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Neutrino-nucleus scattering νA → νA, in which the nucleus conserves its integrity, is considered. Our
consideration follows a microscopic description of the nucleus as a bound state of its constituent nucleons
described by a multiparticle wave function of a general form. We show that elastic interactions keeping the
nucleus in the same quantum state lead to a quadratic enhancement of the corresponding cross section in
terms of the number of nucleons. Meanwhile, the cross section of inelastic processes in which the quantum
state of the nucleus is changed, essentially has a linear dependence on the number of nucleons. These two
classes of processes are referred to as coherent and incoherent, respectively. Accounting for all possible
initial and final internal states of the nucleus leads to a general conclusion independent of the nuclear
model. The coherent and incoherent cross sections are driven by factors jFp=nj2 and ð1 − jFp=nj2Þ, where
jFp=nj2 is a proton/neutron form factor of the nucleus, averaged over its initial states. Therefore, our
assessment suggests a smooth transition between regimes of coherent and incoherent neutrino-nucleus
scattering. In general, both regimes contribute to experimental observables. The coherent cross-section
formula used in the literature is revised and corrections depending on kinematics are estimated.
Consideration of only those matrix elements which correspond to the same initial and final spin states
of the nucleus and accounting for a nonzero momentum of the target nucleon are two main sources of the
corrections. As an illustration of the importance of the incoherent channel, we considered three
experimental setups with different nuclei. As an example, for 133Cs and neutrino energies of 30–
50 MeV, the incoherent cross section is about 10%–20% of the coherent contribution if the experimental
detection threshold is accounted for. Experiments attempting to measure coherent neutrino scattering by
solely detecting the recoiling nucleus, as is typical, might be including an incoherent background that is
indistinguishable from the signal if the excitation gamma eludes its detection. However, as is shown
here, the incoherent component can be measured directly by searching for photons released by the excited
nuclei inherent to the incoherent channel. For a beam experiment these gammas should be correlated in
time with the beam, and their higher energies make the corresponding signal easily detectable at a rate
governed by the ratio of incoherent to coherent cross sections. The detection of signals due to the nuclear
recoil and excitation γs provides a more sensitive instrument in studies of nuclear structure and possible
signs of new physics.
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I. INTRODUCTION

The process of neutrino scattering, by means of Z0-boson
exchange, off a system of bonded particles provides a great
laboratory to test principles of quantum physics and search
for new phenomena. Under certain conditions the

corresponding interaction probability acquires an extra
factor with respect to the case of scattering off free particles.
This extra factor, proportional to the number of scat-

terers, is a direct consequence of the principles of quantum
physics. The probability of an outcome is determined by
the absolute value squared of the sum of amplitudes
corresponding to indistinguishable paths to realize this
outcome. Neutrino-nucleus scattering in which the nucleus
conserves its integrity is an example of this kind, as was
observed by Freedman [1] more than four decades ago.
There are two distinct outcomes of such interactions:

(i) the nucleus remains in the same quantum state and
(ii) the state is changed. We refer to these cases as elastic
and inelastic scatterings, respectively, because in (i) the
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energy transfer to the recoil nucleus is vanishingly small,
while in (ii) it is apparently nonzero.
It was shown [2–5] that the cross section of elastic

neutrino scattering off a nucleus is amplified with respect to
a neutrino scattering off a single nucleon. The amplification
factor for a spinless even-even nucleus reads

jgnVNFnðqÞ þ gpVZFpðqÞj2 ≃ N2ðgnVÞ2jFnðqÞj2; ð1Þ

where Z and N are the numbers of protons and neutrons,
gp=nV are proton/neutron couplings of the nucleon vector
current, and Fp=nðqÞ are proton/neutron form factors of the
nucleus. The form factors approach unity if

jqjRA ≪ 1; ð2Þ

where RA is the radius of the nucleus. The form factors
vanish at jqj → ∞.
Neutrinos with energies below some tens of MeV

predominately conserve the integrity of nucleons in neu-
trino-quark interactions with Z0-boson exchange, allowing
one to consider this process using an effective neutrino-
nucleon interaction in which the nucleon current is a sum of
vector and axial currents.
The corresponding axial currents do not contribute

significantly when a neutrino elastic scatters off of a
spin-less nucleus due to the cancellation in the sum of
amplitudes. The vector coupling gpV ¼ 1

2
− 2sin2θW of the

proton is small (gpV ≈ 0.023) and is neglected in the
approximate equality in Eq. (1). In our estimates, we used
a best-fit value of sin2θW ¼ 0.23865, determined using low
energy neutrino data and MS renormalization scheme [6].
Freedman coined the terminology “coherent neutrino-

nucleus scattering” to emphasize the fact that the depend-
ence of the corresponding cross section is quadratic in
terms of the number of nucleons. This dependence was
attributed to nearly identical amplitude phases correspond-
ing to a neutrino scattering off nucleons.
His first calculations [1] were revised in a number of

papers [2–5,7–10]. The impact of the nuclear structure
models was studied in [11–15]. The importance of the
coherent cross section was examined theoretically for a
number of observables in astrophysics, like stellar collapse
[16,17], supernovae [18–21], and in studies of physics
beyond the standard model (SM) [3,22–31], electromag-
netic properties of the neutrino [32], searches for sterile
neutrinos [33,34], and estimates of neutron density in the
nucleus [4,35]. Coherent scattering of atomic systems was
studied in [36,37], where the concept of neutrino optics was
suggested for neutrinos with energies ≲10 keV.
Dating back to the seminal paper by Freedman [1], a

number of experimental proposals [2,38–52] using reactor
and accelerator neutrinos were suggested to observe neu-
trino-nucleus coherent scattering. This process is an
unavoidable background in sensitive searches for dark

matter [53–59]. The difficulty in observing coherent
neutrino scattering lies in the detection of scattered nuclei
with low kinetic energy of the order of some keV or tens
of keV.
The first experimental evidence for coherent

neutrino-nucleus scattering was reported in 2017 by the
COHERENT Collaboration [60–62], using CsI[Na] scin-
tillator exposed to neutrinos with energies of tens of MeV
produced by the Spallation Neutron Source (SNS) at the
Oak Ridge National Laboratory [63–65].
Our motivation for this work was triggered by the

following observation. At neutrino energies of some tens
of MeV, the three-momentum transfer q is large enough to
break the condition in Eq. (2). For example, energy deposits
observed in [63] correspond to jqjRA sampling the interval
(1,2.7), and the elastic cross section should be suppressed.
At higher energies, but still in the regime where the nucleus
conserves its integrity, the elastic cross section vanishes and
the neutrino-nucleus interaction probability must be deter-
mined by inelastic interactions. In general, the correspond-
ing cross section should be given by a sum of elastic and
inelastic cross sections, similar to the theory of the
scattering of x rays [66] and electrons [67] off an atom,
and of slow neutrons off of matter constituents [68].
What should one expect about the “coherency” in

inelastic processes? If this terminology is understood
literally as the equality of phases of neutrino-nucleon
scattering amplitudes, then one would conclude that inelas-
tic processes should also be coherent, as in elastic processes,
because there is no reason why these phases should be
different. Should one then expect a quadratic dependence of
the inelastic cross section in terms of the number of
nucleons, similar to Eq. (1)? The corresponding literature,
to best of our knowledge, lacks an appropriate theory for
neutrino-nucleus interactions that could address these ques-
tions. This paper attempts to provide a theoretical framework
accounting for elastic and inelastic neutrino-nucleus scatter-
ing of the process

νA → νAð�Þ; ð3Þ

based on calculations from first principles. In Eq. (3),
the possibility that the internal quantum state of a nucleus
can be modified after an interaction is labeled by the ð�Þ
superscript.
We show in this work that the cross section of the

neutrino-nucleus elastic process is, indeed, quadratically
dependent on the number of nucleons, while that for
inelastic scattering exhibits a linear dependence. Elastic
and inelastic cross sections also possess a distinct depend-
ence on q: the former is driven by jFp=nj2, while the latter is
governed by 1 − jFp=nj2. At the same time, the phases of
corresponding neutrino-proton and neutrino-neutron ampli-
tudes are all equal for protons and neutrons, respectively.
This is at odds with the assumption that the difference of
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phases of the scattering amplitudes is responsible for loss of
coherency [17,32,69]. Our arguments are discussed in what
follows.
The paper is split into two parts. The first part is focused

only on the main points of the derivation and discusses the
results obtained. The second part, containing the necessary
technical details, is organized in a set of Appendices.
In particular, a conceptual derivation of a general form of

the cross section of the process in Eq. (3) is discussed in
Sec. II. We review the paradigm of coherent scattering and
suggest our concept in a simplified way in Sec. II A. The
kinematics of elastic and inelastic scattering, and the
corresponding amplitude and the cross section are dis-
cussed in Secs. II B and II E, respectively. We refer to
Appendices A–C for full details of this derivation.
In Appendix A, we define the theoretical framework,

reminding the reader of the decomposition of a quantum
state in x and p bases for n-particle states, introducing
notation and defining a general form of the wave function
of the nucleus. In Appendix B, we compute the scattering
amplitude and the cross section. In Appendix C, we
summarize some details of our calculations of the scalar
product of lepton and hadron currents, needed to calculate
the scattering amplitude and the cross section.
In Sec. III, we discuss in detail the derived cross section.

Coherent and incoherent regimes are discussed in Sec. III
A. Our revision of the coherent cross section is discussed in
Sec. III B. In Sec. III C, we discuss in some detail a
proposal to detect transition γs from excited nuclei inherent
to incoherent processes. These γs would provide both an
additional background suppression and an independent
observable sensitive to the form factor of the nucleus. In
Appendix D, we provide an analogy with a mechanical
system of two balls connected by a spring to illustrate the
kinematics of coherent and incoherent scattering. The
summary is drawn in Sec. IV.
The natural units ℏ ¼ c ¼ 1 are used throughout the

paper. Three-vectors are denoted by bold face. A four-
vector a has the following components: aμ ¼ ða0; aÞ,
enumerated by a greek index μ. The Dirac spinors and
γ-matrices are used in the Dirac basis and γ5 ¼ iγ0γ1γ2γ3.
The Feynman slash notation =a ¼ γμaμ is used for a scalar
product of a four-vector aμ and Dirac γμ-matrices. Quantum
operators are denoted by the hat symbol, like X̂ for the
position operator.

II. ELASTIC AND INELASTIC
NEUTRINO-NUCLEUS SCATTERING

A. Revising the paradigm

We begin this section by reminding the reader of
the paradigm of coherency in neutrino-nucleus scattering
[17]. Two waves are considered coherent if they have
the same frequencies, wave forms, and constant relative

phase. Coherence can lead to constructive and destructive
interference.
A neutrino-nucleus interaction is a result of an individual

neutrino scattering off of nucleons. Each such scattering off
a kth nucleon can be described by an amplitude Ak.
If these nucleons are assumed to have definite coordi-

nates xk, then, due to the translation invariance, Ak gets an
additional factor eiqxk and the total amplitude reads

A ¼
XA
k¼1

Akeiqxk : ð4Þ

These individual amplitudes are coherent if, for any k, the
phases qxk are nearly the same. This is fulfilled if the
condition in Eq. (2) is satisfied.
The left panel of Fig. 1 depicts a neutrino scattering off

of nucleons displaced from each other. The nonzero angle θ
of the scattered neutrino leads to a loss of coherence.
Does this consideration of coherency remain appro-

priate when the assumption of the nucleon’s definite
position is released? In this case, the positions of nucleons
are described by a multiparticle scalar wave function
ψn=mðx1…xAÞ, where the n=m subscripts stand for the
initial and final state of the nucleus. The amplitude in
Eq. (4) could be generalized as

Ann ¼
XA
k¼1

Ak
nnfknnðqÞ; ð5Þ

where

FIG. 1. Left panel: Front of incoming neutrino plane-wave
(solid vertical line) scatters on nucleons at fixed positions, xj and
xk, respectively. Nonzero scattering angle θ develops the phase
difference Δφ ¼ qðxj − xkÞ of two fronts of scattered neutrino
plane-waves (dashed lines) which leads to a loss of coherence.
Right panel: Neutrino scatters off a kth or jth nucleon described
by a wave function exemplified here as a Gaussian profile. The
outgoing neutrino wave, as for any nucleon target, is a super-
position of waves eiqxk weighted by jψnðx1…xAÞj2.

COHERENCY AND INCOHERENCY IN NEUTRINO-NUCLEUS … PHYS. REV. D 98, 053004 (2018)

053004-3



fkmnðqÞ ¼ hmjeiqX̂k jni

¼
Z �YA

i¼1

dxi

�
ψ�
mðx1…xAÞψnðx1…xAÞeiqxk ð6Þ

is the transition matrix element of eiqX̂k with X̂k being the
quantum position operator of the kth nucleon.
In particular,

fknnðqÞ ¼
Z �YA

i¼1

dxi

�
jψnðx1…xAÞj2eiqxk ; ð7Þ

defining the form factor of the nucleon bound in the
nucleus, differs from the exponential factor eiqxk in two
major respects: (i) fknnðqÞ does not depend on the coor-
dinate of the kth nucleon. All position variables are
integrated out in Eq. (6). (ii) fknnðqÞ does not depend on
the index k (ignoring for simplicity a possible difference in
form factors for protons and neutrons). This statement can be
proven for both fermions and bosons by a change of
integration variables, and accounting for symmetry proper-
ties of thewave function under interchange of its arguments.
Now, accounting for these properties of fknnðqÞ, we

conclude that phases of each individual amplitude in the
total amplitude in Eq. (5) are all equal and the amplitudes
are coherent for any q, at variance with Eq. (4).
This conclusion does not mean to say that the total

amplitude is not vanishing at large q, because in this limit
the form factor fnnðqÞ vanishes. What governs such
dependence of fnnðqÞ? Mathematically, the reason lies in
the fast oscillation of the eiqxk factor in the integral in
Eq. (6), washing out the integrand function. The physical
reason is in the incoherent summation of waves belonging
to the wave function of a single nucleon extended over the
size of the nucleus. Other physics arguments are discussed
in Sec. II C and Appendix D.
One can argue that this conclusion seems to be in conflict

with a wave function corresponding to the nucleons at fixed
positions, assuming that

jψnðy1…yAÞj2 ∝
Y
i

δ3ðyi − xiÞ; ð8Þ

where yi are variables and xi are parameters. Then, Eq. (7)
reduces to Eq. (4) in which every term has an individual
phase in contrast to our statement. This antinomy appeared
because of the assumption in Eq. (8) which breaks the
principle of the particles identity. The latter requires that
the multiparticle wave function should be either symmetric
(bosons) or anti-symmetric (fermions) under exchange
of its arguments. As a result it is not possible to state
that the ith particle has position xi even if it is known that
all particles occupy some fixed positions. Instead, the
ith particle can be at any point among the x1…xA fixed
positions. Therefore, considering Eq. (7) with an appro-
priately symmetrized δ-like wave function, one would

identically obtain Eq. (4) for any index k in agreement
with our conclusion. Consideration of this antinomy is also
helpful in understanding that the very form of Eq. (4)
ignores the fundamental principle of quantum physics—the
indistinguishability of particles.
The right panel of Fig. 1 displays a scattering picture

accounting for a wave function of the nucleons exemplified
here as a Gaussian profile. The summation of waves
weighted by jψnðx1…xAÞj2 yields the scattered neutrino
wave, as for any nucleon.
Therefore, according to our consideration, it is not

appropriate to identify the diagonal terms in

jAnnj2 ¼ jfnnðqÞj2
X
k;j

Ak
nnA

j�
nn

¼ jfnnðqÞj2
�X

k

jAk
nnj2 þ

X
k≠j

Ak
nnA

j�
nn

�
ð9Þ

as due to incoherent interactions. Both diagonal and non-
diagonal terms contribute equally to jAnnj2, and with the
same dependence on q.
What, then, defines the incoherent interactions?

Essentially, they are defined by processes in which the
quantum state of the nucleus is changed (n ≠ m). Let us
briefly highlight the main points of a derivation illustrating
this statement, ignoring for a while complications due to
spin, type of nucleon, possible dependence ofAk

mn → A0 on
the indices, etc. (full details can be found in Appendix B).
Assume the nucleus is initially in the nth quantum state.

If the experiment is not able to distinguish the final state of
the nucleus, one should sum over all possible final states to
get the observable proportional to

jAj2 ¼
X
m

jAmnj2 ¼ jA0j2
X
k;j

X
m

fkmnf
j�
mn: ð10Þ

Using Eq. (6) one can rewrite Eq. (10) as

jAj2 ¼ jA0j2
X
k;j

hnje−iqX̂j

X
m

jmihmjeiqX̂k jni

¼ jA0j2
X
k;j

hnje−iqX̂jeiqX̂k jni; ð11Þ

where we used the unity operator composed of nuclear
states

P
mjmihmj ¼ Î.

One can define a two-particle real-valued correlation
function

GnnðqÞ≡ GðqÞ ¼ hnje−iqX̂jeiqX̂k jni: ð12Þ

If k ¼ j, then GðqÞ ¼ 1. For k ≠ j, GðqÞ does not depend
on values of k, j as can be seen using the symmetry
properties of the nucleus wave function. Combining
Eqs. (6), (11) and (12) one gets
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jAj2 ¼ jA0j2ðAþ GðqÞAðA − 1ÞÞ
¼ jA0j2ðA2GðqÞ þ Að1 −GðqÞÞÞ; ð13Þ

where A gives the number of nucleons. The terms of jAj2
in Eq. (13), quadratically and linearly depending on A,
are shaped by factors G and 1 −G, respectively. These
terms provide a smooth transition between coherent and
incoherent regimes. One can observe that if the nucleus’s
multiparticle wave function is constructed as a product of
single-particle wave functions, then GðqÞ can be repre-
sented as jFðqÞj2, where FðqÞ is the single-nucleon form
factor of the nucleus.
The derivation of Eq. (13) does not indicate in a

transparent way what the source of the quadratic and
linearly dependent terms is. We conclude this section by
showing that coherent and incoherent terms are due to
processes in which the nucleus remains in the same
quantum state or is changed, respectively. For this purpose,
we rewrite Eq. (11) as

jAj2 ¼ jA0j2
X
k;j

hnje−iqX̂j jnihnjeiqX̂k jni

þ jA0j2
X
k;j

X
m≠n

hnje−iqX̂j jmihmjeiqX̂k jni: ð14Þ

The first line gives immediately

jA0j2A2jFðqÞj2; ð15Þ

which could be identified as a coherent term in Eq. (13).
The second line can be presented as

jA0j2
�
Að1 − jFðqÞj2Þ þ

X
k≠j

covðe−iqX̂j ; eiqX̂kÞ
�
; ð16Þ

where the covariance of quantum operators reads

covðe−iqX̂j ; eiqX̂kÞ ¼ hnje−iqX̂jeiqX̂k jni
− hnje−iqX̂j jnihnjeiqX̂k jni: ð17Þ

The covariance terms are identically zero for a multiparticle
wave function constructed as a product of single-particle
wave functions and the second line of Eq. (14) reads

jA0j2Að1 − jFðqÞj2Þ: ð18Þ

Therefore, one can conclude that an elastic process [first
line in Eq. (14)] yields the coherent term in Eq. (15), while
inelastic processes all together [second line in Eq. (14)]
yield the incoherent term in Eq. (18).
One can find a certain analogy with the theory of

neutrino oscillations in which the integration over an
unobserved time of neutrino emission leads to an incoherent

L-independent term in the oscillation probability formula
(see, e.g., in [70,71]).
Attribution of elastic and inelastic processes as contrib-

uting to the coherent and incoherent interactions was also
done in [20,72–74] where the authors performed numerical
calculations of the corresponding cross sections within
appropriate nuclear models.

B. Kinematics of elastic and inelastic
neutrino-nucleus scattering

In general, one should consider the treatment of neutrino-
nucleus interactions using wave packets. The corresponding
formalism was developed (see, e.g., Ref. [70,75]) and some
potentially interesting effects for elastic neutrino-nucleus
scattering could be envisaged and examined. We simplify
our treatment by considering the initial and final states as
having definite momenta.
Let us denote by k ¼ ðEν; kÞ and k0 ¼ ðE0

ν; k0Þ the four-
momenta of incoming and outgoing neutrino, and by Pn
and P0

m the four-momenta of initial and final state nuclei,
respectively.
The total energy P0

n of a nucleus state jPni reads as
EP þ εn, where εn is an internal energy of the nucleus state.
In the laboratory frame, energy E0

ν of the outgoing neutrino
depends on angle θ between k and k0

E0
ν ¼

mAðEν − ΔεmnÞ − EνΔεmn þ Δε2mn=2
mA þ Eνð1 − cos θÞ − Δεmn

; ð19Þ

where

Δεmn ¼ εm − εn ð20Þ

is the difference of energies of the jmi and jni states.
Absolute values of the four-momentum transfer vector,
q ¼ ðq0; qÞ, read

q0 ¼ Eν − E0
ν ¼ Δεmn þ TA;

jqj ¼ ðE2
ν þ E02

ν − 2EνE0
ν cos θÞ1=2 ≃ ð2mATAÞ1=2; ð21Þ

where TA is the kinetic energy of the scattered nucleus,
calculated below.
In the neutrino-nucleus center-of-mass frame, q2 reads

q2 ¼ −4E⋆
ν;nE⋆

ν;msin2
θ⋆
2
; ð22Þ

where

E⋆
ν;n ¼

sA;n −m2
A;n

2
ffiffiffiffiffi
sA

p ð23Þ

is the energy of neutrino scattering off a nucleon state jni,
sA;n ¼ ðkþ PnÞ2 and mA;n ¼ mA þ εn.
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Minimum and maximum values of q2 correspond to
sin2 θ⋆

2
¼ 1 and 0, respectively,

q2min ¼ −4E⋆
ν;nE⋆

ν;m ¼ −4E2
νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 2Eν
mA;n

Þð1þ 2Eν
mA;m

Þ
q ;

q2max ¼ 0: ð24Þ

For heavy nuclei withΔεmn of the order of hundreds keV
and experimentally detectable signals produced by a release
of kinetic energy of the scattered nucleus, q2 can be
approximated as

q2 ≈ −q2 ≃ −2mATA: ð25Þ

Assuming the initial nucleus is at rest, the kinetic energy of
its recoil reads

TA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

A þ q2
q

−mA: ð26Þ

Using Eq. (19) and assuming mA ≫ Eν, the kinetic energy
TA of the scattered nucleus becomes

TA ≈
EνðEν − ΔεmnÞð1 − cos θÞ þ Δε2mn=2

mA
: ð27Þ

Here we will examine the kinetic energy for a few cases of
interest. (i) Forward scattering of the neutrino corresponds
to cos θ ¼ 1 and yields the minimal kinetic energy of the
nucleus

Tmin
A ¼ lim

cos θ→1
TA ≈

Δε2mn=2
mA

; ð28Þ

which is zero for m ¼ n because no energy, nor three-
momentum, is transferred in this case. For m ≠ n, the
energy q0 ¼ Δεmn is transferred to the nucleus as well as
the three-momentum q, equal in magnitude to q0 for
forward scattering, thus yielding TA ¼ q2=2mA.
(ii) Backward scattering corresponds to cos θ ¼ −1 and

yields the maximal kinetic energy of the nucleus

Tmax
A ¼ lim

cos θ→−1
TA ≈

ð2Eν − ΔεmnÞ2
2mA

; ð29Þ

which can be understood as follows. For m ¼ n, no energy
is transferred to the nuclear structure, while the transferred
three-momentum is equal to double the initial neutrino
energy (backward scattering). Thus, TA ¼ ð2EνÞ2=2mA.
Form ≠ n, the energy Δεmn transferred to the nucleus must
be subtracted from the total transfered three-momentum
2Eν, thus leading to Eq. (29).
(iii) In general, the kinetic energy of the scattered

nucleus is smaller if the nucleus changes its quantum state

(m ≠ n) with respect to the case when m ¼ n. Effectively,
this can be described by a decrease of neutrino energy by
Δεmn, which could be significant when Eν and Δεmn are
comparable.
For heavy nuclei, like 133Cs or 127I, used by the

COHERENT experiment [63], the first excitation energies
are of the order of ≃100 keV, which are small corrections
compared to the tens-of-MeV neutrino energies produced
by the Spallation Neutron Source. Therefore, the kinetic
energy of the recoil nucleus is of the same order of
magnitude for both elastic and inelastic scatterings.
In Fig. 2, we show the expected kinetic energy of the

recoil nucleus 133Cs as a function of its kinetic energy,
illustrating the impact of Δεmn and cos θ. A strong
dependence on neutrino scattering angle θ is evident from
the upper panel of Fig. 2. The effect of nonzero values of
Δεmn, displayed in the bottom panel of Fig. 2, is also
present, but it is significantly smaller than the angular
dependence. The reason for the weaker dependence due to
nonzero values of Δεmn is in the partial compensation due
to the Δε2mn=2 term in the numerator of Eq. (27) at
Eν ≃ Δεmn, and irrelevance of Δεmn when Eν ≫ Δεmn.

FIG. 2. Expected kinetic energy of nucleus 133Cs scattered in an
elastic interaction with a neutrino as a function of its energy. The
upper plot corresponds to Δεmn ¼ 0 and four different values of
cos θ, where θ is the neutrino scattering angle. The lower plot
illustrates the impact of nonzero Δεmn for a fixed value
cos θ ¼ −1.
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C. Kinematic paradox

As we show in what follows, the coherent enhancement
of the interaction probability corresponds to neutrino-
nucleus scattering in which the nucleus remains in the
same quantum state. This intuitively evident statement
might seem to result in the following kinematic paradox.
Both the nucleon and the nucleus acquire the same three-
momentum q. Assuming both of them are initially at rest,
one arrives at the kinetic energy TN ¼ q2=2mN of the
nucleon right after an interaction, which is a factor mA=mN

larger than the kinetic energy TA ¼ q2=2mA of the nucleus.
Since the nucleus remains in the same quantum state with
the same internal energy, TN and TA must be equal to each
other, and to the difference Eν − E0

ν.
This paradox appears because some of the assumptions

are incorrect. In particular, while the assumption that the
nucleon is at rest seems to be quite reasonable given that the
average nucleon momentum, p, is much smaller than its
mass, mN , this assumption leads to the paradox.
Let us require that TN and TA are equal to each other.

This requirement cannot be satisfied for any nucleon
momentum p. One can find a compatible p using energy
conservation

ðpþ qÞ2
2mN

−
p2

2mN
¼ q2

2mA
: ð30Þ

Searching for a solution where p is proportional to q,
p ¼ αq, one finds the nucleon momentum to be

p ¼ −
q
2

�
1 −

mN

mA

�
: ð31Þ

Therefore, energy-momentum conservation and the
requirement that the nucleus does not change its state after
an interaction provides a qualitative picture of the coherent
neutrino-nucleus scattering process, displayed symboli-
cally in Fig. 3. Here we discuss a few features of this
interesting observation. (i) Not every nucleon in the nucleus
can interact with a neutrino in such a way that after the
interaction the nucleus remains in the same state. Only
those nucleons which happen to have a momentum
compatible with Eq. (31) are appropriate targets.
(ii) The wave function of the nucleons provides us a

distribution of the nucleon’s momenta. Large nucleon
momenta are, in general, less probable than smaller
momenta. This explains qualitatively why at large q the
enhancement factor in Eq. (1) vanishes, contrary to the case
of small q for which the chance to find a nucleon with an
appropriate momentum is relatively large. Mathematically,
this suppression is given by jFðqÞj2.
This consideration could be extended to the case of

incoherent neutrino-nucleus scattering, when the nucleus
changes its intrinsic quantum state jni → jmi and n ≠ m.
Equation (30) must be generalized to account for nonzero
differences of energy levels Δεmn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
p þ 2pqþ q2

q
− Ep −

q2

2mA
¼ Δε; ð32Þ

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ p2
p

. Equation (32) does not use a
nonrelativistic approximation because for small values of q,
its solution p can be comparable to the nucleon mass.
Splitting p into a sum of components: longitudinal pL

and transverse pT to q, one can find an exact solution of
Eq. (32)

pL ¼ −
jqj
2

0
@1 −

ffiffiffi
β

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

N;T

q2ð1 − βÞ

s 1
A; ð33Þ

where

β¼E2
mn

q2
; Emn¼

q2

2mA
þΔεmn; m2

N;T ¼m2
Nþp2

T: ð34Þ

In Fig. 4, we display the solution in Eq. (33) as a function of
jqj. For Δεmn ¼ 0, the solution in Fig. 4 reproduces that in
Eq. (31). In this case, β from Eq. (34) is vanishingly small

β ¼ q2

4m2
A
¼ TA

2mA
≪ 1 ð35Þ

and

pL ≃ −
jqLj
2

�
1 −

mN;T

mA

�
ð36Þ

coinciding with Eq. (31) for pT ¼ 0. One can observe that
the longitudinal momentum of the nucleon in coherent
neutrino-nucleus scattering is always aligned opposite to

FIG. 3. A qualitative picture of a coherent neutrino-nucleus
interaction. A neutrino interacts with a nucleon initially having a
particular momentum p ¼ αq aligned along q and given by
Eq. (31). Since the nucleus initially is at rest, all the nucleons
except the target one have a momentum −p shown by line dashed.
The final momentum pþ q ¼ ð1þ αÞq of the target nucleon is
also aligned along q. In the figure, an angle between the p and
pþ q vectors differs from π for visual clarity. After the inter-
action the increased energy of the target nucleon and acquired
three-momentum q are transferred to the entire nucleus, leaving
the internal quantum state of the latter unchanged. A Z-boson
having a wavelength comparable to the size of the nucleus
produces a coherent enhancement of scattering amplitudes.
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the transfered three-momentum q. For Δεmn ≠ 0, the
solution of Eq. (32) is drastically different for small q.
Here we analyze different regions of three-momentum
transfer: (i) At q ¼ 0, Eq. (32) has no solution, which
simply means that at zero energy-momentum transfer an
excitation of the nucleus is impossible.
(ii) At smallest jqj approaching its minimum possible

value jqminj ¼ Δεmn þ Δε2mn
2mA

, the solution of Eq. (33)
diverges, pL → ∞, whence a nonrelativistic approximation
in Eq. (32) is not appropriate at small q. The chance to find
a nucleon in the nucleus with such a momentum is
vanishingly small. Therefore, for small jqj the incoherent
scattering is significantly suppressed, in opposition to the
coherent interaction.
(iii) With increasing jqj there is a good chance to find a

transition jni → jmi with Δεmn yielding p ≈ 0 for which
the suppression is minimal. Again, this dependence is
exactly opposite to the coherent scattering.
(iv) These kinematic considerations give a qualitative

understanding, yet do not provide a complete picture
of the dependence of the neutrino-nucleus scattering upon
q. In jni → jmi (n ≠ m) transitions, the matrix element
hmjeiqX̂jni, where X̂ is the position operator, determines the
actual functional dependence. A quantitative mathematical
framework is developed in Appendix B 1.
As a useful and simple illustration of transitions for

which the internal state is changed or unchanged, in
Appendix D we consider a mechanical analogy of a system
of two balls with equal masses m connected by a massless
spring having nonzero rigidity.

D. Scattering amplitude

Our calculation follows a microscopic description of
neutrino-nucleus scattering as a result of the neutrino-
nucleon interaction.

We consider a Fock state jPni of a nucleus with four-
momentum Pn being in the n-th quantum state as a
superposition of free nucleons states weighted with their
bound state wave function. The latter is explicitly factorized
into a product of the wave functions describing the internal
structure of the nucleus and motion of their center-of-mass.
The internal wave function depends on A − 1 three-
momenta because one three-momentum variable is used
to describe the motion of the nucleus.
It is convenient to refer to the Fock state jni, describing

the nucleus in the n-th quantum state at rest. At zero
nucleus momentum, both jPni and jni states describe the
same quantum state but still differ by their normalizations
given in Eqs. (A22) and (A23). The details of this
consideration are summarized in Appendix A.
A priori, one does not know the initial, jni, and final,

jmi, internal states of the nucleus. Therefore, all possible
transitions must be considered. The matrix element iMmn,
corresponding to the process in Eq. (3) keeping only the
leading order terms of Fermi constant GF, reads

iMmn¼ i
GFffiffiffi
2

p mA

mN
C1=2
1;mn

XA
k¼1

X
sr

fkmnλ
mnðs;rÞðl;hksrÞ; ð37Þ

where mN and mA are masses of the nucleon and nucleus,
respectively, and Cmn;1 is a function of the order of unity
defined in Eq. (B19). Details of the derivation can be found
in Appendix B 1.
Functions fkmnðqÞ≡ hmjeiqX̂k jni, where X̂k stands for the

position operator of the kth nucleon, are transition form
factors for m ≠ n and n-state form factors for m ¼ n,
defined in Eq. (B14).
ðl; hksrÞ is the scalar product of the lepton (l) and kth

nucleon’s (hksr) neutral weak currents. For their definition,
refer to Eqs. (B4) and (B25), respectively.
λmnðs; rÞ is a spin transition amplitude between the jni

and jmi states of the nucleus. It depends on initial, r, and
final, s, doubled spin projection on the given axis of the
scattered nucleon. For a definition, refer to Eqs. (B11),
(B12), and (B17). The amplitude in Eq. (37) is a sum of
neutrino-nucleon amplitudes, each proportional to the
scalar product of the lepton and nucleon currents, weighted
by two factors, each not exceeding unity.
Given the definition of fkmn in Eq. (B14) and the

symmetry properties of the nucleus wave function, one
can conclude that fkmn does not depend on the number k, but
only on the type of nucleon k points to.
Therefore, all amplitudes in Eq. (37) have the same

phase and thus are ”coherent” in the literal sense of this
terminology.
One can see that fkmnðqÞ ¼ hmjeiqX̂k jni is a generaliza-

tion of the eiqxk quantum-mechanical factor used by
Freedman in [1]. Section II A can be referred for a
discussion of an important difference between these two
factors.

FIG. 4. Longitudinal component pL of the nucleon momentum
corresponding to the energy-momentum conservation in neu-
trino-nucleus scattering.
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fkmn is most important in understanding the mechanisms
of the quadratic and linear dependence of the observable
cross section on the number of nucleons.
Let us examine the form factor fkmn for elastic and

inelastic scatterings.
(i) In the case of elastic scattering,

lim
q→0

hnjeiqX̂k jni → 1; ð38Þ

and one expects a quadratic dependence of the cross
section on the number of nucleons. For q → ∞, the
matrix element vanishes

lim
q→∞

hnjeiqX̂k jni → 0 ð39Þ

and the elastic cross section must also vanish.
Therefore, the elastic scattering has the properties
of a “coherent” process in the terminology of
Freedman.

(ii) In the case of inelastic scattering,

lim
q→0

hmjeiqX̂k jni → 0; ð40Þ

according to the normalization hmjni ¼ 0 for n ≠ m
[see Eq. (A23)]. For a nonzero q, the matrix element
hmjeiqX̂k jni ≠ 0 in general and, as we show in
Sec. II E, the cross section is a linear function of
the number of nucleons once all possible initial and
final states are accounted for. Since this result could
be obtained by summing up the absolute values of
the amplitudes squared one can refer to this case as
incoherent scattering.

E. Cross section

The corresponding differential cross section reads

dσmn

dTA
¼ jiMmnj2

25πE2
νmA

C2;mn; ð41Þ

where C2;mn is a function of the order of unity given in
Eq. (B23). As we show in App. C [see Eq. (C33)] the
matrix-element squared, jiMmnj2, is independent of the
azimuthal angle φ, therefore we integrated over this
variable in Eq. (41).
An observable cross section can be obtained by averag-

ing over all possible initial states jni and summing up over
all possible final states jmi

dσ
dTA

¼
X
n;m

ωn
dσmn

dTA
; ð42Þ

where ωn is a statistical weight to find an initial nucleus
in a quantum state jni at given ambient temperature.

In what follows, we do not need an explicit form of ωn
normalized as

X
n

ωn ¼ 1: ð43Þ

The matrix-element squared, jiMmnj2, has inside it a
summation

P
k;j over two indexes enumerating the scat-

tered nucleons.
In Appendix B 2, it is shown that terms in Eq. (42),

corresponding to elastic neutrino-nucleus scattering
(
P

n¼m), keep both indexes, k and j, giving rise to a
quadratic dependence of the cross section as a function of
the number of nucleons. In contrast, terms in Eq. (42),
corresponding to inelastic neutrino-nucleus scattering
(
P

n≠m), are to a good accuracy proportional to δkj, which
automatically yields a linear dependence on the cross
section as a function of the number of nucleons.
Therefore, the observable cross section can be written as

dσ
dTA

¼ 4G2
FmA

π

�
gi
X
f¼n;p

XAf

k¼1

X
s;r

jλfsrj2jðl; hfsrÞj2ð1 − jFfj2Þ

þ gc

����X
f¼n;p

XAf

k¼1

X
r

ðl; hfrrÞFf

����2
�
; ð44Þ

where jλp=nsr j2 and gi=c are determined factorizing, respec-
tively jλmn

sr j2 given by Eq. (B18) and gmn defined by
Eq. (B27) out of the double sum

P
nm in Eq. (42). gi=c

are kinematic functions of the order of unity. jFp=nj2 are
proton and neutron form factors of the nucleus defined
by Eq. (B14).
The first and second lines of Eq. (44) correspond to

inelastic and elastic neutrino-nucleus scattering, respec-
tively. Their dependencies on the number of nucleons are
linear and quadratic, respectively. Using the terminology of
Freedman, one would refer to these terms as incoherent and
coherent, correspondingly.
This is the most general result of this work if terms with

covariances defined in Eqs. (B31) and (B35) are neglected.
The summation of amplitudes due to the scattering off of

various targets is evident in the second line of Eq. (44).
Each type of nucleon is weighted according to the
appropriate averaged form factor Fp=nðqÞ. Note, that the
nucleus does not change its spin eigenstate in the coherent
term. This is encoded in the summation

P
rðl; hp=nrr Þ.

The incoherent term depends on jλp=nsr j2. The latter is a
probability for a nucleon to change spin index r to s in
transitions jni → jmi, averaged over n and summed up
over m.
While one needs a model for the nucleus wave functions

to calculate jλp=nsr j2, we approximate these coefficients by
unity jλp=nsr j2 → 1, which implies that for any r, any value of
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s is possible with the same probability. Therefore, we can
complete our calculations of the cross section.
The scalar products ðl; hp=nÞ are calculated inAppendixC

using helicity and σ3 bases. The latter corresponds to the
basis with spin projection on a fixed axis chosen to be along
the incoming neutrino momentum. While the results do not
depend on the basis chosen, as demonstrated in Eq. (C39), it
is more straightforward to use the helicity basis with
Eq. (C12) and σ3 basis with Eq. (C33) to calculate the
incoherent and coherent cross sections, respectively.
As follows from Eq. (44), the observable neutrino-

nucleus cross section can be presented as a sum of
incoherent and coherent cross sections

dσ
dTA

¼ dσincoh
dTA

þ dσcoh
dTA

: ð45Þ

The incoherent cross section reads

dσincoh
dTA

¼ 2G2
FmA

π
gi
X
f¼n;p

ð1 − jFfj2Þ

×

�
Af

�
g2L;f þ g2R;fð1 − yÞ2 − 2gL;fgR;f

ym2
N

s −m2
N

�

þ ΔAf

�
½gL;f − gR;fð1 − yÞ�

·

�
gL;f þ gR;f

�
1 − y

sþm2
N

s −m2
N

����
; ð46Þ

where gp=nL and gp=nR are left- and right-chirality couplings
of the nucleons expressed via corresponding vector and
axial couplings in Eq. (B9). The Bjorken y is defined in
Eq. (C13). The total energy squared s ¼ ðpþ kÞ2 of the
neutrino and target nucleon is calculated assuming an
effective momentum of the nucleon given by Eq. (33).
Let us note that y and s are determined within neutrino-
nucleon kinematics.
In Eq. (46), Ap¼Z, An ¼N andΔAp ≡ ΔZ ¼ Zþ − Z−,

ΔAn ≡ ΔN ¼ Nþ − N−, where Z�, N� stand for the
numbers of protons and neutrons with spin projection on
the incident neutrino momentum axis equal to �1=2. A
correction function gp=ni of the order of unity is discussed
earlier and is defined in Eq. (B27).
If the target nuclei are unpolarized, then terms propor-

tional to ΔAf in Eq. (46) vanish after averaging. Therefore,
for an unpolarized target the incoherent cross section reads

dσincoh
dTA

¼ 2G2
FmA

π
gi
X
f¼n;p

ð1− jFfj2Þ

×Af

�
g2L;fþg2R;fð1−yÞ2−2gL;fgR;f

ym2
N

s−m2
N

�
:

ð47Þ

The coherent cross section reads

dσcoh
dTA

¼ G2
FmA

π
gc

�
1 −

TA

Tmax
A

�
jGV þ GAj2; ð48Þ

where

GV ¼
X
f

gfVFf

�
Af

�
1 −

yτ
2

�
þ ΔAf

y
2

�
;

GA ¼
X
f

gfAFf

�
ΔAf

�
1 −

y
2

�
þ Af

yτ
2

�
; ð49Þ

where

τ ¼
ffiffiffi
s

p
−mNffiffiffi

s
p þmN

: ð50Þ

It is straightforward to perform the spin averaging in
Eq. (48), removing the terms linear in ΔAf. The final
formula of the spin-averaged cross section reads

dσcoh
dTA

¼G2
FmA

π
gc

�
1−

TA

Tmax
A

�X
f;f0

FfF�
f0

×
�
gfVg

f0
V

�
AfAf0

�
1−

yτ
2

�
2

þΔAfΔAf0

�
y
2

�
2
�

þgfAg
f0
A

�
ΔAfΔAf0

�
1−

y
2

�
2

þAfAf0

�
yτ
2

�
2
�

þ2gfVg
f0
A

�
AfAf0

�
1−

yτ
2

�
yτ
2
þΔAfΔAf0

y
2

�
1−

y
2

��
:

ð51Þ

Finally, Eq. (51) could be simplified if the following
approximations are adopted. (i) Terms proportional to y ≈
3%Eν=ð30 MeVÞ are omitted. (ii) Terms proportional to
ΔAfΔAf0 are neglected. This can be done either for a spin-
less nucleus, or approximately for heavy nuclei with
ΔA ≪ A. (iii) Terms proportional to gpV are abandoned
because gpV ≪ 1. (iv) The kinematic correction func-
tion gc → 1.
Therefore,

dσcoh
dTA

≈
G2

FmA

π

�
1 −

TA

Tmax
A

�
jFnj2ðgnVÞ2N2; ð52Þ

which is a well known result [1–5,7–10,20,32,42].
Corrections to this formula are discussed in Sec. III B.

III. DISCUSSION

In what follows, we discuss in detail the calculated cross
section. It is convenient to refer to the cross section
integrated over the kinetic energy of the recoil nucleus
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σðEνÞ ¼
Z

Tmax
A

Tmin
A

dσ
dTA

dTA: ð53Þ

This integral depends on the energy threshold Tmin
A , unique

for each detector. As an illustration we consider three
experimental setups.
We refer to the state-of-the-art energy thresholds of

considered experimental setups, briefly described in what
follows.

(i) A germanium detector exposed to ν̄e flux from a
nuclear reactor. Among all natural isotopes we select
only one stable nucleus, 74Ge, for our illustration.
The expected energy threshold for electrons of
germanium bolometers is 200 eV [76], which,
accounting for the quenching in germanium detec-
tors [77], roughly corresponds to 1 keV of the 74Ge
recoil kinetic energy. We refer to the νGEN experi-
ment at the Kalinin Nuclear Power Plant [50] as an
example. For illustration, we calculate the differential
cross sections for two ν̄e energies, 5 and 7 MeV, and
total cross section for Eν ∈ ð1; 20Þ MeV. As an
estimate for an excitation energy of the 74Ge nucleus
we take Δε ¼ 900 keV.

(ii) A CsI scintillator exposed to the neutrinos from the
Spallation Neutron Source [63]. The differential and
total cross sections are calculated for Eν ¼ 30 and
50 MeV and for Eν ∈ ð1; 150Þ MeV, respectively.
We assumed Δε ¼ 100 keV for the 133Cs nucleus.
The energy threshold was set to 5 keV of the 133Cs
recoil kinetic energy.

(iii) A liquid argon detector with an unprecedented
low-energy threshold of 0.6 keV for the 40Ar nucleus
achieved by the DarkSide Collaboration [78].
The differential and total cross sections are calcu-
lated for Eν ¼ 15 MeV and for Eν ∈ ð1; 50Þ MeV,
respectively.

To make a prediction for an experiment we use (i) two
form factors Fp=nðqÞ for protons and neutrons, respectively,
and (ii) data regarding the energy levels of the nucleus
under consideration.
We considered two models of the form factors: sym-

metrized Fermi-distribution [79] and Helm form factor
[80]. Both models of the form factors give very similar
results numerically if the parameters of the models are
selected to reproduce the same proton and neutron RMS
radii. In what follows, we present the results obtained
assuming the same RMS radii for protons and neutrons, and
using the Helm form factors for definiteness.
In Fig. 5, predictions of these models as functions of jqj

are depicted. At TA ≃ ð12–15Þ keV, where the maximum
of the signal observed by the COHERENT experiment
occurred, jqj ≃ ð50–60Þ MeV and jFðqÞj2 ≃ ð0.6–0.5Þ,
indicating that pure coherent scattering has a suppression
and a contribution from the incoherent transitions should be
expected.

A. Coherent and incoherent

The most general feature of Eq. (45) consists of smooth
transitions between coherent and incoherent regimes. Both
terms of the cross section are governed by the same Fp=nðqÞ
form factors defined in Eq. (B28).
In the limit q → 0, Fp=nðqÞ → 1, and the contribution of

the incoherent cross section vanishes, while the coherent
term totally dominates.
In the opposite limit of large q, when Fp=nðqÞ → 0, the

coherent cross section vanishes and the incoherent term
dominates. In general, both coherent and incoherent scat-
terings contribute.
In Fig. 6, the differential coherent and incoherent cross

sections are displayed for three experimental setups dis-
cussed above.

(i) At TA → 0, the coherent cross section totally domi-
nates since the incoherent contribution vanishes. For
a given nucleus, the coherent differential cross
section in this limit does not depend on neutrino
energy up to small corrections, in agreement
with Eq. (48).

(ii) At TA → Tmax
A , the coherent cross section vanishes

because of the factor 1 − TA=Tmax
A , while the in-

coherent cross section rises. One might observe that
the maximum kinetic energy of the nucleus expe-
rienced in an incoherent scattering is systematically
smaller than that for the coherent interaction. This is
because some of the neutrino energy is used for the
excitation of the nucleus, as given by Eq. (29).

(iii) For small neutrino energies, the coherent cross
section dominates over the incoherent contribution
for any TA. For larger Eν, there is a value of TA above
which the incoherent cross section dominates
over the coherent, as can be seen in the middle
panel of Fig. 6 for Eν ¼ 50 MeV. In particular, for

FIG. 5. The Helm form factor FHelm [80] as a function of the
absolute value of three-momentum transfer jqj (bottom horizontal
axis). The upper horizontal axis corresponds to the kinetic energy
of 133Cs nucleus.
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Eν ¼ 50 MeV with a 133Cs nucleus this occurs
at TA ≳ 33 keV.

In Fig. 7, the corresponding integral cross sections are
displayed.

(i) At low Eν, the coherent integral cross section is
larger than the incoherent by orders of magnitude
because the factors 1 − jFp=nðqÞj2 suppress the latter
at small q. With increasing neutrino energy their
interrelation changes to the exact opposite, the

incoherent cross section dominating above a certain
Eν. As an example, for the 133Cs nucleus this occurs
at Eν ≳ 140ð120Þ MeV for Tmin

A ¼ 0ð5Þ keV.
(ii) The experimental detection threshold reduces the

integrated coherent cross section and, to a lesser
extent the incoherent, because the threshold removes

FIG. 6. Differential cross sections dσ
dTA

for coherent (solid lines)
and incoherent (dashed lines) neutrino-nucleus scattering for 74Ge
(top), 133Cs (middle) and 40Ar (bottom) nuclei and different
values of neutrino energies. Vertical lines correspond to exper-
imental energy thresholds.

FIG. 7. Integral cross sections σ for coherent (solid lines) and
incoherent (dashed lines) neutrino-nucleus scattering for 74Ge
(top), 133Cs (middle), and 40Ar (bottom) nuclei and different
values of neutrino energies. The integrals are calculated for
idealistic threshold-less (Tmin

A ¼ 0, blue lines) experimental set-
ups and accounting for state-of-the-art thresholds Tmin

A (red lines)
achieved by three considered experimental setups.
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the part of the differential cross section which is the
largest for the former and vanishing for the latter, as
can be seen in Fig. 6. To quantify this statement the
ratio of integrals given by Eq. (53), σincoh=σcoh, is
displayed in Fig. 8 for the 133Cs nucleus. At
Eν ≃ 30ð50Þ MeV, this ratio is about 5(10)% for
an idealistic thresholdless experiment, and reaches
about 10 (20)% for Tmin

A ¼ 5 keV. The increasing
importance of the incoherent interaction is evident
for increasing neutrino energy.

B. Revising the coherent cross section

It is instructive to compare the coherent cross section in
Eq. (48) and (51) to that used in the literature [65]

dσ0coh
dTA

¼ G2
FmA

2π

�
ðGV þ GAÞ2 þ ðGV −GAÞ2ð1 − yÞ2

− ðG2
V −G2

AÞ
mATA

E2
ν

�

≈
G2

FmA

π

�
G2

V

�
1 −

TA

Tmax
A

�
þ G2

A

�
1þ TA

Tmax
A

��

≈
G2

FmA

π

�
1 −

TA

Tmax
A

�
jFnj2ðgnVÞ2N2; ð54Þ

whereGV¼FpZg
p
VþFnNgnV andGA¼FpΔZg

p
AþFnΔNgnA.

The second approximate equality of Eq. (54) appeared as
a result of a quite accurate approximation y ¼ TA=Eν → 0.
The last line is a result of further approximations:
(i) gpV → 0 and (ii) spin-less nucleus.
Let us briefly review Eq. (54). After a number of

approximations, the third line of Eq. (54) is identical to
an approximation of the coherent cross section in Eq. (52),
calculated in this work. However, conceptually, a derivation
of Eq. (54) is at odds with the coherency. Indeed, as one can

observe, the first line of Eq. (54) corresponds to a
calculation of incoherent cross section [compare to
Eq. (47)], where the nucleus changes its spin eigenstate.
As we advocate here, the coherent scattering corresponds to
interactions of neutrino with the nucleon in which the latter
remains in the same quantum state.
How then are Eqs. (54) and (46) consistent with a good

accuracy? The reason is in the nonrelativistic approxima-
tion. Two terms of the matrix element containing ðl; hηþ−Þ
and ðl; hη−þÞ with a spin-flip should not contribute to the
coherent cross section [on the opposite, they do exist in
Eq. (54)]. In the nonrelativistic approximation, ðl; hηþ−Þ
vanishes, while ðl; hη−þÞ is proportional to gA and vanishes
for a spin-less nucleus, as can be seen in Eq. (C35). The last
statement is accurate if the nucleons in the nucleus are
at rest.
To illustrate the effects of a moving target nucleon and

constant spin of the nucleus in elastic neutrino-nucleus
scattering, a ratio of differential coherent cross section
dσ=dTA in Eq. (48) to that in Eq. (54) is displayed in Fig. 9
for a 133Cs nucleus, assuming three fixed values of neutrino
energy. The cross sections coincide at TA ¼ 0 and show a
difference at some percent with increasing TA. The maxi-
mal difference occurring at the end of the nucleus kinetic
energy spectra, rises with neutrino energy from about 5% at
Eν ¼ 30 MeV to about 20% at Eν ¼ 100 MeV.
There are two groups of corrections to the cross section

of elastic neutrino-nucleus scattering.
(i) The most significant correction is due to gc nor-

malization factor defined in Eq. (B27). The latter is a
product of three functions, C1, C2 and C3, deter-
mined by Eqs. (B19), (B23) and (B26). C1 and C2

functions are very close to unity, while C3 rises
linearly with the kinetic energy of the recoil nucleus.

FIG. 8. Ratio σincoh=σcoh for neutrino scattering off of a 133Cs
nucleus as a function of Eν. The two curves correspond to a
Tmin
A ¼ 0ð5Þ keV detection threshold.

FIG. 9. Ratio R of differential coherent cross section dσ=dTA
calculated in this work in Eq. (48) to that used by the
COHERENT Collaboration and reproduced in Eq. (54). Both
cross sections are averaged over the nucleus spin, assuming
neutrino scattering off of a 133Cs nucleus. The ratio is shown as a
function of kinetic energy TA of the nucleus.
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At Eν ¼ 30, 50 and 100 MeV C3 reaches about 6%,
10%, and 20% respectively.

(ii) Corrections to the vector and axial form factors
defined in Eq. (49) are due to nonzero momentum of
the target nucleon. The correction to GV is small, of
the order 10−4 − 10−3, because ΔAf is multiplied by
y-Bjorken which is small for elastic scattering. The
correction to GA is of the order 10−2 − 10−1 because
a small factor yτ=2 is multiplied by a large factor Af

making their product Afyτ=2 at few percent
of ΔAfð1 − yτ

2
Þ.

C. Proposal to observe higher energy excitation
γs due to incoherent scattering

After an interaction the nucleus may remain in the same
quantum state, or the internal state of the nucleus could be
changed. We refer to these cases as elastic and inelastic
interactions. Experimentally, the scattered nucleus, being in
the same or an excited state, are practically indistinguish-
able if one measures only the kinetic energy of the nucleus.
Inelastic interactions must be accompanied by the

emission of gammas corresponding to the difference of
energy levels of the nucleus. The time scale of these
emissions is in the range of picoseconds to nanoseconds
for the 133Cs nucleus, taken as an example. The energies of
the γs are of the order of some hundred keV for the same
nucleus. These γs should produce a very detectable signal
in the scintillator correlated in timewith the beam pulses for
an accelerator based experiment. The rate of these γs is
determined by the ratio Ninc=Ncoh, where

Nincoh=coh ¼
Z

dEνΦðEνÞ
Z

dTmax
A

dTmin
A

dTA
dσinc=coh
dTA

εðTAÞ;

ð55Þ

in which εðTAÞ is the detection efficiency. Fig. 8 suggests
that the number of γ events due to incoherent interactions
should be detectable.
It is remarkable, that a similar proposal was made back to

1975 in [74].

IV. SUMMARY

A theoretical framework for neutrino-nucleus scattering
νA → νA, in which the nucleus conserves its integrity, is
developed. The main result of this work consists in the
demonstration that coherent and incoherent regimes appear
due to elastic and inelastic processes, when all possible
initial and final states are taken into account. This con-
clusion is in agreement with corresponding theories of
scattering of x rays and electrons of an atom, and of slow
neutrons off matter constituents.

The coherent and incoherent cross sections were
shown to be driven by jFp=nj2 and ð1 − jFp=nj2Þ factors,
thus providing a smooth transition between these regimes.
We also revised a formula for the coherent cross section.

The obtained formula has some percent level corrections
when compared to that known in the literature (see, e.g., in
[65]). They differ at most at the end of kinetic energy
spectrum of the target nucleus, reaching ≈5% at Eν ¼
30 MeV (≈20% at Eν ¼ 100 MeV). There are two main
sources for this difference. (i) Our consideration treats only
those matrix elements which correspond to the same initial
and final spin states of the nucleus in contrast to the
conventional derivation which considers also the spin-
flipped matrix elements. (ii) The target nucleon is not
assumed to be at rest which develops corrections to the
vector and axial form factors of the nucleus.
Three experimental setups considered in this work

illustrate our results. In particular, for 133Cs and neutrino
energies of 30–50 MeV the incoherent cross section is
about 10%–20% of the coherent contribution if experi-
mental detection threshold is accounted for. The incoherent
processes being a relatively small ”background” to the
coherent interactions provide an important clue if γs
released by excited nucleus are detected. Detection of both
signals due to nuclear recoil and excitations γs provides a
more sensitive instrument in studies of nuclear structure
and possible signs of new physics.
An interested reader could checkout and run a Jupyter

Notebook where equations from this manuscript are doc-
umented in terms of a python code [81].
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APPENDIX A: DECOMPOSITION OF
n-PARTICLE STATES IN x AND p BASES

In this section, we shortly summarize some mathematical
aspects of the representations of abstract quantum states for
both single fermion and n-fermions.

1. Single-particle states

We begin by reminding the reader about the single-
particle basis. A fermionic state with massm, definite three-
momentum p, energy Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
and spin projection

s is defined according to

jp; si ¼ ffiffiffiffiffiffiffiffi
2Ep

p
a†p;sj0i; ðA1Þ
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with Lorentz-invariant normalization

hk; sjp; ri ¼ ð2πÞ32Epδ
3ðp − kÞδrs: ðA2Þ

A fermionic state with definite x can be defined as

hxj ¼ h0jψ̂ðxÞ; ðA3Þ

where ψ̂ðxÞ is the free field operator in the Schroedinger
representation. The state in Eq. (A3) is a Dirac spinor.
These states are normalized as follows

hyjxi ¼ δ3ðx − yÞÎ4×4; ðA4Þ

where Î4×4 is the 4 × 4 unity matrix in the spinor space.
The single-particle unity operators read

Îp;1 ¼
Z

dp
ð2πÞ3

jp; sihp; sj
2Ep

;

Îx;1 ¼
Z

dxjxihxj: ðA5Þ

The scalar product of states given by Eqs. (A1) and (A3)

hxjp; si ¼ uðp; sÞeipx ðA6Þ

allows for the representation of jp; si and jxi states via
linear superpositions of each other

hp; sj ¼
Z

dxu†ðp; sÞe−ipxhxj;

hxj ¼
Z

dp
ð2πÞ3

uðp; sÞeipx
2Ep

hp; sj: ðA7Þ

The second line of Eq. (A7) allows us to see that hxj,
given by Eq. (A3), differs from a nonrelativistic spin
independent state

hxj ¼
Z

dp
ð2πÞ3

eixpffiffiffiffiffiffiffiffi
2Ep

p hpj; ðA8Þ

where hpj is defined similarly to Eq. (A1) but for a spin-less
particle.
A one-particle state jψi can be represented through jp; si

and jxi states

jψi≡ Îp;1jψi ¼
Z

dp
ð2πÞ3 jp; si

ψ̃ðp; sÞffiffiffiffiffiffiffiffi
2Ep

p ;

jψi≡ Îx;1jψi ¼
Z

dxjxiψðxÞ; ðA9Þ

where ψ̃ðp; sÞ ¼ hp; sjψi= ffiffiffiffiffiffiffiffi
2Ep

p
and ψðxÞ ¼ hxjψi.

Imposing hψjψi ¼ 1 the wave functions ψ̃ðp; sÞ and ψðxÞ
are normalized according toZ

dp
ð2πÞ3 jψ̃ðp; sÞj

2 ¼
Z

dxjψðxÞj2 ¼ 1: ðA10Þ

These wave functions are related to each other through the
Fourier transform

ψðxÞ ¼
Z

dp
ð2πÞ3

ψ̃ðp; sÞffiffiffiffiffiffiffiffi
2Ep

p uðp; sÞeipx;

ψ̃ðp; sÞ ¼ u†ðp; sÞffiffiffiffiffiffiffiffi
2Ep

p Z
dxψðxÞe−ipx: ðA11Þ

Note that ψ̃ðp; sÞ is a scalar, while ψðxÞ is a Dirac spinor.

2. n-particle states

The unity operators defined in Eq. (A5), generalized for
n-particle states, reads

Îp;n ¼
Z �Yn

i¼1

dpi
ð2πÞ32Epi

� jfpgihfpgj
n!

;

Îx;n ¼
Z �Yn

i¼1

dxi

� jfxgihfxgj
n!

: ðA12Þ

The symbols fpg and fxg are n-tuples, fpg ¼ ðp1…pnÞ
and fxg ¼ ðx1…xnÞ are used for compaction here and in
what follows.
The bra-vector hfxgj is given as

hfxgj ¼ h0jψm1
ðx1Þ…ψmn

ðxnÞ; ðA13Þ

with xi ¼ ðxi; miÞ, where mi enumerates the spinor’s rows
of the fields ψðxiÞ.
Similarly to Eq. (A9) the wave functions in both

momentum and coordinate spaces for the n-particle state
jψi can be obtained using jψi ¼ Îp;njψi ¼ Îx;njψi

jψi ¼
Z �Yn

i¼1

dp̃i

�
ψ̃ðfpgÞffiffiffiffiffi

n!
p jfpgi;

jψi ¼
Z �Yn

i¼1

dxi

�
ψðfxgÞffiffiffiffiffi

n!
p jfxgi; ðA14Þ

where

ψ̃ðfpgÞ ¼ hfpgjψiffiffiffiffiffi
n!

p Q
i

ffiffiffiffiffiffiffiffiffi
2Epi

p ;

ψðfxgÞ ¼ 1ffiffiffiffiffi
n!

p hfxgjψi ðA15Þ

and
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dp̃i ≡ dpi
ð2πÞ3 ffiffiffiffiffiffiffiffiffi

2Epi

p :

The wave functions ψ̃ðfpgÞ and ψðfxgÞ are Fourier trans-
forms of each other

ψðfxgÞ ¼
Z �Yn

i¼1

dp̃iumi
ðpi; siÞeipixi

�
ψ̃ðfpgÞ;

ψ̃ðfpgÞ ¼
Z �Yn

i¼1

dxi
u†miðpi; siÞffiffiffiffiffiffiffiffiffi

2Epi

p e−ipixi
�
ψðfxgÞ: ðA16Þ

Imposing hψjψi ¼ 1 the wave functions ψ̃ðfpgÞ and
ψðfxgÞ are normalized as

Z �Yn
i¼1

dpi
ð2πÞ3

�
jψ̃ðfpgÞj2 ¼

Z �Yn
i¼1

dxi

�
jψðfxgÞj2 ¼ 1:

ðA17Þ

Both ψ̃ðfpgÞ and ψðfxgÞ are anti-symmetric under an odd
number of particle interchanges.

3. The wave function of a nucleus

The Fock state jPni of a nucleus, with four-momentum
Pn being in the n-th quantum state, can be written as a
superposition of free nucleon states using their bound state
wave function in the momentum representation ψ̃0

n

jPni ¼
Z �YA

i¼1

dp̃i

�
ψ̃0
nðfpgÞffiffiffiffiffi

A!
p jfpgi: ðA18Þ

The wave function ψ̃0
nðfpgÞ describes both the internal

structure of the nucleus and its movement as a whole with
three-momentum p ¼ P

A
i¼1 pi and spin projection s. Since

the quantum state of A interacting nucleons cannot depend
on the motion of their center-of-mass, the wave function
ψ̃0
nðfpgÞ can be factorized into a product of the wave

function ψ̃nðfp⋆gÞ, describing the internal structure of the
nucleus in its center-of-mass (the corresponding momenta
are labeled by the upper index ⋆), and the wave function
ΦðpÞ, describing the motion of the nucleus with momen-
tum p and spin projection s, both encoded in the argument
p of Φ

ψ̃0
nðfpgÞ ¼ ψ̃nðfp⋆gÞΦnðpÞ: ðA19Þ

The factorization in Eq. (A19) makes sense for A > 1.
The three-momentum of the ith nucleon in the center-of-

mass frame is given by p⋆i . The ith nucleon’s momentum pi
in the laboratory system is given by

pi ¼ p⋆i þ p=A: ðA20Þ

The state in Eq. (A18) can now be rewritten as

jPni ¼
Z �YA

i¼1

dp̃⋆i
�
ψnðfp⋆gÞffiffiffiffiffi

A!
p ΦnðpÞjfpgi: ðA21Þ

We take the wave function ΦðpÞ of the form

ΦnðpÞ ¼ ð2πÞ3
ffiffiffiffiffiffiffiffi
2P0

n

q
δ3ðp − PÞ;

which corresponds to a nucleus with a definite momentum
P and energy P0

n ¼ Ep þ εn, including excitation energy εn.
Then, the state in Eq. (A21) is normalized similarly to
Eq. (A2)

hP0
mjPni ¼ ð2πÞ32P0

nδ
3ðP − P0Þδnm ðA22Þ

if the following normalization of the internal nucleus state
jni is adopted

hmjni ¼ δnm

¼
Z �YA

i¼1

dp⋆i
ð2πÞ3

�
ψ̃nðfp⋆gÞψ̃�

mðfp⋆gÞ

× ð2πÞ3δ3
�XA

i¼1

p⋆i
�
: ðA23Þ

The delta-function δ3ðPA
i¼1 p

⋆
i Þ reduces the number of

independent momenta in Eq. (A23) by one.
The states jni and jPni describe the same realm at P ¼ 0

yet still differ by normalization. We define the former as

jni¼
Z �YA

i¼1

dp̃⋆i
�
ψnðfp⋆gÞffiffiffiffiffi

A!
p

�
ð2πÞ3δ3

�XA
i¼1

p⋆i
��

1=2
jfp⋆gi

ðA24Þ

which agrees with the normalization in Eq. (A23).

APPENDIX B: DERIVATION OF THE
νA → νA CROSS SECTION

1. Scattering amplitude

An effective SM Lagrangian in the four-fermion
approximation

LðxÞ ¼ GFffiffiffi
2

p LμðxÞHμðxÞ ðB1Þ

should be accurate enough for the scattering of a low
energy neutrino off of a nucleus. In Eq. (B1),

LμðxÞ ¼ ∶ψ̄νðxÞγμð1 − γ5ÞψνðxÞ∶

and
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HμðxÞ ¼
X
f¼n;p

∶ψ̄fðxÞγμðgfV − gfAγ5ÞψfðxÞ∶ ðB2Þ

are weak currents of neutrino and nucleons, respectively,
written in the normal ordering represented by colons. The
quantum fields ψνðxÞ and ψn;pðxÞ correspond to the
neutrino and nucleons, respectively.
The S-matrix amplitude hP0

m; k0jSjPn; ki, to the first
order of GF, reads

hP0
m; k0jSjPn; ki ¼ ð2πÞ4δ4ðqþ Pn − P0

mÞiMmn;

iMmn ¼ i
GFffiffiffi
2

p lμH
μ
mn; ðB3Þ

where

lμðk; k0Þ ¼ ūðk0;−1Þγμð1 − γ5Þuðk;−1Þ ðB4Þ

and

Hμ
mnðPn; P0

mÞ ¼ hP0
mjHμð0ÞjPni: ðB5Þ

Using (A2), (B2) and the antisymmetric nature of the wave
function, the hadronic current in (B5) can be found

Hμ
mnðP;P0Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
P0
nP00

m

q
hμmn ðB6Þ

with

hμmn ¼
XA
k¼1

Z �YA
j¼1

dp⋆j
ð2πÞ3

�
ūðpk þ q; skÞOμ

kuðpk; rkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Epk2Epkþq

p
× ð2πÞ3δ3

�XA
l¼1

p⋆l
�
ψ̃�
mðfpðkÞ⋆ gÞψ̃nðfp⋆gÞ; ðB7Þ

where

Oμ
k ¼ γμðgkV − gkAγ5Þ
¼ γμðgkLð1 − γ5Þ þ gkRð1þ γ5ÞÞ ðB8Þ

and the couplings gkV;A are equal to gp=nV;A when the
index k points to a proton/neutron. Left- and right-chirality
couplings are expressed via vector gp=nV and axial gp=nA
couplings as

gp=nL ¼ 1

2
ðgp=nV þ gp=nA Þ;

gp=nR ¼ 1

2
ðgp=nV − gp=nA Þ: ðB9Þ

In the SM, these couplings read

gpV ¼ 1

2
− 2sin2θW; gpA ¼ 1

2
;

gpL ¼ 1

2
ð1 − 2sin2θWÞ; gpR ¼ −sin2θW;

gnV ¼ −
1

2
; gnA ¼ −

1

2
;

gnL ¼ −1; gnR ¼ 0: ðB10Þ

The arguments of ψ̃�
mðfpðkÞ⋆ gÞ and ψ̃nðfp⋆gÞ are n-tuples

defined as fp⋆g ¼ ðp⋆
1…p⋆

AÞ, where its ith element,

p⋆
i ¼ ðp⋆i ; riÞ and fpðkÞ⋆ g, is identical to fp⋆g except for

its kth element, which reads as ðp⋆k þ q; skÞ. The three
momentum pk, used in the argument of the Dirac spinor u,
is the kth nucleon momentum in the laboratory frame given
by (A20).
The hadronic current, corresponding to neutrino-nucleus

scattering, is a sum of currents ūðpk þ q; skÞOμ
kuðpk; rkÞ

corresponding to the scattering of a neutrino off of the kth
nucleon with momentum in the laboratory pk and spin
projection rk. The probability amplitude to find a nucleon
in the jPni state of the nucleus with these quantum numbers
is just the wave function ψ̃nðfp⋆gÞ in the momentum
representation, which depends on momenta in the nucleus
center-of-mass frame.
The outgoing nucleon has a three-momentum in the

laboratory of pk þ q, and, in general, an arbitrary spin
projection sk. The corresponding probability amplitude to
find a nucleon with exactly these quantum numbers is given

similarly by the wave function ψ̃�
mðfpðkÞ⋆ gÞ.

The denominator
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Epk2Epkþq

p
depends on the energies

of the initial and final nucleons in the laboratory frame, and
automatically accounts for the normalization of Dirac
spinors u†ðp; sÞuðp; sÞ ¼ 2Ep.
The equal momenta of the initial and final state spectator

nucleons are integrated out with the weight given by a
product of initial and final state wave functions.
To proceed further, let us make the following simplifi-

cations. The current ūðpk þ q; skÞOμ
kuðpk; rkÞ could be

factorized out from the integral at an effective momentum
pk which we approximate to be given by a solution of
Eq. (32). Also, we assume that the spin and momenta
structures of ψ̃n could be factorized into a product ψ̃n and χn

ψ̃nðfp⋆gÞ ¼ ψ̃nðfp⋆gÞχnðfrgÞ; ðB11Þ

which are functions of two n-tuples fp⋆g ¼ ðp⋆1…p⋆AÞ and
frg ¼ ðr1…rAÞ, respectively. The spin-functions can be
normalized as follows

χ†mðfrgÞχnðfrgÞ ¼ δnm: ðB12Þ

Thus, Eq. (B7) can be rewritten as
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hμmn ¼
XA
k¼1

ūðpþ q; skÞOμ
kuðp; rkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ep2Epþq
p χ�mðfrðkÞgÞχnðfrgÞ

×
Z �YA

j¼1

dpj
ð2πÞ3

�
ð2πÞ3δ3

�XA
l¼1

pl

�

× ψ̃�
mðfpðkÞ⋆ gÞψ̃nðfp⋆gÞ; ðB13Þ

where frðkÞg is an n-tuple identical to frg, except its kth
element, which is equal to sk.
A further insight could be gained by observing that one

can rewrite the multidimensional integral in (B13) as the
matrix element

Z �YA
j¼1

dp⋆j
ð2πÞ3

�
ð2πÞ3δ3

�XA
l¼1

p⋆l
�
ψ̃�
mðfpðkÞ⋆ gÞψ̃nðfp⋆gÞ

¼ hmjeiqX̂k jni≡ fkmnðqÞ; ðB14Þ

where X̂ is the three-coordinate operator of the kth nucleon.
Equation (B14) provides a clue in understanding the

appearance of coherent and incoherent regimes in neutrino-
nucleus elastic and inelastic scattering.
A derivation of Eq. (B14) is facilitated if the following

equality is observed

hpjeiqX̂ ¼
ffiffiffiffiffiffiffiffi
2Ep

p
ffiffiffiffiffiffiffiffiffiffiffiffi
2Epþq

p hpþ qj: ðB15Þ

Equation (B15) can be proven with help of Eq. (A8). Using
Eqs. (A24) and (B15), the matrix element hmjeiqX̂k jni can
be calculated.
Therefore, combining Eqs. (B3), (B5), (B7), and (B14),

one gets the matrix element of elastic neutrino-nucleus
scattering

iMmn¼ i
GFffiffiffi
2

p
�
P0
n

Ep

P00
m

Epþq

�
1=2

lμðk;k0Þ
XA
k¼1

hmjeiqX̂k jni

×χ�mðfrðkÞgÞχnðfrgÞūðpþq;skÞOμ
kuðp;rkÞ: ðB16Þ

We introduce the following notation for economy of space:

χ�mðfrðkÞgÞχnðfrgÞ≡ λmnðs; rÞ: ðB17Þ

In general, the scattered nucleus may have a final spin state
different with respect to the initial. We assume in what
follows that initial and final states of the nucleus are
eigenstates of the spin operator with quantum numbers
ðJ; J3Þ. One might observe that if m ¼ n, then the ampli-
tude λmnðs; rÞ ¼ δsr for appropriate normalization of the
spin wave function [see the normalization used in
Eq. (B12)]. We denote for m ≠ n the corresponding
amplitude as λmn

sr . Therefore, for any m, n

λmnðs; rÞ ¼ δmnδsr þ ð1 − δmnÞλmn
sr : ðB18Þ

The multiplier in Eq. (B16) can be rewritten, factoring out
the leading order term mA=mN and the factor Cmn;1 of the
order of unity defined as

C1=2
1;mn ¼

�
P0
n

Ep

P00
m

Epþq

�
1=2mN

mA
: ðB19Þ

Using Eqs. (B14), (B17) and (B19), one can represent
Eq. (B16) as in Eq. (37).

2. Cross sections

The cross section corresponding to the matrix element in
Eq. (B3) reads

d2σmn

dE0
νd cos θ

¼ −E0
νjiMmnj2

25πEνðmA þ εnÞ
δðEν − E0

ν − TA − ΔεmnÞ
mA þ TA þ εm

;

ðB20Þ

where all kinematic variables are given in the laboratory
frame in which the initial nucleus is assumed to be at rest,
E0
ν is given by Eq. (19) and Δεmn ¼ εm − εn. The kinetic

energy TA of the scattered nucleus is given by Eqs. (26) and
(27). Integration over E0

ν can be done with help of a Dirac
δ-function, providing energy conservation, thus yielding

dσmn

d cos θ
¼ −jiMmnj2

25πðmA þ εnÞ
E0
νðmA þ TAÞ

EνðmA þ TA þ εmÞ
×

1

mA þ Eνð1 − cos θÞ − Δεmn
; ðB21Þ

One can obtain dσmn=dTA using a very accurate approxi-
mation given in Eq. (27)

dσmn

dTA
¼ dσmn

d cos θ
d cos θ
dTA

¼ −
dσmn

d cos θ
mA

EνðEν − ΔεmnÞ

¼ jiMmnj2
25πE2

νmA
C2;mn; ðB22Þ

where

C2;mn ¼
E0
ν

Eν − Δεmn

ð1þ TA
mA
Þð1þ εn

mA
Þ−1

ð1þ TAþεm
mA

Þ

×

�
1þ Eνð1 − cos θÞ − Δεmn

mA

�
−1

ðB23Þ

is of the order of unity.
Combining Eqs. (37), (B14), and (B22), one gets an

observable differential cross section defined in Eq. (42)
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dσ
dTA

¼ G2
FmA

26πm2
NE

2
ν

×
XA
k;j¼1

X
n

ωnC1;mnC2;mn

�
fknnf

j�
nn

X
r

ðl;hkrrÞ
X
s

ðl;hjssÞ†

þ
X
m≠n

fkmnf
j�
mn

X
sr

λmn
sr ðl;hksrÞ

�X
s0r0

λmn
s0r0 ðl;hjs0r0 Þ

�†�

ðB24Þ

expressed through the scalar products ðl; hp=nsr Þ of 4-vectors
with components lμðk; k0Þ given by Eq. (B4) and

ðhp=nsr Þμ ¼ ūðpþ q; sÞOp=n
μ uðp; rÞ ðB25Þ

where p is a solution of Eq. (32). In Eq. (B25), a superscript
p or n appears when the index k in hksr from Eq. (B24)
points to a proton or to a neutron, respectively.
When an index k or j in Eq. (B24) points to a proton/

neutron, the form factors fkmn should be read as fp=nmn ,
correspondingly.
Each of the jðl; hp=nÞj2 terms given by Eq. (C12) and

(C33) yields the common factor 64ðs −m2
NÞ2, where s ¼

ðpþ kÞ2 is the total energy squared in the neutrino-nucleon
center-of-mass frame, andmN is the mass of the nucleon. In
the leading nonrelativistic approximation, this factor can be
approximated as 28m2

NE
2
ν. We denote a correction to this

formula by a factor C3;mn, accounting for the fact that the
nucleon in the initial state has a nonzero three-momentum

ðs −m2
NÞ2 ¼ 4m2

NE
2
νC3;mn: ðB26Þ

In what follows, we denote by gmn the product of correction
factors

gmn ¼ C1;mnC2;mnC3;mn ðB27Þ

which is of the order of unity.
Following our discussion of Eq. (37), we identify the

second and third lines of Eq. (B24) as contributing to the
coherent and incoherent cross sections. The factor gmn is, in
general, different for coherent and incoherent terms. We
take out these factors from the double summation at their
effective values denoted by gc and gi for coherent and
incoherent terms, respectively.
The summation over n in the second line of Eq. (B24)

leads to the form factors averaged over all initial states

X
n

ωnfknnf
j�
nn ¼

8>><
>>:

jFp=nðqÞj2; ðk; jÞ → pp or nn;

FpðqÞF�
nðqÞ; ðk; jÞ → pn;

FnðqÞF�
pðqÞ; ðk; jÞ → np:

ðB28Þ

Therefore, the second line of Eq. (B24) can be rewritten as

����XZ
k¼1

X
r

ðl; hprrÞFp þ
XN
k¼1

X
r

ðl; hnrrÞFn

����2: ðB29Þ

Let us work out the incoherent scattering encoded in the
third line of Eq. (B24). A summation over m, n cannot be
done without a model for λmn

sr . If λmn
sr would not depend on

m, n the corresponding summation could be performed as
follows.
Consider the case when k and j point to the same type of

the nucleon, e.g., to a proton.
If k ¼ j, then

X
n

ωn

X
m≠n

fkmnfk�mn ¼
X
n

ωn

�X
m

fkmnfk�mn − fknnfk�nn

�

¼
X
n

ωn

�
hnje−iqXk

X
m

jmihmjeiqXk jni
�

− jFpðqÞj2
¼ 1 − jFpðqÞj2; ðB30Þ

accounting for the equality
P

mjmihmj ¼ Î, using
Eq. (B28) and normalizations in Eq. (A23) and

P
nωn ¼ 1.

If k ≠ j, then following a consideration similar to
Eq. (B30) one may find thatX

n

ωn

X
m≠n

fkmnf
j�
mn ¼ hcovðe−iqX̂j ; eiqX̂kÞip ðB31Þ

where the right-hand-side of Eq. (B31) is a covariance of
quantum operators e−iqX̂j and eiqX̂k on jni, whose state
reads

covnnðe−iqX̂j ; eiqX̂kÞ
¼ hnje−iqX̂jeiqX̂k jni − hnjeiqX̂k jnihnje−iqX̂j jni: ðB32Þ

The subscript p in Eq. (B31) refers to a proton.
The averaging h…i in Eq. (B31) is given by

hcovðe−iqX̂j ; eiqX̂kÞip ¼
X
n

ωncovnnðe−iqX̂j ; eiqX̂kÞ: ðB33Þ

At both, q → 0 and q → ∞

lim
q→0

hcovðe−iqX̂j ; eiqX̂kÞip ¼ 0;

lim
q→∞

hcovðe−iqX̂j ; eiqX̂kÞip ¼ 0: ðB34Þ

In the case of weak correlations of nucleons in a nucleus,
the covariances, like in Eq. (B31) vanish. For example,
in models like the nuclear shell model, where a multi-
particle wave function is constructed in terms of a product
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of one-particle wave functions, the covariance in Eq. (B31)
is identically zero.
The smallness of the covariance in Eq. (B31) is the

reason why the inelastic cross section is, to good accuracy,
linearly dependent on the number of nucleons. In what
follows, the covariance terms are neglected.
The same considerations apply to the scattering on a

neutron. It is straightforward to show that in the case of
mixing neutron and proton amplitudes one gets (let k point
to a proton and j point to a neutron, and now automatically
k ≠ j)X

n

ωn

X
m≠n

fkmnf
j�
mn ¼ hcovðeiqX̂k ; e−iqX̂jÞipn ðB35Þ

which can also be neglected.
As mentioned above the exact summation should con-

sider the spin amplitude λmn
sr . We approximate the summa-

tion by replacing λmn
sr by its average value λp=nsr for protons

and neutrons, respectively.
Therefore, the third line of Eq. (B24) reads

XZ
k¼1

X
sr

jλpsrj2jðl; hpsrÞj2ð1 − jFpj2Þ

þ
XN
k¼1

X
sr

jλnsrj2jðl; hnsrÞj2ð1 − jFnj2Þ: ðB36Þ

Combining Eqs. (B24), (B29), and (B36), one gets the
differential cross section in Eq. (44).

APPENDIX C: CALCULATION OF THE
SCALAR PRODUCT ðl;hÞ

The third line of Eq. (44) prompts us to calculate the
scalar product of two currents ūðk0ÞOμuðkÞ · ūðp0ÞO0

μuðpÞ,
where Oμ, O0

μ are Dirac matrices. The use of a standard
powerful technique, which consists of the calculation of
traces of Dirac γ-matrices, is not helpful for this problem.
This is because all four momenta k; k0; p and p0 are
different and one cannot use the well-known formula for
Dirac spinors

uðp; rÞūðp; rÞ ¼ 1

2
ð=pþmÞð1þ γ5=srÞ;

where sr is four-vector of the fermion spin.
To simplify intermediate formulas, we calculate the

scalar product of the neutrino and nucleon currents in their
center-of-mass frame, where energies of incoming and
outgoing fermions are equal. In what follows, in this
section all quantities depending on kinematic variables
are given in the neutrino-nucleon center-of-mass frame.
Energies Eν and EN , of the neutrino and nucleon,

respectively, read

Eν ¼
s −m2

2
ffiffiffi
s

p ; EN ¼ sþm2

2
ffiffiffi
s

p ; ðC1Þ

where s ¼ ðpþ kÞ2 and m gives the mass of the nucleon.
In the Dirac basis, the spinor of a nucleon with three-

momentum p and index r ¼ �1 reads

uðp; rÞ ¼
�

λþ
λ−αp

�
χrðpÞ; ðC2Þ

where λ� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN �m

p
and αp ¼ np · σ, in which np is a

unit vector along p, and σ ¼ ðσ1; σ2; σ3Þ is a three-vector of
Pauli matrices. The index r enumerates two linearly
independent two-spinors χrðpÞ.
The vector and axial currents of the nucleon read

ūðp0; r0Þγμuðp; rÞ≡ Vμ
r0rðp0; pÞ;

ūðp0; r0Þγμγ5uðp; rÞ≡ Aμ
r0rðp0; pÞ; ðC3Þ

where

V0
r0rðp0; pÞ ¼ χ†r0 ðnp0 Þ½λ2þ þ λ2−αp0αp�χrðnpÞ;

Vr0rðp0; pÞ ¼ χ†r0 ðnp0 Þλþλ−½σαp þ αp0σ�χrðnpÞ;
A0
r0rðp0; pÞ ¼ χ†r0 ðnp0 Þλþλ−½αp0 þ αp�χrðnpÞ;

Ar0rðp0; pÞ ¼ χ†r0 ðnp0 Þ½λ2þσ þ λ2−αp0σαp�χrðnpÞ: ðC4Þ

The neutrino spinor, vector, and axial currents read analo-
gously to Eq. (C2)–(C4) with the replacement λ� →

ffiffiffiffiffi
Eν

p
.

Unit vectors along three-momenta of the incoming and
outgoing neutrino and nucleon are defined as

nk ¼ð0;0;1Þ; np¼−nk;

nk0 ¼ ðcosφsinθ;sinφsinθ;cosθÞ; np0 ¼−nk0 : ðC5Þ

It is convenient to specify a basis of two-component spinors
χr to perform the calculations in Eq. (C3). Summation over
r, r0 in the incoherent term of Eq. (44) are simpler in the
helicity basis in which r, r0 are helicity eigenvalues.
The coherent term of Eq. (44) requires consideration of
the nucleon current with conservation of spin projection
on the given axis. For this purpose, a basis of χr two-
spinors, which are eigenstates of the σ3 ¼ ðnk · σÞ matrix,
is more appropriate. It is apparent that the physical
observable does not depend on the basis chosen.

1. Helicity basis

In the helicity basis, the two-spinor χrðpÞ is an eigen-
vector of the helicity operator np · σ

np · σχrðnpÞ ¼ rχrðnpÞ ðC6Þ

with an eigenvalue r ¼ �1, known as the helicity or
doubled spin projection on a particle’s three-momentum.
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Two-component normalized to unity spinors χ
corresponding to the incoming and outgoing neutrino
and nucleon with definite helicities in their center-of-mass
frame, can be read

χþðnkÞ ¼
�
1

0

�
; χþðnk0 Þ ¼

�
cos θ

2

eiφ sin θ
2

�
;

χ−ðnkÞ ¼
�
0

1

�
; χ−ðnk0 Þ ¼

�−e−iφ sin θ
2

cos θ
2

�
;

χþðnpÞ ¼
�

0

−1

�
; χþðnp0 Þ ¼

�
sin θ

2

−eiφ cos θ
2

�
;

χ−ðnpÞ ¼
�
1

0

�
; χ−ðnp0 Þ ¼

�
e−iφ cos θ

2

sin θ
2

�
: ðC7Þ

Let us display explicitly the vector and axial currents in the
helicity basis from Eqs. (C3) and (C4) for the nucleon,
denoting the basis by the χ superscript

Vχ
þþ ¼ 2ðcθ=2e−iφEN; ð−sθ=2; isθ=2;−cθ=2e−iφÞEνÞ;

Vχ
−− ¼ 2ðcθ=2eþiφEN; ð−sθ=2;−isθ=2;−cθ=2eþiφÞEνÞ;

Vχ
þ− ¼ 2mðsθ=2; 0; 0; 0Þ;

Vχ
−þ ¼ 2mð−sθ=2; 0; 0; 0Þ;

Aχ
þþ ¼ 2ðcθ=2e−iφEν; ð−sθ=2; isθ=2;−cθ=2e−iφÞENÞ;

Aχ
−− ¼ 2ð−cθ=2eþiφEν; ðsθ=2; isθ=2; cθ=2eþiφÞENÞ;

Aχ
þ− ¼ 2mð0;−cθ=2e−iφ;−icθ=2e−iφ; sθ=2Þ;

Aχ
−þ ¼ 2mð0;−cθ=2eþiφ; icθ=2eþiφ; sθ=2Þ ðC8Þ

and neutrino

Vχ
−− ¼ 2Eνðcθ=2; sθ=2eþiφ;−isθ=2eþiφ; cθ=2Þ;

Aχ
−− ¼ 2Eνð−cθ=2;−sθ=2eþiφ; isθ=2eþiφ;−cθ=2Þ; ðC9Þ

where for the sake of compactness

cθ=2 ≡ cos
θ

2
; sθ=2 ≡ sin

θ

2
: ðC10Þ

For a neutrino, assuming its vanishing mass,

Vþ− ¼ V−þ ¼ Aþ− ¼ A−þ ¼ 0; ðC11Þ

manifesting neutrino helicity conservation in weak inter-
actions. In Eq. (C9), only the left-handed neutrino currents
required to calculate the elastic neutrino-nucleus cross
section are shown.
Now it is straightforward to calculate the scalar product

ðl; hr0rÞ equal to

ūðk0;−1Þγμð1 − γ5Þuðk;−1Þ · ūðp0; r0ÞγμðgV − gAγ5Þuðp; rÞ

using Eqs. (C8) and (C9)

ðl; hχþþÞ ¼ 8ðs −m2Þe−iφcos2 θ
2
gR;

ðl; hχ−−Þ ¼ 8ðs −m2Þeþiφ

�
gL − gRsin2

θ

2

m2

s

�
;

ðl; hχþ−Þ ¼ 8ðs −m2Þ mffiffiffi
s

p sin
θ

2
cos

θ

2
gR;

ðl; hχ−þÞ ¼ −8ðs −m2Þ mffiffiffi
s

p sin
θ

2
cos

θ

2
gR; ðC12Þ

where gL=R are left- and right-handed chirality weak
couplings of the nucleon defined in Eq. (B9).
Using Eq. (C12) and the relationship between

Bjorken y and sin2 θ
2
in the neutrino-nucleon center-of-

mass frame

y ¼ ðp; qÞ
ðp; kÞ ; sin2

θ

2
¼ ys

s −m2
ðC13Þ

one can verify that a well known result determining the
cross section of the neutrino-nucleon scattering with Z0-
boson exchange is reproducedX
r;r0

jðl; hχr0rÞj2

¼ 26ðs −m2Þ2
�
g2L þ g2Rð1 − yÞ2 − 2gLgR

ym2

s −m2

�
:

ðC14Þ

2. σ3 basis

We quantize the nucleon’s spin along the incoming
neutrino direction nk in the neutrino-nucleon center-of-
mass frame. This implies that the corresponding two-
spinor, which we denote now by ηr, is an eigenvector of
the nk · σ ¼ σ3 matrix

σ3ηr ¼ rηr: ðC15Þ

These two-spinors read

ηþ ¼
�
1

0

�
; η− ¼

�
0

1

�
: ðC16Þ

Using these two-spinors instead of χ� in Eq. (C3) and (C4),
the nucleon’s vector and axial currents, denoting the basis
in (C16) by the superscript η, read
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Vη
þþ ¼ ðEN þmþ cos θðEN −mÞ;− sin θe−iφEν;−i sin θe−iφEν;−ð1þ cos θÞEνÞ;

Vη
−− ¼ ðEN þmþ cos θðEN −mÞ;− sin θeþiφEν; i sin θeþiφEν;−ð1þ cos θÞEνÞ;

Vη
þ− ¼ ð− sin θe−iφðEN −mÞ; ð1 − cos θÞEν;−ið1 − cos θÞEν; sin θe−iφEνÞ;

Vη
−þ ¼ ðþ sin θeþiφðEN −mÞ;−ð1 − cos θÞEν;−ið1 − cos θÞEν;− sin θeþiφEνÞ;

Aη
þþ ¼ ð−ð1þ cos θÞEν; sin θe−iφðEN −mÞ; i sin θe−iφðEN −mÞ; EN þmþ cos θðEN −mÞÞ;

Aη
−− ¼ ðð1þ cos θÞEν;− sin θeþiφðEN −mÞ; i sin θeþiφðEN −mÞ;−ðEN þmþ cos θðEN −mÞÞÞ;

Aη
þ− ¼ ð− sin θe−iφEν; EN þm − cos θðEN −mÞ;−iðEN þm − cos θðEN −mÞÞ; sin θe−iφðEN −mÞÞ;

Aη
−þ ¼ ð− sin θeþiφEν; EN þm − cos θðEN −mÞ; iðEN þm − cos θðEN −mÞÞ; sin θeþiφðEN −mÞÞ: ðC17Þ

The vector and axial currents calculated in Eq. (C8) and in
Eq. (C17) differ because the mathematical and physical
sense of r, r0 eigenvalues are different. In Eq. (C8), r, r0 are
projections of the nucleon spin onto incoming and outgoing
momenta of the nucleon, while in Eq. (C17) these are
projections onto a fixed axis (chosen to be along the
incoming neutrino three-momentum). One possible illus-
tration is an example of the nucleon scattered backward
(cos θ ¼ −1). In this case, ðþþÞ in the helicity basis
represents the nucleon’s spin-flip, while in the basis with
fixed quantization axis [as defined in Eq. (C16)], the
nucleon’s spin does not change its orientation.
Let us briefly review the results obtained in Eq. (C17) to

gain further insight. For this purpose, we consider three
cases most relevant for this paper: (i) the nucleon forward
scattering (cos θ ¼ 1), (ii) the nucleon backward scattering
(cos θ ¼ −1) and (iii) the nonrelativistic regime (

ffiffiffi
s

p
→ m).

(i) The vector currents

lim
cos θ→1

Vη
þþ ¼ lim

cos θ→1
Vη
−− ¼ 2ðEN; 0; 0;−jPN jÞ

ðC18Þ
reduce to the 4-momentum of the nucleon moving
towards the incoming neutrino. The spin-flip in the
vector currents are impossible

lim
cos θ→1

Vη
þ− ¼ lim

cos θ→1
Vη
−þ ¼ 0: ðC19Þ

On the contrary, the axial current makes the spin-flip
possible even for the forward scattering generating
nonzero components of the axial current in the
transverse plane

lim
cos θ→1

Aη
þ− ¼ 2mð0; 1;−i; 0Þ;

lim
cos θ→1

Aη
−þ ¼ 2mð0; 1; i; 0Þ: ðC20Þ

In this limit, there is an exact cancellation of the sum
of axial currents with opposite spins

lim
cos θ→1

ðAη
þþ þ Aη

−−Þ ¼ 0: ðC21Þ

This cancellation can be understood by recalling that
the axial current of the fermion with the same initial
and final momenta p and same spin projection r is
proportional to the 4-spin vector sμ

ūðp; rÞγμγ5uðp; rÞ ¼ 2mrsμ: ðC22Þ

Therefore,

ūðp;þ1Þγμγ5uðp;þ1Þþ ūðp;−1Þγμγ5uðp;−1Þ¼ 0;

ðC23Þ

which exactly corresponds to Eq. (C21) for the
forward scattering of the nucleon.

(ii) The vector currents conserving spin projection
reduce to

lim
cosθ→−1

Vη
þþ ¼ lim

cosθ→−1
Vη
−− ¼ 2mð1;0;0;0Þ: ðC24Þ

The spin-flip is also possible

lim
cos θ→−1

Vη
þ− ¼ 2jPN jð0; 1;−i; 0Þ;

lim
cos θ→−1

Vη
−þ ¼ 2jPN jð0;−1;−i; 0Þ ðC25Þ

generating nonzero components of the vector current
in the transverse plane. The axial currents conserv-
ing spin projection reduce to

lim
cos θ→−1

Aη
þþ ¼ 2mð0; 0; 0; 1Þ;

lim
cos θ→−1

Aη
−− ¼ 2mð0; 0; 0;−1Þ: ðC26Þ
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The spin-flip is also possible

lim
cos θ→−1

Aη
þ− ¼ 2ENð0; 1;−i; 0Þ;

lim
cos θ→−1

Aη
−þ ¼ 2ENð0; 1; i; 0Þ: ðC27Þ

(iii) The vector current conserves the spin projection

limffiffi
s

p
→m

Vη
þþ ¼ limffiffi

s
p

→m
Vη
−− ¼ 2mð1; 0; 0; 0Þ;

limffiffi
s

p
→m

Vη
þ− ¼ Vη

−þ ¼ 0: ðC28Þ

The axial current is nonzero for both cases: spin
projection conserved

limffiffi
s

p
→m

Aη
þþ ¼ 2mð0; 0; 0; 1Þ;

limffiffi
s

p
→m

Aη
−− ¼ 2mð0; 0; 0;−1Þ ðC29Þ

and when the spin-flip occurred

limffiffi
s

p
→m

Aη
þ− ¼ 2mð0; 1;−i; 0Þ;

limffiffi
s

p
→m

Aη
−þ ¼ 2mð0; 1; i; 0Þ: ðC30Þ

One might observe, that in this limit, similar to
Eq. (C21),

limffiffi
s

p
→m

ðAη
þþ þ Aη

−−Þ ¼ 0 ðC31Þ

which implies that in the coherent term of Eq. (44)
there is a cancellation of the axial currents for spin-
less nuclei. A more accurate statement can be drawn
considering the exact formula in Eq. (C17)

Aη
þþ þ Aη

−− ¼ −2i sin θðEN −mÞð0; sinφ; cosφ; 0Þ

≃ −i
k20
m
sin θð0; sinφ; cosφ; 0Þ ðC32Þ

In general, this four-vector is nonzero unless the
neutrino energy k0 in the laboratory frame is not zero
and the scattering angle θ ≠ 0 or π.

Once the vector and axial currents of the nucleon are
calculated, it is straightforward to calculate the scalar
product ðl; hr0rÞ in analogy to the results obtained in the
helicity basis Eq. (C12) using Eqs. (C9) and (C17)

ðl;hηþþÞ¼ 8ðs−m2Þcosθ
2

�
gL−gRsin2

θ

2

mffiffiffi
s

p
�
1−

mffiffiffi
s

p
��

;

ðl;hη−−Þ¼ 8ðs−m2Þcosθ
2

�
1− sin2

θ

2

�
1−

mffiffiffi
s

p
��

gR;

ðl;hηþ−Þ¼−8ðs−m2Þe−iφ sinθ
2
cos2

θ

2

�
1−

mffiffiffi
s

p
�
gR;

ðl;hη−þÞ¼ 8ðs−m2Þeiφ sinθ
2

×

�
gL−gR

mffiffiffi
s

p
�
1− sin2

θ

2

�
1−

mffiffiffi
s

p
���

; ðC33Þ

The scalar products ðl; hηrrÞ in Eq. (C33) differ from
those in Eq. (C12).

(i) The φ-dependence magically disappeared in the first
two lines of Eq. (C33) which determine the coherent
cross section. In ðl; hηþþÞ, it happened because the
exponent eiφ of the neutrino current in Eq. (C9)
cancels the exponent e−iφ of nucleon currents Vþþ
and Aþþ in Eq. (C17). In ðl; hηþþÞ, it happened
because the corresponding terms, depending now on
ei2φ, cancel each other due to the difference in their
relative signs.

The scalars ðl; hηþ−Þ and ðl; hη−þÞ have a φ-depend-
ence. However this dependence can not be observed
because these terms do not contribute to the coherent
cross section where they could be interfering.

(ii) For the forward scattering θ → 0, the sum of the first
two lines in Eq. (C33) does not depend on gA

lim
y→0

ððl; hηþþÞ þ ðl; hη−−ÞÞ ¼ 8ðs −m2ÞgV: ðC34Þ

Two other currents with spin-flip vanish in this limit.
(iii) Both scalar products ðl; hηrrÞ vanish if the neutrino

scatters backward (θ ¼ π) in their center-of-mass
frame because it corresponds to a change of the total
spin of the neutrino-nucleon system by one unit. This
result explains why the coherent cross section van-
ishes when the recoil nucleus has the maximum
kinetic energy.

(iv) In the nonrelativistic limit,

limffiffi
s

p
→m

ðl; hηþþÞ
8ðs −m2Þ ¼ cos

θ

2
gL;

limffiffi
s

p
→m

ðl; hη−−Þ
8ðs −m2Þ ¼ cos

θ

2
gR;

limffiffi
s

p
→m

ðl; hηþ−Þ
8ðs −m2Þ ¼ 0;

limffiffi
s

p
→m

ðl; hη−þÞ
8ðs −m2Þ ¼ eiφ sin

θ

2
gA; ðC35Þ

where we kept the 8ðs −m2Þ factor in the denom-
inators because it is precisely canceled in the
calculation of the corresponding cross section.
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It is interesting to observe two distinct limits of the last
two lines in Eq. (C35) for similar spin-flipped configura-
tions. In the nonrelativistic limit, the vector currents with
spin-flip vanish as can be seen in Eq. (C28) and only the
transverse components of the axial currents in Eq. (C30)
survive. However, the axial current Aη

þ− in Eq. (C30) turned
out to be orthogonal to the neutrino current at

ffiffiffi
s

p
→ m. At

the same time, the scalar product of the latter and of Aη
−þ

from Eq. (C30) is nonzero and proportional to the axial
coupling gA.

3. Relation between helicity and σ3 bases

The eigenvectors χ� and η� in the helicity and σ3 bases,
defined in Eqs. (C7) and (C16), respectively, are related to
each other via a linear transformation

�
ηþ
η−

�
¼

�
0 1

−1 0

��
χþðnpÞ
χ−ðnpÞ

�

¼
�

sin θ
2

cos θ
2
eiφ

− cos θ
2
e−iφ sin θ

2

��
χþðnp0 Þ
χ−ðnp0 Þ

�
: ðC36Þ

Eq. (C36) allows one to relate the nucleon currents and
scalar products ðl; hÞ calculated in the two bases

ðl; hηþþÞ ¼ sin
θ

2
ðl; hχþ−Þ þ cos

θ

2
e−iφðl; hχ−−Þ;

ðl; hη−þÞ ¼ − cos
θ

2
eiφðl; hχþ−Þ þ sin

θ

2
ðl; hχ−−Þ ðC37Þ

and

ðl; hηþ−Þ ¼ − sin
θ

2
ðl; hχþþÞ − cos

θ

2
e−iφðl; hχ−þÞ;

ðl; hη−−Þ ¼ cos
θ

2
eiφðl; hχþþÞ − sin

θ

2
ðl; hχ−þÞ: ðC38Þ

(i) The nucleon currents, e.g., in the left-hand-side of
the first line in Eq. (C37) correspond to the scatter-
ings when the spin projection on the fixed axis
(incoming neutrino direction) does not change (hηþþ)
and is flipped (hη−þ). These currents can be uniquely
described by linear combinations of the current with
negative helicity in both initial and final states hχ−−
and of the current in which the initially negative
helicity is flipped hχþ−, as illustrated in Fig. 10.

(ii) The following equalities hold true

jðl;hηþþÞj2þjðl;hη−þÞj2¼ jðl;hχþ−Þj2þjðl;hχ−−Þj2;
jðl;hηþ−Þj2þjðl;hη−−Þj2¼ jðl;hχþþÞj2þjðl;hχ−þÞj2:

ðC39Þ

(iii) Eqs. (C37) and (C38) can also be used to cross-
check the results of tedious calculations leading
to Eq. (C17).

APPENDIX D: AN ANALOGY IN A
MECHANICAL SYSTEM FOR ELASCTIC

AND INELASTIC SCATTERING

Kinematic issues discussed in Sec. II C are valid not only
for a quantum system but also for a mechanical system. As
a useful illustration of elastic and inelastic scattering let us
consider a system of two balls with equal masses m
connected by a massless spring with nonzero rigidity.

(i) Consider this system when both balls are at rest and
one ball gains a momentum q, and thus the kinetic
energy q2=2m. After the acquired momentum is
redistributed among the balls, their center-of-mass
moves with momentum q but with a kinetic energy
two time smaller, q2=4m, because of its mass 2m.

Half of the initial kinetic energy went into the
potential energy of the spring. In this analogy, the
initial ground state is transformed into an excited
state. This example, shown in Fig. 11, illustrates an
inelastic scattering.

(ii) Consider now the same balls in an initially excited
state, i.e., moving towards and away from each other
while their center-of-mass is at rest. The momenta of
these balls at any time are equal to each other in
magnitude, and have opposite directions. Let the

FIG. 10. The left pictogram corresponds to a fermion current
hηþþ with positive projections of its spin (shown by double
arrowed line) on the given axis (shown by dashed line) in both
initial and final states. This current is decomposed into a sum of
the current with negative helicity in both the initial and final states
hχ−− and of the current in which the initially negative helicity is
flipped hχþ− weighted with sin θ

2
and cos θ

2
e−iφ, respectively, as

illustrated by the right pictogram.

FIG. 11. Both balls are initially at rest when the right ball is hit
with a momentum q (left). After some time their center-of-mass
moves with momentum q and half of the transferred energy is
accumulated in the potential energy of the spring, shown by its
tension and extension (right).
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maximum momentum of a ball, reached when
the spring has zero potential energy, be equal to
�q=4 as shown in Fig. 12. One of these momenta is
chosen in agreement with Eq. (31) to be −q=4. The

total energy of both balls equals ðq=4Þ2=2mþ
ðq=4Þ2=2m¼q2=16m. Let the ball with a momen-
tum −q=4 acquire an additional momentum q.

Right after this interaction, the untouched and
hit balls have momenta ðþq=4;þ3=4qÞ and energies
ðq2=32m; 9q2=32mÞ, respectively. The total accumulated
energy is equal to 5q2=16m.
Since the kinetic energy of their center-of-mass equals

q2=4m, one finds that the potential energy accumulated in
the spring is unchanged q2=16m.
In this example, the system of two balls connected by a

spring remains in the state with the same internal potential
energy. The change of kinetic energy of the struck ball is
exactly the kinetic energy of their center-of-mass. This is an
example of elastic scattering.
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