesons as in [58]. In this case we find
EB ¼ −ð15–28Þ MeV. Finally the inclusion of relativistic
kaon kinematics (in the formalism of Refs. [59–61]) and the
correct energy dependence of the Weinberg-Tomozawa
term for the DK interaction give modest corrections to
the numbers above, about ΔEB ¼ þ5 MeV for a non-
interacting DD pair and ΔEB ¼ þ1 MeV if we include
DD repulsion.
Other interesting aspect of the DD�

s0 and D�D�
s1 mol-

ecules is their decays, which are given by the decays of
their components plus interference and binding effects
(analogous to those in the D0D̄0γ and D0D̄0π0 decays of
the Xð3872Þ [62–64]). While the width of the D� is of the
order of 100 keV [65,66], the widths of the D, D�

s0 and D
�
s1

are not that well known experimentally (except for upper
bounds). Theory suggests that they are narrow: D only
decays weakly while the D�

s0 and D�
s1 decays require

isospin violation, where estimates of the width of the
former range from a few keV [39,40,67] to about a pair
of hundred of keVat most [68]. Besides the binding energy
of the D�D�

s1 molecule precludes the possibility of the
D� → Dπ decay, as chances are that this molecule is below
the DD�

s1π threshold. From this we can conclude that the
width of these two molecular states is really narrow, well
below 1 MeV, in agreement with the original expectations
about QQq̄ q̄ states [28].
Probably the most effective way to produce the DDs0

and D�D�
s1 molecules in experiments involves heavy ion

collisions, the reason being their double charm content. The
production yields for the theoretical Tcc tetraquarks (ccq̄ q̄)
and other exotic hadrons have been estimated for electron-
positron [69] and heavy ion collisions [70], where the
predicted yields may be reachable by the LHCb in the
future (double charm baryon production has been recently
achieved [27]). Yet we note that the production of double
charm molecules is probably different from the estimates
above, which refer to the more compact Tcc tetraquarks.
The previous ideas also apply to the bottom sector,

where the Bs0ð5730Þ and Bs1ð5776Þ bottom-strange mes-
ons have been theorized to have a significant molecular
component and a similar binding energy as the D�

s0 and
D�

s1 mesons [39,40,43] (they also appear in lattice QCD

2Two kaon exchange does not benefit from the enhanced range
of OKE and we do not further consider it.

3For instance, a monopolar form factor in each kaon vertex
with Λ ¼ 0.8 GeV and 1.6 GeV yields B ¼ −4þ3

−7 MeV
(−6þ4

−8 MeV) and B ¼ −16þ11
−17 MeV (−20þ13

−20 MeV), where
the cutoff is chosen to be Λ > mρ as usual for form factors.
For Λ → ∞ we have (independently of regulator) EB ¼
−40þ30

−50 MeV (−50þ30
−50 MeV).
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calculations [71]). They are theoretical however and have
not been experimentally discovered yet. If we consider the
BBs0 and B�B�

s1 molecules, the OKE potential is identical to
the one for charm mesons but the spectrum will be more
bound due to the heavier reduced mass. For Λ ¼ 0.5 GeV=
1 GeV we find a BBs0 bound state at EB ¼ −14þ6

−7 MeV=
−40þ20

−20 MeV. The B�B�
s1 predictions are almost identical

because the reduced mass is nearly the same. Due to their
wave number, a sizeable three-body component is possible.
For h ¼ 0.8 an excited shallow S-wave state appears. For the
P-wave, there is a bound state with EB ¼ −4þ4

−2 MeV=
−14þ7

−10 MeV. The previous uncertainties only take into
account the error in the coupling h. The biggest uncertainty
will come from the actual location of the Bs0 and B�

s1 states:
the closer they are to the BK and B�K threshold, the longer
the range of the OKE potential and the more probable
additional bound states will be.
To summarize, the DD�

s0 and D
�D�

s1 systems interact via
a long-ranged kaon exchange Yukawa potential. This
potential is a consequence of the different parities and
masses of the DðD�Þ and D�

s0ðD�
s1Þ heavy mesons. It also

provides an excellent opportunity to predict the existence
of bound states: due to the nonsingular character of the
Yukawa potential, predictions do not crucially depend on
arbitrary short-range physics, though there is still a mod-
erate dependence on the cutoff. We find that there must be
bound states with a binding energy of 5–15 MeV where
the exact number should be fairly independent on whether

we have a 0− DD�
s0 or a 0−=2− D�D�

s1 molecule. These
predictions are robust against short-range dynamics, partly
because the latter are suppressed phenomenologically.
If the bound states become too deep their description
probably requires the inclusion of a three body component
(DDK and D�D�K, respectively). This does not affect the
prediction of bound states, only their location. We expect
the existence of similar bound states in the bottom sector,
i.e., BBs0 and B�B�

s1. They will be more bound and might
have a richer spectrum than their charm counterparts
(there is probably a P-wave state and an excited S-wave
one), but we remind that the Bs0 and B�

s1 heavy mesons
have not been observed yet in experiments. The mecha-
nism behind these molecules and the dual three body
description probably extends to other hadron systems, for
instance Λð1405ÞN, Ξð1690ÞΣ and Λð1520ÞΣ� to name a
few prominent examples.
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