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We conjecture fuzzy configurations of D0-branes in the Banks-Fischler-Shenker-Susskind (BFSS)
matrix model as microstates of the black hole. Fuzzy configurations of D0-branes consist of localized fuzzy
objects in three spatial directions which are smeared into six internal directions. Since the solutions are time
dependent, these are non-Bogomol’nyi-Prasad-Sommerfield (non-BPS) configurations and have internal
energy compared with static case. Especially, we examine the smeared fuzzy sphere in the BFSS matrix
model, which will correspond to the microstate of the charged black hole in four dimensions, and compare
the effective potential in that background with the result obtained by the near horizon geometry of the black
0-brane. The qualitative features of two descriptions agree with each other; thus, we expect that the smeared
fuzzy sphere corresponds to one of the microstates of the charged black hole. We also examine the smeared
fuzzy cylinder which will correspond to the flat space time.
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I. INTRODUCTION

Superstring theory is the promising candidate for the
theory of quantum gravity. In the superstring theory,
D-branes play important roles in investigating both gauge
theory and gravity theory [1]. Some black holes are realized
as bound states ofD-branes, andmicrostates of the black hole
are constructed from the gauge theory on the D-branes [2].
This shows that the quantum nature of the gravity can be
captured by analyzing corresponding quantum field theory.
Actually, quantum aspects of black holes are investigated

considerably via matrix models, which are the nonpertur-
bative formulation of superstring theories [3–6]. In 1996,
Banks, Fischler, Shenker, and Susskind proposed a non-
perturbative formulation of M-theory (BFSS matrix model)
[3]. This theory is obtained by dimensional reduction of 10
dimensional super Yang-Mills theory to quantum mechan-
ics, which is identified with the effective action for multiple
D0-branes [7]. It is remarkable that although the BFSS
matrix model is the quantum mechanical system, it can
reproduce the gravitational force between two D0-branes
[3,8–10].1 Hence, the BFSS matrix model captures the
nature of the gravity, and it is possible to investigate black
hole physics in detail.

In fact, there are several works which construct the
Schwarzschild black hole in various dimensions from
the BFSS matrix model [13–17]. The thermodynamics
of the black hole is reproduced qualitatively from the BFSS
matrix model in Refs. [13–16], and the instability of black
string is examined in Ref. [17]. Especially, a fuzzy sphere
configuration of D0-branes is used to describe the black
hole in Ref. [18]. In that paper, the effective potential for a
test D0-brane in the background of the fuzzy sphere is
evaluated at one-loop level, and it agrees with the result of
the gravity side qualitatively.
In 1997, Maldacena conjectured the gauge/gravity cor-

respondence [19], and it is confirmed that physical quan-
tities in the gauge theory, such as correlation functions, are
consistently calculated from the gravity side [20,21]. From
the viewpoint of this conjecture, it is natural to regard that
the BFSS matrix model corresponds to the near horizon
geometry of black 0-brane [22]. Since the gauge/gravity
correspondence is a kind of weak/strong coupling duality, it
is hard to test the conjecture analytically. However, recently
there have been several numerical tests of this conjecture
for the thermal system of D0-branes [23–29]. Especially,
the numerical study for the black hole geometry is
considered in Ref. [30].
If the gauge/gravity correspondence is correct even for the

nonsupersymmetric system, it is important to construct the
black hole geometry in the BFSSmatrix model. In Ref. [31],
a smeared black 0-brane solution and its thermodynamic
properties are investigated. The black 0-brane is smeared
along six internal directions, so it becomes a charged black
hole in four dimensions. Then it is interesting to consider
corresponding configurations in the BFSS matrix model. In
this paper, we conjecture that fuzzy configurations of
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1Originally BFSS proposed to make the size of matrices
infinite. In Ref. [11], the finite case was proposed as discretized
light cone quantization of M-theory. See Ref. [12], for example,
for a review of the BFSS matrix model.
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D0-branes, which are time dependent fuzzy objects smeared
along six internal directions, correspond to the microstates
of the smeared black 0-brane in the near horizon limit. These
fuzzy objects are bound states of D0-branes and are
oscillating around the origin of three spatial directions.
The organization of this paper is as follows. In Sec. II, we

review the BFSS matrix model and construct time depen-
dent fuzzy objects, including the fuzzy sphere and fuzzy
cylinder. In Sec. III, we review the one-loop effective
potential for the test D0-brane in the background of fuzzy
configuration. In Sec. IV, the effective potentials between
fuzzy objects, such as the fuzzy sphere and cylinder, and
the test D0-brane are calculated explicitly. We compare
properties of these effective potentials with the result
obtained by the gravity side in Sec. V. Section VI is
devoted to conclusion and discussion.

II. TIME DEPENDENT FUZZY OBJECTS
IN THE BFSS MATRIX MODEL

In this section, we consider time dependent configura-
tions of N D0-branes in the BFSS matrix model, which will
correspond to the microstates of the black hole. Since we
are interested in the black hole in four dimensional
spacetime, we make a fuzzy object in three spatial
directions via D0-branes and smear it along the remaining
six internal directions. The equations of motion for the
fuzzy object are expressed by simultaneous nonlinear
differential equations and solutions have nontrivial time
dependence in general. We show the numerical plot for the
N ¼ 2 case which represents a nontrivial bound state of two
D0-branes, and then explains the analytic solutions for
oscillating the fuzzy sphere and fuzzy cylinder.
Let us consider the BFSS matrix model which describes

the dynamics of multiple D0-branes [3]. The action for
D0-branes can be obtained by the dimensional reduction of
10 dimensional N ¼ 1 super Yang-Mills theory to 1
dimensional super quantum mechanics [7]. The super-
multiplet consists of a gauge field At, 9 scalar fields Φi
and a Majorana-Weyl fermion θ. These are expressed by
N × N matrices, and the action for multiple D0-branes is
given by

S0 ¼
1

g2YM

Z
dttr

�
1

2
DtΦiDtΦi þ 1

4
½Φi;Φj�2

þ i
2
θTDtθ þ

1

2
θTγi½Φi; θ�

�
; ð1Þ

where i; j ¼ 1;…; 9, Dt ¼ ∂t − i½At; � and γi are 16 × 16
matrices. The coupling constant gYM has mass dimension
3=2. Note that there are 9 scalar fields Xi ¼ 2πl2

sΦi, and
the diagonal element of Xi corresponds to a position of each
D0-brane in the xi direction. Thus, the size of the matrices
N is equal to the number of D0-branes. By setting θ ¼ 0,
the equations of motion for Φi and At become

DtðDtΦiÞ ¼ ½Φj; ½Φi;Φj��; ½Φi; DtΦi� ¼ 0: ð2Þ

The equation of motion for θ is trivially satisfied when
θ ¼ 0.
Let us examine Eq. (2) to construct the fuzzy object

which would correspond to the microstate of the black hole
in four dimensions. First of all, we set At ¼ 0 and choose
Φaða ¼ 1; 2; 3Þ as

ðΦbg
1 Þmn ¼

1

2
ρmðtÞδmþ1;n þ

1

2
ρnðtÞδm;nþ1;

ðΦbg
2 Þmn ¼ −

i
2
ρmðtÞδmþ1;n þ

i
2
ρnðtÞδm;nþ1;

ðΦbg
3 Þmn ¼ zmðtÞδm;n: ð3Þ

Here ρmðtÞ and zmðtÞ are functions of temporal coordinate
t, and m; n ¼ 1;…; N. The superscript bg stands for the
background. This ansatz represents the fuzzy object in 3
dimensions which is axially symmetric around the x3

direction [32,33]. Roughly speaking, ρm represents the
extension of the fuzzy object from the origin on the x3 ¼ zm
plane. Therefore, the fuzzy object makes an axially
symmetric surface in three dimensions, and it carries a
dielectric D2-brane charge. The remaining six scalars
Φuðu ¼ 4;…; 9Þ are chosen to be diagonal so that the
fuzzy object is smeared along six spatial directions.
Let us substitute the ansatz (3) into the equations of

motion (2). The differential equations for ρm and zm are
written as

ρ̈m ¼
�
1

2
ðρ2mþ1 − 2ρ2m þ ρ2m−1Þ − ðzmþ1 − zmÞ2

�
ρm;

ðm ¼ 1;…; N − 1Þ
̈zm ¼ ρ2mðzmþ1 − zmÞ − ρ2m−1ðzm − zm−1Þ;
ðm ¼ 1;…; NÞ ð4Þ

where ρ0 ¼ ρN ¼ z0 ¼ zNþ1 ¼ 0. Note that the second
equation in Eq. (2) is automatically satisfied. Since the
differential equations (4) are nonlinear, in general, it is
impossible to obtain analytic solutions. From the energy
conservation, however, we see that

E ¼ 1

g2YM
tr

�
1

2
_Φi

_Φi −
1

4
½Φi;Φj�2

�

¼ 1

g2YM

XN
m¼1

�
1

2
ð_ρmÞ2 þ

1

2
ð_zmÞ2 þ

1

8
ðρ2m − ρ2m−1Þ2

þ 1

2
ðzmþ1 − zmÞ2ρ2m

�
: ð5Þ

This shows that the ranges of ρm are finite, and those of
ðzm − zm−1Þ are also finite if ρm ≠ 0 for all m. If ρm ¼ 0 for
some m, the representation is reducible and it represents
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two or more fuzzy objects. Since separations of those fuzzy
objects should be finite, again ðzm − zm−1Þ are also finite.
From the second equation of (4), we note that

P
N
m¼1 z̈m¼0,

so we set the center of mass
P

N
m¼1 zm ¼ 0 without loss of

generality. Thus, the D0-branes are bounded around the
origin in three spatial directions.
Now let us examine three types of solutions of Eq. (4).

The first example is the case of N ¼ 2. Here we set
z2 ¼ −z1. Then differential equations for ρ1 and z1 are
written as

ρ̈1 ¼ −ðρ21 þ 4z21Þρ1; ̈z1 ¼ −2ρ21z1; ð6Þ

and the energy is given by

EN¼2 ¼
1

g2YM

�
1

2
ð_ρ1Þ2 þ ð_z1Þ2 þ

1

4
ρ41 þ 2z21ρ

2
1

�
: ð7Þ

Since ρ1 ¼ 0 corresponds to freely moving two D0-branes,
we ignore this case. Then ρ1 and z1 interact in a nontrivial
way, but two D0-branes make a bound state around the
origin in three dimensions. The plots of ρ1ðtÞ and z1ðtÞ are
shown in Fig. 1. This shows that the dynamics of the fuzzy
object is complicated even for N ¼ 2.
The second example is a fuzzy sphere which oscillates

around the origin in three dimensions. The explicit forms of
3 scalar fields Φbg

a are given by Eq. (3) with

ρm¼ r̃ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðN−mÞ

p
; zm ¼ r̃ðtÞ

2
ðN−2mþ1Þ: ð8Þ

We also set Abg
t ¼ 0 and six scalar fieldsΦbg

u to be diagonal.
jr̃ðtÞj corresponds to the size of the fuzzy sphere, and the
sign of r̃ðtÞ is related to the orientation of the sphere. The
tilde is used to clarify that the quantity has mass dimension.
Note that Φbg

a can be expressed as [34]

Φbg
a ¼ r̃ðtÞΣa

2
;

�
Σa

2
;
Σb

2

�
¼ iϵabc

Σc

2
; ð9Þ

where a, b, c ¼ 1, 2, 3. Σa=2 are N dimensional irreducible
representations of SU(2) Lie algebra, which satisfy
Σ2
1 þ Σ2

2 þ Σ2
3 ¼ ðN2 − 1Þ1N . Inserting Eq. (8) into the

equations of motion (4), we obtain a simple equation for
r̃ðtÞ as follows:

̈r̃ ¼ −2r̃3: ð10Þ

The above equation corresponds to the classical motion for
a particle which is periodically moving in the quartic
potential [35]. And the solution is described by using
Jacobi’s elliptic function sn as

r̃ðtÞ ¼ c1snðc1tþ c2;−1Þ; ð11Þ

where c1ð> 0Þ and c2 are integral constants. r̃ðtÞ oscillates
between −c1 and c1. The radius of the fuzzy sphere is
estimated as

Rsph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
trðX2

1 þ X2
2 þ X2

3Þ
r

¼ πl2
s r̃ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − 1

p
; ð12Þ

and the maximum value of the radius is given by
πl2

sc1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 − 1

p
. In other words, c1 is linearly related to

the size of the fuzzy sphere. Another constant c2 can be
fixed so that the radius of the fuzzy sphere becomes
maximum at t ¼ 0. The energy of the fuzzy sphere is
estimated as

Esph ¼
NðN2 − 1Þ

8g2YM
ð _̃r2 þ r̃4Þ ¼ NðN2 − 1Þ

8g2YM
c41: ð13Þ

Note that this is the internal energy of N D0-branes. If we
trust the classical solution naively, the fuzzy sphere
oscillates around the origin in three dimensions. And it
carries a dielectric D2-brane or anti–D2-brane charge,
depending on the orientation of the sphere. In actuality,
the fuzzy sphere interacts with the closed strings and it will
lose the internal energy during the oscillation.
The third example is an oscillating fuzzy cylinder. The

fuzzy cylinder is homogeneously extending along the x3 axis
and its circular cross section is oscillating on the ðx1; x2Þ
plane. Since the length of the fuzzy cylinder is infinite, the
size of thematricesN shouldbe infinite. The explicit forms of
three scalar fields Φbg

a are given by Eq. (3) with

ρm ¼ ρ̃ðtÞ; zm ¼ −l̃m; ð14Þ

wherem takes the integer value and l̃ is a typicalmass scale of
the fuzzy cylinder. In the matrix representation, Φbg

a are
expressed as

FIG. 1. Plots of ρ1ðtÞ (blue) and z1ðtÞ (yellow). Initial con-
ditions are chosen as ρ1ð0Þ ¼ z1ð0Þ ¼ 1 and _ρ1ð0Þ ¼ _z1ð0Þ ¼ 0.
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Φbg
1 ¼ ρ̃ðtÞΞ1; Φbg

2 ¼ ρ̃ðtÞΞ2; Φbg
3 ¼ l̃Ξ3;

½Ξ1;Ξ2� ¼ 0; ½Ξ2;Ξ3� ¼ iΞ1; ½Ξ3;Ξ1� ¼ iΞ2: ð15Þ

We setAbg
t ¼ 0 and six scalar fieldsΦbg

u to be diagonal as the
case of the fuzzy sphere. Inserting Eq. (14) into the equations
ofmotion (4),weobtain a simple equation for ρ̃ðtÞ as follows:

̈ρ̃ ¼ −l̃2ρ̃: ð16Þ

And the solution becomes

ρ̃ðtÞ ¼ c3 cosðl̃tþ c4Þ: ð17Þ

Thus, the fuzzy cylinder shrinks and expands like a harmonic
oscillator. The radius of the fuzzy cylinder is estimated as

Rcyl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
trðX2

1 þ X2
2Þ

r
¼ 2πl2

s ρ̃ðtÞ; ð18Þ

and the internal energy is given by

Ecyl ¼
N

2g2YM
ð _̃ρ2 þ l̃2ρ̃2Þ ¼ N

2g2YM
l̃2c23: ð19Þ

The fuzzy cylinder oscillates around the x3 axiswith carrying
a dielectric D2-brane or anti–D2-brane charge. In actuality,
the fuzzy cylinder interacts with the closed strings and it will
lose the internal energy during the oscillation.

III. FLUCTUATIONS AROUND
SMEARED FUZZY BACKGROUND

In the previous section, we have constructed the fuzzy
objects, such as fuzzy sphere and cylinder, in three dimen-
sions. In order to identify the fuzzy object with themicrostate
of the black hole in four dimensions, we need to smear it into
spatial xuðu ¼ 4;…; 9Þ directions. Thus, we compactify xu
with radius Ru, and put a copy of the fuzzy object on each
position of ðx4;…; x9Þ ¼ ð2πR4n4=Z4;…; 2πR9n9=Z9Þ.
Here, Zu are some integers and nu runs from 1 to Zu, and
there are Z ¼Q9

u¼4 Zu copies of the fuzzy object. By using
Eq. (3), nine scalar fields for the smeared fuzzy object are
represented as

Φa ¼ Φbg
a ⊗ 1Z; a ¼ 1; 2; 3;

Φu ¼ 1N ⊗ Pu; u ¼ 4;…; 9: ð20Þ

Here Pu are Z × Z diagonal matrices of the forms,

Pu ¼ 1Z4
⊗ � � �⊗ 2πR̃u

Zu

0
B@
1

. .
.

Zu

1
CA⊗ � � �⊗ 1Z9

; ð21Þ

where R̃u ¼ Ru=ð2πl2
sÞ. Thus, each diagonal component

composes a vector pu ¼ 2πR̃unu=Zu. The fuzzy object is
completely smeared when we take Zu → ∞. The energy of
the fuzzy objects are slightly modified due to the presence of
Pu. For examples, the internal energies of the fuzzy sphere
and fuzzy cylinder are estimated as

Esph ¼
ðNZÞ2ðN2 − 1Þ

8λ
c41; Ecyl ¼

ðNZÞ2
2λ

l̃2c23; ð22Þ

where λ ¼ g2YMNZ is the ’t Hooft coupling constant. The
number of copies Z goes to infinity, andN is also infinite for
the fuzzy cylinder.
Below we closely follow Ref. [18] to evaluate the

effective potential between the smeared fuzzy object and
a test D0-brane. In order to execute this, we start from the
Euclidean action of the BFSS matrix model with the
background field method. We decompose the scalar fields
as Φi ¼ Bi þ Yi. Here Bi are background fields and Yi are
fluctuations. As was solved in the previous section, back-
grounds of the gauge field and the Majorana-Weyl fermion
are set to be zero. By adding gauge fixing and ghost terms,
the action is given by

SE ¼ 1

2g2YM

Z
dτtr

�
DτΦiDτΦi −

1

2
½Φi;Φj�2

þ θTDτθ − θTγi½Φi; θ� þ ð _Aτ − i½Bi; Yi�Þ2

− i _̄CDτC − ½Bi; C̄�DiC

�
: ð23Þ

Here τ ¼ it is the Euclidean time and dot is the derivative
with respect to τ. The explicit expressions for the back-
ground fields Bi ¼ ðBa; BuÞ are written as

Ba ¼
�
Φbg

a ⊗ 1Z 0

0 x̃a

�
; Bu ¼

�
1N ⊗Pu 0

0 0

�
: ð24Þ

The first NZ × NZ block diagonal represents the smeared
fuzzy object. The second 1 × 1 component does the test
D0-brane, and xa ¼ ð2πl2

sÞx̃a represents its position in
three directions. The tilde for x̃a is used to clarify that the
quantity has mass dimension. Below we assume that the
test D0-brane is moving very slowly and it is reasonable to
neglect the time dependence of x̃a.
Let us consider fluctuations around the background (24).

Since we are interested in the effective potential between
the fuzzy object and the test D0-brane, we only introduce
the fluctuations of off-diagonal parts,
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Aτ ¼
�

0 aðτÞ
aðτÞ† 0

�
; Φi¼Biþ

�
0 ϕiðτÞ

ϕiðτÞ† 0

�
;

θ¼
�

0 ψðτÞ
ψðτÞ† 0

�
; C¼

�
0 cðτÞ

c†ðτÞ 0

�
;

C̄¼
�

0 c̄ðτÞ
c̄†ðτÞ 0

�
: ð25Þ

We substitute the above ansatz into the Euclidean action
(23), and expand it up to the quadratic order of the
fluctuations. Then the mass squared terms for 10 bosons
ða;ϕiÞ, the Majorana-Weyl fermion θ and 2 ghosts c, c̄ are
obtained as follows [18]:

Ω2
b¼K2110þMb; Ω2

f ¼K2116þMf ; Ω2
g¼K212: ð26Þ

Here the diagonal parts of the mass squared terms have the
same structure K2 ¼ KiKi, which is the ðNZÞ × ðNZÞ
matrix. The explicit expressions for Ki ¼ ðKa; KuÞ and
K2 are given by

Ka¼Qa⊗1Z; Ku¼1N⊗Pu; K2¼Q2⊗1Zþ1N⊗P2;

ð27Þ

where

Qa ¼Φbg
a − x̃a1N; Q2¼ðΦbgÞ2þ x̃21N −2x̃aΦbg

a ; ð28Þ

and x̃2 ¼ x̃ax̃a, ðΦbgÞ2 ¼ Φbg
a Φbga and P2 ¼ PuPu. On the

other hand, off-diagonal parts of the mass squared terms,
Mb and Mf , are written as

Mb ¼ 2i

�
0 _Kj

− _Ki −i½Ki; Kj�

�
≡ 2i

�
0 Fτj

Fiτ Fij

�
;

Mf ¼ γi _Ki þ
1

2
γij½Ki; Kj�≡ i

2
γμνFμν: ð29Þ

In the second line, we introduced “10 dimensional” gamma
matrices γμðμ ¼ τ; 1;…; 9Þ and defined γτi ≡ −iγi. Note
that each Fμν is a ðNZÞ × ðNZÞ matrix.
Now we are ready to evaluate the effective potential at

one-loop level. The formula for the effective potential is
given by

Veff ¼ trbðΩbÞ −
1

2
trfðΩfÞ − trgðΩgÞ

¼ −
1

2
ffiffiffi
π

p
Z

∞

0

dl
l3=2 trbðe−lΩ

2
bÞ

þ 1

4
ffiffiffi
π

p
Z

∞

0

dl
l3=2 trfðe−lΩ

2
f Þ

þ 1

2
ffiffiffi
π

p
Z

∞

0

dl
l3=2 trgðe−lΩ

2
gÞ: ð30Þ

Each term in the above can be evaluated perturbatively in
the interaction picture. In order to evaluate e−lΩ

2 ¼
e−lðK2þMÞ, let us define UðlÞ≡ elK

2

e−lΩ
2

and MðlÞ≡
elK

2

Me−lK
2

. The UðlÞ satisfies a differential equation
dUðlÞ
dl ¼ −MðlÞUðlÞ, and it can be solved as

UðlÞ ¼ 1 −
Z

l

0

dl1Mðl1Þ

þ
Z

l

0

dl1Mðl1Þ
Z

l1

0

dl2Mðl2Þ − � � � : ð31Þ

Thus, e−lΩ
2 ¼ e−lK

2

UðlÞ is expanded as

e−lΩ
2 ¼ e−lK

2 −
Z

l

0

dl1e−lK
2

Mðl1Þ

þ
Z

l

0

dl1

Z
l1

0

dl2e−lK
2

Mðl1ÞMðl2Þ− � � � : ð32Þ

Now it is possible to evaluate the effective action (30) order
by order by employing Eq. (32). After some calculations,
we see that terms up to the order of M3 vanish because
of the underlying supersymmetry. The nontrivial contribu-
tion arises from the order of M4, and the result is given
by [18,36]

Veff jM4 ¼−
1

2
ffiffiffi
π

p
Z

∞

0

dl
l3=2

Z
l

0

dl1

Z
l1

0

dl2

Z
l2

0

dl3

Z
l3

0

dl4

×trðNZÞ½e−lK2f8Fμ
νðl1ÞFν

ρðl2ÞFρ
σðl3ÞFσ

μðl4Þ
þ16Fμνðl1ÞFμρðl2ÞFνσðl3ÞFρσðl4Þ
−4Fμνðl1ÞFμνðl2ÞFρσðl3ÞFρσðl4Þ
−2Fμνðl1ÞFρσðl2ÞFμνðl3ÞFρσðl4Þg�;

FμνðlÞ≡elK
2

Fμνe−lK
2

; ð33Þ

where the trace is taken for the ðNZÞ × ðNZÞ matrix.
Furthermore the ðNZÞ × ðNZÞ matrix is decomposed into
the product of the N × N matrix and the Z × Z matrix.
Indeed, e−lK

2 ¼ e−lQ
2 ⊗ e−lP

2

, and the nonzero compo-
nent of the field strength is FαβðlÞ ¼ GαβðlÞ ⊗ 1Z with

GαβðlÞ≡ elQ
2

Gαβe−lQ
2

;

Gαβ ¼
�

0 _Qb

− _Qa −i½Qa;Qb�

�
; ð34Þ

where α; β ¼ τ; 1; 2; 3.Qa is defined in Eq. (28), and we set
_̃xa ¼ 0 for the slowly moving test D0-brane. Finally, the
effective potential (33) is expressed as
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Veff jM4 ¼ −
1

2
ffiffiffi
π

p
Z

∞

0

dl
l3=2

Z
l

0

dl1

Z
l1

0

dl2

×
Z

l2

0

dl3

Z
l3

0

dl4trZðe−lP2Þ

× trN ½e−lQ2f8Gα
βðl1ÞGβ

γðl2ÞGγ
δðl3ÞGδ

αðl4Þ
þ 16Gαβðl1ÞGαγðl2ÞGβδðl3ÞGγδðl4Þ
− 4Gαβðl1ÞGαβðl2ÞGγδðl3ÞGγδðl4Þ
− 2Gαβðl1ÞGγδðl2ÞGαβðl3ÞGγδðl4Þg�: ð35Þ

Thus, trðNZÞ is factorized into trZ and trN . If we take the
large Z limit with Ru fixed, the trace trZ is transformed into
a Gaussian integral.

trZðe−lP2Þ ¼
XZ4

n4¼1

� � �
XZ9

n9¼1

e−lp
2
u ∼

π3Z
26M6

1

l3
; ð36Þ

where pu ¼ 2πR̃unu=Zu, R̃u ¼ Ru=ð2πl2
sÞ and M6 ¼Q

9
u¼4 2πR̃u. Note that the dependence on x̃a appears

through Q2 in Eq. (35).

IV. EFFECTIVE POTENTIALS VIA
SMEARED FUZZY OBJECTS

Let us calculate the effective potentials (35) between the
smeared fuzzy objects and the test D0-brane by using

Eqs. (28), (34), and (36). We assume that the test D0-brane
is located on the x3 axis without loss of generality. So we
set x̃ ¼ x̃3 in this section.

A. Effective potential via smeared fuzzy sphere

In this subsection, we calculate the effective potential
between the smeared fuzzy sphere and the test D0-brane.
Then Q2 in Eq. (28) is evaluated as

Q2 ¼
�
N2 − 1

4
r̃2 þ x̃2

�
1N − r̃ x̃Σ3; ð37Þ

and the field strength GαβðlÞ is given by

GαβðlÞ ¼
 

0 _̃r ΣbðθÞ
2

− _̃r ΣaðθÞ
2

r̃2ϵabc
ΣcðθÞ
2

!
: ð38Þ

Here we defined θ≡ 2lr̃ x̃ and ΣaðθÞ≡ elQ
2Σae−lQ

2

. And
the explicit form of ΣaðθÞ is given as follows:0
B@

Σ1ðθÞ
Σ2ðθÞ
Σ3ðθÞ

1
CA ¼

0
B@

cosh θ −i sinh θ 0

i sinh θ cosh θ 0

0 0 1

1
CA
0
B@

Σ1

Σ2

Σ3

1
CA: ð39Þ

By inserting the above expressions into Eq. (35), the
effective potential at M4 order is evaluated as follows:

Veff jM4 ¼ −
1

28
ffiffiffi
π

p π3Z
M6

1

ð2r̃ x̃Þ1=2
Z

∞

0

dθ

θ9=2

Z
θ

0

dθ1

Z
θ1

0

dθ2

Z
θ2

0

dθ3

Z
θ3

0

dθ4

× e−ð
N2−1

4
r̃2þx̃2Þ θ

2r̃ x̃trN

�
eθ

Σ3
2 fð _̃r2 − r̃4Þ2ðΣaðθ1ÞΣaðθ2ÞΣbðθ3ÞΣbðθ4Þ

þ Σaðθ1ÞΣbðθ2ÞΣbðθ3ÞΣaðθ4Þ þ Σaðθ1ÞΣbðθ2ÞΣaðθ3ÞΣbðθ4ÞÞ

þ 4_̃r2r̃4ðΣaðθ1ÞΣaðθ2ÞΣbðθ3ÞΣbðθ4Þ − Σaðθ1ÞΣbðθ2ÞΣbðθ3ÞΣaðθ4ÞÞg
�

¼ −
1

28
ffiffiffi
π

p π3Z
M6

1

ð2r̃ x̃Þ1=2
Z

∞

0

dθ

θ9=2
e−ðN

2−1
4

r̃2þx̃2Þ θ
2r̃ x̃trN ½eθ

Σ3
2 fc81J1ðθÞ þ 4_̃r2r̃4J2ðθÞg�: ð40Þ

Here we used the energy conservation (13), which is
written as − _̃r2 þ r̃4 ¼ c41 for Euclidean time. Therefore,
the coefficient of the J1ðθÞ-term in the trace is time
independent. J1ðθÞ and J2ðθÞ are a power series of Σn

3

and their explicit forms are given in Appendix A. Now we
take the large N limit by keeping the size of the fuzzy
sphere. Then the trace is transformed into an integral,

trðeθΣ32 Σn
3Þ ¼ 2n

dn

dθn
trðeθΣ32 Þ ∼ 2nþ1

dn

dθn

�
sinhðNθ

2
Þ

θ

�
: ð41Þ

Here the representation of Σ3 was chosen as ðΣ3Þm;n ¼
ðN − 2mþ 1Þδm;n. Finally, by inserting the above equation

into Eq. (40), we obtain the effective potential of the time
independent part at M4

1, i.e., the J1 part, as

Veff jM4;J1 ∼ −
π3NZ
211M6

N4c81
ð2R̃sphx̃Þ1=2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R̃sph

2x̃
þ x̃

2R̃sph
þ 1

s

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R̃sph

2x̃
þ x̃

2R̃sph
− 1

s !
; ð42Þ

where R̃sph ∼ r̃N=2 is typical mass scale of the fuzzy
sphere. The final expression is derived by employing
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Mathematica. Although R̃sph is time dependent, we assume
that the fuzzy sphere is oscillating slowly around t ¼ 0 and
R̃sph is finite. Then if we take R̃sph ≪ x̃, where the test
D0-brane is far from the fuzzy sphere in three dimensions,
the above effective potential becomes

Veff jM4;J1 ∼−
π3NZ
211M6

N4c81
x̃

∼−
π3ðNZÞ
25M6

�
Esphλ

ðNZÞ2
�

2 1

x̃
: ð43Þ

In the above, Eq. (22) is used. This result should be
compared with that of the near horizon geometry of the
smeared black 0-brane.

B. Effective potential via smeared fuzzy cylinder

In this subsection, we analyze the effective potential
between the fuzzy cylinder and the test D0-brane. The Q2

in Eq. (28) is evaluated as

Q2 ¼ ðρ̃2 þ x̃2Þ1N þ l̃2Ξ2
3 − 2l̃ x̃Ξ3; ð44Þ

and the field strength GαβðlÞ is given by

GαβðlÞ ¼

0
B@

0 _̃ρΞbðlÞ 0

− _̃ρΞaðlÞ 0 −l̃ ρ̃ ϵacΞcðlÞ
0 l̃ ρ̃ ϵbcΞcðlÞ 0

1
CA;

ð45Þ

where a; b ¼ 1; 2 and ϵab is an antisymmetric tensor.
ΞaðlÞ≡ elQ

2Ξae−lQ
2

is explicitly evaluated as

ðΞ1ðlÞÞmn ¼
1

2
elλmδmþ1;n þ

1

2
e−lλnδm;nþ1;

ðΞ2ðlÞÞmn ¼ −
i
2
elλmδmþ1;n þ

i
2
e−lλnδm;nþ1;

λm ≡ −2l̃2
�
mþ x̃

l̃

�
− l̃2: ð46Þ

By inserting the above expressions into Eq. (35), the
effective potential at M4 order is evaluated as follows:

Veff jM4 ¼ −
1

24
ffiffiffi
π

p π3Z
M6

Z
∞

0

dl
l9=2

Z
l

0

dl1

Z
l1

0

dl2

Z
l2

0

dl3

Z
l3

0

dl4

× e−lðρ̃2þx̃2Þtr½e−lðl̃2Ξ2
3
−2l̃ x̃Ξ3Þfð _̃ρ2 − l̃2ρ̃2Þ2ðΞaðl1ÞΞaðl2ÞΞbðl3ÞΞbðl4Þ

þ Ξaðl1ÞΞbðl2ÞΞbðl3ÞΞaðl4Þ þ Ξaðl1ÞΞbðl2ÞΞaðl3ÞΞbðl4ÞÞ
þ 4l̃2ρ̃2 _̃ρ2ðΞaðl1ÞΞaðl2ÞΞbðl3ÞΞbðl4Þ − Ξaðl1ÞΞbðl2ÞΞbðl3ÞΞaðl4ÞÞg�

¼ −
1

24
ffiffiffi
π

p π3Z
M6

Z
∞

0

dl
l9=2 e

−lρ̃2 trN ½e−ll̃
2ðΞ3−x̃

l̃
1Þ2fl̃4c43L1ðlÞ þ 4l̃2ρ̃2 _̃ρ2L2ðlÞg�: ð47Þ

Here we used the energy conservation (19) for the Euclid-
ean time, that is, − _̃ρ2 þ l̃2ρ̃2 ¼ l̃2c23. Because of this
relation, the L1ðlÞ part in the trace is time independent.
L1ðlÞ and L2ðlÞ are diagonal matrices and their explicit
forms are given in Appendix B. Now we take the density of
D0-branes per length infinite. Then the trace is transformed
into the integral,

trðe−ll̃2ðΞ3−x̃
l̃
1Þ2FÞ ∼

Z
∞

−∞
dζe−ll̃

2ζ2fð−2l̃2ζ − l̃2Þ: ð48Þ

Here F is some diagonal matrix whose component is given
by Fmn ¼ fðλmÞδm;n. Since the length of the fuzzy cylinder
is infinite, the range of the integral also becomes infinite.
Then the x̃ dependence disappears by shifting the origin.
Finally, by inserting the above equation into Eq. (47), the
time independent part of the effective potential at the M4

1

order becomes

Veff jM4;L1
∼ −

π3Z
24M6

l̃4c43

Z
∞

−∞
dζ

�
1

8l̃jζj þOðζ−2Þ
�
: ð49Þ

The last expression is derived by employing Mathematica.
The function in the bracket depends on ρ̃=l̃ and is expanded
around ζ ¼ ∞. The explicit form of the function is
complicated, but it is regular around the origin. The
effective potential of Eq. (49) shows that there is no force
between the fuzzy cylinder and the test D0-brane at leading
order.

V. COMPARISON WITH THE GRAVITY SIDE

In this section we review the properties of the
smeared black 0-brane and compare the effective potentials
for the test D0-brane with those of the previous section. The
black 0-brane solution is obtained by boosting the 11
dimensional black hole along the 11th direction. In a
similar way, the smeared black 0-brane solution can be
constructed by boosting the smeared black hole along the
11th direction [31]. The metric, the dilaton field, and the
R-R one-form field for the smeared black 0-brane are
written as
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ds210 ¼ −H−1
2Fdt2 þH

1
2ðF−1dr2 þ r2dΩ2

2 þ dx2uÞ;
eϕ ¼ H

3
4; Cð1Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ α
p ð1 −H−1Þdt;

H ¼ 1þ r−
r
; F ¼ 1 −

r−α
r

: ð50Þ

Here xuðu ¼ 4;…; 9Þ labels the smeared directions. The
solution has two parameters r− and α, and the latter
corresponds to the boost parameter.
Let us evaluate physical quantities of the smeared black

0-brane. The event horizon is located at rh ¼ r−α, and the
temperature T and electric potential Φ are given by

T ¼ 1

4π
H−1=2 dF

dr

				
rh

¼ 1

4πr−α

ffiffiffiffiffiffiffiffiffiffiffi
α

1þ α

r
;

Φ ¼ Cð1Þ
t jrh ¼

1ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p : ð51Þ

The Arnowitt-Deser-Misner (ADM) mass M and the R-R
charge Q of the smeared black 0-brane are evaluated as
usual, and the results become

M¼ 4πV6

2κ210
r−α

�
2þ 1

α

�
; Q¼ 4πV6

2κ210
ð ffiffiffiffiffiffiffiffiffiffi

1þα
p Þr−: ð52Þ

V6 ¼
Q

9
u¼4 2πRu is the volume of the compactified six

directions and 2κ210 ¼ ð2πÞ7l8
sg2s is the 10 dimensional

gravitational constant. ls is the string length and gs is the
string coupling constant. The extremal limit corresponds
to α → 0.
Next let us consider the near horizon limit of the smeared

black 0-brane. The near horizon limit is defined so that
physical quantities of the dual gauge theory become finite
[19]. Thus, the near horizon limit for the black 0-brane is
defined as [22]

r → 0 with U ¼ r
l2
s

and λ ¼ gsN0

ð2πÞ2l3
s
fixed: ð53Þ

Here U is a typical energy scale of the system. The ’t Hooft
coupling is denoted by λ ¼ g2YMN

0 and N0 ¼ NZ is the
number of the smeared D0-branes. Note that the energy
scale at the horizonUh ¼ r−α

l2s
is also fixed. In terms of α and

r−, the near horizon limit is defined as

α → 0 with
r

r−α
and

r−α
l2
s

fixed: ð54Þ

Let us examine the α → 0 limit more carefully. Since the
black 0-brane corresponds to the D0-brane, the R-R charge
of the D0-branes should be

Q ¼ N0

lsgs
: ð55Þ

Furthermore, since the black 0-brane is smeared into six
spatial directions, we should fix the typical mass scale for

the compactified six spatial directions. Namely, we fix
M6 ¼

Q
9
u¼4 2πR̃u. Then, in the near horizon limit, α goes

to zero like

α →
M6Uh

2π2λ
l4
s : ð56Þ

Note that r− goes to the infinity through the relation
r− ¼ Uhl2

s=α, and H and F in Eq. (50) are written as

H →
1

α

Uh

U
; F ¼ 1 −

Uh

U
: ð57Þ

The thermodynamics of the near horizon geometry of the
smeared black 0-brane becomes as follows. The temper-
ature in (51) becomes

T ¼ M1=2
6

4
ffiffiffi
2

p
π2λ1=2U1=2

h

; ð58Þ

and the internal energy E ¼ M −Q is expressed as

E
N02 ¼

3M6Uh

16π4λ2
¼ 3M2

6

2ð2πÞ8λ3T2
: ð59Þ

Finally, we examine a test D0-brane moving around the
smeared black 0-brane. Let us consider the potential energy
for the test D0-brane, which is moving only along the radial
direction. With this assumption, the Lagrangian for the
D0-brane in the background of the smeared black 0-brane
(50) becomes

L ¼ −T0e−ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _xμ _xν

q
− T0C

ð1Þ
t

¼ −T0e−ϕH−1
4F

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −HF−2 _r2

p
− T0

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p ð1 −H−1Þ:
ð60Þ

And the momentum conjugate to r is defined as

pr ¼
∂L
∂ _r ¼ T0H−1F

1
2

HF−2 _rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −HF−2 _r2

p : ð61Þ

By using the above equation, _r is expressed in terms of pr,
and the Hamiltonian of the D0-brane is evaluated as

H ¼ H−1F
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
0 þHFp2

r

q
þ T0

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p ð1 −H−1Þ: ð62Þ

If the momentum is small enough, we can expand the above
with respect to the momentum and read off the potential
energy as

V ¼ T0H−1F
1
2 þ T0

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p ð1 −H−1Þ: ð63Þ
The first term corresponds to the attractive force by the
gravity and the second term corresponds to the repulsive
force due to the R-R background. In the classical (or 1 ≪ r)
and near horizon limits, the potential becomes
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V − T0 ∼ T0α
U
Uh

ð
ffiffiffiffi
F

p
− 1Þ þ T0

α

2
∼ −

M6U2
hN

0

64π4λ2
1

U

¼ −
4π4ðNZÞ

M6

�
Eλ

3ðNZÞ2
�

2 1

U

¼ −
2π3ðNZÞ
9M6

�
Eλ

ðNZÞ2
�

2 1

x̃
: ð64Þ

The rest mass of the D0-brane is subtracted in the above,
since it is divergent constant in the near horizon limit. In the
last line, we used Eq. (59), N0 ¼ NZ and U ¼ x=l2

s ¼ 2πx̃.
The qualitative feature of Eq. (64) surely matches with
Eq. (43).
So far we have smeared the four dimensional black hole

along six spatial directions, and boosted it along the 11th
direction. And the solution is given by Eq. (50). Then we
might try to smear the three dimensional black hole along
seven spatial directions, and boost it along the 11th direction.
However, there is no three dimensional black hole which is
asymptotic to the flat spacetime [37]. Thismeans that there is
no black 0-brane which is smeared along seven spatial
directions. So the effective potential between the black
0-brane and test D0-brane should be trivial. This is consistent
with the result (49), which does not depend on x̃.

VI. CONCLUSION AND DISCUSSION

In this paper, we conjectured that the fuzzy configurations
of D0-branes in the BFSSmatrixmodel would correspond to
the microstates of the smeared black 0-brane in the near
horizon limit. The fuzzy configurations are constructed by
smearing the fuzzy objects in three dimensions into six
spatial directions. Since the fuzzy objects have the internal
energy compared with the static case, they are time depen-
dent and non-BPS states. Thus, the fuzzy configurations
would correspond to the microstates of the nonextremal
black 0-brane in the near horizon limit. As a nontrivial check,
we evaluated the one-loop effective potential for the test
D0-brane in the background of the smeared fuzzy sphere.We
found that the effective potential for the test D0-brane
behaves like Eq. (43) in the BFSS matrix model. On the
other hand, the effective potential was also evaluated from
the gravity side like Eq. (64). These two results match up to
the numerical factor, so this shows evidence that the smeared
fuzzy objects are the microstates of the black hole.
Furthermore, we also evaluated the one-loop effective
potential for the test D0-brane in the background of the
smeared fuzzy cylinder. In this case, the effective potential
becomes trivial, and it agrees with the fact that there is no
asymptotically flat black hole in three dimensions. Thus, the
conjecture is supported at least by one-loop calculation of the
effective potential for the testD0-brane, but following checks
below will be necessary for further confirmation.
Although the qualitative features of the smeared fuzzy

objects match with those of the smeared black 0-brane in the
gravity side, we still have the discrepancy in the numerical
coefficients. This is similar to the case of nonextremal black

3-brane thermodynamics [38]. In order to cure this problem
from the gravity side, we need to take into account α0
corrections in type IIA superstring theory. This will modify
the form of FðrÞ in the metric (50) and the mass of the black
0-brane will be renormalized as argued in Ref. [39].
Notice that, if we take into account α0 and gs corrections,

FðrÞ and HðrÞ should also be corrected by terms like
r−nðn ¼ 2; 3;…Þ. Those terms become important for the
small r region (r ∼ rh), and should be compared with the
effective potential with higher loop corrections in the BFSS
matrix model. However, it is very hard to check this
statement so far because we need precise knowledge of
α0 and gs corrections in type IIA superstring theory and
higher loop calculations in the BFSS matrix model in the
background of the fuzzy sphere.
In this paper, we focused on irreducible representations in

Eq. (3). It is possible, however, to consider reducible ones
which correspond to multiple fuzzy objects. For example,
we divide the size of the matrix N for the fuzzy object into
n pieces like N ¼Pn

i¼1 Ni, and prepare parameters
diði ¼ 1;…; nÞ so as to satisfy N3c41 ¼

P
n
i¼1N

3
i d

4
i . Then

we construct the fuzzy object out of n fuzzy spheres, each of
which has the matrix size Ni and the internal energy
Esph;i ¼ N3

i d
4
i =ð8g2YMÞ. This fuzzy object has the same

internal energy as Eq. (13) in the large Ni limit. And the
effective potential for the test D0-brane (43) is modified as
follows:

Veff jM4;J1 ∼ −
π3Z
211M6

P
n
i¼1N

5
i d

8
i

x̃
: ð65Þ

The numerical coefficient is different from Eq. (43), but the
order is almost the same. For instance, if we chooseNi=N ∼
1=n and ðNi=NÞ3ðdi=c1Þ4 ∼ 1=n for all i, we obtainP

n
i¼1ðNi=NÞ5ðdi=c1Þ8 ∼ 1. Since these configurations give

the same internal energy as the single fuzzy sphere, thesewill
be the microstates of the smeared black 0-brane in the near
horizon limit. In practice, it is very difficult to count the
number of microstates since these multiple fuzzy spheres are
dynamical and interacting with each other.2 Note that this
proposal is similar to the notion of the fuzz ball for the black
hole [41].
In this paper, we considered the fuzzy objects which have

axial symmetry. It is possible to relax this ansatz to construct
a generic configuration [42], and it will also contribute to the
microstates of the black hole. For future directions, it is
interesting to examine the multishell model which is pro-
posed as an alternative black hole evaporation mechanism in
Refs. [43,44]. The similar situation can be analyzed by using
themultiple fuzzy spheres discussed in the above.Notice that
the time evolutions of the fuzzy configurations are quite
complicated even for the two D0-branes case (See Fig. 1).
This shows that the black hole has a chaotic behavior as
recently studied in Refs. [45–48].

2For the static case, the von Neumann entropy of multiple
fuzzy spheres in S3 is evaluated in Ref. [40].
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APPENDIX A: CALCULATION OF J1 AND J2

The definition of J1ðθÞ and explicit expression are given
as follows:

J1ðθÞ≡
Z

θ

0

dθ1

Z
θ1

0

dθ2

Z
θ2

0

dθ3

Z
θ3

0

dθ4ðΣaðθ1ÞΣaðθ2ÞΣbðθ3ÞΣbðθ4Þ

þΣaðθ1ÞΣbðθ2ÞΣbðθ3ÞΣaðθ4ÞþΣaðθ1ÞΣbðθ2ÞΣaðθ3ÞΣbðθ4ÞÞ

¼
Z

θ

0

dθ1

Z
θ1

0

dθ2

Z
θ2

0

dθ3

Z
θ3

0

dθ4ð−4sinhðθ1−θ2þθ3−θ4ÞððN2−1ÞΣ3−Σ3
3Þ

−8sinhðθ1þθ2−θ3−θ4ÞððN2−3ÞΣ3−Σ3
3Þþcoshðθ1þθ2−θ3−θ4ÞððN2−9ÞðN2−1Þ−2ðN2−11ÞΣ2

3þΣ4
3Þ

þcoshðθ1−θ2þθ3−θ4ÞððN2−1Þ2−2ðN2−3ÞΣ2
3þΣ4

3Þþcoshðθ1−θ2−θ3þθ4ÞððN2−1Þ2−2ðN2þ1ÞΣ2
3þΣ4

3Þ
−2sinhðθ1−θ2ÞΣ3

3þ2sinhðθ1−θ3ÞððN2−1ÞΣ3−2Σ3
3Þþ2sinhðθ1−θ4Þð2ðN2−3ÞΣ3−3Σ3

3Þ−2sinhðθ2−θ3ÞΣ3
3

þ2sinhðθ2−θ4ÞððN2−1ÞΣ3−2Σ3
3Þ−2sinhðθ3−θ4ÞΣ3

3þcoshðθ1−θ2ÞððN2−1ÞΣ2
3−Σ4

3Þ
þcoshðθ1−θ3ÞððN2−5ÞΣ2

3−Σ4
3Þþcoshðθ1−θ4Þð4ðN2−1ÞþðN2−13ÞΣ2

3−Σ4
3Þþcoshðθ2−θ3ÞððN2−1ÞΣ2

3−Σ4
3Þ

þcoshðθ2−θ4ÞððN2−5ÞΣ2
3−Σ4

3Þþcoshðθ3−θ4ÞððN2−1ÞΣ2
3−Σ4

3Þþ3Σ4
3Þ

¼ðN2−1Þ
�
N2−9

4
coshð2θÞþ2θ2coshθ−ðN2−5Þcoshθþ3N2−11

4

�
1N−2ðN2−3Þðsinhð2θÞ−θ2 sinhθ−2sinhθÞΣ3

−
�
N2−11

2
coshð2θÞ−N2−13

2
θ2coshθ−2ðN2−5ÞcoshθþN2−1

2
θ2þ3ðN2−3Þ

2

�
Σ2
3

þð2sinhð2θÞ−3θ2 sinhθ−4sinhθþθ3ÞΣ3
3þ
�
1

4
coshð2θÞ−1

2
θ2coshθ−coshθþ1

8
θ4þ1

2
θ2þ3

4

�
Σ4
3: ðA1Þ

The definition of J2ðθÞ and explicit expression are given as follows:

J2ðθÞ≡
Z

θ

0

dθ1

Z
θ1

0

dθ2

Z
θ2

0

dθ3

Z
θ3

0

dθ4ðΣaðθ1ÞΣaðθ2ÞΣbðθ3ÞΣbðθ4Þ − Σaðθ1ÞΣbðθ2ÞΣbðθ3ÞΣaðθ4ÞÞ

¼
Z

θ

0

dθ1

Z
θ1

0

dθ2

Z
θ2

0

dθ3

Z
θ3

0

dθ4ð4 sinhðθ1 þ θ2 − θ3 − θ4ÞððN2 − 3ÞΣ3 − Σ3
3Þ

−
1

2
coshðθ1 þ θ2 − θ3 − θ4ÞððN2 − 9ÞðN2 − 1Þ − 2ðN2 − 11ÞΣ2

3 þ Σ4
3Þ þ

1

2
coshðθ1 − θ2 − θ3 þ θ4ÞððN2 − 1Þ2

− 2ðN2 þ 1ÞΣ2
3 þ Σ4

3Þ − 2 sinhðθ1 − θ2ÞΣ3
3 − 2 sinhðθ1 − θ4Þð2ðN2 − 3ÞΣ3 − 3Σ3

3Þ þ 2 sinhðθ2 − θ3ÞΣ3
3

− 2 sinhðθ3 − θ4ÞΣ3
3 þ coshðθ1 − θ2ÞððN2 − 1ÞΣ2

3 − Σ4
3Þ − coshðθ1 − θ4Þð4ðN2 − 1Þ þ ðN2 − 13ÞΣ2

3 − Σ4
3Þ

− coshðθ2 − θ3ÞððN2 − 1ÞΣ2
3 − Σ4

3Þ þ coshðθ3 − θ4ÞððN2 − 1ÞΣ2
3 − Σ4

3ÞÞ

¼ ðN2 − 1Þ
�
−
N2 − 9

8
coshð2θÞ − 2θ2 cosh θ þ N2 þ 7

2
θ sinh θ − 8 cosh θ −

N2 − 1

4
θ2 þ N2 þ 55

8

�
1N

þ ðN2 − 3Þðsinhð2θÞ − 2θ2 sinh θ þ 4θ cosh θ − 8 sinh θ þ 2θÞΣ3 þ
�
N2 − 11

4
coshð2θÞ − N2 − 13

2
θ2 cosh θ

− 2ðN2 − 13Þ cosh θ þ ðN2 − 15Þθ sinh θ þ θ2 þ 7N2 − 93

4

�
Σ2
3 þ



− sinhð2θÞ þ 3θ2 sinh θ − 8θ cosh θ

þ 12 sinh θ þ 1

3
θ3 − 2θ

�
Σ3
3 þ

�
−
1

8
coshð2θÞ þ 1

2
θ2 cosh θ −

3

2
θ sinh θ þ 2 cosh θ þ 1

4
θ2 −

15

8

�
Σ4
3: ðA2Þ
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APPENDIX B: CALCULATION OF L1 AND L2

The definition of L1ðlÞ and explicit expression are given as follows:

ðL1ðlÞÞmn ≡
Z

l

0

dl1

Z
l1

0

dl2

Z
l2

0

dl3

Z
l3

0

dl4ðΞaðl1ÞΞaðl2ÞΞbðl3ÞΞbðl4Þ

þ Ξaðl1ÞΞbðl2ÞΞbðl3ÞΞaðl4Þ þ Ξaðl1ÞΞbðl2ÞΞaðl3ÞΞbðl4ÞÞmn

¼ 1

2

Z
l

0

dl1

Z
l1

0

dl2

Z
l2

0

dl3

Z
l3

0

dl4ðeðl1−l2þl3−l4Þλm þ eð−l1þl2−l3þl4Þλm−1

þ eðl1−l4Þλmþðl2−l3Þλmþ1 þ eð−l1þl2Þλm−1þðl3−l4Þλm þ eðl1−l2Þλm−ðl3−l4Þλm−1 þ eð−l1þl4Þλm−1−ðl2−l3Þλm−2Þδmn

¼
�ðλm−1 − λmÞ2

4λ2m−1λ
2
m

l2 −
λm−2 − λm−1

2λm−2λ
3
m−1

le−lλm−1 −
λm − λmþ1

2λ3mλmþ1

lelλm

þ
�ðλm−1 − λmÞðλ2m−1 þ λ2mÞ

λ3m−1λ
3
m

þ 1

2λ2m−1ðλm−2 þ λm−1Þ
−

1

2λ2mðλm þ λmþ1Þ
�
l

þ
�

1

λ3m−1ðλm−1 þ λmÞ
−
3λ2m−2 − 2λm−1λm−2 þ λ2m−1

2λ2m−2λ
4
m−1

�
e−lλm−1

−
�

3λm−1 þ λm
2λ4mðλm−1 þ λmÞ

þ λm − 2λmþ1

2λ3mλ
2
mþ1

�
elλm þ e−lðλm−2þλm−1Þ

2λ2m−2ðλm−2 þ λm−1Þ2
þ elðλmþλmþ1Þ

2λ2mþ1ðλm þ λmþ1Þ2

þ
�
λm−2ð3λm−2 þ 4λm−1Þ
2λ4m−1ðλm−2 þ λm−1Þ2

þ 3λ3m−1 − 2λmλ
2
m−1 þ 2λ2mλm−1 − 2λ3m
2λ3m−1λ

4
m

−
3λm þ 2λmþ1

2λ3mðλm þ λmþ1Þ2
��

δmn: ðB1Þ

The definition of L2ðlÞ and explicit expression are given as follows.

ðL2ðlÞÞmn≡
Z

l

0

dl1

Z
l1

0

dl2

Z
l2

0

dl3

Z
l3

0

dl4ðΞaðl1ÞΞaðl2ÞΞbðl3ÞΞbðl4Þ−Ξaðl1ÞΞbðl2ÞΞbðl3ÞΞaðl4ÞÞmn

¼
�
−

1

4λm−1λm
l2−

λm−1−λm
2λ2m−1λ

2
m
lþ 1

2λ3m−1ðλm−1þλmÞ
e−lλm−1 þ 1

2λ3mðλm−1þλmÞ
elλm −

λ2m−1−λmλm−1þ λ2m
2λ3m−1λ

3
m

�
δmn:
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