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We conjecture fuzzy configurations of DO-branes in the Banks-Fischler-Shenker-Susskind (BFSS)
matrix model as microstates of the black hole. Fuzzy configurations of DO-branes consist of localized fuzzy
objects in three spatial directions which are smeared into six internal directions. Since the solutions are time
dependent, these are non-Bogomol’nyi-Prasad-Sommerfield (non-BPS) configurations and have internal
energy compared with static case. Especially, we examine the smeared fuzzy sphere in the BFSS matrix
model, which will correspond to the microstate of the charged black hole in four dimensions, and compare
the effective potential in that background with the result obtained by the near horizon geometry of the black
0-brane. The qualitative features of two descriptions agree with each other; thus, we expect that the smeared
fuzzy sphere corresponds to one of the microstates of the charged black hole. We also examine the smeared
fuzzy cylinder which will correspond to the flat space time.
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I. INTRODUCTION

Superstring theory is the promising candidate for the
theory of quantum gravity. In the superstring theory,
D-branes play important roles in investigating both gauge
theory and gravity theory [1]. Some black holes are realized
as bound states of D-branes, and microstates of the black hole
are constructed from the gauge theory on the D-branes [2].
This shows that the quantum nature of the gravity can be
captured by analyzing corresponding quantum field theory.

Actually, quantum aspects of black holes are investigated
considerably via matrix models, which are the nonpertur-
bative formulation of superstring theories [3—6]. In 1996,
Banks, Fischler, Shenker, and Susskind proposed a non-
perturbative formulation of M-theory (BFSS matrix model)
[3]. This theory is obtained by dimensional reduction of 10
dimensional super Yang-Mills theory to quantum mechan-
ics, which is identified with the effective action for multiple
DO-branes [7]. It is remarkable that although the BFSS
matrix model is the quantum mechanical system, it can
reproduce the gravitational force between two DO-branes
[3,8—10].l Hence, the BFSS matrix model captures the
nature of the gravity, and it is possible to investigate black
hole physics in detail.

lOriginally BFSS proposed to make the size of matrices
infinite. In Ref. [11], the finite case was proposed as discretized
light cone quantization of M-theory. See Ref. [12], for example,
for a review of the BFSS matrix model.
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In fact, there are several works which construct the
Schwarzschild black hole in various dimensions from
the BFSS matrix model [13-17]. The thermodynamics
of the black hole is reproduced qualitatively from the BFSS
matrix model in Refs. [13—16], and the instability of black
string is examined in Ref. [17]. Especially, a fuzzy sphere
configuration of DO-branes is used to describe the black
hole in Ref. [18]. In that paper, the effective potential for a
test DO-brane in the background of the fuzzy sphere is
evaluated at one-loop level, and it agrees with the result of
the gravity side qualitatively.

In 1997, Maldacena conjectured the gauge/gravity cor-
respondence [19], and it is confirmed that physical quan-
tities in the gauge theory, such as correlation functions, are
consistently calculated from the gravity side [20,21]. From
the viewpoint of this conjecture, it is natural to regard that
the BFSS matrix model corresponds to the near horizon
geometry of black O-brane [22]. Since the gauge/gravity
correspondence is a kind of weak/strong coupling duality, it
is hard to test the conjecture analytically. However, recently
there have been several numerical tests of this conjecture
for the thermal system of DO-branes [23-29]. Especially,
the numerical study for the black hole geometry is
considered in Ref. [30].

If the gauge/gravity correspondence is correct even for the
nonsupersymmetric system, it is important to construct the
black hole geometry in the BFSS matrix model. In Ref. [31],
a smeared black O-brane solution and its thermodynamic
properties are investigated. The black O-brane is smeared
along six internal directions, so it becomes a charged black
hole in four dimensions. Then it is interesting to consider
corresponding configurations in the BFSS matrix model. In
this paper, we conjecture that fuzzy configurations of
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DO-branes, which are time dependent fuzzy objects smeared
along six internal directions, correspond to the microstates
of the smeared black O-brane in the near horizon limit. These
fuzzy objects are bound states of DO-branes and are
oscillating around the origin of three spatial directions.

The organization of this paper is as follows. In Sec. II, we
review the BFSS matrix model and construct time depen-
dent fuzzy objects, including the fuzzy sphere and fuzzy
cylinder. In Sec. III, we review the one-loop effective
potential for the test DO-brane in the background of fuzzy
configuration. In Sec. IV, the effective potentials between
fuzzy objects, such as the fuzzy sphere and cylinder, and
the test DO-brane are calculated explicitly. We compare
properties of these effective potentials with the result
obtained by the gravity side in Sec. V. Section VI is
devoted to conclusion and discussion.

II. TIME DEPENDENT FUZZY OBJECTS
IN THE BFSS MATRIX MODEL

In this section, we consider time dependent configura-
tions of N DO-branes in the BFSS matrix model, which will
correspond to the microstates of the black hole. Since we
are interested in the black hole in four dimensional
spacetime, we make a fuzzy object in three spatial
directions via DO-branes and smear it along the remaining
six internal directions. The equations of motion for the
fuzzy object are expressed by simultaneous nonlinear
differential equations and solutions have nontrivial time
dependence in general. We show the numerical plot for the
N = 2 case which represents a nontrivial bound state of two
DO-branes, and then explains the analytic solutions for
oscillating the fuzzy sphere and fuzzy cylinder.

Let us consider the BFSS matrix model which describes
the dynamics of multiple DO-branes [3]. The action for
DO-branes can be obtained by the dimensional reduction of
10 dimensional A =1 super Yang-Mills theory to 1
dimensional super quantum mechanics [7]. The super-
multiplet consists of a gauge field A,, 9 scalar fields ®;
and a Majorana-Weyl fermion 6. These are expressed by
N x N matrices, and the action for multiple DO-branes is
given by

1 1 1
Sy =—— [ dttr( =D,®;D,®' + - [®; & ]?
0 Q%M/ I'(2 t =it +4[ i ]]

i 1
+§6’TD,€+§6’T;/’[®,-,6]>, (1)

where i,j=1,...,9, D, = 9, — i[A,,] and y' are 16 x 16
matrices. The coupling constant gyy; has mass dimension
3/2. Note that there are 9 scalar fields X; = 2z£2®;, and
the diagonal element of X; corresponds to a position of each
DO-brane in the x; direction. Thus, the size of the matrices
N is equal to the number of DO-branes. By setting 8 = 0,
the equations of motion for ® and A, become

Dt<th)i) = [(I)j’ [(Di’q)j“’ [q)[thq)i} =0. (2)
The equation of motion for € is trivially satisfied when
0 =0.

Let us examine Eq. (2) to construct the fuzzy object
which would correspond to the microstate of the black hole
in four dimensions. First of all, we set A, = 0 and choose
®,(a=1,2,3) as

b 1 1
(q)lg)mn = Epm(t)éer],n + Epn([)5mﬁn+l ’

i i
((Dgg>mn = _Epm(t)fsm-‘rl.n + Epn(t>5m.n+17

(@), = 2 (£)8 01 (3)

Here p,,(t) and z,,(r) are functions of temporal coordinate
t, and m,n =1, ..., N. The superscript bg stands for the
background. This ansatz represents the fuzzy object in 3
dimensions which is axially symmetric around the x°
direction [32,33]. Roughly speaking, p,, represents the
extension of the fuzzy object from the origin on the x; = z,,
plane. Therefore, the fuzzy object makes an axially
symmetric surface in three dimensions, and it carries a
dielectric D2-brane charge. The remaining six scalars
®,(u=4,...,9) are chosen to be diagonal so that the
fuzzy object is smeared along six spatial directions.

Let us substitute the ansatz (3) into the equations of
motion (2). The differential equations for p,, and z,, are
written as

. 1
Pm = {5<p31+1 - 2:031 +p%n—l) - (Zm+1 - Zm)z}pm’

(m=1,...N-1)
Zm = p%n(Zerl - Zm) _pi—l(zm - Zm—l)’
(m=1,...,N) (4)

where py = py =290 = zy1 = 0. Note that the second
equation in Eq. (2) is automatically satisfied. Since the
differential equations (4) are nonlinear, in general, it is
impossible to obtain analytic solutions. From the energy
conservation, however, we see that

1 (1. .. 1
E:ztr<¢>,-¢> —4[q>i,cpj]2>

gym \2
LS L 4 LR -y
g%Mm:l 2 m 2 m 8 m m—1
1
5 G = 2P )

This shows that the ranges of p,, are finite, and those of
(2 — Zm—1) are also finite if p,, # 0 for all m. If p,, = O for
some m, the representation is reducible and it represents

046023-2



BLACK HOLE AND FUZZY OBJECTS IN THE BFSS ...

PHYS. REV. D 98, 046023 (2018)

two or more fuzzy objects. Since separations of those fuzzy
objects should be finite, again (z,, — z,,_;) are also finite.
From the second equation of (4), we note that > _, 7, =0,
so we set the center of mass > _, z,, = 0 without loss of
generality. Thus, the DO-branes are bounded around the
origin in three spatial directions.

Now let us examine three types of solutions of Eq. (4).
The first example is the case of N =2. Here we set
7o = —z;. Then differential equations for p; and z; are
written as

p1= —(P% + 41%)P1, 41 = —2P%Z1’ (6)

and the energy is given by

1 (1 . . 1
Eyo,=—5— {5 (01)* + (21)* + Zﬂ? + 22%}- (7)
YM

Since p; = 0 corresponds to freely moving two DO-branes,
we ignore this case. Then p; and z; interact in a nontrivial
way, but two DO-branes make a bound state around the
origin in three dimensions. The plots of p;(¢) and z;(z) are
shown in Fig. 1. This shows that the dynamics of the fuzzy
object is complicated even for N = 2.

The second example is a fuzzy sphere which oscillates
around the origin in three dimensions. The explicit forms of
3 scalar fields @Y are given by Eq. (3) with

=N

pn =T mN =), 2y ="DN-2m 1)

We also set A8 = 0 and six scalar fields @ to be diagonal.
|F(¢)| corresponds to the size of the fuzzy sphere, and the
sign of 7(¢) is related to the orientation of the sphere. The
tilde is used to clarify that the quantity has mass dimension.

Note that tbzg can be expressed as [34]

_5}

FIG. 1. Plots of p,(z) (blue) and z,() (yellow). Initial con-
ditions are chosen as p;(0) = z;(0) = 1 and p,(0) = z,(0) = 0.

Z 2, X po
S |: S b:| = ieabc?? (9)

where a, b, c = 1,2,3.X,/2 are N dimensional irreducible
representations of SU(2) Lie algebra, which satisfy
3?2 + 33 + 33 = (N?-1)1y. Inserting Eq. (8) into the
equations of motion (4), we obtain a simple equation for
7(1) as follows:

F=-27. (10)

The above equation corresponds to the classical motion for
a particle which is periodically moving in the quartic
potential [35]. And the solution is described by using
Jacobi’s elliptic function sn as

7(t) = cysn(cit + ¢p, —1), (11)
where ¢ (> 0) and c, are integral constants. 7(¢) oscillates

between —c; and c,. The radius of the fuzzy sphere is
estimated as

1
R = \/Ntr(x% + X3+ X3) =227 (1) VN? =1, (12)

and the maximum value of the radius is given by

#tf%c;VN? — 1. In other words, ¢, is linearly related to
the size of the fuzzy sphere. Another constant ¢, can be
fixed so that the radius of the fuzzy sphere becomes
maximum at ¢ = 0. The energy of the fuzzy sphere is
estimated as

N(N*-=1) ., _ N(N? -1
(82 )(F2—|—V4): ( )
9IYym

ct. (13)
89%(M !

Esph =

Note that this is the internal energy of N DO-branes. If we
trust the classical solution naively, the fuzzy sphere
oscillates around the origin in three dimensions. And it
carries a dielectric D2-brane or anti-D2-brane charge,
depending on the orientation of the sphere. In actuality,
the fuzzy sphere interacts with the closed strings and it will
lose the internal energy during the oscillation.

The third example is an oscillating fuzzy cylinder. The
fuzzy cylinder is homogeneously extending along the x3 axis
and its circular cross section is oscillating on the (xy, x,)
plane. Since the length of the fuzzy cylinder is infinite, the
size of the matrices N should be infinite. The explicit forms of

three scalar fields @ are given by Eq. (3) with

Zy = —lm, (14)

Pm = p(1),
where m takes the integer value and 7 is a typical mass scale of

the fuzzy cylinder. In the matrix representation, DE are
expressed as
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We set A”® = 0 and six scalar fields @ to be diagonal as the

case of the fuzzy sphere. Inserting Eq. (14) into the equations
of motion (4), we obtain a simple equation for j(¢) as follows:

p=—1*p. (16)
And the solution becomes
p(t) = c3cos(lt + cy). (17)

Thus, the fuzzy cylinder shrinks and expands like a harmonic
oscillator. The radius of the fuzzy cylinder is estimated as

1 -
R = [5G +X3) =226, (18)

and the internal energy is given by

E

- N -
= (7* +Pp?) = 2. (19)
! 29%(M 29%{M :

The fuzzy cylinder oscillates around the x> axis with carrying
a dielectric D2-brane or anti—-D2-brane charge. In actuality,
the fuzzy cylinder interacts with the closed strings and it will
lose the internal energy during the oscillation.

III. FLUCTUATIONS AROUND
SMEARED FUZZY BACKGROUND

In the previous section, we have constructed the fuzzy
objects, such as fuzzy sphere and cylinder, in three dimen-
sions. In order to identify the fuzzy object with the microstate
of the black hole in four dimensions, we need to smear it into
spatial x,(u = 4, ...,9) directions. Thus, we compactify x,,
with radius R, and put a copy of the fuzzy object on each
position of (x4, ...,x9) = (2xR4n4/Zy, ...,2xR9Ng/Zy).
Here, Z, are some integers and n, runs from 1 to Z,, and
there are Z = []2_, Z, copies of the fuzzy object. By using
Eq. (3), nine scalar fields for the smeared fuzzy object are
represented as

¢a:®2g®127
q)u:1N®Pu’

a=1,2,3,
u==4,...9. (20)
Here P, are Z x Z diagonal matrices of the forms,

1

27R,
Zy

P,=1;,® - ® ® - ®ly, (21)

Zy

where R, = R, /(2z¢?2). Thus, each diagonal component
composes a vector p, = 2zR,n,/Z,. The fuzzy object is
completely smeared when we take Z, — oo. The energy of
the fuzzy objects are slightly modified due to the presence of
P,. For examples, the internal energies of the fuzzy sphere
and fuzzy cylinder are estimated as

(NZ(N*-1) ,

NZ)%.
< i, E, ( ) 12c2

yl = 2 3 (22)

Esph =

where A = ¢3,,NZ is the ’t Hooft coupling constant. The
number of copies Z goes to infinity, and N is also infinite for
the fuzzy cylinder.

Below we closely follow Ref. [18] to evaluate the
effective potential between the smeared fuzzy object and
a test DO-brane. In order to execute this, we start from the
Euclidean action of the BFSS matrix model with the
background field method. We decompose the scalar fields
as ®©; = B; + Y,. Here B, are background fields and Y; are
fluctuations. As was solved in the previous section, back-
grounds of the gauge field and the Majorana-Weyl fermion
are set to be zero. By adding gauge fixing and ghost terms,
the action is given by

1
Sg = / drtr(DTd%DTdﬂ——[d)i,(D}z
. ZQ%KM 2 !

+0"D,0 - 07y [®,.0] + (A, — i[B;. Y'])?

—iCD,C - [B, C}DlC). (23)

Here 7 = it is the Euclidean time and dot is the derivative
with respect to z. The explicit expressions for the back-
ground fields B; = (B,, B,,) are written as

be 1y®P, 0
Ba:< a®1Z 0)’ Bu:<N® u > (24)
0 X 0 0

Xa

The first NZ x NZ block diagonal represents the smeared
fuzzy object. The second 1 x 1 component does the test
DO-brane, and x, = (27£%)%, represents its position in
three directions. The tilde for X, is used to clarify that the
quantity has mass dimension. Below we assume that the
test DO-brane is moving very slowly and it is reasonable to
neglect the time dependence of %,.

Let us consider fluctuations around the background (24).
Since we are interested in the effective potential between
the fuzzy object and the test DO-brane, we only introduce
the fluctuations of off-diagonal parts,
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AT=<a<2>f a?)’ q)":B"+<¢i(0r)* ¢i<§r)>’
(0 ()

€= <Z’T(()r) E(OT) ) ' (25)

We substitute the above ansatz into the Euclidean action
(23), and expand it up to the quadratic order of the
fluctuations. Then the mass squared terms for 10 bosons
(a, ¢;), the Majorana-Weyl fermion 0 and 2 ghosts ¢, ¢ are
obtained as follows [18]:

Q%:K2110+Mb, Q%:K2116+Mf, Q§:K212 (26)

Here the diagonal parts of the mass squared terms have the
same structure K2 = K,;K', which is the (NZ) x (NZ)
matrix. The explicit expressions for K; = (K,, K,) and
K? are given by

Ka:Qa®IZv Ku:1N®Pua K2:Q2®IZ+1N®PZa
(27)

where

0, =D —%,1y, Q2= (%) 4721y —2%'DE, (28)

and ¥ = ¥,%, (@)% = @2 2¢ and P2 = P, P". On the
other hand, off-diagonal parts of the mass squared terms,

M, and M;, are written as
0 K; 0 F,
Mb == 2i . ’ 2i )
-K; —ilK;. K] Fip Fij
y"”F (29)

. 1 ..
M; =7'K; +§}’”[Kth} =

2
In the second line, we introduced “10 dimensional” gamma
matrices y*(u =17,1,...,9) and defined y* = —iy’. Note
that each F,, is a (NZ) x (NZ) matrix.

Now we are ready to evaluate the effective potential at

one-loop level. The formula for the effective potential is
given by

1
Vet = trb(Qb) - _trf(Qf) try ()
_ fQﬁ)
2\[ f3/2
N / f3/2trf (e77%)
bae [T,

Each term in the above can be evaluated perturbatively in
the interaction picture. In order to evaluate e % =

e~/(K*+M) et us define U(Z) = e’K’ e and M(¢)=
‘K’ Me=?K* The U(¢) satisfies a differential equation

—dz(;) =—-M(£)U(¢), and it can be solved as

U(e) =1- /0 “aem(e)

¢ ¢
+/) dflM(fl)A YdM(Ly) . (31)
Thus, e~ = ¢~k (¢) is expanded as

- _ —tK? _ ‘ —¢K?
e e dte "M M(¢,)
0

4 4
+ / dt, / LAty R M(E)M (L) — . (32)
0 0

Now it is possible to evaluate the effective action (30) order
by order by employing Eq. (32). After some calculations,
we see that terms up to the order of M> vanish because
of the underlying supersymmetry. The nontrivial contribu-
tion arises from the order of M*, and the result is given
by [18,36]

1 4
Veff'M“__ﬁ—/ f3/2/ dfl/ dfz/ df3/ de,

Xtr(yz)le ~CK{QFm, (CV)F?,(£2)FP o (€3)F°,(C4)
+16F,, (6,)F' () F*(£3)F p6(£4)
—4F,, (£1) P (62)F 56 (€3)FP° (¢ 4)
2F, (61)F o (E2)F* (£3)FP°(€4) .
Fo(6)=e®F,e %, (33)

where the trace is taken for the (NZ) x (NZ) matrix.
Furthermore the (NZ) x (NZ) matrix is decomposed into
the product of the N x N matrix and the Z X Z matrix.

Indeed, eK* = ¢77@* @ ¢~"’, and the nonzero compo-
nent of the field strength is F4(¢) = G,4(¢) ® 1, with

Gup(?) = eszGaﬁe‘fQZ,

Gon = (—Za —i[QQa[j Qb})’ Y

where @, =7, 1,2,3. Q, is defined in Eq. (28), and we set
)Lca = 0 for the slowly moving test DO-brane. Finally, the
effective potential (33) is expressed as
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Vi | M* =

1
_WEA f3/2/ dfl/ dt,
2 3 N
X/ df3/ df4trz(e_fp)
0 0

X th[e_sz{SG"ﬁ(fl )GP(£5)G7 5(¢5)G% o (Z4)

+ 16Ga/3(f1)G(ly(?fﬂz)Gﬁ{s(fS)Gyﬁ(ﬁ)

— 4Gy (£1)G?(£,)G 5(£3)G7 (44)

= 2Goy(£1)Gs(£2)GP(£3)G7 (£4) }]. (35)
Thus, tr(yz) is factorized into try and try. If we take the

large Z limit with R, fixed, the trace tr is transformed into
a Gaussian integral.

3
—fPZ -2, " z i 36
S e P g

ny=1 ng=1

where p, =2aR,n,/Z,, R,=R,/(22f?) and Mg =
3:4 27R,. Note that the dependence on ¥, appears
through Q? in Eq. (35).

IV. EFFECTIVE POTENTIALS VIA
SMEARED FUZZY OBJECTS

Let us calculate the effective potentials (35) between the
smeared fuzzy objects and the test DO-brane by using

Egs. (28), (34), and (36). We assume that the test DO-brane
is located on the x; axis without loss of generality. So we
set X = X3 in this section.

A. Effective potential via smeared fuzzy sphere

In this subsection, we calculate the effective potential
between the smeared fuzzy sphere and the test DO-brane.
Then Q? in Eq. (28) is evaluated as

N?—1
Q2:< I f2+5c2>1N—75c23, (37)

and the field strength G,4(¢) is given by

2 %,(0
G (f)_< 0 i ) (38)
@ 3L g2, E0)

2 " €apc 2

Here we defined 0 = 27 % and X, (0) = /2°%,e72". And
the explicit form of X,(6) is given as follows:

>(0) coshf —isinhd O %
% (0) | = | isinh@ coshd O % . (39)
34(0) 0 o 1)\

By inserting the above expressions into Eq. (35), the
effective potential at M* order is evaluated as follows:

1 7z 1 6,
Veff‘M4 = _28\/;7-"76(27‘56)]/2 A 99/2 d@] d92 d€3 d94

N2-1:2

X e—(_r +3 )2y;trN |:e6'273{(';'2 - 7’4)2<2a(91)20<@2>2b(93)2b(94)

+ Z,(01)Z5(02)Z2(03)Z(04) + 24 (01)Z(0,)Z(05)Z"(04))

+ 4P (Z,(0,)Z(02) %5 (05) 2" (64) — za(el)zb(ez)zh(egza(a‘))}}

1 77 1 / do
= - e 75 €
28 /m Mg (27%)'/2 Jo  6°/2

Here we used the energy conservation (13), which is
written as —7* 4+ 7 = ¢} for Euclidean time. Therefore,
the coefficient of the J;(0)-term in the trace is time
independent. J;(0) and J,(@) are a power series of X
and their explicit forms are given in Appendix A. Now we
take the large N limit by keeping the size of the fuzzy
sphere. Then the trace is transformed into an integral,

>y d’ z d" Sll’lh(N—e)
03xny — on ~ontt S (220 (41

Here the representation of X; was chosen as (X3),,, =
(N —2m + 1), ,. Finally, by inserting the above equation

_(N2-1

PR (PR3 (0) + 4274, (0))]. (40)

[
into Eq. (40), we obtain the effective potential of the time
independent part at M7, i.e., the J; part, as

Vegtlagt ) ~ = | T3 !
eff|M Ji 2“M6 (2Rsph)’z)1/2 2x + 2R5ph +
Ryn %
o %) 42
2% 2Ry, ) .

where Rsph~?N /2 is typical mass scale of the fuzzy
sphere. The final expression is derived by employing
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Mathematica. Although Rsph is time dependent, we assume
that the fuzzy sphere is oscillating slowly around r = 0 and
f?sph is finite. Then if we take ksph < X, where the test
DO-brane is far from the fuzzy sphere in three dimensions,
the above effective potential becomes

3(NZ) [ EgnAd \21

I § V(B )1 g3
2 M6 (NZ) X

In the above, Eq. (22) is used. This result should be

compared with that of the near horizon geometry of the
smeared black O-brane.

m*NZ N4c%
21 Mg X

Veff|M4,11 ~

B. Effective potential via smeared fuzzy cylinder

In this subsection, we analyze the effective potential
between the fuzzy cylinder and the test DO-brane. The Q2
in Eq. (28) is evaluated as

Q% = (p> + )1y + PE} - 21X E;, (44)

and the field strength G,4(7) is given by
|

0 PEL(?) 0
Go(?) —pE,(2) 0 —Ipe, B (2) |,
0 19 e, 2(2) 0

(45)

where a,b=1,2 and €, is an antisymmetric tensor.
B, () = e’QE,e"? is explicitly evaluated as

- 1 1 _
(:‘1 (f))mn = Eemmémirl,n + Ee fﬁném,n%»l ,
- i i
(:‘2<l’ﬂ))mn = _zeflmém-ﬁ-l,n +§€ Iﬁném,n—i—l,
A =-2P (m + ;) ~P. (46)

By inserting the above expressions into Eq. (35), the
effective potential at M* order is evaluated as follows:

2z
Vigelyt = — 2“fM/ fg/z/ dfl/ dfz/ df3/ ¢,

x e /P~ FEAREN (52 — Pp2)2(B, (£1)E%(£2)Ey (¢3)E (£4)
+ B, (£1)Ep(£2)B (£3)B(¢4) + Eu(£1)E,(£2)E (£3)E (£4))
+ AP (B (1) (£2) By (£3)B2 (£4) — Bu(£1)Ep(£2) 0 (£3)E%(44))}]
- _ﬁﬁﬁa/) %e_fﬁztrzv[ P e WAL (¢) + 4PPPLy(0))). (47)

Here we used the energy conservation (19) for the Euclid-
ean time, that is, —p° + °p* = I’c}. Because of this
relation, the L(#) part in the trace is time independent.
L,(¢) and L,(¢) are diagonal matrices and their explicit
forms are given in Appendix B. Now we take the density of
DO-branes per length infinite. Then the trace is transformed
into the integral,

tr(e_ﬁz@_%l)zF) ~ /oo

—o0

dee PE (=22 =), (48)

Here F is some diagonal matrix whose component is given
by F,un = f(4n)8,.,- Since the length of the fuzzy cylinder
is infinite, the range of the integral also becomes infinite.
Then the ¥ dependence disappears by shifting the origin.
Finally, by inserting the above equation into Eq. (47), the
time independent part of the effective potential at the M}
order becomes

e ARG Ctl)
24M6lc3/_wdé_,’ G TOE). ()

Veff|M4,L] ~

[

The last expression is derived by employing Mathematica.
The function in the bracket depends on /1 and is expanded
around § = oco. The explicit form of the function is
complicated, but it is regular around the origin. The
effective potential of Eq. (49) shows that there is no force
between the fuzzy cylinder and the test DO-brane at leading
order.

V. COMPARISON WITH THE GRAVITY SIDE

In this section we review the properties of the
smeared black 0-brane and compare the effective potentials
for the test DO-brane with those of the previous section. The
black O-brane solution is obtained by boosting the 11
dimensional black hole along the 11th direction. In a
similar way, the smeared black O-brane solution can be
constructed by boosting the smeared black hole along the
11th direction [31]. The metric, the dilaton field, and the
R-R one-form field for the smeared black O-brane are
written as

046023-7



YOSHIFUMI HYAKUTAKE

PHYS. REV. D 98, 046023 (2018)

ds3y = —H3Fdi* + H3(F~'dr* + r2dQ3 + dx2),

et =Hi, CY=V1+a(l-H")d1,
H=1+", F=1-"2 (50)
r r

Here x,(u =4,...,9) labels the smeared directions. The
solution has two parameters r_ and @, and the latter
corresponds to the boost parameter.

Let us evaluate physical quantities of the smeared black
O-brane. The event horizon is located at r, = r_a, and the
temperature 7 and electric potential ® are given by

1 dF 1 a
T=—H'"—| = ,
4n dr|, 4nra\l+a
() 1
o =C = 51
ln Vita 51

The Arnowitt-Deser-Misner (ADM) mass M and the R-R
charge Q of the smeared black O-brane are evaluated as
usual, and the results become

M—47[V6 r_a<2+i>, Q—4EV6(\/1+a)r_. (52)

52 52
2K 2K

Ve = H3:4 2zR,, is the volume of the compactified six
directions and 2«}, = (27)"¢%¢? is the 10 dimensional
gravitational constant. £ is the string length and g, is the
string coupling constant. The extremal limit corresponds
to a — 0.

Next let us consider the near horizon limit of the smeared
black O-brane. The near horizon limit is defined so that
physical quantities of the dual gauge theory become finite
[19]. Thus, the near horizon limit for the black O-brane is
defined as [22]

!
T oand 2= fived. (53)

r—0 with U= o

Here U is a typical energy scale of the system. The ’t Hooft
coupling is denoted by 1 = g3\,N’ and N’ = NZ is the
number of the smeared DO-branes. Note that the energy

scale at the horizon U}, = = is also fixed. In terms of a and

e
r_, the near horizon limit is defined as

. r r_a

a—0 with — and o

r_a S

fixed.  (54)

Let us examine the a — 0 limit more carefully. Since the
black O-brane corresponds to the DO-brane, the R-R charge
of the DO-branes should be

N/
£sgs

0= (55)

Furthermore, since the black O-brane is smeared into six
spatial directions, we should fix the typical mass scale for

the compactified six spatial directions. Namely, we fix
Mg = Hg:4 2zR,. Then, in the near horizon limit, & goes
to zero like

MgUy
272

a— 5. (56)
Note that r_ goes to the infinity through the relation
r_ = Un¢?/a, and H and F in Eq. (50) are written as

10, U,
-

H F=1-—. 57
- (57)

a

The thermodynamics of the near horizon geometry of the
smeared black O-brane becomes as follows. The temper-
ature in (51) becomes

M2
T=—ro"0% 58
422220, ¥
and the internal energy £ = M — Q is expressed as
E _3McUy _ 3M? (59)
N2 167*22  2(27)3AT?°

Finally, we examine a test DO-brane moving around the
smeared black O-brane. Let us consider the potential energy
for the test DO-brane, which is moving only along the radial
direction. With this assumption, the Lagrangian for the
DO-brane in the background of the smeared black 0-brane
(50) becomes

L =-Tye? /=g, i3 — ToC)"

= —Toe?HF\/1 — HF 21?2 = Tov/1+ a(1 — H™V).

(60)
And the momentum conjugate to r is defined as
oL . HF7?%i
p,:—.:TOH‘lFiir. (61)
or V1 - HF 22

By using the above equation, 7 is expressed in terms of p,,
and the Hamiltonian of the DO-brane is evaluated as

H=H"'Fi\/T? + HFp> + Tov/1 +a(l —H™"). (62)

If the momentum is small enough, we can expand the above
with respect to the momentum and read off the potential
energy as

V =TH'"F: + Tov/1+a(l —H™). (63)

The first term corresponds to the attractive force by the
gravity and the second term corresponds to the repulsive
force due to the R-R background. In the classical (or 1 < r)
and near horizon limits, the potential becomes
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U a  MgUIN'1
~To~Toa— (VF=1) + Tom~——2"D
V="To O“Uh(f VT~ U
_ 4r*(NZ) ([ Er \?1
N M 3(NZ)?) U
273(NZ) [ EA \21
__2m(NZ) ) = (64)
9M6 (NZ) X

The rest mass of the DO-brane is subtracted in the above,
since it is divergent constant in the near horizon limit. In the
last line, we used Eq. (59), N' = NZ and U = x/¢? = 2xX.
The qualitative feature of Eq. (64) surely matches with
Eq. (43).

So far we have smeared the four dimensional black hole
along six spatial directions, and boosted it along the 11th
direction. And the solution is given by Eq. (50). Then we
might try to smear the three dimensional black hole along
seven spatial directions, and boost it along the 11th direction.
However, there is no three dimensional black hole which is
asymptotic to the flat spacetime [37]. This means that there is
no black O-brane which is smeared along seven spatial
directions. So the effective potential between the black
0-brane and test DO-brane should be trivial. This is consistent
with the result (49), which does not depend on X.

VI. CONCLUSION AND DISCUSSION

In this paper, we conjectured that the fuzzy configurations
of DO-branes in the BFSS matrix model would correspond to
the microstates of the smeared black O-brane in the near
horizon limit. The fuzzy configurations are constructed by
smearing the fuzzy objects in three dimensions into six
spatial directions. Since the fuzzy objects have the internal
energy compared with the static case, they are time depen-
dent and non-BPS states. Thus, the fuzzy configurations
would correspond to the microstates of the nonextremal
black O-brane in the near horizon limit. As a nontrivial check,
we evaluated the one-loop effective potential for the test
DO-brane in the background of the smeared fuzzy sphere. We
found that the effective potential for the test DO-brane
behaves like Eq. (43) in the BFSS matrix model. On the
other hand, the effective potential was also evaluated from
the gravity side like Eq. (64). These two results match up to
the numerical factor, so this shows evidence that the smeared
fuzzy objects are the microstates of the black hole.
Furthermore, we also evaluated the one-loop effective
potential for the test DO-brane in the background of the
smeared fuzzy cylinder. In this case, the effective potential
becomes trivial, and it agrees with the fact that there is no
asymptotically flat black hole in three dimensions. Thus, the
conjecture is supported at least by one-loop calculation of the
effective potential for the test DO-brane, but following checks
below will be necessary for further confirmation.

Although the qualitative features of the smeared fuzzy
objects match with those of the smeared black O-brane in the
gravity side, we still have the discrepancy in the numerical
coefficients. This is similar to the case of nonextremal black

3-brane thermodynamics [38]. In order to cure this problem
from the gravity side, we need to take into account o
corrections in type IIA superstring theory. This will modify
the form of F(r) in the metric (50) and the mass of the black
0-brane will be renormalized as argued in Ref. [39].

Notice that, if we take into account &’ and g, corrections,
F(r) and H(r) should also be corrected by terms like
r(n=2,3,...). Those terms become important for the
small r region (r ~ ry,), and should be compared with the
effective potential with higher loop corrections in the BFSS
matrix model. However, it is very hard to check this
statement so far because we need precise knowledge of
a and g, corrections in type ITA superstring theory and
higher loop calculations in the BFSS matrix model in the
background of the fuzzy sphere.

In this paper, we focused on irreducible representations in
Eq. (3). It is possible, however, to consider reducible ones
which correspond to multiple fuzzy objects. For example,
we divide the size of the matrix N for the fuzzy object into
n pieces like N =>" N, and prepare parameters
di(i=1,...,n) so as to satisfy N>c{ = >_" | Nid}. Then
we construct the fuzzy object out of n fuzzy spheres, each of
which has the matrix size N; and the internal energy
Egni = Nid!/(8¢g3y)- This fuzzy object has the same
internal energy as Eq. (13) in the large N; limit. And the
effective potential for the test DO-brane (43) is modified as
follows:

_ 'z 2o N?dzg

21 M, X '
The numerical coefficient is different from Eq. (43), but the
order is almost the same. For instance, if we choose N;/N ~
1/n and (N;/N)3(d;/c))* ~1/n for all i, we obtain
S (N;i/N)>(d;/c;)® ~ 1. Since these configurations give
the same internal energy as the single fuzzy sphere, these will
be the microstates of the smeared black O-brane in the near
horizon limit. In practice, it is very difficult to count the
number of microstates since these multiple fuzzy spheres are
dynamical and interacting with each other.” Note that this
proposal is similar to the notion of the fuzz ball for the black
hole [41].

In this paper, we considered the fuzzy objects which have
axial symmetry. It is possible to relax this ansatz to construct
a generic configuration [42], and it will also contribute to the
microstates of the black hole. For future directions, it is
interesting to examine the multishell model which is pro-
posed as an alternative black hole evaporation mechanism in
Refs. [43,44]. The similar situation can be analyzed by using
the multiple fuzzy spheres discussed in the above. Notice that
the time evolutions of the fuzzy configurations are quite
complicated even for the two DO-branes case (See Fig. 1).
This shows that the black hole has a chaotic behavior as
recently studied in Refs. [45-48].

(65)

Veff|M4.Jl ~

*For the static case, the von Neumann entropy of multiple
fuzzy spheres in S is evaluated in Ref. [40].
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APPENDIX A: CALCULATION OF J, AND J,

The definition of J, (#) and explicit expression are given
as follows:

/ do, / 0, / Ao, / d0,(,(0,)5%(0,)5,(65)Z" (6,)

01)Z,(02)Z0(05)2%(04) +2,(601) 2, (60,)Z(05)Z"(64))

/de/ dez/ deg/ d0,(—4sinh(0, —0, +0;—0,) (N> —1)Z; —53)

—8sinh(6; +0,—60;—0,)(
—|—cosh(91—92+93—94)(( _1)
—2sinh(6; —0,)%3 +2sinh (6, —05) (N2 —

3)23 Z3>+COSh(91+92 93 94)((N2
—2<N2—3)2%+2§)+C05h(91—92—93+94)((N2—1)2—

9)(N?=1)=2(N>—11)22+x%)
2(N*+1)22+%9)

+2sinh(0, —0,) ((N*—1)E3 —2%3) —2sinh(6; —0,) 23 +cosh(0, —0,) (N> —1)£3 - =%)
+cosh(0; —03)((N?—5)Z3 — %) +cosh(0; —0,) (4(N* —1) + (N? —13)E3 - =%) +cosh (0, — 03) ((N* —1)23 - 23)
+cosh(0, —0,)((N*=5)23 —=%) +cosh(0; —0,) (N* — 1)22 - £%) +-3%3)

=(N>-1) <N24_9cosh(2€) +26?coshf— (N?-5) cosh9+3Nif_1l>lN —2(N?=3)(sinh(20) —6?sinh@—2sinh ) =5
- <N2 11 cosh(20) N 1302005h9—2(N2 -5) cosh9—|—N22_ 192 + 3(N22_ 3)) ¥z

1 1 1 1
+ (2sinh(20) —36*sinh@ —4sinh0+6) L3 + <Zcosh(29) —592 cosh9—cosh6+§94 +§92

(A1)

3
+Z> =i

The definition of J,(#) and explicit expression are given as follows:

0= ["doy [" o, [" o, [" doyiz,00x 01z, 002 01

— Z,(00)Z(0,)Z"(65)2(04))

/ dt91 / dgz/ de'; / d94(4 Slnh 91 + 92 - 93 - 94)(( - 3)23 - 2%)

04)((N* —9)(N? — 1) -
—2(N? 4 1)%3 + %3) — 2sinh(0, — 6,)%3
— 2sinh(6; — 04)Z3 + cosh(6; — 0,)((N* — 1)23

— cosh(6, — 63)((N? — 1)23

_(N2—1)(—N2_ i

- ECOSh(Ql + 62 - 0';

9
cosh(26) — 26? cosh & +

+ (N? — 3)(sinh(20) — 26? sinh § + 40 cosh & — 8 sinh § + 20)%; + (

— 25sinh(@; — 6,)(2(N?
—X%) —cosh(0; — 04)(4(N* = 1) + (N* = 13)%3
—X4) + cosh(03 — 0,)((N? — 1)23

79sinh9—8cosh9—

1
2(N? —11)22 +3%) + 2cosh(e1 =0, =034 04)((N* = 1)?

—3)Z;3 —3%3) + 2sinh(6, — 65)%3
- i)

- X3))

4 8

N> —11 N? -
cosh(20) —

2_1 N2
N =1, +55>1N

13
62 cosh @

TN? - 93
—2(N? —13) cosh@ + (N? — 15)@sinh 0 + 6> + T9) 2+ (— sinh(26) + 36° sinh & — 86 cosh &

1 1 15
+12sinh9+§93—29>2§+(—gcosh(ZH)—k choshe——651nh9+2cosh9+ 02——>Z4

- (42)
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APPENDIX B: CALCULATION OF L, AND L,

The definition of L,(#) and explicit expression are given as follows:

€))yn = /dfl/ dfz/ d?fﬂ3/ dt4(E,(¢1)E(£2)8y(¢5)E (¢4)

o(€1)Ey(£2)BP (£3)E°(Zs)

Hu(l’ﬂl)“b(l’ﬂZ)E (f3)E (f4))mn

/ i, /fl dfz/ d&/ 48, (e Ottt | o(—E1Htr—trtt i

4 =)t (O2=C3)hmer L o(=O1+02) A1 H(E3=C) A L o(O1=02)An=(C3=Ci)hnt o (=10 Amr =(62=C3) A 2)8un

_ {(lm—l B Am)z 2 Am 2 /Im 1 2z ey _ /1m ﬂm+1 Lﬂemm
4/131—1’1%1 2/1m 2/13 2/1% j'm-"-l
(lm—l A )(13’1—1 + j’%) 1 1
+ 3 93 2 T2 4
’1m l’1 2’1m—1 (ﬁm—Z + ’lm—l) 2Am (Am + /1m+1)
1 32 5 = 2t A + A2

+
(Aﬁn—] (Am—l + Am) 2’12m—2/131—1

1 ) e_fﬂm—]

3ﬁm_1 + Am /1 2ﬂm+1 e_bp(}-m—z""j-m—l) f("{m +Am+l)
5 3 et o 2
2Am (’1m—1 + Am) 2/1m/1m+1 2/Im—2 (lm—Z + ﬂm—l) 2Am+1 (Am + Am-&-l)
A2 (3 + A1) | 3hsy = Ay + 200 At = 205 Bhy +2h s (B1)
2’1;&1—1 (ﬂm—2 + ’Im—l )2 2/121—1/1;; 2’1;: (Am + /1m+1 )2 "

The definition of L,(#) and explicit expression are given as follows.

/ iz, / it / it / AE4(Bo(£1)E (£2)E1(£3)EP(£4) ~Za (61)E(£2)EP (£5)E (£4)

1

P UPZER

_{ 4Am_lzm 212 _ /12 22 (vt +Am) €

1
_f/‘{m 1 + f/lm —

2/131 </1m—1 =+ lm)

PR By H%n}é
282, &
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